

Blockchain-based fair payment smart contract for public cloud storage auditing

Journal Pre-proof

Blockchain-based fair payment smart contract for public cloud
storage auditing

Hao Wang, Hong Qin, Minghao Zhao, Xiaochao Wei, Hua Shen,
Willy Susilo

PII: S0020-0255(20)30062-1
DOI: https://doi.org/10.1016/j.ins.2020.01.051
Reference: INS 15182

To appear in: Information Sciences

Received date: 28 August 2019
Revised date: 27 January 2020
Accepted date: 29 January 2020

Please cite this article as: Hao Wang, Hong Qin, Minghao Zhao, Xiaochao Wei, Hua Shen,
Willy Susilo, Blockchain-based fair payment smart contract for public cloud storage auditing, Infor-
mation Sciences (2020), doi: https://doi.org/10.1016/j.ins.2020.01.051

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc.

https://doi.org/10.1016/j.ins.2020.01.051
https://doi.org/10.1016/j.ins.2020.01.051

Blockchain-based fair payment smart contract for public

cloud storage auditing

Hao Wanga,b, Hong Qina, Minghao Zhaoc, Xiaochao Weia, Hua Shend,
Willy Susilob

aSchool of Information Science and Engineering, Shandong Normal University, China
bSchool of Computing and Information Technology, University of Wollongong, Australia

cSchool of Software, Tsinghua University, China
dSchool of Computers, Hubei University of Technology, China

Abstract

Cloud storage plays an important role in today’s cloud ecosystem. Increas-
ingly clients tend to outsource their data to the cloud. In spite of its copious
advantages, integrity has always been a significant issue. The audit method
is commonly used to ensure integrity in cloud scenarios. However, traditional
auditing schemes expect a third-party auditor (TPA), which is not always
available in the real world. Also, the former scheme implies a limited pay-
as-you-go service, as it requires the client to pay for the service in advance.

In this paper, we aim to address the aforementioned drawback by adopt-
ing blockchain to replace TPA and designing a blockchain-based fair payment
smart contract for public cloud storage auditing. In our system, data owner
and cloud service provider (CSP) will run a blockchain-based smart contract.
The contract ensures that the CSP is required to submit data possession proof
regularly. The CSP gets paid only if the verification is passed; otherwise, it
gets no remuneration but has to pay the penalties. To reduce the number
of interactions in the execution of contract, we present the notion of non-
interactive public provable data possession and design a blockchain-based
smart contract for public cloud storage auditing based on this primitive.

Keywords: blockchain, smart contract, public auditing, fair payment,
cloud storage

Preprint submitted to Information Sciences January 30, 2020

1. Introduction

In cloud storage services, the cloud service provider (CSP) offers the
clients with on-demand storage services, either in the form of IssS (e.g., Ama-
zon AWS S3 and Google Cloud Storage) or SaaS (e.g., iCloud and Dropbox).
Until now, many pieces of research have been devoted to efficiency, reliabil-
ity, and user-friendliness aspects of cloud storage services (e.g., [44, 37, 42]).
Recently, cloud storage service has become a big industry, and it is esti-
mated that by 2022, the size of the cloud storage market will grow from
$23.48 billion in 2016 to $88.91 billion [1]. Also, with the rapid prevalence
of Internet-of-Things (IoT) Devices, growth on the diversity of computation-
intensive service (e.g., serverless computing and machine learning services),
and the increasing need for enterprise mobility, the popularity trend of cloud
storage is still thriving.

In spite of its numerous advantages, security, reliability and privacy of
cloud storage has always been a severe issue [16, 43, 17]. For the cloud
service providers, their storage data centers are normally built as distributed
systems with commodity hardware. Accordingly, they are susceptible to both
independent and correlated failures [20, 22]. Although many hardware (e.g.,
RAID facilities and ECC Memory) and software (e.g., replication and erasure
codes) techniques have been used to prevent data corruption and ensure
security and reliability, data corruption accidents still happen occasionally
(e.g., [5, 8, 6, 7]). In this case, the clients hope to be ensured that, their
data is safe, reliable and unmodified stored on the cloud.

However, traditional integrate insurance methods, such as hash function
and signature, cannot be applied to or is not effective in cloud storage scenar-
ios, as these tools require the client to have full copies of data. Accordingly,
it is required to construct specific methods to check the data reliability and
integrity in cloud storage cases [10, 23, 13]. Cloud audit protocols, especially
the Provable Data Possession (PDP) schemes, have been proposed to fulfill
this requirement.

In a typical cloud audit scheme, there exists an auditor (normally referred
to as the third-party auditor, TPA), which uses a spot-checking technique
(instead of accessing the whole data stored on the cloud) to check the data
integrity. This is also known as public auditing. Recently, public auditing
systems have been widely studied [25, 35, 10, 31, 33, 34]. A secure public-
auditing system should be able to resist a forge attack, replacing attack, and
replay attack from CSP. Moreover, an ideal public-auditing scheme should

2

also take some desirable proprieties, such as privacy preservation, auditing
of dynamic data, batch auditing, auditing of multiple replicas, auditing of
shared data and lightweight overheads [32].

However, a suitable TPA may not always exist. In addition, in the use of
a cloud storage system, data owners must pay for the cloud storage service in
advance. Accordingly, once the data is lost or damaged by CSP, it is hard for
data owners to protect their rights. Although the TPA can provide relevant
evidence, data owners have to use legal means to defend their rights, which
actually requires high additional cost. What is more worrying is that the
current law system involving cloud computing is not yet sound, and some
related legal issues are difficult to define. Especially, for a cloud storage
provider, his storage servers are deployed and distributed around the world.
This raises a lot of questions of legal governance over the data. In case a
conflict arises between the cloud vendor and the customer, which country’s
legal system will settle the dispute is still an unresolved question. To resolve
the aforementioned problem, we replace the traditional TPA with a smart
contract, which is an executable code that runs on the blockchain. Using this
technology, we design a fair payment smart contract for the cloud storage
system. When data is lost or damaged, the user will no longer have to pay
the rent of the cloud service, and will be compensated automatically.

1.1. Our Contribution

Taking advantage of decentralization and automatical triggering of the
blockchain, we design a blockchain-based fair payment smart contract for
public cloud storage auditing. In our system, data owners and CSP will run
a smart contract based on blockchain. The contract ensures that the CSP is
required to submit data possession proof regularly. Only if the verification
is passed, the CSP will be paid, otherwise the CSP will not only receive no
remuneration, but will pay the penalties.

When using the traditional public auditing protocol, the verifier needs to
interact with the CSP. In this process, a verifier usually generates a random
challenge and CSP returns a data possession proof based on this challenge.
This kind of interactive proof is not suitable for executing on a smart contract
platform, because each consensus node (as a verifier) has to interact with the
CSP, the complexity of system communications and the computing cost of
CSP will be unacceptable. In order to avoid the interaction between smart
contract platforms and CSP in the execution of a contract, we present the

3

notion of non-interactive public provable data possession (NI-PPDP) and de-
sign a blockchain-based fair payment smart contract for cloud storage based
on this primitive. Concretely, we construct an efficient NI-PPDP scheme by
non-trivially extending the Wang et al.’s interactive public auditing scheme
[33]. Specifically, the contributions of this paper mainly includes the follow-
ing three aspects:

• Present the notion of non-interactive public provable data possession
(NI-PPDP);

• Construct an efficient NI-PPDP scheme, and give formal proof in the
random oracle model;

• Design a blockchain-based fair payment smart contract for cloud stor-
age based on NI-PPDP.

1.2. Organization

We introduce the background and preliminaries in Section 2, and give
the formal definition of non-interactive public provable data possession (NI-
PPDP) in Section 3. Then, we describe the designs of blockchain-based fair
payment contract for cloud storage in Section 4. In Section 5, we present a
specific NI-PPDP scheme, and analyze that our NI-PPDP scheme meets all
the design goals in Section 6. In Section 7, we analyse the performance of
our NI-PPDP scheme. Finally, we give a conclusion in Section 8.

1.3. Related Work

1.3.1. Provable Data Possession

Data owners will lose the physical control of their data, when they use the
cloud storage service. How to ensure the integrity of remote data is the most
important security issues. In 2007, Ateniese et al. [10] introduced a notion of
provable data possession (PDP) that allows users to check the remote data
without downloading it. Then, Erway et al. [19] proposed the concept of
dynamic PDP, which supports data updating. Almost in the same period,
Sebé et al. [30] did similar work. In 2008, Shacham and Waters [31] intro-
duced the first fully secure proof-of-retrievability scheme in the Juels-Kaliski
model. Since then, a lot of research has been done in this area [39, 14, 36, 26].
However, most of schemes of that period suffer from efficiency problems. In
2015, Liu et al. [27] gave an efficient public auditing scheme based on the
Merkle hash tree. This scheme greatly reduces the communication overhead

4

and improves the verification efficiency. Furthermore, considering the case
of identity-based cryptosystem and certificateless cryptosystem, Wang [34]
proposed an identity-based PDP scheme, and He et al. [24] proposed a cer-
tificateless PDP scheme.

1.4. Blockchain and Smart Contract

In 2008, Satoshi Nakamoto [29] proposed the concept of bitcoin. By
combining decentralized consensus technique and append-only data struc-
ture, a type of cryptocurrency without the existence of a trusted party is
designed. The framework used by bitcoin is generally called blockchain. In-
spired by bitcoin, some cryptocurrencies and intelligent applications based
on blockchain have been proposed one after another, such as Litecoin[3],
Zcash[11], Monero[4], Ethereum[2]. These systems have common features:
(1) using a consensus protocol to achieve data consensus; (2) using hash
chain structure to store data. In general, blockchains are considered to be a
linked list of data blocks, where each block is linked by a hash pointer. As
shown in Figure 1, the hash value of the previous block is recorded on the
head of the next block. Each block includes a collection of data. Once a
block is appended to the blockchain, any change to that block will cause a
series of changes in the subsequent blocks. In a blockchain system, the dis-
tributed nodes update the hash chain synchronously by running a consensus
protocol.

Prev: H()

Data

Prev: H()

Data

Prev: H()

Data

Figure 1: Blockchain

A smart contract is an executable code that runs automatically on the
blockchain by consensus nodes without any trusted third party. A smart
contract can perform specified operations once pre-defined rules have been
met [12]. For instance, using a smart contract, Bob cloud receive x currency
units from Alice, if he sends correct calculation results to Alice.

In the smart contract system (Figure 2), each contract has a unique ad-
dress and cannot be changed after being deployed into the blockchain. When

5

users execute a contract, they only need to send the transaction to the ad-
dress stated on that contract. Then, every active consensus node will execute
this transaction in the smart contract system to get a consensual result. At
present, researchers are trying to use smart contracts to solve various prob-
lems in a variety of areas, such as Insurance [21], Medical Care [38], e-Voting
[28], Cloud Computing [18] and IoT [15].

Blockchain

Consensus

Networks

User-1 User-2 User-n

……

Transaction-1

Smart Contract Code

Transaction-2
Transaction-n

Figure 2: Smart Contract

Recently, Zhang et al. [40, 41] studied the fair payment issues for cloud
storage based on blockchain. In their works, PDP is still implemented in
a traditional challenge-response way between users and servers. They used
bitcoin-based timed commitment technology [9] to achieve fair payment. Our
work uses a different approach. After deploying smart contracts, there is no
need for challenge-response interaction among users, CSP and any smart
contract platform in our system. This will facilitate the implementation of
smart contracts by consensus nodes in the public blockchain.

6

2. Preliminaries

2.1. Bilinear Pairings

Let G and GT be multiplicative cyclic groups with prime order p, and
e : G × G → GT be a function from G × G to GT . G and GT are called
bilinear groups, if

• (Bilinear) ∀g1, g2 ∈ G, x, y ∈ Zp, e(g1
x, g2

y) = e(g1, g2)xy.

• (Non-degenerate) ∃h1, h2 ∈ G1, e(h1, h2) is a generator of GT .

Furthermore, all group operations and function e should be computable.

2.2. Computational Diffie-Hellman (CDH) Assumption

Definition 1. Suppose G is a q-order cyclic group, g is a random generator
of G. For ∀x, y ∈ {0, . . . , q − 1}, given (g, gx, gy), it is computationally
intractable to compute gxy.

2.3. Review Wang et al’s Interactive Public Auditing Scheme [33]

We only review the basic construction of Wang et al’s scheme. For a
description of the system model and security model, please refer to [33]. In
their scheme, there are two phases, (1) Setup and (2) Audit:

• Setup Phase:

KeyGen(1λ) → pk, sk: Let g be a generator of bilinear group G.
The data owner chooses two hash functions, H(·): {0, 1}∗ → G, h(·) :
GT → Zp, and generates public/private key pairs (spk, ssk) for a digital
signature algorithm. Then, it chooses x ← Zp, u ← G randomly, and
calculates v ← gx. The secret key is sk = (ssk, x) and the public key
is pk=(spk, g, u, v, e(u, v), H(·), h(·)).
TagGen(F, pk, sk) → Φ: We suppose that the data file can be ex-
pressed as F = {mi}1≤i≤n, where mi ∈ Zp. The data owner com-
putes authenticators σi ← (H(Wi) · umi)x ∈ G for i ∈ [1, n], where
Wi = name||i, and name← Zp is chosen by the data owner randomly
as the identifier of file F . Let Ψ = {σi}1≤i≤n.

To ensure the correctness of the file identifier name, it runs a signing al-
gorithm Sig on the name under ssk, and sets t = name || Sigssk(name)
as the file identifier for F . The data owner then uploads data file F
and corresponding data tags Φ = (Ψ, t) to CSP.

7

• Audit Phase:

The verifier first retrieves the file identifier t, and verifies the signature
Sigssk(name) via spk, and aborts by outputing ⊥ if verification fails.
Otherwise, the verifier recovers the name. Then, the verifier picks a
random c-element subset I = {s1, ..., sc} of set [1, n]. For each index
i ∈ I, the verifier chooses vj ← Z∗p randomly. The verifier sends chal =
{(i, vi)}i∈I to the server.

ProofGen(pk,Φ, F, chal)→ Σ: It computes

σ =
∏

j∈I
σ
vj
j ,

and
µ′ =

∑

j∈I
vj ·mj.

The CSP chooses s← Zp randomly, and calculates T = e(u, v)s ∈ GT .
Then, it computes: µ = s+ γµ′ mod p, where γ = h(T) ∈ Zp. It sends
Σ = {µ, σ, T} as the data possession proof to the verifier.

Verify(pk,Σ): The verifier computes γ = h(T) and outputs 1 or 0,
according to the correctness of equation below

T · e(σγ, g)
?
= e((

sc∏

i=s1

H(Wi)
vi)γ · uµ, v).

8

3. Non-Interactive Public Provable Data Possession Scheme

3.1. System Model

In a non-interactive public provable data possession (NI-PPDP) scheme,
there are three types of entities, that is, data owner, CSP and verifier (as
shown in Figure 3). Different from the traditional interactive public provable
data possession scheme, CSP and the verifier do not need to interact during
auditing. An NI-PPDP scheme consists of 4 algorithms, which are divided
into two phases:

...

CSPData Owner

Data Flow

Verifier

Figure 3: System Model

• Setup Phase: In this phase, data owners generate the data tags Φ
corresponding to their data file F and store F along with Φ on the
cloud storage service. They will run the key generation algorithm and
tag generation algorithm as follows.

KeyGen(1λ) → pk, sk: The key generation algorithm is run by data
owner. It takes security parameter λ as input, and outputs public key
pk, secret key sk.

TagGen(F, pk, sk) → Φ: The tag generation algorithm is run by the
data owner. It takes data file F , public key pk, secret key sk as input,
and outputs the corresponding data tags Φ. The data owner then
uploads F and Φ to the CSP.

• Audit Phase: In this phase, CSP will prove that it stores complete data.
It gives proof based on data tags Φ, data file F and current state τ ,

9

by running a proof generation algorithm. Everybody could verify the
proof publicly, by running a verifying algorithm. Usually, the verifier
is a third-party auditor (TPA), who has a higher computing capability
than the data owner, and can check data integrity for data users.

ProofGen(pk,Φ, F, τ)→ Σ: The proof generation algorithm is run by
CSP. It takes public key pk, data tags Φ, data file F and current state
τ as input, and outputs a proof Σ. We suppose the current state τ is
some time-varying public information, which cannot be controlled by
CSP.

Verify(pk,Σ)→ 0, 1: This is a publicly verifiable algorithm, that can
be executed by anyone in this system. It takes public key pk, proof Σ
as input and outputs 1 or 0 based on the correctness of Σ.

3.2. Threat Model

• We assume that CSP has no incentives to reveal its hosted data to
external parties and also has no incentives to drop its hosted data.
However, due to some uncontrollable factors, such as, software bugs,
hardware failures, bugs in the network path, economically motivated
hackers, malicious or accidental management errors, the integrity of
users’ data might be destroyed. Moreover, for its own benefits, CSP
might even decide to hide this data corruption incident to data owners.

• The verifier can verify the integrity of data for data owners according
to the proof provided by CSP. However, it may harm the data owners
if the verifier could learn related information of the outsourced data
from the proof.

• We assume that CSP will not collude with any verifier.

3.3. Design Goals

The NI-PPDP scheme should achieve:

• Correctness: For all keypairs (pk, sk)←KeyGen(1λ), for all data files
F , and for all states τ , the verification algorithm always outputs

1← Verify(pk,ProofGen(TagGen(F, sk), F, τ)).

• Soundness(Data integrity): to ensure that the verification can be passed
only if the integrity of data is achieved.

10

• Privacy preserving: to ensure that auditing process does not disclose
any information data.

• Non-interactive: to ensure that the CSP and verifier do not need to
interact during auditing.

• Public auditability: to ensure that anyone can verify the integrity of
the remote data only depending on the data possession proof given by
the cloud storage provider and the public key of data owners.

3.4. Formal Security Definition

Among the above design goals, data integrity and privacy preserving are
the key security features of NI-PPDP. Therefore, we give the formal definition
as follows.

3.4.1. Data Integrity (Soundness)

We use the following game between adversaryA and challenger C to define
the soundness of data integrity:

1. C calls key generation algorithm KeyGen(1λ) to generate keypair (pk, sk),
and gives pk to A.

2. A can interact with C repeatedly and make queries for some file F .
Then, C returns Φ←TagGen(F, pk, sk) to A.

3. Finally, A outputs Σ for some data file F and data tag Φ on state τ .

Define the advantage of A is AdvA = Pr[Verify(pk,Σ) = 1]. We say the
adversary wins the above game, if AdvA is non-negligible.

Definition 2. A non-interactive public provable data possession scheme is
sound if exists an efficient extraction algorithm Extr such that, for every
adversary A, who outputs Σ for some data file F and data tag Φ on state τ
and wins above game, the extraction algorithm recovers file F from Φ and Σ,
i.e., Extr(pk,Φ,Σ) = F .

11

3.4.2. Privacy Preserving

We use the following game between adversaryA and challenger C to define
privacy preserving:

1. C calls key generation algorithm KeyGen(1λ) to generate keypair (pk, sk),
and gives pk to A.

2. A can interact with C repeatedly and make queries for some file F .
Then, C returns Φ←TagGen(F, pk, sk) to A.

3. At some point, A submits two files F ∗0 and F ∗1 to C. Then, C selects
b ∈ {0, 1} randomly, and returns ProofGen(TagGen(F ∗b , sk), F ∗b , τ)
to A.

4. Finally, A outputs a guess bit b′.

Defining the advantage of A as AdvA = Pr[b′ = b] − 1/2. We say the
adversary wins the above game, if AdvA is non-negligible.

Definition 3. A non-interactive public provable data possession scheme is
privacy preserved if for any probability polynomial time adversary A, advan-
tage of A in above game is negligible.

4. Blockchain-Based Fair Payment Smart Contract for Cloud Stor-
age

In a traditional cloud storage system, data owners must pay the rent
before using cloud storage. Once the data is lost or damaged by cloud storage
service provider, it is hard for data owners to restore economic losses. To
solve this problem, we introduce a novel cloud storage payment model, in
which the data owners will pay the fees according to the service quality after
enjoying the service. In order to protect the rights of both the data owners
and cloud storage service provider, we use a blockchain-based smart contract
platform and non-interactive public provable data possession scheme in this
system.

As shown in Figure 4, the data owner runs key generation algorithms and
tag generation algorithms of the NI-PPDP scheme, uploads file F and the
data tags Φ to the CSP. At the same time, it submits the contract T0 (Figure
5) to the smart contract platform. T0 includes file name, file size, file hash,

12

Blockchain

Cloud Storage

Consensus
Networks

Data Owner

(F, Φ)

T0 T1

Smart Contract Platform

NI-PPDP.TagGen
(1)

(2)

(3)

(4)

(5)

Figure 4: Data Storage Process

upload time, storage period, service charges, data owner account (cryptocur-
rency), cloud storage account (cryptocurrency), data owner’s public key, data
owner’s signature and code of smart contract. This contract ensures that if
cloud storage service provider could submit correct data possession proof
(using NI-PPDP scheme) on time, the data owner will pay the service fees
on time.

After receiving the file F and data tags Φ, the cloud storage provider will
check the integrity of data, and the authentication of source. If all verification
checks are passed, cloud storage server will submit the contract T1 (Figure
6) to the smart contract platform. T1 confirms that file F has been received
by CSP, and ensures that if the data possession proof is not passed, CPS will
pay the compensation to the data owner. That is T1 has two functions: (1)
to confirm the receipt of F , (2) to make a promise of compensation. Note
that compensation is not necessary, but compensation reflects the reputation
of the cloud storage provider.

13

Contract T0

File Name: FN
File Size: FS
File Hash: FH
Upload time: UT
Storage Period: CP
Service Charges: SC
Data owner Account: DOA
Cloud Storage Account: CSA
Data owner’s public key: pkD
Data owner’s signature: sigD
Contract Content:
promise
{
if (NI-PPDP.Verify(pkD,Σ)==1)

pay SC from DOA to CSA;
}

Figure 5: Contract T0

The specific workflow can be described as:

1. Data owner employs the NI-PPDP scheme, and runs its TagGen al-
gorithms on file F to obtain the corresponding data tags Φ.

2. Date owner uploads the file F and the data tags Φ to CSP.

3. Date owner submits the contract T0 (Figure 5) to the smart contract
platform.

4. CSP checks the integrity of data and the authentication of source.

5. CSP submits the contract T1 (Figure 6) to the smart contract platform.

As shown in Figure 7, in order to get service charges, the cloud server pe-
riodically submits a contract T2 (Figure 8), which contains a non-interactive
data possession proof Σ. The consensus network will verify this data posses-
sion proof in the T2 and activate T0 or T1 based on the validation result. If
validation is successful, the T0 will be activated and the data owner pays the
service fees to the cloud server, else the T1 will be activated, and the CPS
will pay compensation to the data owner.

14

Contract T1

File Name: FN
File Size: FS
File Hash: FH
Receiving Time: RT
Storage Period: CP
Penalty: Pen
Data owner Account: DOA
Cloud Storage Account: CSA
CSP’s public key: pkC
CSP’s signature: sigC
Contract Content:
confirm F ; /*T0 takes effect*/
promise
{
if (NI-PPDP.Verify(pkD,Σ)==0)

pay Pen from CSA to DOA;
}

Figure 6: Contract T1

15

Cloud StorageData Owner

T2

pay service charges

pay a penalty

OR

Blockchain

Consensus

Networks

Smart Contract Platform

NI-PPDP.ProofGen

Figure 7: Data Validation Process

Contract T2

Payment contract: T0

Compensation contract: T1

Data possession proof: Σ
Contract Content:

activate T0 or T1 depended on the
validation result of Σ;

Figure 8: Contract T2

16

5. A Specific NI-PPDP Scheme

In the following, we present a specific construction of non-interactive pub-
lic provable data possession scheme. Our construction is achieved by extend-
ing interactive public auditing schemes introduced by Shacham and Waters
[31] and Wang et al. [33].

5.1. Our Construction

Our NI-PPDP scheme is constructed, based on Wang et al.’s public audit-
ing scheme [33]. The main difference is that there is no interaction between
the verifier and CSP in the Audit Phase. In order to simulate the challenge
process, we use the pseudorandom function on the input of current state.
There are also two phases in our scheme.

• Setup Phase:

KeyGen(1λ)→ pk, sk: Let e : G×G→ GT , select g as a generator of
group G, select two cryptographic hash functions H(·) : {0, 1}∗ → G,
h(·) : GT → Zp, and select pseudorandom function F(·): {0, 1}∗ →
[1, n], which maps arbitrary values uniformly to an integer range [1, n].

The data owner generates public/private key pairs (spk, ssk) for a
digital signature algorithm. Then, it chooses x← Zp, u← G randomly,
and calculates v ← gx. The secret key is sk = (ssk, x) and the public
key is pk=(spk, g, u, v, e, H(·), h(·), F(·)).
TagGen(F, pk, sk) → Φ: Suppose that the data file can be expressed
as F = {mi}1≤i≤n, where mi ∈ Zp. The data owner computes authen-
ticators σi ← (H(Wi) · umi)x for i ∈ [1, n], where Wi = name||i, and
name ← Zp is chosen by the data owner randomly as the identifier of
file F . Let Ψ = {σi}1≤i≤n.

To ensure the correctness of the file identifier name, it runs signature
algorithm Sig on name under ssk, and sets t = name || Sigssk(name)
as the file identifier for F . The data owner then uploads the data file
F and corresponding data tags Φ = (Ψ, t) to CSP.

• Audit Phase:

In this phase, the verifier does not need to choose the challenge set.
The CSP uses the current state as the input of pseudorandom function
F(·), to simulate the challenge process.

17

ProofGen(pk,Φ, F, τ)→ Σ: In input, τ represents the current public
status information, which contains current time and some other public
information and cannot be controlled by CSP. We assume that τ will
change in each running of ProofGen algorithm. In our blockchain-
based fair payment model, τ should also include the header information
of the current block of blockchain, which can not be controlled by CSP.

First of all, CSP choose an appropriate number c < n. For i ∈ [1, c],
CSP computes

si ← F(τ ||i).

I = {s1, s2, ..., sc} is a c-element multiset, ∀si ∈ [1, n]. Note, the mul-
tiset I is allowed to contain repeated elements.

For j ∈ I, the CSP computes

vj ← h(τ ||j).

Then, it computes

σ =
∏

j∈I
σ
vj
j ,

and
µ′ =

∑

j∈I
vj ·mj.

The CSP chooses s← Zp randomly, and calculates T = e(u, v)s ∈ GT .
Then, it computes: µ = s+ γµ′ mod p, where γ = h(T) ∈ Zp. It sends
Σ = {µ, σ, T, τ, c} as the data possession proof to the verifier.

Verify(pk,Σ): The verifier runs the verification algorithm of V er(spk, id, Sigssk(name))
to verify integrity of id and verifies the authenticity of state infor-
mation τ via blockchain. It aborts, if any verification fails. Other-
wise, the verifier recovers the name. Then, the verifier computes I =
{F(τ ||1),F(τ ||2), ...,F(τ ||c)}, {vj = h(τ ||j)}j∈I , {h(Nj)}j∈I , γ = h(T)
and then outputs 1 or 0, according to the correctness of equation below

T · e(σγ, g)
?
= e((

sc∏

i=s1

H(Wi)
vi)γ · uµ, v).

18

5.2. Correctness

T · e(σγ, g) =e(u, v)s · e((
sc∏

i=s1

(H(Wi) · umi)x·vi)γ, g)

=e(us, v) · e((
sc∏

i=s1

(H(Wi)
vi · umivi))γ, g)x

=e(us, v) · e((
sc∏

i=s1

H(Wi)
vi)γ · uµ′γ, v)

=e((
sc∏

i=s1

H(Wi)
vi)γ · uµ′γ+s, v)

=e((
sc∏

i=s1

H(Wi)
vi)γ · uµ, v)

6. Design Goals Analysis

6.1. Data Integrity (Soundness)

We use the hybrid argument technique to prove soundness as in [31]. First
of all, we define the following games:

Game-0. Game-0 is the original game defined in Section 3.4.1.

Game-1. Game-1 is the same as Game-0, except that the challenger C
records all the tags it signed in a local list. If adversary A ever submits a
tag Φ, that (1) has a valid signature under ssk but (2) is not signed by C,
then C announces failure and aborts.

Game-2. Game-2 is the same as Game-1, except that C records all the re-
sponses to TagGen queries from A. If A is successful (i.e., Verify output 1)
but A’s aggregate signature σ is not equal to

∏
j∈I σ

vj
j , then the challenger

C announces failure and aborts.

Game-3. Game-3 is the same as Game-2, except that challenger C announces
failure and aborts, if at least one of the aggregate messages µ′ is not equal
to =

∑
j∈I vj ·mj.

19

Lemma 1. If there is an algorithm A can distinguish between Game-0 and
Game-1 with the non-negligible probability, then we can construct an algo-
rithm B that has a non-negligible advantage to break the existentially unforge-
ability.

Analysis. If A causes C to abort in Game-1, then we can use A to con-
struct an algorithm B against the existentially unforgeability of the signature
scheme.

Lemma 2. If there is an algorithm A can distinguish between Game-1 and
Game-2 with the non-negligible probability, then we can construct an algo-
rithm B that has non-negligible advantage to break the computation Diffie-
Hellman assumption.

Analysis. Suppose gx and gy are the elements of CDH problem, we set
v = gx, u = gy. Suppose A can respond a signature σ′, which is different
from the expected signature σ. We can calculate

e(σ′/σ, g) = e(
∏

j∈I
u∆µj , v) = e(g

∑
j∈I ∆µj ·x·y, g)

Therefore, we can calculate gx·y = (σ′/σ)
1∑

j∈I ∆µj

Lemma 3. If there is an algorithm A that can distinguish between Game-2
and Game-3 with the non-negligible probability, then we can construct an
algorithm B that has a non-negligible advantage to break the computation
Diffie-Hellman assumption.

Analysis. We only introduce the main ideas. We suppose that h(·) is a
random oracle controlled by an extractor, who answers the hash query asked
by the adversary (CSP). For γ = h(T) from extractor, the adversary outputs
{µ, σ, T, t, τ, c} makes:

T · e(σγ, g)=e((
sc∏

i=s1

H(Wi)
vi)γ · uµ, v).

Then, the extractor rewinds h(T) to be γ∗ 6= γ. The adversary outputs
{µ∗, σ, T , t, τ , c} makes:

20

T · e(σγ∗ , g)=e((
sc∏

i=s1

H(Wi)
vi)γ

∗ · uµ∗ , v).

Divide above two equations, we have

e(σγ−γ
∗
, g) =e(u

∑
j∈I(h(Nj)vj)(γ−γ∗) · uµ−µ∗ , v)

e(σγ−γ
∗
, g) =e(u

∑
j∈I(h(Nj)vj)(γ−γ∗) · uµ−µ∗ , gx)

σγ−γ
∗

=u
∑
j∈I(h(Nj)vj)x(γ−γ∗) · ux(µ−µ∗)

(Πj∈Iσ
vj
j)γ−γ

∗
=(Πj∈Iu

h(Nj)vjx(γ−γ∗) · ux(µ−µ∗)

ux(µ−µ∗) =(Πj∈I(σj/u
h(Nj)x)vj)γ−γ

∗

ux(µ−µ∗) =(Πj∈I(u
xmj)vj)γ−γ

∗

µ− µ∗ =(
∑

j∈I
mjvj) · (γ − γ∗)

∑

j∈I
mjvj =(γ − γ∗)/(µ− µ∗)

Finally, {σ, µ′ = (µ− µ∗)/(γ − γ∗)} can be treated as a response for the
extractor.

Theorem 1. If the signature scheme is existentially unforgeable and compu-
tational Diffie-Hellman assumption holds in bilinear groups, then no proba-
bilistic polynomial time adversary can break the soundness of our NI-PPDP
scheme with non-negligible probability.

Proof. Any adversary’s advantage in Game 3 must be 0 since the challenger
always announces failure and aborts if there is no integral file F , i.e. at least
one of the aggregate messages µ′ is not equal to =

∑
j∈I vj · mj. By the

games sequence and Lemmas 1-3, an adversary’s advantage in the original
game Game 0 must be negligibly close to 0.

6.2. Privacy Preserving

This theorem shows that the verification process do not reveal any infor-
mation of the users’ data.

Theorem 2. Our NI-PPDP scheme is privacy preserved.

21

Proof. This proof follows from [31] and [33]. We only introduce the main
ideas, i.e. the data possession proof Σ = {µ, σ, T, t, τ, c} can not reveal
any information about µ′. In the random oracle model, the simulator can
construct the response without knowing µ′. It randomly chooses γ, µ from
Zp, and sets

T ← e((
sc∏

i=s1

H(Wi)
vi)γ · uµ, v)/e(σγ, g).

Then, the simulator sets random oracle h(·), makes γ = h(T).

6.3. Non-Interactive

Compared with the traditional interactive public provable data possession
scheme, there is no challenge stage in our scheme. CSP does not have to
interact with the verifier when it makes proof. To achieve this goal, we use
the pseudorandom function, F(·), to generate the challenge set. Since the
input of the F(·) contains the current state information, this information is
related to the current time and the current block chain state, so it cannot
be controlled by the CPS. Due to the pseudo randomness, the challenge set
generated in this way is indistinguishable to the random choice of verifier.

6.4. Public Auditability

It is clear that our scheme has achieved public auditability. The validation
algorithm does not depend on any secret inputs.

7. Efficiency Analysis

7.1. Theoretical Analysis

In the pairing-based cryptography scheme, the computation overhead
mainly comes from pairing, as well as exponentiation and multiplication in
the group G.

The specific computational analysis is given in Table 1. In the TagGen
phase, the main computation overhead comes from the calculation of {σi ←
(H(Wi) ·umi)x}1≤i≤n, which contains c multiplications and n exponentiations
on the group G. In the ProofGen phase, the main computation overhead
comes from the calculation of σ =

∏
j∈I σ

vj
j , which contains c exponentiations

and c multiplications on group G. In the Verify phase, the main computation

overhead comes from the calculation of T · e(σγ, g)
?
= e((

∏sc
i=s1

H(Wi)
vi)γ ·

uµ, v), which contains c + 1 multiplications on Zp, c + 3 exponentiations on
G, and 2 pairings.

22

Table 1: Computational Analysis

Multiplication Exponentiation Pairing

TagGen n n+ 1 0
ProofGen c c 0
Verify c+ 1 c+ 3 2

7.2. Experimental Evacuation

In order to get an in-depth evaluation for the performance of our scheme,
we conducted an experiment by implementing a prototype of our scheme with
the C Programming language. We adopted the GMP1 and PBC2 library for
big integer and pairing operation, and adopted OpenSSL3 for basis crypto-
graphic primitives (e.g., pseudorandom function). We choose the Type-A
elliptic curve with order of 160-bit. Both of the programs for the Cloud Ser-
vice Provider and the Client side are compiled with clang of vision 900.0.39.2,
and run on MacBook Pro with 2.7 GHz Intel Core i5 CPU and 8 GB 1867
MHz DDR3 memory.

In our experiment, we mainly focus on the computational overhead (i.e.,
The operation time of TagGen, ProofGen and Verify), whereas do not take
the Round-Trip Time (RTT) into consideration. This is mainly because the
RTT is heavily dependent on the network condition, instead of the proposed
scheme and sometimes the RTT may dwarf the operation times, which will
make the evaluation unaccurate.Similarly, we also do not account the I/O
latency, because the I/O latency is generally determined by type of external
storage facilities (e.g, SSD or HDD), the disk scheduling algorithms used in
the operating system, data transmission rate and disk interface type. These
factors are independent of the proposed scheme, and these uncertainties men-
tioned above will involve turbulence in our evaluation. Thus, the time over-
head of these operations is measured as the time duration between the data
is loaded to the memory until the operation is finished.

In terms of TagGen, the client generates the tags for a file, which has
been split into several segment (blocks). Figure 9 and Figure 10 demonstrate
the time overhead of TagGen (i.e., the Y-ray) with different number of file

1The GNU MP Bignum Library, https://gmplib.org/
2PBC Library - Pairing-Based Cryptography, https://crypto.stanford.edu/pbc/
3Cryptography and SSL/TLS Toolkit, https://www.openssl.org/

23

blocks. Specifically, in order to observe the variation details, in Figure 9 we
depict the operation time of TagGen as the number of file blocks ranging
from 100 to 100 (with the resolution of 100); whereas for the perpose of
getting a general overview of the variation tendency, in Figure 10 we test
it with file blocks ranging from 1000 to 10000 (with resolution of 1000).
It is manifest that the operation time of TagGen grows linearly with the
increase of file blocks and the stable linear-incremental tendency not only
exists in small-scale file blocks, fine-grained interval settings (i.e., depicted in
Figure 9), but also appears as a general tide (i.e., Figure 10). As is shown in
these figures, when the file consists 10000 blocks, generating the tags for it
costs less than 0.02 second and when the files grow even larger, we can infer
that the time overheard for tag generation increase proportionally with block
numbers. Thus, if the file size extends to Gigabyte scale (which will result in
1000×1024×1024×8

160
= 52, 428, 800 blocks), based on the pattern observed above,

the Tag Generation can be finished within 52, 428, 800 × 0.02
10000

≈ 2 minutes.
As this procedure is executed by the client in an offline manner and the
file size is seldom as large as the gigabit scale, the overhead for TagGen is
acceptable.

The ProofGen is executed by cloud service provider after receiving the
challenge request (indicating the number of proof should be generated), and
it will generate the proofs of the file under direction of the challenge. In
Verify, the client checks the validity of all the proofs generated by the cloud
service provider. In our experiment, we measure the operation overhead of
operations ProofGen and Verify in the scene of proving and verifying a file
with 10,000 blocks. As depicted in Figure 11, when the challenge blocks
increases for 100 to 1000 (i.e., the X-ray), the operation time of ProofGen
and Verify also increase accordingly. Specifically the growth rate of ProofGen
becomes sharper as the raise of challenge blocks; whereas the Verify, whose
operation overhead is much lower than ProofGen, maintains a rigorous linear
growth trend. As shown in Figure 11, the overhead of ProofGen and Verify
is approximately 14 ms and 11 ms respectively, when the number challenge
blocks reaches 1000. Thus, our scheme is capable for most of the real world
settings.

8. Conclusion

In this paper, we design a novel blockchain-based fair payment smart
contract for cloud storage. The contract ensures that the CSP is required to

24

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0.0011

0.0012

0.0013

0.0014

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

T
h

e
O

p
er

a
ti

o
n

 T
im

e
o

f
 T

a
g

G
en

er
a

ti
o

n
(s

)

Number of File Blocks

Tag Generation Time

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000T
h

e
O

p
er

a
ti

o
n

 T
im

e
o

f
 T

a
g

 G
en

er
a

ti
o

n
(s

)

Number of File Blocks

Tag Generation Time

Figure 9: Operation Time for Tag
Generation with File Blocsk from 100
to 1000.

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0.0011

0.0012

0.0013

0.0014

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

T
he

 O
pe

ra
tio

n
T

im
e

of
 T

ag

G
en

er
at

io
n(

s)

Number of File Blocks

Tag Generation Time

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.02

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000T
he

 O
pe

ra
tio

n
T

im
e

of
 T

ag
 G

en
er

at
io

n(
s)

Number of File Blocks

Tag Generation Time

Figure 10: Operation Time for
Tag Generation with File Blocks from
1000 to 10000.

0.006

0.0065

0.007

0.0075

0.008

0.0085

0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

0.014

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

 O
p

er
a
ti

o
n

ti

m
e(

s)

Number of Challenge Blocks

ProofGen Verify

Figure 11: Operation Time for ProofGen and Verify

submit data possession proof regularly. Only if the verification is passed, the
CSP will be paid, otherwise the CSP will not only receive no remuneration,
but also will be responsible to pay the penalties. In order to avoid the
interaction between smart contract platform and CSP in the execution of
contract, we introduce the non-interactive public provable data possession
scheme and design an efficient construction.

Acknowledgement

This work is supported by the National Natural Science Foundation of
China (No. 61602287, No. 61802235, No. 61672330, and No. 61702168), the

25

Primary Research & Development Plan of Shandong Province (No. 2018GGX101037),
the Major Scientific and Technological Innovation Project of Shandong Province
(No. 2018CXGC0702), and the Development and Construction Funds Project
of National Independent Innovation Demonstration Zone in Shandong Penin-
sula (No. S190101010001).

REFERENCES

References

[1] Cloud storage market report. https://www.marketsandmarkets.co

m/Market-Reports/cloud-storage-market-902.html. Accessed July
16, 2019.

[2] Ethereum. https://ethereum.org/. Accessed July 16, 2019.

[3] Litecoin. https://litecoin.com. Accessed July 16, 2019.

[4] Monero. https://monero.org/. Accessed July 16, 2019.

[5] Cloud Storage Often Results in Data Loss, 2011. https://www.busine
ssnewsdaily.com/1543-cloud-data-storage-problems.html.

[6] What is the risk of losing data stored in the cloud?, 2018.
https://www.quora.com/What-is-the-risk-of-losing-data-

stored-in-the-cloud.

[7] OOPS: Google ”loses” your cloud data (sky falling; film at 11), August
20, 2015. https://www.computerworld.com/article/2973600/clou

d-computing/google-cloud-loses-data-belgium-itbwcw.html.

[8] What happens when data gets lost from the cloud?, January 26,
2015. https://www.cloudcomputing-news.net/news/2015/jan/26/w
hat-happens-when-data-gets-lost-cloud/.

[9] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and
Lukasz Mazurek. Secure multiparty computations on bitcoin. In 2014
IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,
USA, May 18-21, 2014, pages 443–458, 2014.

26

[10] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring,
Lea Kissner, Zachary N. J. Peterson, and Dawn Xiaodong Song. Prov-
able data possession at untrusted stores. In Proceedings of the 2007
ACM Conference on Computer and Communications Security, CCS
2007, Alexandria, Virginia, USA, October 28-31, 2007, pages 598–609,
2007.

[11] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Secu-
rity and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages
459–474, 2014.

[12] Vitalik Buterin. A next-generation smart contract and decentralized
application platform. 2014.

[13] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of
retrievability via oblivious ram. Journal of Cryptology, 30(1):22–57,
2017.

[14] Ee-Chien Chang and Jia Xu. Remote integrity check with dishonest
storage server. In Computer Security - ESORICS 2008, 13th European
Symposium on Research in Computer Security, Málaga, Spain, October
6-8, 2008. Proceedings, pages 223–237, 2008.

[15] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and
smart contracts for the internet of things. IEEE Access, 4:2292–2303,
2016.

[16] Cheng-Kang Chu, Wen-Tao Zhu, Jin Han, Joseph K Liu, Jia Xu, and
Jianying Zhou. Security concerns in popular cloud storage services.
IEEE Pervasive Computing, 12(4):50–57, 2013.

[17] Hyunji Chung, Jungheum Park, Sangjin Lee, and Cheulhoon Kang. Dig-
ital forensic investigation of cloud storage services. Digital investigation,
9(2):81–95, 2012.

[18] Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and
Aad van Moorsel. Betrayal, distrust, and rationality: Smart counter-
collusion contracts for verifiable cloud computing. In Proceedings of

27

the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 211–227, 2017.

[19] C. Christopher Erway, Alptekin Küpçü, Charalampos Papamanthou,
and Roberto Tamassia. Dynamic provable data possession. In Pro-
ceedings of the 2009 ACM Conference on Computer and Communica-
tions Security, CCS 2009, Chicago, Illinois, USA, November 9-13, 2009,
pages 213–222, 2009.

[20] Daniel Ford, François Labelle, Florentina I Popovici, Murray Stokely,
Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan.
Availability in Globally Distributed Storage Systems. In Proceedings
of the 9th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 61–74. USENIX, 2010.

[21] Valentina Gatteschi, Fabrizio Lamberti, Claudio Demartini, Chiara
Pranteda, and Victor Santamaria. Blockchain and smart contracts for
insurance: Is the technology mature enough? Future Internet, 10(2):20,
2018.

[22] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Impli-
cations. In Proceedings of the ACM SIGCOMM Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Com-
munications (SIGCOMM), pages 350–361. ACM, 2011.

[23] Jing Han, Yanping Li, Jianqing Liu, and Minghao Zhao. An efficient
lucas sequence-based batch auditing scheme for the internet of medical
things. IEEE Access, 7:10077–10092, 2018.

[24] Debiao He, Neeraj Kumar, Huaqun Wang, Lina Wang, and Kim-
Kwang Raymond Choo. Privacy-preserving certificateless provable data
possession scheme for big data storage on cloud. Applied Mathematics
and Computation, 314:31–43, 2017.

[25] Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for
large files. In Proceedings of the 2007 ACM Conference on Computer
and Communications Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, 2007, pages 584–597, 2007.

28

[26] Jingwei Li, Jin Li, Dongqing Xie, and Zhang Cai. Secure auditing and
deduplicating data in cloud. IEEE Trans. Computers, 65(8):2386–2396,
2016.

[27] Chang Liu, Rajiv Ranjan, Chi Yang, Xuyun Zhang, Lizhe Wang, and
Jinjun Chen. Mur-dpa: Top-down levelled multi-replica merkle hash
tree based secure public auditing for dynamic big data storage on cloud.
IEEE Trans. Computers, 64(9):2609–2622, 2015.

[28] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A smart con-
tract for boardroom voting with maximum voter privacy. In Financial
Cryptography and Data Security - 21st International Conference, FC
2017, Sliema, Malta, April 3-7, 2017, Revised Selected Papers, pages
357–375, 2017.

[29] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[30] Francesc Sebé, Josep Domingo-Ferrer, Antoni Mart́ınez-Ballesté, Yves
Deswarte, and Jean-Jacques Quisquater. Efficient remote data pos-
session checking in critical information infrastructures. IEEE Trans.
Knowl. Data Eng., 20(8):1034–1038, 2008.

[31] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In
Advances in Cryptology - ASIACRYPT 2008, 14th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Melbourne, Australia, December 7-11, 2008. Proceedings, pages
90–107, 2008.

[32] Hui Tian, Yuxiang Chen, Hong Jiang, Yongfeng Huang, Fulin Nan,
and Yonghong Chen. Public auditing for trusted cloud storage services.
IEEE Security & Privacy, 17(1):10–22, 2019.

[33] Cong Wang, Sherman S. M. Chow, Qian Wang, Kui Ren, and Wenjing
Lou. Privacy-preserving public auditing for secure cloud storage. IEEE
Trans. Computers, 62(2):362–375, 2013.

[34] Huaqun Wang. Identity-based distributed provable data possession in
multicloud storage. IEEE Trans. Services Computing, 8(2):328–340,
2015.

29

[35] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling
public auditability and data dynamics for storage security in cloud com-
puting. IEEE Trans. Parallel Distrib. Syst., 22(5):847–859, 2011.

[36] Lifei Wei, Haojin Zhu, Zhenfu Cao, Weiwei Jia, and Athanasios V. Vasi-
lakos. Seccloud: Bridging secure storage and computation in cloud. In
30th IEEE International Conference on Distributed Computing Systems
Workshops (ICDCS 2010 Workshops), 21-25 June 2010, Genova, Italy,
pages 52–61, 2010.

[37] Zhe Wu, Curtis Yu, and Harsha V Madhyastha. Costlo: Cost-effective
redundancy for lower latency variance on cloud storage services. In Pro-
ceedings of the 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 543–557, 2015.

[38] Xiao Yue, Huiju Wang, Dawei Jin, Mingqiang Li, and Wei Jiang. Health-
care data gateways: Found healthcare intelligence on blockchain with
novel privacy risk control. J. Medical Systems, 40(10):218:1–218:8, 2016.

[39] Ke Zeng. Publicly verifiable remote data integrity. In Information and
Communications Security, 10th International Conference, ICICS 2008,
Birmingham, UK, October 20-22, 2008, Proceedings, pages 419–434,
2008.

[40] Yinghui Zhang, Robert H. Deng, Ximeng Liu, and Dong Zheng.
Blockchain based efficient and robust fair payment for outsourcing ser-
vices in cloud computing. Inf. Sci., 462:262–277, 2018.

[41] Yinghui Zhang, Robert H. Deng, Ximeng Liu, and Dong Zheng. Out-
sourcing service fair payment based on blockchain and its applications
in cloud computing. IEEE Transactions on Services Computing, pages
1–1, 2018.

[42] Yupu Zhang, Chris Dragga, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. Viewbox: Integrating local file systems with cloud
storage services. In Proceedings of the 12th USENIX Conference on File
and Storage Technologies (FAST), pages 119–132, 2014.

[43] Minghao Zhao, Chengyu Hu, Xiangfu Song, and Chuan Zhao. Towards
dependable and trustworthy outsourced computing: A comprehensive

30

survey and tutorial. Journal of Network and Computer Applications,
131:55–65, 2019.

[44] Minghao Zhao, Zhenhua Li, Ennan Zhai, Gareth Tyson, Chen Qian,
Zhenyu Li, and Leiyu Zhao. H2cloud: Maintaining the whole filesystem
in an object storage cloud. In Proceedings of the 47th International
Conference on Parallel Processing, page 68. ACM, 2018.

31

CRediT Author Statement

Hao Wang: Conceptualization, Methodology, Formal analysis, Writing- Reviewing
and Editing, Funding acquisition.

Hong Qin: Investigation, Validation, Writing- Original draft preparation.

Minghao Zhao: Software.

Xiaochao Wei: Formal analysis.

Hua Shen: Visualization.

Willy Susilo: Supervision.

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

