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Abstract—Although the emergence of the programmable smart
contract makes blockchain systems easily embrace a wider range
of industrial areas, how to execute smart contracts efficiently
becomes a big challenge nowadays. Due to the existence of
Byzantine nodes, the mechanism of executing smart contracts is
quite different from that in database systems, so that existing
successful concurrency control protocols in database systems
cannot be employed directly. Moreover, even though smart
contract execution follows a two-phase style, i.e, the miner node
executes a batch of smart contracts in the first phase and the
validators replay them in the second phase, existing parallel
solutions only focus on the optimization in the first phase, but
not including the second phase.

In this paper, we propose a novel efficient concurrency control
scheme which is the first one to do optimization in both phases.
Specifically, (i) in the first phase, we give a variant of OCC
(Optimistic Concurrency Control) protocol based on batching
feature to improve the concurrent execution efficiency for the
miner and produce a schedule log with high parallelism for
validators. Also, a graph partition algorithm is devised to divide
the original schedule log into small pieces and further reduce the
communication cost; and (ii) in the second phase, we give a deter-
ministic OCC protocol to replay all smart contracts efficiently on
multi-core validators where all cores can replay smart contracts
independently. Theoretical analysis and extensive experimental
results illustrate that the proposed scheme outperforms state-of-
art solutions significantly.

Index Terms—Blockchain, Smart Contract, Concurrency

I. INTRODUCTION

As a kind of distributed ledger shared by many non-trusted
parties, blockchain technology, such as Bitcoin, Ethereum
[1] and Hyperledger Fabric [2], has gained lots of attention
and interest from public and academic communities. Pro-
grammable smart contracts, defining multiple functions to
describe any business logic, promote utilization of blockchain
technology for the traditional industry. The notion of smart
contracts was conceived by Nick Szabo [3] as a kind of
digital vending machine in 1993. Nowadays, smart contracts
can be written in several high-level programming languages,
such as Solidity in Ethereum and Go in Hyperledger Fabric
[2]. Generally, a smart contract is invoked by a blockchain
client via a transaction, along with appropriate parameters. In
other words, the term transaction is referred to as an event
in which a specific smart contract is invoked. Note that this
kind of transaction also satisfies ACID (Atomic, Consistency,

Isolation, and Durability) properties, like those supported in
database systems [4].

State Variables

Calling Function

r(hb)

r(hbr) w(pr)

w(hbr)

w(hb)

Fig. 1: Open auction smart contract

For illustration purpose, Figure 1 uses a simple public auc-
tion smart contract, written in Solidity, to describe a scenario
where anyone can send her bid during the bidding period.
Initially, three state variables are declared: address that sends
the highest bid (hber), the highest bid (hb), and pr that binds
the bidders to their bids for refunding purpose (lines 2-7).
Subsequently, function bid() is declared to store the highest
bidder and her bid (lines 9-20). Every bidder calls bid() to
submit her bid by sending a transaction to contract address.
Once the highest bid rises, the former highest bidder gets her
money back by calling a withdraw function (not listed in this
paper due to lack of sufficient space). The msg variable stores
the sender’s information such as address and balance.

A. Characteristics and Challenges

Although simple, executing smart contracts in a serial
manner is exactly inefficient. Hence, it is critical to devise
concurrent execution protocol to pursuit better performance.
However, the concurrency control protocols used in traditional
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databases cannot be applied to blockchain directly due to the
following reasons.
• Byzantine fault tolerance. Note that the fail-stop as-

sumption no longer holds in a Byzantine environment.
Since Byzantine (i.e., arbitrary) nodes in blockchain
systems may send false messages to other nodes and do
malicious acts, the smart contract transactions need to be
re-executed at all nodes rather than accepting execution
results from miner directly.

• Full replication data distribution. As blockchain system
adopts full replication mechanism, i.e., each node holds a
complete copy of data, the concurrency control protocol
in blockchain system should ensure the execution results
on each replica deterministic, which makes the concur-
rency control protocols in traditional database system that
merely guarantee serializability insufficient.

• Turing-complete programming language. Smart con-
tracts is often written in a Turing-complete language,
which means conflict relationships cannot be determined
till run-time.

• Batching process. A significant property of blockchain
systems is that transactions are arriving in a batch style,
i.e., no transaction will be processed until the block is
fulfilled. The latency of batching in blockchain can be
negligible compared to that in batching database systems
which tends to take extra time to collect a batch of
transactions. Moreover, existing batching techniques are
not suitable for blockchain because they always strike a
balance between throughput and latency, which is not the
focus of blockchain systems.

Hence, it is challenging to devise efficient solutions to
execute smart contracts in parallel. Since smart contract trans-
actions must be executed by all nodes to keep state data
consistent, a so-called two-phase framework is commonly
adopted for concurrency control of smart contracts, as shown
in Figure 2 [5]–[7]. During the first phase (mining phase),
miner executes transactions in parallel, and then transfers
concurrent schedule log to validators. During the second
phase (validation phase), each validator replays all transactions
deterministically and verify whether miner is malicious or not.

Dickerson et al. proposed a solution in which the miner con-
currently executes transactions using abstract locks and inverse
logs to discover a serializable schedule [6]. Schedule logs are
represented by a directed acyclic graph (happen-before graph)
to help validator recognize transactions without conflicts and
execute them concurrently with fork-join [8] method. Such
transaction-level schedule logs make replay quite inefficient in
validators. And the abstract lock in this concurrency control
is pessimistic in nature with poor scalability. Anjana et al.
replaced pessimistic lock with OCC (Optimistic Concurrency
Control), a cheap protocol that scales up well for low-conflict
workloads [5]. However, once the workload has high read-
write conflicts, OCC will cause high abort rate which strongly
limits throughput. Zhang et al. presented a fine-grained con-
currency control for validators by recording the write set of
every transaction, which makes all contention relationships

pre-determined [7]. Because the proposed mechanism, called
MVTO, uses write chain to resolve conflicts at run-time, the
communication overhead and storage consumption brought by
write sets further reduce the overall throughput. Moreover, all
existing work ignores the possibility that the schedule log is
tampered with by miner and relies on the default verification
mechanism of blockchain systems.

Blockchain Network

Mining Phase

Validation Phase

Validation Phase

Validation Phase

1
Concurrent 

Mining

2

2 Schedule Log

2

3
Concurrent 

Validation

3

3

Fig. 2: Two-phase concurrent execution framework.

To sum up, existing work has following three drawbacks:
(i) Miner tends to adopt mature and proven concurrency
control protocols, like two-phase locking (2PL) and OCC in
the database area, which only benefits miner itself. (ii) The
granularity of concurrent schedule log is either too coarse, or
too fine, which affects communication overhead and replay
throughput deeply. (iii) The verification mechanism of val-
idators depends on the default setting of blockchain systems,
which checks the state Merkle-root after completing the state
transition. This prevents a malicious miner being detected
rapidly during the execution.

In view of the above three limitations, we propose a novel
concurrency control protocol for smart contract execution,
aiming at boosting performance for miner and improving
replay efficiency for validators. Specifically, it includes three
aspects: First, a variant of OCC combined with transaction
batching is proposed for the miner, where aborted transactions
are carefully picked in validation phase of OCC; Second,
an appropriate granularity of schedule log is determined,
because coarse-grained schedule log like happen-before graph
[6] causes low throughput in validation phase, and fine-grained
one such as write chain [7] results in massive communication
cost. Third, our deterministic concurrent replay scheme based
on medium-grained schedule log allows validators to replay
the same schedule in a concurrent and deterministic manner.

B. Contributions
More specifically, we claim the following contributions in

this study:
• Design an effective OCC variant according to transaction

batching feature for miner, which can provide higher
parallelism for miner and faster replaying speed for
validators at the same time. In other words, we take the
optimization of replaying performance of validators into
consideration from the beginning (mining phase).

• Devise medium-grained concurrent schedule log to val-
idators. Even though our proposed partitioned transaction
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dependency graph maintains high concurrent degree, the
communication cost is cheap.

• Propose a deterministic and conflict-free concurrency
control protocol for validators. We also design a method
that embeds verification scheme into the proposed proto-
col to quickly detect malicious tampering.

• A prototype implemented in Java. We integrate the above
techniques into this prototype and measure the system
performance under a standard benchmark. Experimental
results show the superiority of the proposed methods.

C. Organization

The rest of paper is organized as follows. Section II reviews
some related work about latest approaches applied to concur-
rent smart contract execution and other concerned techniques.
Section III formally defines the problems in this paper. In Sec-
tion IV, we explain our parallel two-phase execution scheme
in detail. Section V analyzes the overall cost of the proposed
protocols. The experimental evaluations are reported in section
VI. Section VII concludes this paper.

II. RELATED WORK

We review recent researches close to our work in this
section.

Concurrency control protocol. Concurrency control in
DBMS has been actively studied for more than 30 years.
Generally these works are grouped into two kinds, one is
pessimistic, and the other is optimistic. The most frequently
used pessimistic scheme to ensure serializability is two-phase
locking (2PL) [9]. In contrast to the pessimistic lock-based
protocol, Kung and Robinson propose a validation-based, non-
locking optimistic concurrency control scheme, or in short
OCC [10]. As a validation based protocol, every transaction
goes through three phases: first comes a read phase where the
transaction reads data item directly from storage and writes
to a private location. Then the transaction enters validation
phase. If it passes validation, the transaction writes back its
updates. Wang et al. propose an adaptive CC which combines
with both OCC and lock [11].

Concurrent smart contract execution. Smart contract which
is sequential programs stored on blockchain can be triggered
by transaction sent by clients. While a pile of works try to
improve the performance of blockchain system on consensus
layer, there exist some works on adding concurrency to smart
contract execution. Dickerson et al. present a solution to permit
miner and validators to execute smart contracts concurrently
[6]. Every smart contract invocation can be treated as a specu-
lative action so that miner can discover a serializable schedule
using lock-based STM and publish it to the blockchain. Valida-
tors who receive a new block can replay the same execution
deterministically. Zhang et al. propose a method which can
employ any concurrency control mechanism that produces a
conflict-serializable schedule in mining phase [7]. Validators
use MVTO protocol with the help of write sets provided by
miner to re-execute transactions. Anjana et al. replace the

pessimistic protocol with OCC and propose a decentralized
way in validation phase [5]. Sergey and Hobor explore simi-
larity between multi-transactional behaviors of smart contracts
in Ethereum and shared-memory concurrency problem [12].
These approaches consider the problem separately while ours
takes the overall interest of miner and validators into account
from the beginning.

Batching and Determinism. Batching processing is com-
monly used to improve performance. Ding and Kot utilize
transaction batching and reordering techniques to improve
OCC [13]. Santos et al. apply batching technique to boost
throughput of Paxos [14]. Batching is also a fundamental
feature of blockchain systems. We combine this feature with
OCC to reduce abort rate. Determinism is also a concerned
topic in concurrent execution. Bocchino et al. argue that
parallel programming must be deterministic by default [15].
And also several approaches are brought up by Bocchino. Vale
et al. present a deterministic transaction execution system in
the context of Transaction Memory (TM) [16]. Recall that
the working style between blockchain systems and database
systems is significantly different, so that it is necessary to
devise novel solutions.

III. PROBLEM STATEMENT

In this section, we will formalize the key issues in this study.
Table I lists the notation used throughout this paper.

TABLE I: The notation used in this paper

Symbol Description Symbol Description
G garph Π parallelism of graph
|V | # of vertices ρ commit ratio
|E| # of edges τ workload threshold
ω(v) weight of v B a batch of txs
Ri

j consistent read set RS(Ti) read set of Ti

P a partition of graph WS(Ti) write set of Ti

D density of graph O serialization order
c(e) communication cost

As in database system, multiple smart contract transactions
running concurrently can cause data races leading to inconsis-
tent final state in the blockchain. Hence, data conflicts need
to be resolved during run-time to ensure consistency. Serial-
ization graph or conflict graph(CG) [17] [18] has long been
adopted in concurrency control to captures conflict relationship
among concurrent transactions, in which vertices are smart
contract transactions, and edges represent read-write conflict
dependencies between smart contract transactions. Note that
write-write conflict dependencies need not to be tracked in
CG because each transaction maintains its own write set in
OCC protocol. For simplicity, smart contract transaction is
abbreviated as transaction hereafter.

Definition 1 (Conflict Graph, CG). A CG is a directed graph
G = (V,E), where V = {T1, T2, T3, . . . , Tn}, E =
{(Ti, Tj)|i 6= j}. We say there is a read-write conflict edge
from Ti to Tj if RS(Ti) ∩WS(Tj) 6= ∅ holds where RS(T )
and WS(T ) denote read set and write set respectively.
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Suppose three concurrent transactions calling function bid
of smart contract shown in Figure 1 are abstracted as below.
Both T1 and T2 manage to raise the highest bid. T3 sends a
bid with the value no greater than the current highest bid (hb),
so it returns directly.

T1 : r(hb)r(hber)w(pr)w(hber)w(hb)
T2 : r(hb)r(hber)w(pr)w(hber)w(hb)

T3 : r(hb)

By the above definition, we check read sets and write sets
between any two transactions and construct a conflict graph
shown in Figure 3(a). As usual in traditional concurrency
control theory, the absence of a cycle in CG proves that the
schedule is serializable. If CG is acyclic, a serialization order
O can be acquired by repeatedly committing a transaction
without any edge under a topological order. Otherwise, we
need to abort several transactions to make the graph acyclic,
i.e., no dependency relationship among all the remaining
transactions.

However, CG cannot capture dependencies among those
rollback transactions and commit transactions. So, we define
a transaction dependency graph (TDG) to represent the final
schedule of a batch transactions B. TDG is generated on the
basis of a serializable CG by adding vertices and updating
edges when committing transactions according to the serial-
ization order O.

Definition 2 (Transaction Dependency Graph, TDG). A TDG
is a DAG (directed acyclic graph) G = (V,E), where V =
{T1, T2, T3, . . . , Tn}, E = {(Ti, Tj , Ri

j)|1 ≤ i 6= j ≤ n} and
Ri

j records all values that Tj reads from Ti.

An example TDG is presented in Figure 3(b). After abort-
ing transaction T2 in the example CG, we can commit the re-
maining two transactions in a serialization order (T1 → T3). If
re-executing T2, a dependency edge from T1 to T2 is included
in the final TDG with a consistent read set R1

2 = {hb, hber}.
Edges of a TDG indicate read-from relationships, i.e., the data
transferred from one transaction to another. The weight of each
vertex Ti is defined as the execution time and is denoted as
ω(Ti). Hereafter, we use the terms vertex and transaction inter-
changeably. Edges in TDG correspond to both the precedence
constrains and communication message containing consistent
read sets among vertices. The weight of an edge e = (Ti, Tj)
denoted as c(e) indicates the communication overhead (by the
byte size of Ri

j).

T1 T2

rw

rw

T3

rw rw

(a) CG

T1 T2

1

2R

T3

(b) TDG

Fig. 3: An example of CG and TDG.

As mentioned before, considering the conflict is low in
blockchain system, we design our concurrency control pro-
tocol based on OCC protocol. However, the native OCC
dose not guarantee a serializable schedule. Transactions that
cause the violation of serializability need to be aborted to
obtain an acyclic CG during the validation phase of OCC.
Furthermore, a careful selection of aborted transactions is
required to generate a higher concurrent schedule.

Deleting vertices from a conflict graph to make it cycle-free
is actually a classic feedback vertex set problem (FVS) [19]. A
feedback vertex set of a directed graph is a subset of vertices
whose removal makes the graph acyclic. For example, consider
the CG in Figure 3(a). Vertex T3 forms a FVS since the
removal frees the graph of cycle. Once the size of the feedback
vertex set becomes too large, it will downgrade the overall
throughput. So we further define a commit ratio ρ to represent
the percentage of successfully committed transactions in B.
Making graph acyclic with a minimal-size vertex set is the
basic requirement for FVS problem. We can consider a more
complex objective function which is to make the transformed
TDG with higher parallelism for the sake of high replay speed
in validators.

A graph with fewer edges owns higher parallelism due to
less inter-conflict between transactions. Let Π denote the spar-
sity of TDG which indicates the concurrent degree validators
can obtain during replaying, where D is the density of the
graph itself. The density of a graph is the ratio of edges in the
graph to the maximum possible number of edges. Equation 1
defines Π formally.

Π = 1−D = 1− |E|
|V |(|V | − 1)

(1)

Based on sparsity definition of Π in Equation 1, generating
TDG with higher sparsity and parallelism is transformed into
a classic FVS problem defined by definition 3. Note that a
commit ratio ρ need to be set to prevent aborting overmuch
transactions from happening.

Definition 3 (FVS Problem). Given a batch of n transactions
B = {T1, T2, . . . , Tn}, find a subset B′ ∈ B, aborting B′ not
only makes a serializable CG, but also minimizes the density
of transformed TDG with at least ρ commit ratio.

Generating a medium-grained schedule log represented by
TDG is reasonable. There are two specific reasons: (1) The
theoretical concurrent degree is hard to reach due to the limited
physical cores. (2) Offering all consistent read set significantly
increases network overhead between miner and validators.
Therefore, we come up with a partitioning way on TDG which
remains the parallelism as much as possible but brings much
smaller communication cost.

A τ -constrained partitioning of a TDG, G = (V,E),
divides V into multiple disjoint subsets {V1, V2, ...} with the
workload of each sub-graph no more than a threshold τ . The
weight of a sub-graph ω(Vi) =

∑
T∈Vi

ω(T ) which is the sum
of the vertex weight or transaction execution time. An edge
(Ti, Tj , R

i
j) is called cut edge if Ti ∈ Vp, Tj ∈ Vq and p 6= q.



The weight of all cut edges c(Ec) =
∑

e∈Ec
c(e). Definition

4 gives a constrain on each sub-graph and accompanies the
problem with an objective function based on the weights of
the cut edges.

Definition 4 (Graph partition problem). Given a transaction
dependency graph G, and an upper bound of weight τ , is there
a τ -constrained partition P = {V1, V2, ...} such that ω(Vi) is
no larger than τ and c(Ec) is minimized?

IV. EXECUTION FRAMEWORK

The two-phase execution framework is the most appropriate
approach to keep state consistency among all replicas in a
Byzantine environment. A transaction will be executed twice
throughout its life cycle, once in miner and again in validators
in this two-phase framework. The existing research work
considers the concurrent problem of two phases separately,
where the miner adopts the mature and proven concurrency
control protocol neglecting the replay efficiency in validators.

Regarding this drawback, we propose a novel concurrency
control protocol taking the optimization of two phases into
account at the same time. In the first phase, we design a variant
of OCC protocol utilizing the characteristic of batching and
produce a medium-grained schedule log which is conducive
to improve replay efficiency in validators and also reduces the
communication cost. When receiving blocks that contain the
concurrent schedule log, validators enter the second execution
phase and complete an efficient replay with the help of a
deterministic protocol and this schedule log.

To be more specific, our approach is guided by three
goals, including designing an efficient concurrency control
protocol suitable for blockchain, determining the appropriate
granularity for the schedule log, and devising a deterministic
and efficient replay protocol based on the scheduling log sent
by the miner for validators.

We design a variant of OCC protocol based on the natural
batching feature of blockchain systems to fulfill the first goal,
aiming at boosting performance for miner and improving
replay efficiency for validators. And seeking a solution to get
the first goal is exactly the same process of solving the FVS
problem illustrated by definition 3 in Section III. More details
about batching concurrency control are described in Section
IV-A.

Given that the parallelism is surplus when offering every
transaction a consistent read set due to the limitation of
physical cores, a practical approach is devised to lessen the
communication cost between the miner and validators while
remaining maximum concurrent degree during replaying in
validators. The problem behind the second goal is a graph
partition problem defined by Definition 4 in Section III Section
IV-A details the partition algorithm.

As for the third goal, we propose a deterministic OCC
protocol benefiting from partitioned TDG to keep consistency
among replicas and also improve CPU utilization. We describe
the concurrent validator scheme in Section IV-C.

A. Concurrency Control Protocol in Mining Phase

Batching and reordering transactions in OCC’s validation
phase

As a processing unit in blockchain systems, each block is
basically a batch of transactions. We take advantage of this
natural feature and apply it to OCC protocol. As transactions
in original OCC commit randomly, and the final serialization
order is only decided at commit time during the validation
phase of OCC, we utilize batching technique, with which
the protocol waits until all transactions finishing their read
phase and selects an optimal validation order , to reduce
the number of conflicts and aborts. Moreover, reordering can
further improve the throughput of the miner.

Figure 4 gives a simple transaction reordering example.
Suppose two transactions T1 and T2 in a batch are executed
concurrently. Figure 4(a) shows that T1 first reads x before
T2 writes a new version of x. If without batching, T2 can
successfully commit while T1 fails the validation and leads to
an abort as Figure 4(b) demonstrates. But with batching and
reordering, T2 can be serialized after T1 (Figure 4(c)). Thus,
two transactions can both commit its own changes without
abort.

r(x)

w(x)

T1

T2

v

v

c

c

(a) Two Txs

commit

abort

r(x)

w(x)

T1

T2

v

v

(b) Original OCC

r(x)

w(x)

T1

T2

v

v

commit

commit

(c) Reordering

Fig. 4: Batching and reordering transactions in OCC’s valida-
tion phase to reduce abort.

Batching technique is always about the trade-off between
throughput and latency. Batching transactions and reordering
the commit order surely increase throughput in mining phase,
so does latency. However, validators occupy the vast majority
of nodes in blockchain systems. Sacrifices made by miner
brings much more benefit to validators and further improves
throughput of the whole system.

In order to get a serializable and high parallelism schedule,
the vital problem is to find a minimal subset B′ of all vertices
whose removal maximizes parallelism defined by Definition 1
of the output graph and guarantees commit ratio no less than
ρ. Actually, if CG is not acyclic, then we get an optimization
problem as FVS. Unfortunately, since FVS is an NP-hard [20]
[21] problem, we propose a greedy algorithm for finding B′

next.
Algorithm 1 briefs how to enable concurrency in mining

phase and generate a schedule log represented by TDG. Line
3 initializes B′ with B which indicates the current aborted
transaction set that needs to be re-executed. The codes inside
the while loop (Lines 4-12) firstly runs B′ in parallel. When all
transactions of a batch reach validation phase, we construct a
local CG by creating one vertex per transaction, and one edge
per read-write conflict relationship. Algorithm checks whether



Algorithm 1: Concurrent Mining
Input: A batch of transactions B, commit ratio ρ
Output: A transaction dependency graph TDG

1 Initialize an output TDG;
2 nCommit← 0;
3 B′ ← B;
4 while nCommit < ρ|B| do
5 CG← ExecuteParallel(B′);
6 B′ ← FindAbortTransactionSet(CG);
7 CG′ ← CG \B′;
8 O ← TopologicalSort(CG′);
9 for each t ∈ O do

10 txCommit(t);
11 nCommit← nCommit+ 1;
12 UpdateGraph(t, TDG);

13 return TDG;

RS(Ti)∩WS(Tj) = ∅ to determine if there is a conflict edge
from Ti to Tj . Next, function FindAbortTransactionSet
computes an optimized vertex set B′ based on CG. After
removing B′ from CG, the algorithm repeatedly commits
transactions without any incoming edge using a topological
sort. Each successful commit triggers function UpdateGraph
which creates a new vertex and makes use of t’s read set to
generate edges. The algorithm loops the procedure until the
commit ratio ρ is satisfied.

Finding abort transactions
The heart of our concurrent mining approach lies on the

greedy function FindAbortTransactionSet. This function
selects vertices that are most likely to be included in an abort
set and meets our objective which is producing a TDG with
the largest parallelism. The heuristic rule behind Algorithm
2 is that each strongly connected component (SCC) of the
conflict graph must contain at least one cycle. We can use some
previous work like Kosaraju’s algorithm [22] and Gabow’s
[23] to separate all SCCs in linear time complexity for further
processing.

For each SCC, function GreedySelectV ertex returns a
subset of transactions to abort, and the output set B′ is the
union of all subsets. Lines 7-12 in Algorithm 2 illustrate
how we recursively choose vertices to form the abort set.
SCCs of size one are pruned (Line 8). We sort all vertices
within one SCC in descending order by the strategy defined
by Strategy 1 , and greedily select the top-ranked vertex (Line
10). Line 11 removes the chosen vertex V and returns the
remaining pruned graph. Then we recursively call function
GreedySelectV ertex until sizes of all SCCs are less than 1.

Strategy 1 (max-in & min-out strategy). Suppose we have a
vertex Ta in CG with an outgoing edge set Eo = {(Ta, Ti)|i 6=
a} and an incoming edge set Ei = {(Tj , Ta)|j 6= a}. If we
abort and rerun Ta, then we have a corresponding incoming
edge set E′i = {(Ti, T ′a)} of T ′a in the transformed TDG. And
none of Ta’s incoming edge is included. As the objective is
to minimize the density of TDG, we choose the vertex with
largest in-degree and smallest out-degree to abort so that a
sparser TDG can be obtained.

Algorithm 2: FindAbortTransactionSet
Input: Conflict Graph CG
Output: B′, a vertex set to be aborted

1 B′ ← ∅;
2 CG← Prune(CG);
3 SCC ← Kosaraju(CG);
4 for each S ∈ SCC do
5 B′ ← B′ ∪GreedySelectV ertex(S);

6 return B′;
7 function GreedySelectV ertex(S)
8 if |S.V | ≤ 1 then
9 return ∅;

10 V ← ChooseV ertexByStrategy(S);
11 S ← Prune(S \ V );
12 return V ∪GreedySelectV ertex(S);

Example 1. Figure 5 gives an instance of the greedy recursive
algorithm that aims at maximizing the parallelism of the
transaction dependency graph. Figure 5(a) is the original
example conflict graph with no vertex to be pruned during
the pre-processing. We use Kosaraju’s SCC algorithm [22] to
partition the example graph into several SCCs, and remove
SCCs of size one which will be marked blue, e.g., vertex T8
in Figure 5(b). In the first SCC that consists of vertex T1,
T4, T3 and T7, vertex T3 has the largest in-degree, so we
abort it, remove all relevant edges and mark it as yellow. The
algorithm takes the remaining part of the first SCC as input
and recursively find the next transaction to abort. We prune
vertex with zero in-degree or out-degree before and during the
algorithm. Here, vertex T1, T4 and T7 are all trimmed (Figure
5(c)). We then move to next SCC containing vertex T2, T5, T6
and T9. We choose vertex T5 (in-degree = 2) as the abort
transaction. The rest vertices of this SCC satisfy the condition
for pruning once vertex T5 is removed. We look at the last
SCC containing vertex T10 and T11. Since vertex T10 and T11
have the same in-degree and out-degree, we can add either
one of them to the abort set. Here we select vertex T10. And
vertex T11 is pruned (Figure 5(d)). In Figure 5(d), we have
our final abort set B′ ← {T3, T5, T10}.

B. Generate Moderate Granularity Schedule Log

By now, we have a transaction dependency graph whose
sparsity Π is maximized. But the fine-grained scheduling log
provided every transaction a consistent read set will cause
surplus parallelism limited by physical cores and also too
much communication overhead. So we intend to cut TDG
into even pieces so to improve CPU utilization and decrease
the communication cost as well.

Since finding the optimal partition of TDG that minimizes
the size of all Ri

j is an NP-hard [20] problem. We propose
another greedy algorithm to solve the problem described in
Section III. Our algorithm is based on a simple rule, that is
edges with larger weight are preferred to be included in a part
so that the probability of edges with smaller weight being cut
edge is increased.
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Fig. 5: An example of FindAbortTransactionSet algorithm. Yellow vertices form the abort set, and blue ones are pruned
during the algorithm.

Algorithm 3: τ -Constrained Partitioned TDG
Input: A transaction dependency graph G = (V,E),

workload threshold τ
Output: A partition of G, P = {V1, . . . , Vk}

1 C ←
∑

v∈V ω(v);
2 U ← C × τ ;
3 Vi ← ∅; cost← 0;
4 E′ ← SortByWeight(E);
5 for each e ∈ E′ do
6 uv ← e.getUnvisitedV ertex();
7 if cost+ ω(uv) > U then
8 P.add(Vi);
9 Vi ← ∅;

10 cost← 0;

11 visit[uv]← true;
12 Vi ← Vi ∪ {uv};
13 cost← cost+ ω(uv);

14 for each v ∈ V do
15 if visit[v] = false then
16 if cost+ ω(v) > U then
17 P.add(Vi);
18 Vi ← ∅;
19 cost← 0;

20 visit[v]← true;
21 Vi ← ∪{v};
22 cost← cost+ ω(v);

23 return {V1, V2, . . . , Vk};

Algorithm 3 computes a balanced partition including mul-
tiple sub-graphs, each one with a workload no more than the
threshold τ . And the size of all Ri

j is minimized as much
as possible. Line 1-2 calculate an upper bound weight U of
each part. Line 3 initializes the temporary sub-graph and a
local variable cost records the current weight of Vi. Then we
reorder all edges of E by their weight in descending order
(Line 4). Once having a sorted edge set E′, the algorithm
traverses each edge e to compute a partition with minimal edge
cut (Line 5-13). Basically, if e connects at least one unvisited
vertex u, then we add it to the current sub-graph Vi (Line 12)
and update cost with ω(u) (Line 13). When cost exceeds the
upper bound U , we get a new part (Line 7-10). After visiting
every edge of E, there may be some unvisited vertices with
no incoming/outgoing edges. So, line 14-22 iterate over all
vertices in V , and assign them to the appropriate sub-graph.

Algorithm 3 accesses all edges and vertices once, it has time
complexity of O(|V |+ |E|).

Example 2. Figure 7 illustrates a simple bi-partition pro-
cess after applying our partition algorithm to an example
dependency graph shown on Figure 7(a). Suppose a vertex
set V ← {T1, T2, . . . , T11} has a corresponding weight
set W ← {11, 13, 8, 6, 7, 12, 1, 9, 3, 2, 1}. And a workload
threshold is set to 0.5. The upper bound of each sub-graph
is calculated as 73 × 0.5 = 36.5. We sort all edges by their
weight as line 4 suggests. Then we start by the edge with the
largest weight which is edge e : T8 → T9. Both start vertex
and end vertex of e are unvisited, so we add them to V1.
Now the cost of V1 is updated to 12. Next, we process edge
T4 → T8, edge T1 → T4 and edge T1 → T3 in order. After
that, our first sub-graph contains vertex T1, T3, T4, T8 and T9.
When dealing with edge T2 → T6, we find out that the cost
of current part V1 is 37 which exceeds U , so vertex T2 and
T6 are included in a new sub-graph V2. We now have a new
sub-graph shown on Figure 7(c). After visiting all edges, there
are still two unvisited vertices T7 and T10. We add them to V2
one at a time. Finally, we have a 2-way partition presented in
Figure 7(e).

C. Replay Schedule Log in Validation Phase

A deterministic OCC protocol
The commit order of batching OCC is not deterministic

due to the interleavings are arbitrary. Since TDG offers
all conflict relationship between transactions and the com-
mit order is predefined as O, batching transactions in the
second phase is unnecessary. So we propose a deterministic
optimistic concurrency control protocol called DeOCC based
on OCC along with partitioned TDG and O. Providing
multiple consistent read sets for every sub-graph, DeOCC
is a non-blocking and no rollback protocol naturally. Every
part can be executed concurrently and independently. We take
a decentralized execution approach proposed by Anjana [5]
which is shown in Figure 6. Multiple threads are working on
sub-graphs concurrently in the absence of a master thread.

We add several modifications to allow transactions run
concurrently with a predetermined serialization order. Original
OCC transactions read values either from shared states or their
own write sets. Since a consistent read set Ri

j preserves all
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a decentralized way.

data item that transaction Tj needs to read from transaction
Ti’s update, every read operation is able to obtain a consistent
value from the graph structure. Although DeOCC transactions
have no more occasion to check the consistency of their read
sets, they need to verify the correctness of Ri

j cause miner
could be a malicious one and send a false value. Of course, the
inherent validation mechanism of current blockchain platforms
like Ethereum still works under our deterministic protocols.
After executing all transactions and finishing the state transi-
tion, one can recalculate the state merkle root and compare it
with the root sent by the miner. This default setting will waste
computational resources for it has to verify the correctness
after completing the execution. We propose a new validation
scheme embedded in our DeOCC protocol which is explained
later. Recall that validators need to produce the same serial
order schedule with the miner. Given this constraint, DeOCC
transactions must commit according to O.

Algorithm 4 describes a normal DeOCC transaction. When
a DeOCC transaction T begins, it gets an additional parameter,
serial number seqt, representing the order of this transaction
in the serialization order O discovered by the miner.

In read phase, T finds a proper value of the data object at
most of the time by scanning the consistent read set. The
reason transactions needn’t to check the consistency of its
read set is that Ri

j already does that verification by recording
every version, i.e., transactions have to read from their former
transactions’ committed update linked by dependency edges.
A read operation on the data object item either returns the
value from transaction T ’s consistent read set (Line 7) or its
own write set (Line 5). A value from local storage is returned
in case transaction T doesn’t have a consistent read set. Write
operations remain the same with the OCC transaction which
buffer the new value in other locations and apply a write back
strategy after passing the new verification mechanism.

Transactions that pass our new validation scheme will enter
the write phase. We force transactions to commit according
to the predefined order O so that every transaction has to
wait until all its predecessor transactions commit. After writing
back transaction’s updates, the global sequence value seqc is
assigned to seqt as line 16 in Algorithm 4 suggests.

Restricting commit order directly results in a serial commit

Algorithm 4: A DeOCC transaction t
1 when txStart(t, seq) do
2 seqt ← seq;

3 when txRead(t, item) do
4 if WS(t).contains(item) then
5 ReadFromWriteSet(item,WS(t), RS(t));
6 else
7 ReadFromTDG(item, TDG,Rt);

8 when txWrite(t, item, value) do
9 DeferredWrite(item, value,WS(t));

10 when txCommit(t) do
11 Serial /*one by one*/
12 ConditionWait(seqc = predecessor(seqt));
13 if V erifyReadset(RS(t)) then
14 WriteBack(WS(t));
15 ComputeConsistentSet(WS(t), TDG);
16 seqc ← seqt;
17 else
18 AbortTransaction(t);

which causes a loss of parallelism. To reduce the loss as much
as possible, we see room for the transaction that is next to
commit. Notice that, at any time, there exists one single trans-
action which is about to commit according to the predefined
commit order. Another fact is that most OCC overheads lie
on the deferred write mechanism and validation of the read
set. Base on these two facts, we further improve the basic
DeOCC protocol with a fast mode proposed. When current
committed sequence number seqc equals to a transaction T ’s
sequence number seqt (Line 1), we say T then switches to the
fast mode. Algorithm 5 demonstrates some details about fast
mode execution.

Algorithm 5: Fast mode of a DeOCC transaction t
1 when seqc = predecessor(seqt) do
2 if V erifyReadset(RS(t)) then
3 WriteBack(WS(t));
4 else
5 AbortTransaction(t);

6 when txRead(t, item) do
7 read(t, item);

8 when txWrite(t, item, value) do
9 DirectUpdate(t, item, value);

10 when txCommit(t) do
11 ComputeConsistentSet(WS(t), TDG);
12 seqc ← seqt;

As shown in Algorithm 5, the validation phase is moved
forward when a transaction is going to enter the fast mode
(Line 2-5). Still, transactions need to validate the normal
DeOCC execution done up to that point.

With our fast mode, write operations in read phase use direct
write strategy instead of deferred updates. Since transactions
perform in place updates, read operations no longer read values
from Ri

j or its write set. They simply read the current data
item’s value. Also, the cost of tracking read sets will be
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Fig. 7: An example of 2-way partitioned TDG.

eliminated. For we combine read phase and write phase, there
is no more write back step when transactions commit.

Verification of malicious miner
As we mentioned before, a DeOCC transaction will never

read an inconsistent value for Ri
j storing all proper values

that transaction needs to read. However, parties involved in
blockchain platforms like Ethereum have no trust in each
other. In other words, consistent read sets transferred by miner
require to be verified for their correctness.

The default setting of blockchain uses root of the Merkle
tree to check the validity of the state transition. All of the
existing research works adopt the default verification mech-
anism to detect malicious behaviors of the miner. By this
way, however, lots of computational resources may be wasted
if the miner is a malicious one. We intend to embed the
verification process to our deterministic protocol. Here is how
we do the verification. Basically, each transaction computes
the consistent read sets Ri

j when committing (Line 15 of
Algorithm 4). If it provides a read set Ri

j in the transaction
dependency graph, then the transaction contrasts Ri

j and Ri
j ,

and a verified tag will be attached to all items in Ri
j if

Ri
j = Ri

j . In this way, transactions check whether their read
values are all tagged with verified. Any unverified item will
cause aborting the block. Different from the previous work, our
verification scheme can detect malicious miner beforehand.

V. PERFORMANCE ANALYSIS

We analyze the performance of our two-phase framework in
this section. As mentioned above, miner finds a serialization
order using batching OCC in the first phase, and then valida-
tors replay and verify the schedule log with DeOCC protocol
in the second phase. Obviously, the overall cost of our method
consists of two parts: communication cost and computational
cost. Communication cost is brought by the information sent
from the miner to validators, and the computational cost is the
execution time of a batch of transactions. To some extent, there
is a trade-off between communication cost and computational
cost, i.e, receiving more information contained in the schedule
log will enable a higher execution speed in validators.

Communication cost. The Communication cost refers to
the scheduling logs sent by the miner. Suppose the original

transaction dependency graph G = (V,E) where |V | = n
is broke down to k sub-graphs which are G1, G2, . . . ,
Gk. Each sub-graph Gi has an extra input data set Di

respectively. The overall communication cost is computed as
|T | =

∑k
i=1(|Gi|+ |Di|).

For simplicity, the time to transfer data via network is
computed as the data volume times network bandwidth. Let
α denote the network bandwidth, the overall cost is computed
as α · |T |.

Computational cost. In our framework, all smart contracts
must be evaluated one by one in each validator. Moreover,
all smart contracts belonging to the same sub-graph will be
verified in the same core. Hence, if the number of sub-graphs
is smaller than the number of cores, i.e, k < m, some cores
will be free. Hence, in real-life cases, we will set k � m
so that all sub-tasks can be assigned to each core evenly to
reduce the execution cost.

Theorem 1. The upper and lower bounds of the computation
cost to execute G on an m-core processor are computed below,
where Ψ is the overall computation cost, and τ is the maximum
size of each sub-graph.

LB = Ψ/m

UB = Ψ(
1− τ
m

+ τ)

Proof. Each validator will try to evaluate all smart contracts
in a batch. Hence, under the best situation, the evaluation task
will be dispatched to m cores evenly. Hence, the lower bound
will be Ψ/m. However, due to load unbalance, all m cores
may not stop at the same time. In the ultimate situation, when
one core start to execute the largest sub-task, the rest m − 1
cores happen to finish all subtasks assigned to them at the
same time. In this way, we get the upper bound (UB), as
listed above.

It is interesting to discuss the case where each sub-graph
only contains one smart contract, i.e, k = n. In this case, the
m-core validate can verify all smart contracts almost evenly.
Meanwhile the read set for each smart contract must be ready,
which means more data to be transferred.
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Fig. 8: Speedup against the number of threads
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Fig. 9: Speedup against the number of accounts

VI. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the performance of our proposed method by varying the
number of threads, conflict rate, the number of transactions
and workload threshold.

A. Benchmark

As a popular benchmark for OLTP workload, SmallBank
[24] is also widely used for blockchain systems [25]. Based
on a schema of three tables, SmallBank defines four basic
procedures to model a simple banking scenario, namely Amal-
gamate, WriteCheck, DepositChecking and TransactSaving,
each owning several read/write operations. Since transferring
money between accounts is also common in blockchain appli-
cations, We add SendPayment transaction to extend the orig-
inal SmallBank benchmark. In real blockchain systems like
Ethereum [1], smart contracts can be treated as transactions
that consist of a series of read/write operations. Miner collects
transactions calling different smart contracts. So our extended
benchmark, called SmallBank+, simulates the real workload
well and is appropriate for evaluation.

B. Experiment Setup

As the smart contracts written in Solidity upon Ethereum
platform are not multithreaded, we implement SmallBank+ in
Java to utilize CPU resource more efficiently and evaluate the

performance on one machine. Note that this evaluation mech-
anism is also widely adopted by a series of related works [5]–
[7]. Each block contains a set of transactions which are imple-
mented by using callable objects in Java. Our workload gener-
ator generates blocks with a combination of transaction count,
number of accounts and an initial balance for each group of
experiment. The transaction type is generated uniformly using
Random class in Java. Data access follows a Zipfian distribu-
tion to simulate data skew situations. Specifically, lager skew
parameter means that fewer data objects are accessed with
higher probability, i.e., more transaction conflicts. A thread
pool that is created with ThreadPoolExecutor, executes all
transactions concurrently both for miner and validators. Serial
executor runs with only one thread as a baseline to highlight
the effect of our proposed two-phase scheme. We populate
the database with 100k customers, including 100k checking
and 100k savings accounts. Each group of experiments runs
with three different skew parameters indicating the conflict
intensity. Since following the similar two-phase execution style
with Dickerson’s work, we additionally implement the fork-
join validator proposed by Dickerson [6] and evaluate it with
SmallBank+ benchmark under the same configuration with our
scheme for comparison.

Experiments are conducted on a machine of 160GB memory
and a 2-socket Intel Xeon Silver 4110 CPU @2.10GHz with
8 cores per socket and two hyper-threads per core. This
machine runs CentOS 7 system with JDK version 1.8. All



our experimental figures show the averages of 10 runs.

C. Experimental Reports

Varying the number of threads. We evaluate the performance
by varying the number of threads from 1 to 32 with a fixed
transaction count (400 transactions per block). We evaluate
our concurrent scheme and the fork-join validator under three
different skew parameters of Zipfian distribution. In reality,
conflict is rare because each block contains invocations of
different unrelated smart contracts. Figure 8 shows the speedup
over serial execution against the number of threads. Batching
Miner refers to the batching protocol used in mining phase.
Partition Validator indicates our proposed DeOCC protocol
with τ -constrained graph partition while Total Validator means
DeOCC without partition. Batching Miner execution achieves
approximate 10x speedup when the skew parameter is set to
0.1 (Figure 8(a)) and 9x speedup even when the workload con-
tains medium rate conflict (skew=0.5). However, the speedup
of miner drops to 2x when data skew increases to 0.7, because
high data contention will result in too many aborts which
are infrequent in blockchain applications. Partition Validator
shows a good boost on performance which gains 10x speedup
on average. Total Validator has the highest concurrency degree
which achieves a maximum of 14x speedup as shown in Figure
8(b).

The speedup of Partition Validator in Figure 8 follows
the similar trend which indicates the protocol is resistant
for the change of conflict rate. Result in Figure 8(a) shows
that the speedup of the fork-join method is below 4. The
performance of fork-join method keeps falling down when
data skew increases. In all three cases, both batching miner
and partition validator outperform the fork-join method.

Varying the number of accounts. We evaluate the influence
on speedup brought by different accounts with a fixed number
of threads and 400 transactions per block. We find that the
performance of batching miner firstly goes up and finally
approaches the speedup of Total Validator (12.5x) when the
number of accounts increases, because the conflict varies
inversely with the number of accessing accounts. Partition
validator performs a speedup of 11x steadily regardless of the
skew parameter. The results shown in Figure 9 also bear out
our conclusion that partition validator is rarely affected by the
adjustment of data skew.

Varying the number of transactions in one block. Our
implementation is evaluated under blocks containing between
100 to 2,000 transactions with fixed 16 threads and 1,000
accounts. Figure 10 shows the speedup against the number of
transactions per block. Using batching OCC in miner phase
improves the execution speed up to 10x when the number of
transactions is lower than 400. In general, the throughput of
batching miner decreases when more transactions are included
in a block. If data contention is extremely high (e.g., data
skew is set to 0.7), the number of aborted transactions in one
batch increases markedly. Batching and reordering make the
performance worse than serial execution when there are more

than 900 transactions, because the conflict graph becomes
denser during validation. Partition validator only obtains half
of its maximal speedup when each block contains fewer
transactions (e.g., 100 transactions). This is because it’s more
difficult to dispatch tasks evenly to all cores to utilize CPU
resources efficiently when transactions are few.

Impact of the workload threshold τ on performance. The
last two groups of experiments perform a detailed analysis of
how much impact on performance and communication cost
threshold τ has. Experiment four varies τ from 0.0035 to
0.056 with 16 threads running. Figure 11 shows the speedup
against different workload threshold. When threshold τ goes
up, the speedup slightly drops. As reported in Section V,
larger τ causes more workload being executed serially. When
τ < 0.02, the speedup of partition validator and total validator
are well-matched, which means our partition algorithm can
remain the parallelism of validators as much as possible.
According to our cost analysis in Section V, the performance
will be close to the case where we provide a consistent read
set for each vertex.

The saving of communication cost with varied τ . The
last experiment evaluate the saving of communication cost
with τ varying from 0.0035 to 0.056. In Figure 12, as data
skew increases, communication overhead also rises due to
more inter-conflicts. In all three cases, our partition algorithm
significantly reduces the transferred size of consistent read set
when τ > 0.015. Even in the worst case where skew is set to
0.7, the reduction of communication cost is about 85%.

Overall, our approach achieves an average 9x speedup for
the miner and 11x for concurrent validators. And we re-
duce approximate 90% communication overhead by sacrificing
about 21% performance.

VII. CONCLUSION

In this study, we present an efficient two-phase execution
framework to add concurrency to smart contracts aiming
at higher parallelism at both miner and validators. More
specifically, this framework includes three aspects: First, we
propose an efficient variant of OCC protocol combined with
batching feature of blockchain systems in the mining phase,
where a greedy algorithm is devised to solve the FVS problem
on the conflict graph. Second, we design an appropriate
granularity of schedule log, along with a practical partition
method to reduce the communication overhead and remain
high concurrent degree in the validator phase. Third, we bring
up a concurrent scheme, named DeOCC, to deterministically
and efficiently replay the same schedule discovered by the
miner. The evaluation shows that our two-phase execution
framework can achieve approximate 11x speedup both for
the miner and validators and outperform state-of-art solutions
significantly. Moreover, the communication overhead drops
sharply after applying our graph partition algorithm.

There are two possible pieces of future work. The first one
is to explore adaptive concurrency control for transactions
in blockchain system, which can dynamically fit all varied
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Fig. 10: Speedup against the number of transactions
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Fig. 11: Speedup against the workload threshold (τ )
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Fig. 12: Communication cost with different τ

workloads. The second one is to search for solutions of
concurrent execution in TEE (Trusted Execution Environment)
represented by SGX (Intel Software Guard Extensions).
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