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Abstract
Cloud storage is an effective way for data owners to outsource their data by remotely storing them in the cloud and enjoy
on-demand high quality services. In traditional cloud storage systems, cloud data integrity verification relies on centralized
entities and data is stored in a small number of storage servicers. However, these centralized entities and storage servicers
may be untrustworthy, and malicious servicers may even refuse to perform a user’s query or update request. Though a
few blockchain-based themes have been proposed to address some of these problems, they do not achieve decentralization,
accountability, flexibility and practicability simultaneously. In this paper, we present Themis, an accountable P2P cloud
storage scheme with smart contracts on Ethereum. Our scheme has the following advantages: First, cloud data integrity
verification is decentralized and implemented by miners on blockchain without any trusted third party. Second, by carefully
setting up the reward and punishment mechanism within a smart storage contract, all rational nodes will participate in the
storage service following an accountable rule. Third, based on reliable information published on the blockchain, users are
free to choose appropriate storage servicers who want to share idle storage, making storage service decentralized and flexible.
Fourth, compared with the existing related systems, by adopting a payment at maturity method, the malicious behavior
of breaking the contract after the servicer obtains some revenue is prevented, and the availability of user data within the
specified period is enhanced. Fourthermore, we implement a prototype of Themis on Rinkeby, an Ethereum test network.
Extensive experimental results demonstrate that our scheme is able to support a PB-level data storage in a single P2P storage
service at a low cost and is feasible for practical deployment. And the entire decentralized arbitration process takes only 40
to 110 seconds.

Keywords Cloud storage · P2P · Blockchain · Smart contract · Ethereum

� Dawei Li
lidawei@buaa.edu.cn

Yiming Hei
black@buaa.edu.cn

Yizhong Liu
liuyizhong@buaa.edu.cn

Jianwei Liu
liujianwei@buaa.edu.cn

Qianhong Wu
qianhong.wu@buaa.edu.cn

1 School of Cyber Science and Technology, Beihang University,
Beijing, China

2 School of Electronic and Information Engineering,
Beihang University, Beijing, China

1 Introduction

In the era of big data, users are more inclined to choose
cloud storage as the main way of data storage [1, 2].
Cloud storage reduces the burden of local storage while
facilitating data sharing. At present, enterprise users are the
main target of cloud storage services. Services for individual
users are not mature in terms of transmission efficiency
and functionality. The emerging 5G [3] technology provides
higher data transmission rate and lower transmission delay,
allowing users to access cloud data at a higher speed.
Therefore, it could be predicted that the development of
cloud storage will be more rapid, especially for personal
cloud storage.

However, there are still many problems restricting the
popularity of cloud storage. In the following, we divide
these problems into three categories and explain in detail the
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definition of the problem, the existing solutions and their
shortcomings.

1. Centralization of Cloud Data Integrity Verification.
In order to prevent malicious cloud servicers from
tampering with user uploaded data, data integrity
verification is required [4]. Many cryptography-based
solutions have been proposed to achieve cloud data
integrity verification. Some of the solutions [5, 6]
rely on users themselves to execute the verification,
adding extra communication and computing costs
to users. To reduce the burden on users, third-
party-based solutions are proposed. Wang et al. [7]
propose a general formal PoR model with public
verifiability for cloud data, which supports fully
dynamic data operations. A dynamic multi-replica
provable data possession scheme [8] is proposed
to achieve efficient data integrity verification by
using techniques such as probabilistic homomorphic
encryption and BLS signatures. Zhang et al. [9]
design a scheme that supports batch verification and
data dynamic operations. Storj [10] utilizes Proof of
Retrievability to ensure data integrity and verifiers in
this scheme are peers called Satellites. However, all
the above solutions rely on a special center to perform
verification. Once the verification center miscalculates
or misbehaves, the legal rights of the participants will
be impaired.

Sia [11] adopts the M-of-N signature scheme to
ensure the fairness of data services. It claims to support
public data integrity verification, while implementa-
tion details are not given. As an incentive scheme for
InterPlanetary File System (IPFS) [12], Filecoin [13]
utilizes Proof-of-Spacetime as a mechanism to stim-
ulate storage, and uses zk-SNARKs [14] technology
to ensure that the integrity of data could be publicly
verified. Currently, Filecoin is still in the process of
implementation.

2. Non-Accountability Problem of Denial of Service.
The cloud servicer may refuse to provide users with
queries or data update services by pretending that they
have not received the user’s message. Even if a trusted
third party is introduced, this problem will not be
solved. Consider the following scenario: A user claims
that he has sent a query (or an update) request to
the cloud servicer. While the cloud servicer refuses to
provide the service on the grounds that he does not
receive the user’s request. In this case, it is intractable
to determine who should be to blame, even if there is a
trusted third party.

3. Centralization of Cloud Storage Servicers. Today,
only a few cloud servicers such as Google and
Amazon are providing cloud storage services to

most users, leading to a monopoly in the industry.
The centralization of storage servicers may lead
to the following problems: If the cloud servicer
loses user data due to equipment failure or hacking
activities, it is very difficult for the user to obtain
satisfactory compensation. In order to solve the
storage centralization problem, some P2P cloud storage
projects based on blockchain [15] begin to sprout,
among which the more famous ones include Storj,
Sia and Filecoin. These projects motivate users on the
network to rent out their own idle local storage to get
service revenues. Smart contracts [16] are utilized to
standardize storage behaviors. Not only do they achieve
decentralized storage, but also conform to the idea
of a shared economy. In general, the above schemes
require cloud servicers to periodically provide proofs
to ensure the security of the storage, increasing the
amount of on-chain data and the computing burden of
cloud servicers. In addition, they [10, 11, 13] utilize
the micropayment channel [17] to solve the denial
of service issue when querying, but they do not pay
attention to this issue when updating, and servicers
have chance to deliberately delete data after receiving
some revenue and then reach a new deal with clients
providing higher rewards.

1.1 Our contributions

In order to solve the above problems in cloud storage,
we propose an accountable P2P storage scheme called
Themis based on the current design idea of blockchain-
based storage systems. We implement Themis on Ethereum
test network.

An Accountable Blockchain-based P2P Storage Scheme.
We propose Themis with novel smart storage contracts
to enforce consensus among storage participants in P2P
network in an accountable manner without any trusted
third party. We elaborate storage smart contracts to reg-
ulate the behavior of both parties. A pub-sub model is
used where storage servicers first publish storage con-
tracts on the blockchain to declare their service, and then
users choose an appropriate servicer according to the
contract information. Under normal circumstances, data
transmission is carried out off-chain. When a dispute
arises, i.e., the request sent by a user has no reply or the
response is incorrect, the participants request the stor-
age contract to make a ruling. Moreover, users’ update
commands are recorded on the blockchain for service
auditing. In addition, micropayment technology is used
to support data sharing, while the access and payment
records are also stored on the blockchain. Specifically,
Themis has the following advantages:
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– Decentralized cloud data integrity verification. We
propose an efficient integrity verification algorithm
that is publicly available, enabling automatic veri-
fication of data integrity. The method of integrity
verification is decentralized and redundant on-chain
proof operations is reduced compared with existing
schemes based on blockchain.

– Accountable against malicious behaviors from
servicers and users. Themis solves the non-
accountability problem of denial of service existing
in cloud storage system by a punishment mech-
anism. For servicers, they could not claim their
storage capacity unconditionally. And assuming the
servicers to be rational, they will provide the service
honestly. For users, assuming the users to be ratio-
nal, they always query data off-chain when servicers
provide the service honestly. In addition, Themis
realizes the reliable update of data.

– Decentralized servicers. Through a reward mecha-
nism, rational nodes are motivated to provide storage
service to other nodes. Users are free to choose
storage servicers according to information on the
blockchain.

– Payment at maturity. By converting the service
reward method in exciting schemes [10, 11, 13] from
off-chain micropayment to expiring settlement, the
availability of user data within the specified period
is enhanced, preventing malicious storage servicers
from deleting data after receiving some revenue, and
then reaching new service contract with customers
providing higher potential revenue.

Implementation. We implement a full prototype of
Themis on Rinkeby, an Ethereum test network and give
a comprehensive evaluation of the system performance.
Streamlined algorithms for data integrity verification
and data update are adopted to lower the computational
complexity of the algorithm. We test the costs of all
functions within the smart contract and the time costs of
data integrity verification. The experimental results show
that our scheme is feasible and efficient, supporting a
PB-level cloud data storage for a user in a peer-to-peer
storage service process with low cost. And the entire
decentralized arbitration process takes only 40 to 110
seconds. It should be noted that our scheme could be
conveniently transplanted to any system that supports
smart contracts.

1.2 Related work

Blockchain and Smart Contract. Introduced by Bit-
coin [15], blockchain is a continuously growing public
ledger where transactions or records are contained in

blocks that are linked by cryptographically calculated
hash values [18]. Blockchains could be classified into
two categories: permissionless blockchains and permis-
sioned blockchains [19]. In permissionless blockchains,
nodes are free to join the network and contribute to
the consensus as long as they complete some kind of
proof, such as PoW (proof of work), PoS (proof of
stake) or PoA (proof of activity). There is usually a
consensus mechanism to guarantee that agreement is
reached among all honest nodes. Formally speaking, a
blockchain system has to satisfy the consistency and
liveness property [20, 21] to guarantee safety. The con-
sistency property ensures that honest nodes have the
same view of the public ledger. As a result, decentraliza-
tion is realized in permissionless blockchains while no
trusted third party is in need. While the liveness property
guarantees that valid transactions submitted by nodes
will be processed ultimately.

Smart contract [16] is first introduced by Szabo in
1997. Szabo points out that computer codes could replace
mechanical equipment to deal with complex transactions.
This viewpoint does not receive attention at that time
due to the lack of a credible operating environment. With
the emergence and development of blockchains, smart
contracts have been widely used in many fields: secure
pub-sub (SPS) [22], new payment schemes [23], Data
Rights Management [24], Internet of Things [25, 26] and
P2P File System [27], etc. In addition, in order to enhance
the practicability of smart contracts, many researchers
begin to study the security of smart contracts and the data
feed service for smart contracts.

Ethereum [28] is a platform supporting smart contracts
where developers are encouraged to design next-
generation distributed applications. In every participating
node, there is one or several Ethereum virtual machines
where smart contracts are running. Each operation
executed on the virtual machines carries an inherent cost,
denoted as gas.

Cloud Storage Based on Blockchains. The basic idea of
blockchain-based cloud storage is to motivate all nodes to
contribute their own idle storage space to obtain revenues
in an untrusted environment. Representative schemes
based on this idea include: Storj, Sia and Filecoin.

Based on the Ethereum platform, Storj is a cloud storage
system that integrates platform, digital token and distributed
application. The main roles in the system are users, storage
nodes, Ethereum miners and Satellites. Users spend money
in renting spaces from storage nodes. Ethereum miners
are trying to become a block producer, and then package
transactions into a block to gain the corresponding rewards.
Satellites are specific auditors that send challenges to
storage nodes with Heartbeat, validate the storage proofs,
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and establish a reputation system according to the audit
history of each storage node.

Sia is a decentralized cloud storage system similar to
Bitcoin, aiming to compete with existing storage solutions
in P2P and enterprise areas. There are three types of entities
in a Sia system: miners, storage servicers and users. Miners
receive rewards based on the PoW mechanism. Storage
servicers earn revenues by renting their hard disks. Users
obtain the data storage service through the system. The Sia
system automatically generates a verification request for the
data storage status at a fixed frequency, requiring storage
servicers to provide proof of the correct storage of user data.
Unlike Storj, there are no specific auditors in the Sia system.
Any miner can independently verify the validity of proofs
from servicers.

As the incentive layer of IPFS, Filecoin guarantees the
security and stability of the storage process in IPFS. Filecoin
consists of three types of entities: storage miners who are
responsible for mining and storage; search miners who
provide search capabilities; users that store and query data.
Storage miners prove to users through Proof-of-Replication
and Proof-of-Spacetime that they have correctly stored the
users data for a continuous period of time. Unlike other
schemes, Filecoin creates a storage and retrieval market
to increase competition among storage servicers, offering
users flexible options and concessional prices. However,
Filecoin has not been launched officially. In the process of
producing a proof of spacetime, the problem caused by the
imbalance of the computational power of storage miners is
not considered in Filecoin.

1.3 Organization

The rest of the paper is organized as follows. In Section 2,
the system model and system components are given. Then,
we present our scheme in Section 3 and provide security
discussion in Section 4. In Section 5, we further analyze the
experiment results and show the practicality of our schemes.
Besides, we compare the performance of this scheme with
existing related schemes. Finally, we give a conclusion in
Section 6.

2 Systemmodel

We give a system overview and definitions of relative
concepts in this section.

2.1 System overview

As Fig. 1 shows, our system involves three types of entities:
miner, user and servicer. Miners try to solve the PoW
puzzles to produce new blocks where valid transactions are

Fig. 1 The system model of Themis

recorded. Servicers could be companies or normal nodes
that lease their storage space to earn revenues by publishing
a smart storage contract on the blockchain. Users could
conclude storage transactions with appropriate servicers
according to their storage requirements and the parameters
within servicers’ smart storage contracts.

After reaching an agreement through the smart contract
on-chain, users divide their data to be stored into data
blocks and use different symmetric keys to encrypt these
data blocks for different servicers. Then, users send these
encrypted data blocks with indices to the relevant servicers.
Later, users are able to query their servicers for the stored
data in an off-chain method. When a user does not receive
a reply after a certain amount of time from his servicer,
he could request arbitration to the corresponding storage
contract. If the servicer fails to upload a correct proof
to the contract within a specified time, the user will
receive the pre-stored deposit of his servicer from the smart
contract as a compensation. Besides, the data stored in the
service provider could be updated according to the user’s
requirements.

2.2 Proof of storage

The servicer stores users data in the form of a Merkle
tree [29] (Taking 8 data blocks as an example, the storage
structure similar to Sia is shown in Fig. 2). It is important
that the storage structure should be defined and exposed
publicly by servicers on the smart contract before reaching
an agreement.

The proof of storage is a list published by the servicer
to prove the integrity of the data queried by users. The
proof list includes a string-type data block Dc indexed by
a challenge c , a hash list H containing the hash values
on the path from Dc to the root node RD . For example, in
Fig. 2, the proof for challenge 5 is colored by red and H =
[H0−3, H4, H5, H67].
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Fig. 2 The Merkle tree structure used for Proof of Storage

Miners run Merkle() (Algorithm 1) to calculate the result
Res of the proof list, where MaxSize denotes the total
amount of data blocks, newindex represents the index of
the data block Dc’s hash value in H and Hash() represents
the keccak256 hash function. Specially, data blocks without
data need to be filled with an empty string identifier such as
“empty” to meet the requirement that MaxSize has to be a
power of 2.

2.3 Smart storage contract

In this section,we give a description of a smart storage contract
to support the distributed file storage system without a
trusted third party. The smart contract leverages Ether as
money exchange between users and storage servicers. Our
smart contract contains the transaction parameters and seven
functions executed by miners publicly. The details of the
smart storage contract are as follows.

2.3.1 Transaction parameters

The parameters used in smart contracts could be divided into
two types.

Storage Service Parameters. These parameters are used
to declare service capabilities and personal information
of a storage servicer. Table 1 summarizes these parame-
ters and their corresponding meanings.

User Parameters. The personalized rule parameters
determined by each user. Table 2 shows these parameters
and the corresponding meanings.

2.3.2 Functions

In this section, we only give the definition of the functional
interfaces of the functions. Please see Section 3 for the
details on algorithm implementation.

constructor(). Miners execute the function constructor()
automatically to initialize a servicer’s parameters when
a storage contract is deployed on-chain. Given the
volatility of the storage market price and to prevent
a servicer from making claims about storage capacity
(rent time and rent space) arbitrarily, we stipulate that
a servicer cannot declare rent time and rent space in
the contract at the same time. Therefore, a servicer only
declares the storage time, while the storage space needs
to be calculated according to the amount of deposit,
storage time and storage unit price. A servicer who is
the owner of the smart storage contract needs to transfer
deposit through constructor() to claim its storage space
implicitly.

concludeTrans(). The inputs of the function include
a user’s address on Ethereum, T UserRent Begin,
T UserRent End , T P rove Limit , Deposit User ,
DataRoot , Deposit User and PubKey User . This
function could be invoked by any user or servicer to
initialize the user’s parameters in Table 2 and conclude
a storage transaction. In detail, a servicer S triggers this
function to upload parameters of a user U participating
in a storage transaction. Then U also calls this function
to upload his parameters. Finally, miners will check
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Table 1 Storage service
parameters Parameter Description

T SerRent Begin The time when a servicer begin to rent out storage

T SerRent End The time when a servicer finish renting out storage

T Rent T ime The total rent time of a servicer’s storage space

T Despoit Limit The time limit for deposit transfer

Deposit Servicer The available deposit of a servicer

Link Servicer The contact address of a servicer

Pubkey Servicer The public key of a servicer

Add Servicer A servicer’s address on Ethereum

Current User The address of a user within the latest transaction

MapUsers The map recording the relation of a user’s address and parameters

MaxSize The number of data blocks

whether parameters from U and S are the same. If so, U
and S could conclude the transaction with these agreed
parameters.

update(). The inputs of this function include an index of
data block to be changed, a new data block and a hash list
that is the same as the hash listHmentioned in Section 2.
A user calls this function to update his stored data.

finish(). The input of the function is a user’s address. A
servicer invokes this function to withdraw deposit when
he finishes a storage transaction with a user and get the
user’s reward. If a transaction is invalid within stipulated
time, the corresponding servicer calls this function to
withdraw his deposit.

sendAsk(). The input of this function is an index of a
data block. A user calls this function to send his query
request and record it in the contract. Then he waits for a
corresponding proof of storage from the servicer.

sendProof(). The inputs of this function include an
address of a user who calls sendAsk(), and a proof of

storage. A servicer invokes this function to send a proof
of storage corresponding to the user’s query. Then miners
run Merkle() within the contract to verify the correctness
of the proof. If the proof is correct, it returns the data
queried by the user. If not, it returns error and deducts the
servicer’s deposit automatically.

proveTimeout(). A user calls this function to deduct a
servicer’s deposit if the servicer does not return a correct
proof of storage within a specified time.

3 Concrete scheme

In this section, we present our concrete scheme, Themis.
Themis consists of the following seven stages: Setup,
Deal-OffChain, Deal-OnChain, Transmission, Update,
Arbitration and Settlement. Figure 3 illustrates the detailed
process of Themis, involving various entities, messages and
sequences of events.

Table 2 User parameters
Parameter Description

T UserRent Begin The time when a user begin to rent storage

T UserRent End The time when a user finish renting storage

T Despoit Start The start time of deposit transfer

T Ask Begin The time when a user begin to ask on-chain

T P rove Receive The time to receive proofs from a servicer

T P rove Limit The time limit for receiving proofs

F lag Deposit The flag of deposit payment

F lag Ask Receive The flag indicating that a user’s ask has been received

F lag Ask P ermit The flag indicating that a user’s ask has been permitted

DataRoot The hash of a user’s all data blocks

PubKey User The public key of a user

Deposit User The deposit of a user

Ask index The index of the data queried by a user
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Fig. 3 Concrete process of
Themis

3.1 Setup

Firstly, servicers and users register their accounts on
Ethereum to obtain their key pairs and account addresses
separately. Then, servicers publish storage contracts with
initialized parameters (Link Service, Pubkey Servicer ,
Add Servicer , T Rent T ime, MaxIndex, etc.). Finally,
miners execute constructor() (see Algorithm 2 for details)
automatically to initialize the other parameters in Table 1.

After this stage, servicers that publish storage contracts
are ready to accept storage requests from users across the
network.

3.2 Deal-OffChain

According to the information within storage contracts,
users search for appropriate storage servicers. To improve

the efficiency of matching, our scheme also supports
third-party websites recommending servicers for users. In
fact, in order to improve the robustness of storage, a user
often chooses multiple servicers to store his data. For the
sake of simplicity and clarity of description, we assume
that a user U only finds a suitable servicer S. Based on
the storage service parameters of S, i.e., Link Servicer

and Pubkey Servicer , U establishes a connection with S
off-chain and negotiates user parameters of the new storage
transaction. After reaching an agreement, U divides the data
D into a block set (D1, D2, · · · , Dn) and obtains the set
of encrypted data blocks (E1 = Encrypt (D1, K1), E2 =
Encrypt (D2, K2), · · · , En = Encrypt (Dn, Kn)), where
Ki is the encryption key corresponding to the data block Di .
Then, U transmits the set of key-value pairs [(1, E1),

(2, E2), · · · , (n, En)] to S, where the key is a data index
and the value is the corresponding encrypted data block.

3.3 Deal-OnChain

The Servicer S invokes the function concludeTrans() (see
Algorithm 3 for details) with parameters negotiated with
the user U , which triggers the timing of the deposit
transfer. Within the delay T Despoit Limit , U calls
concludeTrans() with the same parameters and his deposit
Deposit User . Then the miners compare the parameters
of two parties. If their parameters are consistent, miners
set F lag Deposit to “true”, indicating that the storage
transaction begins to take effect.
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3.4 Transmission

Query. Since S and U have published their public keys on
the blockchain, they establish a secure channel to transmit
data off-chain through HTTPS or IPFS after their
transaction takes effect. The query process is as follows:
1. U sends a index to S; 2. Within a specified time, S
needs to return the data block corresponding to the index.

Storage proof. This operation is optional. To confirm the
integrity of the stored data, U could ask S to return its
specified storage proof mentioned in Section 2 at any
time off-chain. Then U triggers the Merkle() algorithm
to verify the correctness of the proof locally. Obviously,
since this operation is done entirely off-chain, it does not
increase the storage burden on the blockchain.

Share. If a user K also wants to get U ’s data stored
in S, he should establish a micropayment channel
with S. Then K sends a index with U ’s tag (i.e.,
U .address||index) to S. And S returns the correspond-
ing data block for rewarding. In general, U ’s data are
encrypted before transmission, so only the users with U ’s
decryption key could complete the decryption process
and obtain the plaintext.

3.5 Update

If the user U wants to update his data D, he could call
the algorithm update() (Algorithm 4) with a tuple (index,

Dnew,Hu) as inputs, where index is a index of data to be
changed, Dnew is the new data block and Hu is a hash list
that is identical to the list H mentioned in Section 2. Then
miners will run Merkle() to calculate a new DataRoot for
U . And S should replace Dindex with Dnew.

In our example, the caller of update() is U .

3.6 Settlement

Between time T UserRent Begin and
T UserRent End , if S responds correctly to all query
requests from U , he could take back his deposits worth
MapUsers[U .address].Deposit User to Deposit

Servicer and get U ’s deposits as a reward by invok-
ing finish() after T UserRent End (see line 6-9 in
Algorithm 5).
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3.7 Arbitration

Disputes might occur between users and their servicers
in deal-onchain stage and transmission stage. Possible
circumstances and corresponding arbitration methods are
analyzed as follows:

Case 1: In the deal-onchain stage, we require the
servicer to call concludeTrans() firstly,
which will automatically deduct his deposits
from Deposit Servicer . After S calls
concludeTrans(), if U refuses to call
concludeTrans() with his parameters and deposits
within the time limit T Despoit Limit , then
the transaction between U and S is invalid. In
this case, S could call finish() (see line 2-4 in
Algorithm 5) to withdraw his deposits.

Case 2: In the transmission stage, after U queries a data
Di or asks for a storage proof, if S returns a
wrong result or refuses to response on time off-
chain, then U calls sendAsk() (Algorithm 6) with
a index i, and waits for the proof of storage
corresponding to Di . In our example, the caller of
sendAsk() is U .

Within time T P rove Limit , S must call sendProof()
(Algorithm 7) to upload his proof. Miners verify the proof
of storage through the algorithm Merkle(). If the proof
passes the validation, U could get the data he needs from
this proof and their transaction continues. Else, U calls
proveTimeout() (Algorithm 8) to withdraw his deposits
worth Deposit User and get compensatory payment worth
Deposit User from S’s deposits. In this case, we set
F lag Ask P ermit to “false” to ensure that only one
penalty is imposed on the same disagreement.
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4 Security discussion

In this section, we discuss the security of our scheme.
Possible attacks against the scheme are first given, and
then security analysis for each attack is described and some
countermeasures are proposed.

4.1 Security threats

Our proposed scheme is constructed on top of Ethereum
and we assume that the Ethereum platform is reliable.
Therefore, we mainly concern and analyze the impact of
possible malicious behaviors from users and servicers on
system security. We analyze potential security threats in the
following.

4.1.1 Malicious servicers

Arbitrary Report on Storage Space In order to get more
orders, a dishonest servicer may claim to have more
storage capacity than he really has. This kind of attack
is usually launched combined with the outsourcing attack.
After obtaining an order that requiring larger storage space
than his actual space, the servicer deposits data beyond its
storage space to other servicers or the cloud.

Denial of Service In the transmission stage, a malicious
servicer may refuse to return the corresponding data when
a user initiates a query request off-chain. In addition,
a malicious servicer may reject to execute the update
instruction sent by a user. This will result in a decline in the
availability of the entire system.

Outsourcing Attack Case 1: The servicer does not store data
locally, but puts the data directly into some cloud. When a
user queries, the server firstly queries the cloud and returns
the result to the user. In this case, storage is still centralized.
Case 2: When a user redundantly stores the same file to
multiple storage servicers, the malicious servicer may not
store the file, but only obtains and forwards data from other
storage servicers for rewards. In this case, the redundant
storage is meaningless.

4.1.2 Malicious users

Frequent On-Chain Queries. A malicious user may
always query data by submitting challenges on-chain,
not through an off-chain way. This will increase the size
of data on the blockchain and bring higher costs to the
servicer.

Illegal Challenge Values. A malicious user could submit
an illegal challenge value to the contract, trying to make
the servicer lose his deposits due to the failure of the
corresponding proofs.

4.2 Security analysis

In the following, we give security analysis for each
malicious behaviors mentioned in Section 4.1.

4.2.1 Malicious servicers

Servicers can not claim their storage capacity uncondition-
ally Our system stipulates that a servicer could only declare
the storage time, while the storage space needs to be cal-
culated according to the amount of deposit. In other words,
servicers need sufficient deposits to support their storage
declaration.

Assuming that the servicers are rational, they will provide
the service honestly We divide possible denial-of-service
situations into the following two cases:

Case 1: The servicer fails to store data correctly, i.e., data
damages or loss occurs. In this case, the servicer
will lose his deposits since he can not provide the
storage proof when queried by the user.

Case 2: The servicer stores data correctly. There are two
sub-cases: Case 2a: The servicer refuses to answer
to his users at any time. In this case, the servicer
will lose his deposits without any benefit when
his users ask for arbitration (as we mentioned
in Arbitration stage). Case 2b: The servicer does
not respond to his users off-chain until a user
uploads his query on the blockchain by calling
sendAsk(). In this case, the servicer have to call
sendProof() to upload the corresponding proof on
the blockchain. This will bring extra costs to the
servicer since he have to pay for the fees to miners.

Since the record on blockchain is tamper-resistant, users’
requests for data updates will be recorded on the blockchain
to facilitate auditing. If the user’s data update request
appears on the blockchain for more than a certain time,
and the servicer still does not update the data, then it
could be determined that the servicer is to blame: In the
decentralized scenario, the user can trigger the algorithm
sendAsk(). If his servicer does not update the stored
data, he can not use sendP roof () to return the correct
proof of storage, causing the servicer to lose deposits and
reputation.
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Against Outsourcing Attack For the first case, note that
T P rove Limit is a parameter negotiated by both parties.
The user could limit this parameter to prevent its server
from obtaining data from a third party. For the latter case,
in addition to limiting T P rove Limit , users could divide
their files into several data blocks and apply different
symmetric key encryption for different servicers. In this
way, malicious servicers can not obtain a reward by directly
forwarding data stored by other servicers.

4.2.2 Malicious users

Assuming that the users are rational, they always query
data off-chain when servicers provide the service honestly
Apparently, users have to pay extra money when they call
sendAsk() on-chain. On the other hand, the transactions
associated with On-Chain Query will not take effect until
they are packaged and recorded by miners, which makes the
query inefficient.

Illegal challenge values submitted by users are invalid As
we can see from Algorithm 6, only legitimate challenge
values could be validated and recorded by miners.

5 Implementation and evaluation

In this section, we give the implementation details.
Evaluation results like gas, fee and time costs are shown.

5.1 Implementation

We implement Themis with Solidity 0.4.18 and test it on
Rinkeby, an Ethereum test network. We run our experiments
on a computer with a 2.3 GHz Intel i5-4200 CPU and 8 GB
RAM. The storage contract could be coupled with several
addresses delegating a special servicer and several users. To
facilitate testing, we use MetaMask, an Ethereum wallet, to
generate the addresses for U and S (see Table 3).

5.2 Evaluation

In this section, we focus on the efficiency of data
transmission phase. The efficiency of data transmission
hinges on data transmission and arbitration. And our storage
contract only plays a role of supervision in data storage,

Table 3 The addresses of participating entities

Entity Address

U 0xFE59795fC6BB864021eB916f30Cf889201a6B841

S 0x8e9ABb5C3d285D393F4DD4c3E277ee1e861F8bc9

Table 4 The time cost of calling sendAsk() and proveTimeout()

Function The Time Cost

sendAsk 14.3 s

proveTimeout 22.5 s

which means if both entities are honestly involved in this
scheme, the efficiency of data transmission only depends
on the transfer protocol adopted off-chain. Hence, we only
test the time cost of arbitration to assess the efficiency of
dealing with disputes. Moreover, to evaluate the economy
cost of using Themis, we also test the gas and fee costs of
the storage contract.

5.2.1 Time cost of arbitration

For more detailed and accurate analysis, we review
the arbitration process which could be divided into the
following steps.

1. A user initiates a query to the storage contract by calling
sendAsk();

2. The servicer provides the proof to the contract with
function sendProof();

3. If the proof is not submitted after a specified time, the
user calls proveTimeout() to obtain compensation.

In order to get accurate data, we call the above three
functions for 10 rounds and calculate the average execution
time that they take. In particular, we test sendProof() with
different data block sizes from 2KB to 30KB and four kinds
of data block numbers: 25, 220, 230 and 240. Table 4 and
Fig. 4 illustrate the time costs of these functions.

Based on the test results, we get the following results.

1. The average time cost of sendAsk() and proveTimeout()
is 14.3 seconds and 22.5 seconds, respectively;

2. The arbitration time grows as the size and number of
data blocks increase. The results are consistent with

Fig. 4 The time cost of calling sendProof()
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Table 5 The cost of executing
the contract(a) Caller Function/Operation Gas cost Fee cost(1Gwei) Fee cost(4Gwei)

Servicer Deploy 1816520 0.37608$ 1.50432$

concludeTrans 220787 0.04571$ 0.18284$

finish(Transaction failed) 34625 0.00716$ 0.02864$

finish(Transaction success) 50137 0.01037$ 0.04148$

User concludeTrans 37007 0.00745$ 0.0298$

sendAsk 68083 0.01410$ 0.0564$

proveTimeout 41467 0.00859$ 0.03436$

the design of the scheme. Since sendProof() needs to
contain the contents of the data block, the time cost is
positively related to the size of data block. Meanwhile,
as the number of data blocks increase, the hash list H
will contain more content, resulting in a longer time
cost;

3. The whole arbitration process takes between 40 and 110
seconds.

5.2.2 Gas and fee cost

The gas price was denoted as 1 × 10−9 Ether (1 Gwei) and
4 × 10−9 Ether (4 Gwei), the exchange rate was 1 Ether
= 209$ in September 2019. Table 5 and Fig. 5 show the
gas and fee cost when deploying a contract and executing

different functions of the storage contract. In particular,
since the cost of sendProof() and update() are related to the
block size and the number of blocks, we test them separately
with different data block size from 2KB to 30KB and four
kinds of data block numbers: 25, 220, 230 and 240.

In Fig. 5, it could be seen that the gas cost of functions
is linear to the block size. This phenomenon is reasonable
due to the increase of the computation and transmission
workload. Besides, the gas cost has a positive relationship
with the number of blocks. We could deduce from the
experimental results that Themis supports a PB-level cloud
storage for a user in one peer-to-peer storage service process
with a low cost. In details, according to the maximum
size of the single data block (30KB) and the maximum
amount of data block (240) supported by the system, we can

Fig. 5 The gas cost of executing the contract(b)
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Table 6 Comparison with other blockchain-based cloud storage schemes

System Platform Adaptive scenarios Way to conclude a tx Proof submission Transfer Protocol Mining mechanism

Storj Ethereum Storage Centralized platform On-chain&&Periodic HTTP Proof-of-Work

Sia Sia Storage and Inquiry Centralized platform On-chain&&Periodic IPFS Proof-of-Work

Filecoin Filecoin Storage and Inquiry Free On-chain&&Periodic IPFS Proof-of-Spacetime

Themis Ethereum Storage and Inquiry Free Off-chain+On-chain&&Irregular IPFS or HTTP Proof-of-Work

get the maximum data size supported by Themis is 30PB
(240 · 30KB). In addition, we find that calling the function
update() requires a certain amount of cost, so users might
selectively use the function for update operations (if the
user trusts the servicer, the update operation could be done
off-chain as much as possible).

Note that the cost of sendProof() is bigger than the cost
of sendAsk(), which brings unfairness to servicers in P2P
trading network. In details, if a malicious user intentionally
calls sendAsk() for multiple inquiries, the cost of its servicer
who calls sendProof() to reply will be much higher than the
user. To ensure the fairness of the query process on-chain,
we require users to transfer special money to the contract to
make up for the difference while calling sendAsk().

Based on the above results, we could calculate the cost
of participants in different situations. Suppose that there is
a contract supporting a storage of 220 data blocks, each of
which is 2KB in size, and the gas price is set to 1 Gwei.

Under normal conditions, a user needs to spend
(0.00745 + L × 0.3838)$, where L denotes the number of
times that the user calls update(). If disputes arise, a user
needs to spend about (0.00745 + M × 0.0141)$, where M

denotes the number of times that the user calls sendAsk().
A servicer only need to perform the deploy operation

whose cost is 0.37608$ one time, then he could provide
service for multiple users. Normally, a servicer merely
spends about extra 0.05608$ for each user. When arbitration
is required, it costs a servicer about (N × 0.05287 + K ′ ×
0.04433)$, where N represents the number of users and
K ′ denotes the number of times that the servicer calls
sendProof().

5.3 Performance comparison

As Table 6 shows, we compare Themis with Storj, Sia and
Filecoin from the aspect of implementation details.

Storj and Themis are based on Ethereum, and the others
have their own platform. Storj is dedicated to storage
scenarios, while the other schemes are suitable for both
storage and inquiry scenarios. Users and servicers on
Storj and Sia need a centralized platform to conclude

storage transactions, while Filecoin and Themis advocate
free matching between storage and users. To improve the
matching efficiency, Themis also support matching through
a trusted third party. To prove the correct storage of data,
Storj, Sia and Filecoin require servicers to submit the
storage proof to the blockchain regularly, resulting in extra
gas and fee cost, a huge amount of proof data stored on-
chain, and waste of servicers system resources. Therefore,
Themis specifies that users make queries through an off-
chain way when there is no dispute. Only when a user
inquire through the smart contract, the servicer needs to
return the proof on-chain. Storj uses HTTP as its data
transfer protocol, while both Sia and Filecoin employ
the IPFS protocol. For Themis, any transport protocol is
feasible. Except that Filecoin uses Proof of Spacetime for
mining, the other schemes adopt PoW.

6 Conclusion

We present Themis, a blockchain-based P2P cloud storage
scheme based on smart storage contract, that provides
an accountable and distributed storage environment for
storage participants. Themis solves the problems of storage
centralization, centralized verification of data integrity
and denial of service in cloud storage scenarios. Our
implementation and evaluation on the Ethereum test
network show that when disputes arise, arbitration could be
completed with low time and economic costs. In conclusion,
Themis is a highly viable solution for practical deployment.
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