
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Collaborative Auditing Blockchain for
Trustworthy Data Integrity in Cloud
Storage System
PEI HUANG1, KAI FAN1, (Member, IEEE), HANZHE YANG1, KUAN ZHANG2, (Member, IEEE),
HUI LI1, (Member, IEEE), AND YINTANG YANG3, (Member, IEEE)
1State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, 710071 China
2Department of Electrical and Computer Engineering, University of Nebraska–Lincoln, NE 68588 USA (e-mail: kuan.zhang@unl.edu)
3Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi’an, 710071 China (e-mail:
ytyang@xidian.edu.cn)

Corresponding author: Kai Fan (e-mail: kfan@mail.xidian.edu.cn).

This work is supported by the National Key RD Program of China (2017YFB0802300), the National Natural Science Foundation of China
(No.61772403, U1836203), the Natural Science Foundation of Shaanxi Province (No.2019ZDLGY12-02), the Shaanxi Innovation Team
Project (No.2018TD-007), the Xi’an Science and technology innovation plan (No.201809168CX9JC10) and National 111 Program of
China B16037.

ABSTRACT Cloud storage system provides data owners with remote storage service, which allows them to
outsource data without local storage burden. Nevertheless, the cloud storage service is not fully trustworthy
since it may not be honest and remote data would be corrupted. One way to ensure trustworthy preservation
of cloud data is the remote data auditing method, through which data owners can check storage reliability
of cloud system on demand and avoid potential data corruption in time. However, private auditing methods
fail to promise the mutual trust in auditing results. Thus, public auditing methods are introduced, in which
traditionally a third party auditor is delegated to interact with cloud service providers for auditing tasks.
Although the third party auditor serves as a medium to exchange trust, a centralized third party is hard to
stay neutral, which exposes the remote data auditing to some threats such as collusion attacks. To address
the trust problem between data owners and cloud service providers, we propose a collaborative auditing
blockchain framework for cloud data storage. In this framework, all consensus nodes substitute for the single
third party auditor to execute auditing delegations and record them permanently, thereby preventing entities
from deceiving each other. Security analysis shows that the proposed framework has advantage of preserving
remote data integrity from various attacks. Performance analysis demonstrates that the framework is more
functional and resource-friendly than existing schemes.

INDEX TERMS Cloud Storage, Collaborative Blockchain, Public Auditing, Trustworthy Data Integrity

I. INTRODUCTION

W ITH the volume of data becoming larger and larger
rapidly, cloud storage has made outsourcing data an

inevitable trend for resource-constraint data owners includ-
ing individuals and even organizations. Such cloud service
provides not only outsourcing function but also ubiquitous
network access and location independence [1], [2], which
make data owners not worry about local operating system
failures. In the meantime, overheads resulting from data
management are greatly reduced, enabling data owners and
local devices to focus on data processing.

However, data stored in cloud storage system is out of
strong control of its owners, thus suffering from trust problem

mainly caused by misbehaviors of the cloud service provider
(CSP) [3], [4]. In particular, malicious CSPs may attempt
to delete data which is accessed infrequently to save stor-
age space without authorization, or pretend nothing happens
when stored data is corrupted. They may even tamper with
some data to deceive its owners for other financial profits.
The integrity and availability of cloud data are being chal-
lenged. Many researchers have developed the remote data
auditing (RDA) method for outsourced data to enable data
owners to measure the credibility of CSP without further loss.
In other words, a data owner who has deleted local copy can
still verify the correctness and integrity of remote stored data
through the RDA.

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

To implement RDA, a mechanism of "challenge-proof-
verify" is generally adopted between data owner and CSP
in private auditing, where the data owner generates data
challenges and verifies corresponding proofs from the CSP to
track the state of remote data. Nevertheless, the verification
process is only executed by the data owner in private auditing.
On the one hand, the auditing result may be unfavorable
to the CSP intentionally. On the other hand, such private
methods bring a lot of burdens on the data owner as data vol-
ume and auditing requests increase. To resolve doubt about
auditing result, and to make verification process more energy
efficient for data owners, a new entity named third party
auditor (TPA) is introduced to achieve public auditing, who
accepts auditing delegations from data owners and executes
them as directed. But such solutions must assume that the
TPA behaves in an honest way, which is not a reliable premise
in practice. For example, a TPA may collude with either the
CSP to hide data corruption or the data owner to deceive
for penalty. In addition, an obvious weakness of a single
centralized TPA is the single point of failure.

To tackle the mutual trust problem in public auditing, the
emerging blockchain enables a decentralized way to track
state changes of a system. This technique first proposed by
Satoshi Nakamoto [5] is with the features of decentralization,
tamper-proof, consistency and traceability. Recent years, a
few schemes [6], [7] have combined integrity checking and
blockchain-based storage. However, they only regard the
blockchain as an immutable ledger, and data owners still
verify proofs by itself. In some cases, data owners have
to maintain the whole blockchain, which increases much
storage burdens.

Hence, inspired by this technique as well, we design a
collaborative auditing blockchain (CAB) to enhance mutual
trust between data owners and CSPs in the cloud storage
system, while reducing as much resource overheads over data
owners as possible. In this paper, our main contributions are
summarized as follows:

• We design a hierarchical auditing framework to com-
bine RDA and blockchain, which makes all consensus
nodes verify data operation records collaboratively and
releases data owners from verification cost.

• We propose a credit-based consensus protocol and an
incentive mechanism intended to quantify behaviors of
entities.

• We extend our work to support some auditing properties
such as batch auditing and dynamic auditing.

• We conduct a comprehensive comparison between ex-
isting schemes and the proposed scheme. Security anal-
ysis and simulation results can meet our design goals.

The remainder of this paper is organized as follows. Sec-
tion II presents some works related to our work. Section III
introduces some preliminaries which serves for auditing pro-
cess. Section IV is the problem statement including system
framework and design goals of the proposed scheme. Section
V describes the core of the CAB and auditing protocol. Sec-

tion VI gives correctness, security, and simulation analysis
respectively. In the end, we draw conclusions in Section VII.

II. RELATED WORK
The RDA can be categorized into private auditing and public
auditing. The former only contains two types of entities,
namely the data owner and the CSP. The auditing process is
mainly performed by the data owner. For example, Ateniese
et al. [8] first proposed the concept of provable data pos-
session (PDP), which adopted the mechanism of "challenge-
proof-verify" to verify the integrity of remote stored data, and
has become the basis of many auditing protocols ever since.
However, such private protocols increase the burden on the
data owner who lacks computing resources. Furthermore, the
data owner and the CSP distrust each other in this context.
Hence, auditing result may be harmful for the CSP since it
can only be obtained from the data owner. To remove the
above doubts, Wang et al. [9] first introduced a trusted TPA
into PDP to challenge the CSP on behalf of data owners,
which implemented public auditing. In this context, dele-
gation of auditing tasks means that the verification process
no longer requires the participation of the data owner, thus
reducing a lot of computation overheads. Nevertheless, such
public auditing schemes did not consider that the single TPA
is not always trustworthy and may be bribed by some entity
in practice. And it is even more dangerous that the TPA can
derive some information about delegators, since all relevant
information for verification are transmitted to it.

To address the above problems brought by the TPA in
public auditing, several blockchain-based solutions were pro-
posed. Liu et al. [10] replaced TPA with smart contract,
where the data owner and the CSP signed an auditing com-
mitment to resist repudiation. Then the data owner could get
the hash result of remote data through block identifier, which
was compared to the hash previously stored in the blockchain
ledger. Obviously, this scheme is not able to resist replay
attacks arose from the CSP. Yu et al. [6] presented a fully de-
centralized data auditing solution without any TPA. They em-
ployed homomorphic verifiable tag (HVT) to perform RDA
and their solution could effectively resist replay attacks due to
random challenge set generated in every auditing request. But
the data owner had to traverse the blockchain ledger to find
the specific proof for every challenge, which brought extra
cost. Yang et al. [11] combined merkle hash tree (MHT) and
timestamp server to ensure that all behaviors of data owners
and CSPs satisfied accountable traceability. In their design,
the data owner should store all proofs and compute the tree
root from leaf nodes during every verification process. Qi et
al. [12] suggested reputation to quantify the reliability of a
CSP, and improved its blockchain with a two-step validation.
But more details were not given in this scheme. Li et al. [13]
separated operation behaviors and file information within
a block. They also introduced a proxy node to efficiently
search specific blocks. However, the data owner needed to
download the whole file to verify the integrity and could not
afford to require auditing from time to time. Xue et al. [7]

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

utilized the nonce in blockchain to construct unpredictable
challenges, thereby preventing malicious TPA from forging
auditing results. The TPA would insert all proofs and auditing
results into a log file, which is uploaded to the blockchain
afterwards. Nevertheless, it still required the data owner to
review the log from blockchain, where a subset should be re-
verified by the data owner to discover malicious TPA.

In conclusion, existing blockchain-based auditing schemes
mostly focus on solving the collusion problem in TPA-based
schemes through recording entities’ behaviors or removing
the TPA. However, they only take the blockchain as an
immutable ledger rather than a distributed trust network,
and still involve data owners in nearly the whole auditing
process, which causes much burden especially on resource-
constrained ones. Therefore, to make use of trust that con-
sensus nodes can contribute to the auditing process, we re-
describe relationships among entities in the cloud storage
system based on the blockchain, and design a CAB for
resource-constrained data owners. There is no more need for
them to traverse the CAB ledger to obtain auditing results,
while various security threats cannot work on the CAB. We
also introduce a credit score mechanism to encourage all
participants to keep honest and maintain the stability of the
CAB. In addition, a new entity called group manager is set
up to separate data owners from consensus process, enabling
our design to accommodate more data owners.

Additionally, data dynamics support is also a hot spot
attracting scholars’ attention these years. In 2008, Ateniese et
al. [14] improved the PDP and achieved partially dynamics.
Later, Wang et al. [15] developed the MHT which has been
employed widely to support full data dynamics. And Zhu
et al. [16] introduced a structure called as index hash table
(IHT), which recorded the changes of data blocks. However,
the above schemes required large communication resources
during the updating and verification processes. Then in 2016,
Tian et al. [17] constructed a single linked sequence table
DHT, which reduced the computation cost of the CSP and
communication overheads in the updating process. Inspired
by the DHT, we also introduce an auxiliary chain table (ACT)
to support data dynamics and help data owners and consensus
nodes search records in the CAB efficiently.

III. PRELIMINARIES
Let G be an elliptic curve subgroup, and GT be a multiplica-
tive subgroup. They are of a large prime order p, and g is a
generator of G.

A. COMPUTATIONAL DIFFIE-HELLMAN PROBLEM

A computational problem generated with a security parame-
ter λ is hard if, given as input a problem instance, the proba-
bility of finding a correct solution to this problem instance in
polynomial time is a negligible function of λ. The security of
our scheme is based on the hardness of CDH problem, which
is at least as hard as discrete logarithm problem (DLP).

Definition 1 (CDH problem) Given ga and gb, where a,
b ∈R Z∗p , compute gab.

B. SYMMETRIC BILINEAR PAIRING
Bilinear pairing for scheme construction is built from a
pairing-friendly elliptic curve where it should be easy to find
an isomorphism from the elliptic curve group to the multi-
plicative group. It is a relatively mature and efficient method
and has been employed in cloud auditing. The definition of
symmetric pairing is stated as follows.

Definition 2 (Symmetric Bilinear Pairing) A map func-
tion e : G × G → GT is a symmetric bilinear pairing only
when it satisfies three properties below:
• Bilinear: For ∀u, v ∈ G, a, b ∈ Zp, there is e(ua, vb) =
e(u, v)ab.

• Non-Degeneracy: e(g, g) is a generator of GT .
• Computability: For ∀u, v ∈ G, there exists efficient

algorithms to compute e(u, v).

C. BLS-BASED HOMOMORPHIC VERIFIABLE TAG
BLS-HVT is based on the BLS signature algorithm, which
can be efficiently aggregated and verified without disclosing
private key.

Definition 3 (BLS-HVT) Given a data block blk, and a
cryptographic hash function H : {0, 1}∗ → G. Select
a random secret key sk = a ∈ Z∗p , and compute the
corresponding public key pk = ga. Then the BLS-HVT for
blk is σblk = H(blk)a. For verification, the verifier will
simply need to check whether e(σblk, g) = e(H(blk), pk)
holds.

With BLS-HVT, blockless verifiability can be realized.

IV. PROBLEM STATEMENT
A. SYSTEM FRAMEWORK
As shown in Fig. 1, the proposed framework contains four
entities: private key generator (PKG), data owners (DOs),
group managers (GMs) and CSPs. In our framework, the
PKG is governed by a fully-trusted authority which is re-
sponsible for setting public parameters for the whole system
and generating key pairs for the GM. The DO is assumed
to have limited communication, computation, and storage
resources. It generates and sends auditing challenges to the
CSP on demand, meanwhile maintaining ACT to tracking
changes of data blocks. As a member of DOs, the GM is
collectively designated by a certain group of DOs. However,
it is assumed to possess more resources than common DOs.
The GM is responsible for maintaining the blockchain ledger
for managed DOs, and returning results to them when ledger
is updated. The CSP provides DOs with significant storage
space and computation capability. It is also responsible for
storing the chain of blocks, while responding proofs to au-
diting challenges. In our assumption, the CSP may not be
honest, and there exists business competition among different
CSPs.

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Maintain

Clouds

Users

PKG

Cloud Service Provider

Data Owners

Request

Blockchain

Response

Group

Manager

Header

Tx Tx ...

Header

Tx Tx ...

Header

Tx Tx ...

Cloud Service Provider

Cloud Service Provider

Data Flow

Maintain

Operation Request

Parameters, Keys

Parameters, Keys

FIGURE 1. The hierarchical CAB framework in cloud storage system.

To support public auditing, the CAB will store auditing
requests and proofs, which can be accessed and verified by
any entity if need be. In addition, the CAB works more like
a permissioned blockchain, since only node who meets some
requirements can participate in the consensus process.

As for relationships among the above entities, a brief
exposition will be provided here. The DO outsources its data
files to a CSP and can retrieve them on demand. When the
DO sends an operation request to the CSP through GM, the
GM simultaneously broadcasts related auxiliary information
to other consensus nodes. Once the CSP confirms request
and responds to it, the CAB performs consensus process,
and then records this operation and its result in a new block.
Eventually the DO is able to obtain final response from the
GM after the CAB ledger is updated.

B. THREAT MODEL AND SECURITY ASSUMPTIONS
Generally, an malicious entity in our framework may attack
the CAB in three ways:

• by returning positive results to DOs at all times to
deceive for rewards, no matter what real responses are.

• by denying requests or operations done to the remote
data for further compensation.

• by colluding with other entity to directly interfere con-
sensus judgement.

Since all behaviors are signed and traceable in the CAB,
repudiation to what have happened is meaningless. Then we
mainly consider four types of attacks in this paper:

• Replacement attack. The CSP attempts to pass audit-
ing by replacing the challenged data block and tag with
combination of other uncorrupted data blocks and tags.

• Forgery attack. The CSP forges proofs to deceive other
verifiers.

• Replay attack. The CSP replays previous proof which
has passed verification to bypass present challenge, or
the GM replays an existed and valid auditing result to
deceive the DO.

• Collusion attack. The CSP colludes with the GM to
change challenges and proofs, leading other verifiers to
wrong judgement.

We also make some standard cryptographic assumptions.
For example, the adversary is not able to forge signatures
without owning signer’s private key, and the one-way hash
function is secure. In addition, we assume that all entities are
rational, and no entity can control more than 30% consensus
nodes in the CAB.

C. DESIGN GOALS
In this paper, we target public and trustworthy integrity
auditing for cloud storage system. The following properties
are intended to achieve considering functionality, security
and Efficiency respectively.

Functionality:

• Decentralization. All operation requests and responses
are maintained by all consensus participants so that
records can be accessed publicly. Through credit score
mechanism, each consensus node has a probability to be
in charge of generating new block and writing it into the
CAB ledger.

• Collaboration. The reliability of auditing result re-
quires all verifiers to devote some resources to execute
the verification process.

• Storage correctness and freshness. The CSP must pass
auditing only if it is storing DO’s data files intactly. Fur-
thermore, the CSP keeps the latest version of data blocks
and corresponding tags, while the DO and verifiers hold
the latest auxiliary information used to verify proofs.

• Dynamic operations support. The DO is able to per-
form remote data update operations, i.e., insertion, dele-
tion, and modification, with necessary cost.

Security:

• Identity-privacy preservation. It is impossible for en-
tities except the GM to get the knowledge of DO’s
identity.

• Blockless verification. It enables verifiers to verify
proofs without original data, which ensures the security
of data to some extent.

• Unforgeability. This property indicates that the prob-
ability of forging a proof able to pass verification of
honest verifier in polynomial time is negligible.

• Collusion resistance. It offers the CAB with the ability
of resisting against collusion attacks under certain cir-
cumstance.

Efficiency:

• Batch auditing. Verifiers can check multiple auditing
challenges corresponding to various data blocks of dif-
ferent files from different DOs in a management domain
simultaneously.

• Efficient traceability. All operation histories related to
a certain data block can be quickly retrieved by any
entity.

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Notations and Descriptions

Notation Description
λ a security parameter
G an elliptic curve group
GT a multiplicative group
p the prime order of G, GT

g1, g2 two random generators of G
e : G×G→ GT a bilinear pairing
H(·) : {0, 1}∗ → G a one-way hash function

f(·) a pseudo-random function
π(·) a pseudo-random permutation
Zp a field of residue classes modulo p

σk|ε(·) a signature signed with key k or by entity ε
IDε the unique identicator of entity ε

• Stability. The sharp increase in the number of DOs
and GMs will not substantially reduce verification ef-
ficiency.

V. THE PROPOSED SCHEME
In this section, we first introduce a dynamic structure to sup-
port various operations on data blocks. Then the core of our
public auditing scheme, which is based on the hierarchical
CAB, is illustrated in detail. Afterwards a description of our
auditing protocol is presented in subsection V-C. What fol-
lows is the extended property of batch auditing. Finally, the
interaction between dynamic data operations and the CAB
are described briefly and formally. Table 1 shows some basic
notations and their descriptions referred to in our scheme.

A. AUXILIARY CHAIN TABLE
In this part, based on the DHT designed in [17], we develop
a new data structure ACT employed by each DO, which
provides fast retrieval in the CAB and some metadata that
helps verification. The ACT is two-dimensional and its spe-
cific structure is shown in Fig. 2. Metadata information in
the ACT is categorized into file information and data block
information. The left part is the identifier of each file owned
by a DO, which forms an array since they are independent
in storage order. However, due to the correlation among
operations on data blocks within the same file, the right part
is designed to be a double linked list, where each item records
the current version number, time stamp, last operation height,
last operation type, and last operation state of corresponding
data block.

In our scheme the version number is denoted as vm,n,
which is updated when a given data block is inserted or
modified. Likewise, the time stamp, last operation height,
last operation type, and last operation state are respectively
abbreviated to tsm,n, lohm,n, lotm,n and losm,n. We should
note that tsm,n and lotm,n are updated when operation
request is generated, but lohm,n and losm,n are updated after
corresponding responses are obtained from the CAB. Here in
the above symbols, m represents the file ID and n represents
the index of data block.

With such a double linked array, the insertion and dele-
tion of a data block will cause no change in other items

,2 ,2 ,2 ,2 ,2, , , ,m m m m mv ts loh lot los ^,1 ,1 ,1 ,1 ,1, , , ,m m m m mv ts loh lot los , , , , ,, , , ,m n m n m n m n m nv ts loh lot los

.

.

.

^

2,2 2,2 2,2 2,2 2,2, , , ,v ts loh lot los ^2,1 2,1 2,1 2,1 2,1, , , ,v ts loh lot los
2, 2, 2, 2, 2,, , , ,n n n n nv ts loh lot los^

1,2 1,2 1,2 1,2 1,2, , , ,v ts loh lot los ^1,1 1,1 1,1 1,1 1,1, , , ,v ts loh lot los
1, 1, 1, 1, 1,, , , ,n n n n nv ts loh lot los^

1FID

2FID

mFID

FIGURE 2. The auxiliary chain table for supporting data dynamics.

Block n

request record

Block Header

previous hash

timestamp

current hash

sigature

merkle root

height

hash hash

hash hash

rec . . .

type sig

result

from to

hash

extension field

[last op heights]

Block i Block j

...

FIGURE 3. The structure of a block in the CAB ledger.

within the same file. Moreover, the ACT provides with local
convenience when retrieving state of a certain element or
performing forward traceability in the CAB.

For further operation convenience, we manually catego-
rize the ACT into existing ACT (EACT) and deleted ACT
(DACT). When a data block has been deleted, corresponding
item would be deleted from the EACT and inserted into the
DACT. In this way, the order of data blocks within the same
file would not be chaotic when a new data block is to be
inserted afterwards.

B. COLLABORATIVE AUDITING BLOCKCHAIN
The main function of the CAB is to encourage participants
with credit rewards in packaging operation information and
verifying proofs to make auditing results more reliable. In
this part, we present the designed CAB from aspects of
block structure, consensus process, and incentive mecha-
nism, which are the basis of a blockchain.

1) Block Structure
We should note that every practical blockchain system has
a strong requirement for application scenario, and existing
security architectures based on the blockchain have their own
security goals. Therefore, information stored in a block are
different in these systems. In practice, considering that the
capacity of a block is limited for the reason of efficiency,
we only store the most important metadata which reflects
entities’ behaviors and corresponding results in the form of
hash.

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

As shown in Fig. 3, a block is divided into two parts: block
header and block body. Different from cryptocurrency, we
adapt the block to remote auditing context by reconstruct-
ing transaction structure. Details about important fields are
showed as follows:
• height: the hight of current block, which is responded

to the DO to update the ACT.
• from, to: identifiers of delegated GM and requested

CSP.
• type: an operation type among insertion, modification,

deletion and auditing.
• sig: the signature of GM who is responsible for trans-

mitting the transaction to the CAB network.
• result: the result to operation request signed by the

representative.
• last op heights: a list of the heights of previous blocks

which track last operations done to the same data blocks.
It is filled with the field loh obtaining from the ACT.

• extension field: if operation type is auditing, this field
is filled with challenges and corresponding proofs. If
operation type is insertion or modification, this field is
written with a list of v and ts obtaining from the ACT.
Otherwise it is empty.

2) Consensus Process
Apart from the construction of block structure for specific
scenario, another crucial part of a blockchain is the design of
its consensus process. Generally, the purpose of a consensus
protocol is to solve problems of storage consistency and
process reliability. Based on [18]–[20], which are known as
PoS and PBFT, we define credit score as measurement of
CSPs’ and GMs’ reliability and a factor affecting selection
of consensus nodes and representative. Before describing
consensus process, we give definitions about some concepts.

Definition 4 (Credit Score) Credit score cr is employed to
express the degree at which a CSP or a GM can be trusted via
evaluating their behaviors.

Definition 5 (Credit Block) A special block containing a
list of CSPs and GMs identified by their public keys and
credit scores {(pk1, cr1), (pk2, cr2), . . . }.

On the whole, the credit-based consensus process is run by
all CSPs and selected GMs over a sequence of rounds in our
framework. Before establishing the CAB, through negotiat-
ing, CSPs and GMs get their initial credit scores according
to the percentage of DOs that they provides service for or
they manages. Then the representative election proceeds as
follows:

1) Initialization: When system starts, CSPs and GMs
broadcast their public keys and credit scores
(pk, cr, σPKG(pk ‖ cr)). Then all CSPs and GMs get
the credit block to initialize the CAB.

2) Consensus nodes selection: As the number of DO
rises, there would be more GMs for load balancing.
Considering efficiency and stability of consensus pro-

request
DO

Consensus 

GMs

Representative

CSP

CSP

broadcast response

GM

pre-prepare prepare commit reply response

FIGURE 4. The communication flow from DO’s request to the end of
consensus.

cess, we first sort GMs by the number of request source
in current transaction pool in descending order and
get {GM1, GM2, . . . }. Then GMi is selected to be
a consensus node in current round with a probability
pi, where pi = cri∑

j crj
. Consensus nodes selection

process flips a p1-biased coin to check whether GM1

is selected; then for all j > 2 if exists, it flips a
(1−p1) · · · (1−pj−1)pj-biased coin to check whether
GMj is selected. Once a GM is picked out, the sorted
set of GMs would remove it. The selection process
would be executed 2f + 1 times, where f ∈ Z is
the maximum number of possible malicious GMs in
the CAB. Additionally considering that the number of
clouds is limited in reality, all CSPs will participate in
the consensus process in our scheme.

3) Representative election: Similar to consensus nodes
selection in GMs, except that we first sort CSPs by
the number of request destination in current transaction
pool in ascending order. After rearranging the set of
consensus nodes in the order of {{CSPs}, {GMs}},
the p-biased coin selection process will be only exe-
cuted once to determine current representative.

For every round after the representative has been elected,
the abstract flow from sending requests to the end of consen-
sus is as Fig. 4 shows.

As a prerequisite, a DO sends an operation request req
on remote stored data to the GM, and GM broadcasts req
to the CAB network after re-signing it. Upon receiving req,
the designative CSP signs response res and broadcasts to the
network as well. When the representative collects enough
(req, res) to form a block, it adds its verification result
to each (req, res) and launches a three-stage consensus
proposal. Firstly, the representative broadcasts a pre-prepare
message and a new packaged block. When a consensus node
receives the message, it checks correctness of current round
information. If passed, this consensus node broadcasts a
prepare message to claim its ready state. Once a consensus
node obtains more than 2N/3 prepare messages, where N
is the total number of consensus nodes in current round, it
begins verification process with relevant information stored
in the CAB ledger to check whether the result is the same
as what the representative gets or not. If the same, this node
will broadcast a commit message to other peers. Finally, if a
consensus node gets more than 2N/3 consensus commits, it

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

will accept the new block and append it to the end of ledger.
Then all consensus GMs reply to other unselected GMs in
current round, each of which will accept the new block if
more than f + 1 same blocks are received. Eventually, the
GM responds to the DO with operation result after ledger is
updated.

3) Incentive Mechanism
Another important part to a blockchain is the incentive
mechanism, which can encourage consensus nodes to repeat
some tasks honestly and get their rewards, thus enhancing
the distributed trust of the whole system and the reliability of
results. Based on the assumption that all entities are rational,
we roughly present a feasible incentive mechanism that takes
economic benefit and misbehaviors into consideration for
further stability:

• A DO needs to buy credits to pay GMs and CSPs for
operation requests.

• Each communication in consensus process will cost
GMs and CSPs a portion of credit.

• A CSP who fails DO’s request will decrease expo-
nentially on credit score, whereas the DO gets extra
compensation apart from request fee which has been
paid.

• A GM can only get credit rewards when managed DO’s
request passes, otherwise the GM makes neither profit
nor loss.

• A representative will get large but linear and other
consensus nodes will get small but also linear increase
on credit scores if current round successfully reaches
final consensus.

• A DO has the freedom to choose any CSP to store data
or any GM to transfer messages according to the credit
score. If the credit score falls below a threshold, existed
consumers will leave for another CSP or GM.

It is obvious that the credit score not only affects the
probability of consensus nodes selection and representative
election, but also determines practical economical benefit of
all entities, since it is like a token to some extent. If a CSP
keeps data intact, performs DO’s requests honestly, or reports
other CSPs’ misbehaviors, it will be rewarded with some
credit scores. In other words, if a CSP is detected having
some misbehaviors, which eventually leads to failing to pass
auditing in our scheme, it will be punished hard in credit
score. Any DO prefers choosing a CSP which has a relatively
high credit score to store data, and such CSPs can also
be elected to be the representative with a high probability.
Likewise, for a rational GM, though its credit score will not
decrease even if DOs’ requests fail, a DO tends to send re-
quests to a GM with a relatively high credit score when there
are other GMs within a big domain, which further influence
the probability of a GM to be selected as a consensus node.
Therefore, the proposed incentive mechanism guarantees the
honesty of entities to a considerable extent.

C. HIGH DESCRIPTION OF THE AUDITING PROTOCOL
In this part, we focus on our public auditing protocol with the
help of the CAB described in subsection V-B. The construc-
tion of the proposed protocol is divided into two phase: setup
phase and audit phase. The former is responsible for system
parameters initialization and auxiliary information genera-
tion. The latter is the core process of remote data auditing.
Both phases need collaboration among all participants, that
is, the interaction with the CAB.

Assuming that a PKG, a DO, a GM which the DO chooses,
and all CSPs participate in our auditing protocol. In addition,
the specific signature algorithm for message authentication is
out of our consideration.

1) Setup Phase
In this phase, the PKG is in charge of system parameters
initialization, while the DO and GM need to pre-process files.
Firstly, the PKG utilizes security parameter to generate a
public-secret key pair for the GM, and the DO also generates
its own key pair in KeyGen. Then the DO initializes EACT
and DACT in FileToAux to store metadata in the form of as
described in subsection V-A. Finally, the DO pre-processes
files and uploads them to the CSP in FileToCS.

KeyGen. With a security parameter λ, the PKG first se-
lects an elliptic curve group G and a multiplicative group
GT of the same large prime order p, a field Zp of residue
classes modulo p, and a symmetric bilinear pairing e :
G × G → GT . Two random generators g1, g2 ∈ G are
also picked. Additionally, the PKG defines a one-way hash
function H : {0, 1}∗ → G, a pseudo-random function (PRF)
f , and a pseudo-random permutation (PRP) π. Thus, the set
of system public parameters is

SP = {G,GT , p, Zp, g1, g2, e,H, f, π}. (1)

Then the PKG chooses random element α ∈ Z∗p = Zp\{0}
as the secret key gsk of GM, and let its public key be gpk =
gα1 . The GM also chooses a signing key pair (gssk, gspk).
As for the DO, it randomly chooses sk = β ∈ Z∗p as private
key, and computes pk = gpkβ to be public key. Afterwards
the DO calculates the inverse inv satisfying

inv · β ≡ 1 (mod p),

and a parameter γ = gpkinv . Likewise, the DO chooses a
signing key pair (ssk, spk). Furthermore, we assume that the
CSP which is designated to offer storage service to the DO
has signing keys (cssk, cspk).

FileToAux. Initially the DO creates the EACT for all
files to be uploaded. For i-th data block in a file, we set
corresponding item as

(vi = 1, tsi, lohi = −1, loti = insert, losi = −1)

in the EACT.
FileToCS. For simplicity, we suppose that the DO needs

to upload a file F . The DO splits F into data blocks such as:

F = {b1, b2, · · · , bi, · · · , bn} i ∈ [1, n],

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

where bi is a general name of data block. Then the DO
generates a BLS-HVT for each bi:

σi = (H(vi ‖ tsi) · gbi2 )sk, (2)

of which the aggregated set is

σ = {σi}i∈[1,n].

In (2), vi and tsi are obtained from the EACT. Afterwards the
DO constructs an insertion instruction

{insert, tsins, IDF , F, σ,H(F ),

IDCSP , {(vi, tsi, lohi)}i∈[1,n], σDO}
and sends to the GM, where

σDO = σssk(tsins ‖ σ ‖ {(vi, tsi, lohi)}i∈[1,n]),

and tsins is the generation time of this instruction. The GM
transforms the insertion instruction and delivers

{insert, tsins, IDGM , IDF , F, σ,H(F ), σGM}

to the CSP for the DO, where

σGM = σgssk(tsins ‖ σ).

In the meantime, the GM creates and broadcasts a insertion
request to the CAB network:

TXins2CAB = {insert, tsins, IDGM , IDF ,

{(vi, tsi, lohi)}i∈[1,n],
IDCSP , σ

′
GM},

(3)

where

σ′GM = σgssk(tsins ‖ {(vi, tsi, lohi)}i∈[1,n]).

Upon receiving insertion instruction, IDCSP verifies σGM
firstly and then checks integrity of file F through H(F ). If
passed, it stores F and broadcasts a response

TXres2ins = {IDCSP , tsins, IDGM , IDF , 1, σCSP },

where
σCSP = σcssk(1 ‖ tsins).

When the representative receives both TXins2CAB and
TXres2ins, it verifies GM’s and CSP’s signatures, and writes
(1, σrep(1 ‖ tsins ‖ IDGM ‖ IDF ) into field result of
a transaction in the new packaged block if passed. Once
the representative collects enough transactions, the consensus
process will be performed as described in V-B2. In the end,
the GM obtains the latest ledger and returns

{IDF , 1, h, σrep(1 ‖ tsins ‖ IDGM ‖ IDF )}

to the DO, where rep is the abbreviation of the representative
and h is set as the hight of the latest block in the updated
ledger. The DO verifies the representative’s signature with
local stored tsins, and overwrites items in the EACT as

(vi = 1, tsi, loh
∗
i = h, loti = insert, los∗i = 1)

if passed, which means that the insertion request is performed
successfully. At this moment the DO can delete the local copy
of file F .

2) Audit Phase
This phase performs remote data integrity auditing. Specif-
ically, challenges are generated from the DO and sent to
the CSP in ChalGen, after which the CSP computes in-
tegrity proofs and broadcasts them to the CAB network in
ProofGen. Then in ProofAudit, consensus nodes check the
correctness of proofs with the help of auxiliary metadata pre-
viously stored in the CAB ledger. For simplicity, supposing
that the DO wants to audit aforementioned file F which has
been uploaded.

ChalGen. The DO randomly chooses two generation keys
k1, k2 ∈ Z∗p , and picks z ∈ Z+ random items from the
EACT, eventually obtaining a challenge set

chal = {i, ri}i∈[1,z] (4)

by calculating

i = πk1(l), ri = fk2(l) l ∈ [1, z].

Meanwhile, the DO updates these items as

(vi = 1, ts∗i = tsaud, lohi = hi, loti = audit, losi = −1),

where tsaud is current time. Then the DO signs chal and
other auxiliary information, after which it constructs an au-
diting instruction and sends it to the GM:

{audit, tsaud, γ, IDF , chal,

{lohi}i∈[1,z], IDCSP , σDO},
where

σDO = σssk(tsaud ‖ γ ‖ chal ‖ {lohi}i∈[1,z]).

The GM constructs and re-signs

TXaud2CAB = {audit, tsaud, IDGM , γ, IDF , chal,

{lohi}i∈[1,z], IDCSP , σGM},
(5)

where

σGM = σgssk(tsaud ‖ γ ‖ chal ‖ {lohi}i∈[1,z]).

Finally it will be broadcast to all participants for future
verification.

ProofGen. Once IDCSP gets the TXaud2CAB , it verifies
GM’s signature and checks whether chal are out of range or
not. If valid, IDCSP generates a tag proof

TP =
∏
i∈[1,z]

σrii (6)

and a data block proof

DP =
∑
i∈[1,z]

bi · ri (7)

according to chal. Upon completion, the above proofs

TXres2aud = {IDCSP , tsaud, IDGM ,

IDF , TP,DP, σCSP }
(8)

will be broadcast, where

σCSP = σcssk(tsaud ‖ TP ‖ DP ).

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ProofAudit. The representative collects TXaud2CAB and
TXres2aud. Based on lohi, the representative retrieves field
last op heights of a transaction in corresponding blocks
recursively till the type of transaction is "insert" or "modify",
and gets all v and ts of challenged data blocks from the
CAB ledger. Then the representative computes aggregated
data block information

DBI = e(
∏
i∈[1,z]

H(vi ‖ tsi)ri , gpk) (9)

for the whole chal. And it continues to check whether

e(TP, γ) = DBI · e(gDP2 , gpk) (10)

holds. If holding, the representative writes (1, σrep(1 ‖
tsaud ‖ chal ‖ IDGM ‖ IDF ) into field result of
corresponding transaction, otherwise it writes (0, σrep(0 ‖
tsaud ‖ chal ‖ IDGM ‖ IDF ). When enough transactions
are collected and processed in such way, the representative
performs the consensus process. Finally, the GM receives
new block and updates local ledger, after which it returns
result

{IDF , state, h,

σrep(state ‖ tsaud ‖ chal ‖ IDGM ‖ IDF )}
to the DO. The DO verifies it with stored tsaud, k1 and k2,
and updates corresponding items in the EACT as:

(vi, ts
∗
i , loh

∗
i = h, loti = audit, losi = state).

If state = 1, the challenged data blocks are complete; oth-
erwise if state = 0, there is at least one of these outsourced
data blocks suffering corruption.

D. BATCH AUDITING
There are many different DOs to be served and multiple
auditing tasks may be waiting for processing simultane-
ously. The batch auditing in our work supports aggregating
challenges of multiple files from various DOs managed by
the same GM, which can reduce computation overheads of
verifiers in ProofAudit compared with individual auditing.

Supposing that the ui ∈ [1, uz] DOs delegate auditing
tasks of i ∈ [1, z] data blocks in fi ∈ [1, fz] files to the
GM at the same time. Then in ChalGen, the DO needs to
extends fields chal and {loh} in auditing instruction. The
batch verification equation is

uz∏
ui=1

e(

fz∏
fi=1

TP , γ)
?
= DBI ′ · e(g

∑uz
1

∑fz
1 DP

2 , gpk), (11)

where

DBI ′ =

uz∏
ui=1

fz∏
fi=1

DBI

=

uz∏
ui=1

fz∏
fi=1

e(
z∏
i=1

H(vi ‖ tsi)ri , gpk)

= e(

uz∏
ui=1

fz∏
fi=1

z∏
i=1

H(vuifii ‖ tsuifii)
ruifii , gpk)

If it holds, the completeness and correctness of all verified
files can be ensured, otherwise at least one file of a certain
DO is corrupted.

E. DYNAMIC AUDITING
Data flow during insertion and auditing processes has been
respectively described in detail. Hence, we proceed to in-
troduce how the other two operations generate trails in the
CAB, which are modification (TXmod2CAB) and deletion
(TXdel2CAB). In the following, we suppose that a remote
data block bi in file IDF of a DO will be manipulated. In
addition, corresponding item in current EACT is assumed to
be:

(vi, tsi, lohi, loti, losi)

1) Modification. Assuming that bi is modified to b∗i . Firstly,
the DO updates corresponding item in the EACT to:

(v∗i = vi + 1, ts∗i , lohi, lot
∗
i = modify, los∗i = −1),

and generates a new BLS-HVT

σ∗i = (H(v∗i ‖ ts∗i ) · g
b∗i
2 )sk

for the modified data block. Then a modification instruction

{modify, tsmod, IDGM , IDF , i, b
∗
i , σ
∗
i , H(b∗i ), σGM}

is sent to the CSP with the help of the GM, where tsmod is the
generation time of this instruction. After the GM broadcasts

TXmod2CAB = {modify, tsmod, IDGM , IDF , i,

IDCSP , (v
∗
i , ts

∗
i , lohi), σ

′
GM},

(12)

and the CSP modifies bi as indicated and broadcasts response

TXres2mod = {IDCSP , tsmod, IDGM , IDF , 1, σCSP },

the CAB collects them to verify. If their information matches
and the CAB ledger is updated after all processes,

{IDF , i, 1, hi, σrep(1 ‖ tsmod ‖ IDGM ‖ IDF )}

will be returned from the GM. The last step for the DO is
to validate the result, and overwrite corresponding item to
loh∗i = hi and los∗i = 1.

2) Deletion. Similarly, after setting ts∗i = tsdel, lot∗i =
delete and los∗i = −1, where tsdel is the deletion time, a
deletion request

TXdel2CAB = {delete, tsdel, IDGM , IDF ,

i, σGM}
(13)

is broadcast. Once the CSP accepts the request, it makes a
response

TXres2del = {IDCSP , tsdel, IDGM , IDF , 1, σCSP }.

Then after TXdel2CAB and TXres2del have been written into
the CAB, the DO finally gets

{IDF , i, 1, hi, σrep(1 ‖ tsdel ‖ IDGM ‖ IDF )}

and updates the EACT as loh∗i = hi and los∗i = 1, after
which corresponding item will be moved to the DACT.

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

We can note that los in relevant items would be reset and
overwritten at the beginning and the end of each request.
This field keeps the state of lot and it has three different
values. When los equals to -1, it means that request lot
has not gained a response yet. If los is set to 0, which
indicates request lot fails, there exists two possible cases: 1)
when lot = audit, then the outsourced data is not complete
or tampered with; 2) otherwise the asked CSP refused to
perform request lot for some reasons such as illegal remote
data operation. In this case, the CSP should present relevant
evidence to other consensus nodes to validate. If los = 1, it
shows that request lot has been successfully admitted by the
CSP or the auditing result is positive.

VI. EVAULATION
In this part, analysis of correctness, security and performance
are showed.

A. CORRECTNESS ANALYSIS
There are two primary equations employed in our verification
process: (10) for a single auditing task from a single DO and
(11) for several auditing tasks from multiple DOs. Supposing
that each consensus node in our protocol has received chal-
lenges and valid proofs, we will demonstrate the equality of
these two equations to prove the correctness of audit phase.

(10) can be derived as follows:

e(TP, γ) = e(
∏
i∈[1,z]

σrii , gpk
inv)

= e(
∏
i∈[1,z]

(H(vi ‖ tsi) · gbi2 )sk·ri , gpkinv)

= e((
∏
i∈[1,z]

H(vi ‖ tsi)ri) · g
∑

i∈[1,z] bi·ri
2 , gpk)

= e(
z∏
i=1

H(vi ‖ tsi)ri , gpk) · e(g
∑z

1 bi·ri
2 , gpk)

= DBI · e(gDP2 , gpk).

Based on (10), (11) explains how a verifier aggregates
different challenges and proofs while executing less pairings:

uz∏
ui=1

e(

fz∏
fi=1

TP , γ) =

uz∏
ui=1

e(

fz∏
fi=1

z∏
i=1

σ
ruifii

uifii
, gpkinvui )

=

uz∏
ui=1

fz∏
fi=1

e(
z∏
i=1

σ
ruifii

uifii
, gpkinvui )

=

uz∏
ui=1

fz∏
fi=1

DBI · e(gDP2 , gpk)

=

uz∏
ui=1

fz∏
fi=1

DBI

·
uz∏
ui=1

fz∏
fi=1

e(g
∑z

1 buifii
·ruifii

2 , gpk)

= DBI ′ · e(g
∑uz

1

∑fz
1 DP

2 , gpk).

We should note that only DOs who are managed by the
same GM are able to reduce pairing operations through
information aggregation, compared to individual auditing.

B. SECURITY ANALYSIS

In this subsection, we analyze how the CAB resist four types
of attacks which could happen during the whole audit phase,
including replacing attacks, forgery attacks, replay attacks
and collusion attacks. It is noteworthy that in our assumption
all other entities apart from the mentioned in each kind of
security threat will comply with auditing regulations.

Theorem 1 The CAB can resist replacing attacks generated
by the CSP. A malicious CSP is not able to get the cor-
rect combination of intact data block information to replace
corrupted data block when generating proofs and deceive
verifiers.

Proof: Supposing that a data block bj to be checked has
been corrupted but that two data blocks bj1 and bj2 , whose
HVT are σj1 and σj2 respectively, are well maintained in the
CSP. To retrieve the HVT of bj , the CSP should find out the
correct combination of σj1 and σj2 . Since

σj1 = (H(vj1 ‖ tsj1) · g
bj1
2 )sk,

σj2 = (H(vj2 ‖ tsj2) · g
bj2
2 )sk,

then the CSP sets that

σ∗j = σ
αj1
j1
· σαj2

j2

= ((H(vj1 ‖ tsj1) · g
bj1
2 )sk)αj1

· ((H(vj2 ‖ tsj2) · g
bj2
2 )sk)αj2

= ((H(vj1 ‖ tsj1)αj1 ·H(vj2 ‖ tsj2)αj2 )

· gαj1
·bj1+αj2

·bj2
2 )sk

where αj1 , αj2 ∈ Zp. Comparing σ∗j and σj , it follows that

αj1 · bj1 + αj2 · bj2 = bj ,

H(vj1 ‖ tsj1)αj1 ·H(vj2 ‖ tsj2)αj2 = H(vj ‖ tsj)

must be satisfied simultaneously. Solution to the second
equation refers to the DLP on elliptic curve, which means it is
hard to work out the desired αj1 and αj2 . Thus the probability
that the CSP performs such replacing attacks successfully is
negligible.

Theorem 2 The CAB can resist forgery attacks from the
CSP. A malicious CSP cannot directly forge a tag proof to
make (10) hold.

Proof: If the CSP has modified data block bi to bi+offi
for i ∈ [1, z], where offi represents the modification part.

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Then in ProofGen, the CSP should have computed the new
TP ∗ which adapts to the new DP ∗ as follows:

TP ∗ =
∏
i∈[1,z]

((H(vi ‖ tsi) · gbi+offi2 )sk)ri

=
∏
i∈[1,z]

((H(vi ‖ tsi) · gbi2 )sk · goffi·sk2 )ri

=
∏
i∈[1,z]

σrii · g
sk·

∑
i∈[1,z] offi·ri

2

= TP · g
sk·

∑
i∈[1,z] offi·ri

2

Since the CSP only owns TP , it must continue to multiply
the rest to get TP ∗. Note that sk is just the private key of
the DO, which cannot be known by any other entities in our
assumption. Hence, the CSP could not forge proofs to deceive
other verifiers.

Theorem 3 During the audit phase, the CAB can resist re-
play attacks from the CSP or the GM. It can be categorized
into two cases: a malicious CSP could not pass verification if
it responds to verifiers with previous valid proofs; a malicious
GM is not able to deceive the DO successfully even if it
returns previous valid auditing result.

Proof: For the former case, the replay attack may be
executed by a malicious CSP when it has illegally changed
the state of a data block bj . We assume that bj’s proof
information is replaced by its former data block b−j . Then
the CSP calculates the new proof (TP ∗, DP ∗) as follows:

TP ∗ =
∏

i∈[1,j−1]
⋃
[j+1,z]

σrii · σ
rj
j− ,

DP ∗ =
∑

i∈[1,j−1]
⋃
[j+1,z]

bi · ri + bj− · rj .

Upon receipt, verifiers will analyze proofs according to (10).
The left part concerning the tag proof can be written as:

e(TP ∗, γ) = e(
∏

i∈[1,z]\{j}

σrii · σ
rj
j− , gpk

inv)

= e(
∏

i∈[1,z]\{j}

(H(vi ‖ tsi) · gbi2 )sk·ri

· (H(vj− ‖ tsj−) · g
bj−
2 )sk·rj , gpkinv)

= e(
∏

i∈[1,z]\{j}

(H(vi ‖ tsi) · gbi2 )ri

· (H(vj− ‖ tsj−) · g
bj−
2 )rj , gpk)

= e(
∏

i∈[1,z]\{j}

H(vi ‖ tsi)ri

·H(vj− ‖ tsj−)rj , gpk)

· e(g
∑

i∈[1,z]\{j} bi·ri+bj− ·rj
2 , gpk).

Since verifiers would compute DBI by collecting necessary
information from the CAB, therefore the right part concern-

ing the data block proof can be expanded as:

DBI · e(gDP
∗

2 , gpk) = e(
∏
i∈[1,z]

H(vi ‖ tsi)ri , gpk)

· e(g
∑

i∈[1,z]\{j} bi·ri+bj− ·rj
2 , gpk)

= e(
∏

i∈[1,z]\{j}

H(vi ‖ tsi)ri

·H(vj ‖ tsj)rj , gpk)

· e(g
∑

i∈[1,z]\{j} bi·ri+bj− ·rj
2 , gpk).

Comparing the above two expanded equations, we conclude
that only whenH(vj ‖ tsj) = H(vj− ‖ tsj−), i.e., vj = vj−
and tsj = tsj− , can (10) hold. To our knowledge, version
number and timestamp of two different data blocks can never
be the same. Moreover, it is impossible for the CSP to tamper
with DBI , since this variable is calculated by all verifiers
with version number and timestamp recorded in the CAB.
Hence, replay attacks cannot work in this case.

For the latter case, the replay attack may happen when a
malicious GM is greedy for rewards and attempts to deceive
the DO with previous result even if the CSP has failed
auditing request. However, this evil intention can be easily
prevented owing to the representative’s signature of tsaud,
IDGM , and IDF contained in the result. These three vari-
ables act as a random and unique identifier set by the DO and
thus the signature of representative changes every request.
Therefore, previous auditing result cannot work any more in
this case.

In conclusion, our scheme can resist replay attacks.

Theorem 4 The CAB can resist collusion attacks from CSPs
and GMs. Colluding CSP and GM cannot deceive the DO
by tampering with challenges and adapting proofs to bypass
corrupted data blocks.

Proof: In this situation we consider that the CSP and
GM have more power to control a part of auditing process.
Since the GM is responsible for transferring challenges to
the CAB network for DOs, there is a possibility that the
GM negotiates with the challenged CSP in advance and
then the GM tampers with the range of a challenge set, i.e.,
chal → chal∗ = {(i∗, ri)} and {lohi → loh∗i }, to pick out
those still intact data blocks so as to avoid auditing failure.
Obviously, altered challenge and proof can easily pass other
verifiers’ verification afterwards. Nevertheless, similar to the
method of preventing replay attacks, in ProofAudit, our
design requires a signed auditing result from the GM, which
contains the CAB’s acknowledgement of current challenge
set. Hence, the DO can judge whether current auditing re-
quest has been suffered from collusion attacks based on k1
and k2 stored temporarily, which can be used to re-generate
chal. So our scheme can resist collusion attacks.

Theorem 5 Apart from the GM managing a DO, all other
verifiers cannot get information about the relation between
the DO and challenged data blocks.

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Proof: Before broadcast to the CAB network, each re-
quest from the DO will be re-constructed by the GM, i.e.,
removing signature of the DO. What other entities can get
is some auxiliary information about a data block. During
the audit phase, an extra variable other verifiers will get is
γ = gpkinv sent along with chal. Although there holds an
equation gpkinv·sk = gpk, verifiers still cannot solve out
gpksk = pk with the help of γ and gpk due to the CDH
problem. That is, verifiers are not able to determine which
DO in the domain sends the request. Hence, the CAB can
protect DO’s identity.

With respect to common data operations, our CAB satisfies
the properties of non-repudiation and accountable traceabil-
ity. On the one hand, each behavior is signed with unique file
information and timestamp, which means that no entity can
deny what has happened or reuse previous information. On
the other hand, all related records in the CAB ledger can be
found rapidly and can directly reflect modification history of
a data block.

Lastly, Table 2 summarizes security comparison results of
our scheme with several blockchain-based auditing schemes.

C. PERFORMANCE ANALYSIS

In this subsection, we evaluate the performance of the CAB
from two aspects: property comparison and computation cost
comparison.

Considering functionality and efficiency, Table 3 lists out
comparison result in several properties mentioned in sub-
section IV-C. Our scheme provides all verifiers with com-
mon knowledge, where no sensitive information is involved,
and they all have to cost some resources to check auditing
proofs, which contributes to the reliability of results. As for
compared schemes, their consensus members own no prior
knowledge and are only responsible for the verification of
signatures, which means that the DO still has to execute
auditing process by itself. The CAB supports dynamic data
due to operations on data blocks instead of on the whole file.
In addition, the proposed ACT helps the DO and consensus
paticipants efficiently locate related blocks. With respect to
storage freshness, [6], [10], [11] cannot prevent all types
of mentioned attacks to ensure the integrity of remote data,
thus failing this property’s requirement. Apart from [6] and
ours, other schemes can only process auditing requests and
responses in serial order, which means that they do not
support batch auditing to reduce the number of calculation.
Moreover, blockchain-based designs generally allow permis-
sible entities to search records in the ledger. We add field
last op heights bound to operation history of a data block
to accelerate retrieving, whereas other schemes must iterate
through the whole ledger to find out the correct transaction
in the worst case. The last property that proposed scheme
provides is described as stability, which is influenced by the
number of DOs in our consideration. Our CAB meets this
target due to the hierarchical structure which is introduced
into the consensus process, where the GM is delegated to

participate in verification process. Therefore, a sharp increase
of DOs will not substantially reduce the efficiency.

The comparison of entities’ computation cost with [6]
and [7], which also employ HVT for auditing, is shown in
Table 4. Computation overheads are mainly distributed in
FileToCS, ProofGen and ProofAudit in the comparison.
Firstly in FileToCS, the DO generates tags for all data blocks
to be uploaded. Then in ProofGen, the CSP computes proofs
according to challenges. Finally in ProofAudit, the DO in
[6], the TPA and DO in [7], or each consensus node in the
proposed scheme verifies the correctness of proofs. From
Table 4, we can see that the DO in the CAB costs much
less, since the burdens caused by local trust in auditing result
is spread across the CAB network, which is adapted for
resource-constrained DOs.

Additionally, we evaluate performance of the CAB by con-
ducting several experiments using JAVA SE 8.0 on Ubuntu
16.04 Virtual Machine equipped with Intel Core i5 CPU at
2.3GHz and 4GB RAM. All pairing related calculations are
implemented with JPBC library v2.0.0 and type A pairing
parameters, in which the group order is set to 160 bits and
the base field order is 512 bits. We divided a file into 10,000
shards and the size of each data block is set to 4KB, while the
proportion of corrupted data blocks is set to 0.001. According
to the loss function theory described in [21], overall consid-
ering the optimal balance of a high detection probability and
low validation cost, only a limited number of data blocks
need to be challenged. Hence, the sample size is changed
from 50 to 500 data blocks in our experiments.

Fig. 5 shows the computation cost on the DO side during
the whole auditing process. It is obvious that as the sample
size increases, the growth rate of DO’s computation time
in our scheme is almost half that of other two schemes. In
fact apart from tag generation, DOs in comparative schemes
have to search blockchain ledger to get proofs and execute
verification, whereas the DO in proposed scheme does not
concern about these processes and can obtain trustworthy
results at last.

Fig. 6 shows the average verification time which the DO
in [6], the DO and the TPA in [7] and the consensus node
in our scheme spend respectively. Thanks to less expensive
operations such as map-to-point hash and pairing, and quick
search for specific authentication information stored in the
CAB with the help of field last op height, our verification
cost is more acceptable to each involved verifier compared
with other schemes.

In Fig. 7, on the one hand when the size of a challenge set
is fixed, the total consensus time in a round, which includes
ProofGen and ProofAudit, does not vary a lot as the number
of GMs increases. This is because that the actual number of
GMs which are to participate in consensus process depends
on the stability of current framework, i.e., only a few when
most of GMs are honest, which means the total number of
consensus nodes is limited and thus the CAB can support
more domains without affecting efficiency greatly. On the
other hand, when the size of a challenge set becomes bigger,

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Comparison of security properties

Schemes replacing attack
resistance

forgery attack
resistance

replay attack
resistance

collusion attack
resistance

identity privacy
protection

[10] N Y N Y N
[6] N Y Y Y N

[11] Y Y N Y N
[7] Y Y Y Y N

CAB Y Y Y Y Y

TABLE 3. Property comparison in functionality

Schemes Collaboration Dynamic support Storage freshness Batch auditing Efficient traceability Stability
[10] N N N N N Y
[6] N Y N Y N N

[11] N N N N N N
[7] N N Y N N Y

CAB Y Y Y Y Y Y

TABLE 4. Comparison of computation cost

Schemes DO CSP TPA Consensus Node

[6] (n+ z)H + (2n+ z + 3)E+
3P + (n+ z + 1)M

H + (z + 1)E + 2zM - -

[7] (2n+ 2z′ + 1)H + 3P+
(6n+ 3z′ + 4)M

(3z + 1)M (2z + 1)H + 3P + (3z + 4)M -

CAB nH + 2nE + nM zE + (2z − 1)M - zH + (z + 1)E+
3P + zM

† H: Hash function mapping a string to a point on G.
† E: Modular exponentiation on G.
† P : Bilinear pairing.
†M : Point multiplication on the group.
† n: The total number of data blocks outsourced.
† z: the number of challenged data blocks.
† z′: the size of a subset of challenged data blocks.
† -: no such entity in the scheme.

0 50 100 150 200 250 300 350 400 450 500 550

The Number of Challenged Data Blocks

0

5

10

15

20

25

30

35

40

45

T
o
ta

l 
C

o
m

p
u
ta

ti
o
n
 T

im
e
 o

n
 D

O
 S

id
e
 (

s
)

[6]

[7]

CAB

FIGURE 5. The computation cost comparison on the DO during the whole
auditing process.

it takes more time to get a final auditing result due to the
growing waiting latency caused by more proof generation
and verification cost. However, it also means that when
the amount of data grows, more resources are needed to
exchange for more reliable results.

In our scheme, challenges and proofs are only relevant to

0 50 100 150 200 250 300 350 400 450 500 550

The Number of Challenged Data Blocks

0

5

10

15

20

25

V
e
ri
fi
c
a
ti
o
n
 T

im
e
 (

s
)

[6] (DO)

[7] (TPA & DO)

CAB (Consensus Node)

FIGURE 6. The verification cost comparison for each verifier.

the GM, and all DOs are separated from consensus process.
Therefore, the burdens of consensus nodes barely change
when the number of DOs in a group increases from 50 to
500 in Fig. 8, where a challenge is set to the size of 250 data
blocks.

Lastly in Fig. 9, we present the comparison of batch

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0 6 12 18 24 30 36 42

The Number of GMs

0

5

10

15

20

25

30

35

40

45

C
o
n
s
e
n
s
u
s
 T

im
e
 f
o
r 

E
a
c
h
 C

h
a
lle

n
g
e
(s

)

50 data blocks

250 data blocks

500 data blocks

FIGURE 7. The consensus time variation with the number of GMs.

0 50 100 150 200 250 300 350 400 450 500 550

The Number of DOs in the group

14

16

18

20

22

24

C
o
n
s
e
n
s
u
s
 T

im
e
 f
o
r 

E
a
c
h
 C

h
a
lle

n
g
e
(s

)

250 data blocks

FIGURE 8. The consensus time variation with the number of DOs in a group.

auditing with [6] under the condition that each DO executes
auditing tasks on 10 different files, of which each challenge
set contains 250 data blocks, and these DOs are from the
same group. We can see that as auditing tasks come from
more DOs, our average auditing efficiency improves whereas
[6] stays nearly unchanged. This is because that the total time
cost does not increase linearly when different proofs from
multiple DOs are aggregated into (9). However, in the com-
pared work, each DO verifies proofs with local information
itself and there is no way to aggregate proofs from various
DOs.

VII. CONCLUSION
In this paper, we propose a collaborative auditing scheme
based on blockchain to mainly achieve trustworthy data
integrity in cloud storage system. By introducing the CAB,
the RDA process and its results can be more reliable with the
help of interested entities, instead of relying on a single third
party. Meanwhile, the proxy role played by the GM separates
the DO from consensus process, which means that the DO

1 5 10 50

The Number of DOs

7

7.5

8

8.5

9

9.5

A
v
e
ra

g
e
 A

u
d
it
in

g
 T

im
e
 f
o
r 

E
a
c
h
 C

h
a
lle

n
g
e
(s

)

[6]

CAB

FIGURE 9. The average auditing time comparison for multiple DOs in a group
in batch auditing.

is free from verification burdens and its identity can be
hidden. Moreover, our distributed consensus protocol avoids
centralization, and incentive mechanism enhances security
and stability of the CAB with the credit score. Security
analysis demonstrates that our scheme can handle with mul-
tiple security threats. Performance evaluation indicates that
the CAB is more resource friendly towards DOs and more
functional compared with other blockchain-based auditing
schemes. Both show that our CAB is capable of solve the
mutual trust problem between DOs and CSPs in cloud storage
system practically.

REFERENCES
[1] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.
[2] K. Yang and X. Jia, “Data storage auditing service in cloud computing:

challenges, methods and opportunities,” World Wide Web, vol. 15, no. 4,
pp. 409–428, 2012.

[3] D. A. Fernandes, L. F. Soares, J. V. Gomes, M. M. Freire, and P. R. Inácio,
“Security issues in cloud environments: a survey,” International Journal of
Information Security, vol. 13, no. 2, pp. 113–170, 2014.

[4] L. F. Soares, D. A. Fernandes, J. V. Gomes, M. M. Freire, and P. R. Inácio,
“Cloud security: state of the art,” in Security, Privacy and Trust in Cloud
Systems. Springer, 2014, pp. 3–44.

[5] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[6] H. Yu, Z. Yang, and R. O. Sinnott, “Decentralized big data auditing for

smart city environments leveraging blockchain technology,” IEEE Access,
vol. 7, pp. 6288–6296, 2018.

[7] J. Xue, C. Xu, J. Zhao, and J. Ma, “Identity-based public auditing for cloud
storage systems against malicious auditors via blockchain,” Science China
Information Sciences, vol. 62, no. 3, p. 32104, 2019.

[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Proceed-
ings of the 14th ACM conference on Computer and communications
security. Acm, 2007, pp. 598–609.

[9] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public veri-
fiability and data dynamics for storage security in cloud computing,” in
European symposium on research in computer security. Springer, 2009,
pp. 355–370.

[10] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, “Blockchain based data
integrity service framework for iot data,” in 2017 IEEE International
Conference on Web Services (ICWS). IEEE, 2017, pp. 468–475.

[11] C. Yang, X. Chen, and Y. Xiang, “Blockchain-based publicly verifiable
data deletion scheme for cloud storage,” Journal of Network and Computer
Applications, vol. 103, pp. 185–193, 2018.

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993606, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[12] Y. QI and Y. HUANG, “Dira: Enabling decentralized data integrity and
reputation audit via blockchain,” SCIENCE CHINA Technological Sci-
ences, vol. 62, no. 4, pp. 698–701, 2018.

[13] C. Li, J. Hu, K. Zhou, Y. Wang, and H. Deng, “Using blockchain for
data auditing in cloud storage,” in International Conference on Cloud
Computing and Security. Springer, 2018, pp. 335–345.

[14] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and
efficient provable data possession,” in Proceedings of the 4th international
conference on Security and privacy in communication netowrks. ACM,
2008, p. 9.

[15] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public auditabil-
ity and data dynamics for storage security in cloud computing,” IEEE
transactions on parallel and distributed systems, vol. 22, no. 5, pp. 847–
859, 2010.

[16] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau, “Dynamic
audit services for integrity verification of outsourced storages in clouds,” in
Proceedings of the 2011 ACM Symposium on Applied Computing, 2011,
pp. 1550–1557.

[17] H. Tian, Y. Chen, C.-C. Chang, H. Jiang, Y. Huang, Y. Chen, and J. Liu,
“Dynamic-hash-table based public auditing for secure cloud storage,”
IEEE Transactions on Services Computing, vol. 10, no. 5, pp. 701–714,
2015.

[18] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” self-published paper, August, vol. 19, 2012.

[19] A. Kiayias, I. Konstantinou, A. Russell, B. David, and R. Oliynykov, “A
provably secure proof-of-stake blockchain protocol.” IACR Cryptology
ePrint Archive, vol. 2016, p. 889, 2016.

[20] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI,
vol. 99, no. 1999, 1999, pp. 173–186.

[21] D. Yue, R. Li, Y. Zhang, W. Tian, and C. Peng, “Blockchain based data in-
tegrity verification in p2p cloud storage,” in 2018 IEEE 24th International
Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2018,
pp. 561–568.

PEI HUANG received his B. E. degree in Com-
puter Science and Technology from Harbin Insti-
tute of Technology in 2018. Now he is a master
student at State Key Laboratory of Integrated Ser-
vice Networks of Xidian University, Xi’an, China,
studying for his M. S. degree in Cyber Security.
His research interests are IoT security, blockchain,
and cloud storage security. His email address is
galahad_moye@163.com.

KAI FAN is a professor at State Key Laboratory
of Integrated Service Networks of Xidian Univer-
sity, Xi’an, China. In 2002, 2005, and 2007, he
received his B. S. degree in telecommunications
engineering, M. S. degree in cryptography, and Ph.
D. degree in telecommunications and information
system from Xidian University respectively. His
research interests include cloud security, IoT secu-
rity, network and information security. His email
address is kfan@mail.xidian.edu.cn.

HANZHE YANG is a master student at State
Key Laboratory of Integrated Service Networks
of Xidian University, Xi’an, China. He received
his B.E. degree in Software Engineering from
Tiangong University at Tianjin in 2019. Now he
is studying for his M.S. degree in Cyber Security
from Xidian University. His research interests are
blockchain, cloud storage security. His email ad-
dress is 654602672@qq.com.

KUAN ZHANG is working as an assistant pro-
fessor in Department of Electrical and Computer
Engineering at University of Nebraska–Lincoln,
USA. He received his B.S. and M.S. degrees from
Northeastern University, P. R. China, in 2009 and
2011, respectively, in Communication Engineer-
ing and Computer Applied Technology. He re-
ceived his Ph.D. degree from University of Water-
loo, Canada, in 2016, in Electrical and Computer
Engineering. He was a Postdoctoral Fellow from

2016-2017 at the University of Waterloo, Canada. He has published over 50
papers in journals and conferences. He was the recipient of Best Paper Award
in IEEE WCNC 2013 and Securecomm 2016. His research interests include
cyber security, big data, cloud/edge computing. The mailing address is PKI
206D, Scott Campus (Omaha), University of Nebraska–Lincoln, 1400 R
Street Lincoln, NE 68588, USA. His email address is kuan.zhang@unl.edu.

HUI LI is a professor at State Key Laboratory
of Integrated Service Networks of Xidian Univer-
sity, Xi’an, China. In 1990, he received his B. S.
degree in radio electronics from Fudan Univer-
sity. In 1993, and 1998, he received his M. S.
degree and Ph. D. degree in telecommunications
and information system from Xidian University
respectively. His research interests include net-
work and information security. His email address
is lihui@mail.xidian.edu.cn.

YINTANG YANG is a professor at Key Labora-
tory of Ministry of Education for Wide Band-Gap
Semiconductor Materials and Devices of Xidian
University, Xi’an China. He received his Ph. D.
degree in semiconductor from Xidian University.
His research interests include semiconductor ma-
terials and devices, network and information secu-
rity. His email address is ytyang@xidian.edu.cn.

VOLUME 4, 2016 15


