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ABSTRACT
We provide a new protocol for Validated Asynchronous Byzantine

Agreement in the authenticated setting. Validated (multi-valued)

Asynchronous Byzantine Agreement is a key building block in

constructing Atomic Broadcast and fault-tolerant state machine

replication in the asynchronous setting. Our protocol has optimal

resilience of f < n/3 Byzantine failures and asymptotically optimal

expected O(1) running time to reach agreement. Honest parties in

our protocol send only an expected O(n2) messages where each

message contains a value and a constant number of signatures.

Hence our total expected communication is O(n2) words. The best
previous result of Cachin et al. from 2001 solves Validated Byzantine

Agreement with optimal resilience andO(1) expected time but with

O(n3) expected word communication. Our work addresses an open

question of Cachin et al. from 2001 and improves the expected word

communication from O(n3) to asymptotically optimal O(n2).

CCS CONCEPTS
• Theory of computation → Distributed algorithms; • Secu-
rity and privacy → Cryptography.
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1 INTRODUCTION
Byzantine agreement is a fundamental problem in computer science

introduced by Pease, Shostak and Lamport [31] in 1980. In Byzantine

Agreement there are n parties each of which has an input value,

at most f < n are corrupted (i.e., controlled by an adversary),

and the goal of the honest parties is to decide on a unique value.

Many models with various assumptions have been proposed in the

literature.

Renewed interest in Byzantine Agreement follows from the need

to implement Atomic Broadcast and fault tolerant state machine
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replication in the asynchronous setting [12, 16, 27]. In this model,

Cachin et al. [10] defined the problems of Atomic Broadcast and Val-

idated Asynchronous Byzantine Agreement (VABA) to guarantee a

decision on some party’s input, provided it satisfies a globally veri-

fiable external validity condition. They show how to solve VABA in

the authenticated setting, namely there is a trusted setup phase and

security depends on computational hardness assumptions and the

random oracle model. Their solution achieves optimal resilience

n = 3f + 1, asymptotically optimal time O(1), and O(n3) expected
word communication. Improving the expected word communica-

tion for VABA in this model from O(n3) to the O(n2) is an open

problem stated in [10] and has been open for almost 20 years.

This paper presents the first VABA solution with optimal re-

silience, asymptotically optimal time whose expected word commu-

nication is O(n2), thus closing this gap. More precisely, we prove

the following theorem:

Theorem 1. There exists a protocol among n parties that solves
VABA in the authenticated setting and is secure against an adaptive
adversary that controls up to f < n/3 parties, with expected O(n2)
word communication and expected constant running time.

Complexity Measures. Bracha [9] shows that even strictly weaker
primitives than Asynchronous Byzantine agreement can only be

solved when the number of parties n is larger than 3f where f is

the maximum number of parties the adversary can corrupt. We

therefore say that a solution has optimal resilience if it solves Byzan-
tine agreement for n = 3f + 1. A theorem of Fischer, Lynch and

Paterson [19] states that any protocol solving Asynchronous Agree-

ment must have a non-terminating execution even in the face of a

single (benign) failure. Ben-Or [7] shows that randomization can

be used to make such non-terminating executions become events

with probability 0. Feldman and Micali [18] show that Asynchro-

nous Byzantine Agreement can be solved with optimal resilience

n = 3f + 1 and with an expected O(1) asynchronous running time

(where running time is the maximum duration as defined by Canetti

and Rabin [13] and is essentially the number of steps when the pro-

tocol is embedded into a lock-step timing model). We therefore say

that a solution has asymptotically optimal time if it solves Byzantine
agreement using an expected O(1) running time. We show in the

full paper [2] that a recent lower bound of Abraham et al. [1] im-

plies that any protocol solving Asynchronous Byzantine Agreement

against an adaptive adversary (and without a constant error proba-

bility) must have the honest parties send expected Ω(n2) messages.

We therefore say that a solution has asymptotically optimal word
communication if it solves Byzantine agreement using an expected

O(n2)messages and each message contains just a singleword where
we assume a word contains a constant number of signatures and

domain values.
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Multi-valued Agreement. A simplified version of the agreement

problem is the binary agreement problem in which the inputs of

the parties are restricted to the set {0, 1}. A fundamental work by

Cachin, Kursawe, and Shoup [11] was the first to give an optimal al-

gorithm in terms of time, resilience, and word communication in the

random oracle model, which they formalized to fit the distributed

settings. In particular, the algorithm withstands up to f < n/3
Byzantine failures, runs in constant expected number of asynchro-

nous views (rounds), and the expected communication cost isO(n2)
messages of the size of one or two RSA signatures [33]. A more

recent work byMostéfaoui et al. [28] shows how to achieve optimal-

ity without any cryptographic assumptions besides the existence

of a common random coin
1
.

As for the multi-valued Byzantine agreement, the original prob-

lem specification due to Lamport et al. [31] was motivated by the

following setting: Four computers in control of a space-shuttle cock-

pit need to reach agreement on a sensor reading, despite one being

potentially faulty. The problem was captured via the following

condition:

Definition 1 (Weak validity [15]). If all honest parties propose
a value v , then every honest party that terminates decides v .

Note that while the Weak Validity condition is well defined, it says

nothing about a situation in which parties propose different values,

allowing them to (1) return some default value ⊥ that indicates that

no agreement was reached or (2) agree on a value proposed by a

corrupted party. Mostéfaoui et al. [29] consider a slightly stronger

property in which only a value proposed by an honest party or

⊥ are allowed to be returned
2
. However, honest parties may still

decide ⊥ if they initially disagree. In particular, it is not clear how

this slightly stronger validity property can be used to solve Atomic

Broadcast [10].

Cachin et al. formulated in [10] a problem specification that

captures the practical settings where parties propose updates to

a replicated state. Agreement is formed on a sequence of updates,

hence a non-default decision is needed in order to make progress.

To prevent updates from rogue parties, the model is extended with

an External Validity predicate as follows:

Definition 2 (External validity). If an honest party decides
on a value v , then v is externally valid.

Mostéfaoui et al. presented in [29] a signature-free deterministic

reduction from their binary agreement protocol [28] that solves

asynchronous Byzantine Agreement with Weak validity. It has

optimal resilience and asymptotically optimal time and word com-

munication. Unfortunately, BA with Weak validity only does not

solve Atomic Broadcast or State Machine Replication (SMR).

Cachin et al. gave in [10] a reduction from their binary agree-

ment algorithm [11] to VABA and also showed how to use it in

order to implement an atomic broadcast. Their VABA protocol

provides external validity, has optimal resilience, asymptotically

optimal time, and expected message complexity O(n3). That paper

1
while the construction of [28] requires onlyO (n2) bits given a common coin, the word

communication of the resulting binary Byzantine Agreement protocol is dominated

by the common random coin protocol that requires threshold signatures andO (n2)

word communication.

2
Note that this property is muchweaker than the one required for strong consensus [20,

30] since parties are allowed to return ⊥.

explicitly mentions the open problem of improving the expected

word communication from O(n3) to O(n2).

Our Contribution. The main contribution of this paper is solving

this open question. Just like [10], our protocol solves Asynchronous

Byzantine agreement with external validity (VABA), has optimal

resilience and asymptotically optimal time. Improving on [10], our

expected word communication is also asymptotically optimal. In

particular, honest parties send a total expected O(n2) messages,

which is optimal and each message is roughly the size of one or

two threshold signatures.

Our protocol is secure against an adaptive adversary. This follows

from using adaptively secure threshold signatures of Libert et al.

[25] and adaptively secure common coin protocol of Loss andMoran

[26]. Cachin et al. [10] note that their binary protocol [11] and their

Validated protocol [10] also immediately generalize to be secure

against adaptive adversaries by using the primitives above.

Techniques and Challenges. At a high level, the main conceptual

contribution of this paper is a new approach for solving Byzantine

agreement in the asynchronous model by using view-change based

techniques that were traditionally used only in the partially syn-
chronous model [14, 17, 24]. Traditionally, all view-change based
protocols depend on some timeout mechanism. To adopt view-

change based protocols to full asynchronous models and obtain

optimal word communication against an adaptive adversary our

work needs to overcome three core challenges (1) remove timeouts

(2) provide safety and liveness against an an adaptive adversary

and (3) reduce communication to a minimum.

Unlike previous constructions (e.g., [10, 27]), our protocol does

not go through a randomized binary agreement black-box. Instead,

much like Katz and Koo’s Synchronous Byzantine agreement pro-

tocol [22], in each view, we run n parallel leader-based threads and

then use a random leader election primitive to decide which leader

is elected in hindsight. To adopt this idea to the asynchronousmodel

each leader-based thread is a separate instance of the leader-based

paradigm of [14] that uses view-change to replace leaders safely in

asynchronous settings.

The idea of letting n parties concurrently broadcast their values

and then using a leader election to determine which value should

be further considered was first introduced in [8]. However, while

in [8] they use this value as an input to a Byzantine agreement

instance, we use a view-change mechanism to determine if this

value can be safely decided or should it be adopted to the following

views otherwise. By opening the black box agreement protocols

used by both [10] and [8] we are able to reduce the communication

complexity to a minimum. Just like [22], not all honest parties

in our protocol reach agreement in the same view. To guarantee

safety between different views we use a view-change protocol

that guarantees that new leaders can propose only safe values. To

guarantee liveness between different views, instead of using a time-

out, the trigger is the knowledge that n − f leader-based threads

have made sufficient progress inside their protocol.

On the one hand, to obtainO(n2) word communication per view,

we need each of the n leader-based protocols to use justO(n)words
and we need the global view change protocol to use just O(n2)
words. On the other hand, to guarantee progress we must guar-

antee that our view change protocol will allow progress even in

Session 7 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

338



asynchronous settings. To balance between frugal communication

and liveness we adopt a four step leader-based protocol that is in-

spired by an approach taken in the partial synchronous model by

Yin et al. [34].

To obtain the optimal O(1) expected time against an adaptive

adversary, the next challenge is to guarantee that when the first

honest party enters the leader election phase, there is a constant

fraction of potential leaders such that if one of them is elected

then all honest parties will decide in constant time. By electing the

leader after many leaders have completed their work we limit the

adaptive power of the adversary. Moreover, if the elected leader did

not complete its broadcast, we need a mechanism to allow parties

to abandon the elected leader’s broadcast before running the global

view-change protocol.

Cryptography vs Full information. In this paper we assume an

environment with a trusted setup providing authenticated but asyn-

chronous communication channels, and a computationally bounded

adversary that cannot read the private state of non-faulty parties.

It is natural to ask if similar results can be obtained in the full
information model where the adversary is computationally un-

bounded and can see the state of all parties. Recent years has seen

major advances in this model. Kapron et al. [21] solve ABA with

just O(n2) bits against a static full information adversary that con-

trols less than n/6 parties. King and Saia [23] solve ABA against a

dynamic full information adversary that controls less than n/500.
Bar Joseph and Ben Or [4] show that there is a fundamental gap

between the full information model and the cryptographic model.

They prove that any randomized solution against an adaptive full

information fail-stop adversary that controls a constant fraction of

the parties must take at least Ω(
√
n/logn) rounds in the synchro-

nous model. By using cryptographic assumptions we overcome

this lower bound and obtain the asymptotically optimal O(1) ex-
pected rounds andO(n2)word communication in the asynchronous

model. We are not aware of any lower bound for obtaining O(n2)
bits against a dynamic full information adversary with optimal

resilience in the asynchronous model.

2 MODEL
In order to reason about distributed algorithms in cryptographic

settings we adopt the model defined in [10, 11]. We consider an

asynchronous message passing system consisting of a set Π of n
parties, an adaptive adversary, and a trusted dealer. The adversary

may control up to f < n/3 parties during an execution. An adaptive
adversary is not restricted to choose which parties to corrupt at the

beginning of an execution, but is free to corrupt (up to f ) parties
on the fly. Note that once a party is corrupted, it remains corrupted,

and we call it faulty. A party that is never corrupted in an execution

is called honest. To be able to use the threshold signature from [25]

and the coin tossing from [26] we assume the cryptographic random

oracle model. In addition, as in [6], we treat a hash function like a

random oracle.

We assume an initial setup before every execution in which

the trusted dealer generates the initial states of all parties, and we

assume that the adversary cannot obtain the states of honest parties

at any time during an execution.

Computation. Following [10, 11], we use standard modern cryp-

tographic assumptions and definitions. We model the computations

made by all system components as probabilistic Turing machines,

and bound the number of computational basic steps allowed by the

adversary by a polynomial in a security parameter k. A function ϵ(k)
is negligible in k if for all c > 0 there exists a k0 s.t. ϵ(k) < 1/kc for

all k > k0. A computational problem is called infeasible if any poly-

nomial time probabilistic algorithm solves it only with negligible

probability. Note that by the definition of infeasible problems, the

probability to solve at least one such problem out of a polynomial

in k number of problems is negligible. Intuitively, this means that

for any protocol P that uses a polynomial in k number of infeasible

problems, if P is correct provided that the adversary does not solve

one of its infeasible problems, then the protocol is correct except

with negligible probability. We assume that the number of parties

n is bounded by a polynomial in k .

Communication. We assume asynchronous links controlled by

the adversary, that is, the adversary can see all messages and decide

when and what messages to deliver. In order to fit the communi-

cation model with the computational assumptions, we restrict the

adversary to perform no more than a polynomial in k number of

computation steps between the time a messagem from an honest

party pi is sent to an honest party pj and the timem is delivered

by pj
3
. In addition, for simplicity, we assume that messages are

authenticated in a sense that if an honest party pi receives a mes-

sagem indicating thatm was sent by an honest party pj , thenm
was indeed generated by pj and sent to pi at some prior time. This

assumption is reasonable since it can be easily implemented with

standard symmetric-key cryptographic techniques [5] in our model.

Termination. Note that the traditional definition of the liveness

property in distributed system, which requires that all correct (hon-

est) parties eventually terminate provided that all messages between

correct (honest) parties eventually arrive, does not make sense in

this model. This is because the traditional definition allows the

following:

• Unbounded delivery time between honest parties, which

potentially gives the adversary unbounded time to solve

infeasible problems.

• Unbounded runs that potentiallymay consist of an unbounded

number of infeasible problems, and thus the probability that

the adversary manages to solve one is not negligible.

Following Cachin et al. [10, 11], we address the first concern by

restricting the number of computation steps the adversary makes

during message transmission among honest parties. So as long as

the total number of messages in the protocol is polynomial in k ,
the error probability remains negligible. To deal with the second

concern, we do not use a standard liveness property in this paper,

but instead we reason about the total number of messages required

for all honest parties to terminate.We adopt the following definition

from [10, 11]:

Definition 3 (Uniformly Bounded Statistic). Let X be a ran-
dom variable. We say that X is probabilistically uniformly bounded

3
Note that although this restriction gives some upper bound on the communication

in terms of the adversary local speed, the model is still asynchronous since speeds of

different parties are completely unrelated.
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if there exist a fixed polynomial T (k) and a fixed negligible functions
δ (l) and ϵ(k) such that for all l ,k ≥ 0,

Pr [X > lT (k)] ≤ δ (l) + ϵ(k)

With the above definition Cachin et al. [10, 11] define a progress

property that makes sense in the cryptographic settings:

• Efficiency: The number of messages generated by the honest
parties is probabilistically uniformly bounded

The efficiency property implies that the probability of the adversary

to solve an infeasible problem is negligible, which makes it possible

to reason about the correctness of the primitives’ properties. How-

ever, note that this property can be trivially satisfied by a protocol

that never terminates but also never sends any messages. Therefore,

in order for a primitive to be meaningful in this model, Cachin et

al. [10, 11] require another property:

• Termination4: If all messages sent by honest parties have

been delivered, then all honest parties terminated.

In this paper we consider both efficiency and termination properties

as defined in [10, 11]. However, note that when considering an

adaptive adversary, it is also possible to define a slightly weaker

termination property:

• Weak termination: If all messages sent by parties before they

were corrupted have been delivered, then all honest parties

terminated.

Note that while any protocol that satisfies termination satisfiesweak

termination as well, a lower bound for termination does not apply

for weak termination. Indeed our lower bound (see full paper [2])

is for protocols that obtain the termination property. We leave the

study of lower bounds for protocols with weak termination as an

open question.

Complexity. We use the following standard complexity notions

(see for example Cannetti and Rabin [13]). Wemeasure the expected

word communication of our protocol as the maximum over all inputs

and applicable adversaries of the expected total number of words
sent by honest parties where expectation is taken over the random

inputs of the players and of the adversary. We assume a finite

domain V of valid values for the Byzantine agreement problem,

and say that aword can contain a constant number of signatures (see

Section and domain values 2.1). We measure the expected running
time of our protocol as the maximum over all inputs and applicable

adversaries of the expected duration where expectation is taken

over the random inputs of the players and of the adversary. The

duration of an execution is the total time until all honest players

have terminated divided by the longest delay of a message in this

execution. Essentially the duration of an execution is the number

of steps taken if this execution is re-run in lock-step model where

each message takes exactly one time step.

Following Cachin et al. [10] (see Lemma 1 therein), in order to

show that our view-based protocol runs in an expected constant

running time and has expected O(n2) word communication, it is

enough to show that:

• every view consists of R(k) = O(n2) messages that consist

of one word, and

4
Called liveness in [11], but we find this name confusing since it is not a liveness [3]

property.

• the total number of messages is probabilistically uniformly

bounded by R.

2.1 Cryptographic abstractions
The main focus of this paper is on a novel distributed algorithm,

which uses cryptographic tools as black-boxes. To this end, we

present our protocol assuming the existence of two cryptographic

abstractions:

• Threshold signatures scheme.We assume that each party

pi has a private function share-signi , and we assume 3 pub-

lic functions: share-validate, threshold-sign, and threshold-
validate. Informally, givenn− f validated shares, the function
threshold-sign returns a valid threshold signature.

• Threshold coin-tossing. We assume that each party pi
has a private function coin-sharei , and we assume 2 public

functions: coin-share-validate and coin-toss. Informally, given

f + 1 validated coin shares, the function coin-toss returns a
unique and pseudorandom number from the range [1, . . . ,n].

The for formal definitions and implementation details can be found

in the full paper [2].

2.2 Validated asynchronous byzantine
agreement (VABA)

In this paper we follow Cachin et al. [10] and define a (multi-valued)

Byzantine agreement with an external validity function we call EX-
VABA-VAL. The purpose of this function is to determine whether a

value is externally valid for agreement, and the validity property

of the VABA requires parties to decide only on externally valid

values. To rule out trivial solutions in which parties always decide

on some pre-defined externally valid value, we could try to add a

requirement that only a value that was actually proposed by some

party (honest or not) can be decided. However, since byzantine

parties can propose one value and act as if they proposed a different

value, this requirement seems to be impossible to achieve. Instead,

we add another property to the VABA problem defined in [10],

which we call quality. The quality property bounds the probability

that the decision value was proposed by an honest party. Note that

every probability that is grater than zero rules out trivial solutions,

however, to capture the “fairness” of the decision value we require

this probability to be 1/2 5
. We conjecture that higher probability

is impossible to achieve in our model. The formal definition of the

VABA protocol is given below.

Definition 4 (Validated Byzantine Agreement). A proto-
col solves validated Byzantine agreement if it satisfies the following
properties except with negligible probability:

• Validity: If an honest party decides an a value v , then
EX-VABA-VAL(v) = true .
• Quality: The probability of choosing a value that was proposed
by an honest party is at least 1/2.
• Agreement: All honest parties that terminate decide on the
same value.

5
Note that although they do not explicitly define it, the protocol of Cachin et al. [10, 11]

already obtains this Quality property.
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• Termination: If all honest parties start with externally valid
values and all messages sent among honest parties have been
delivered, then all honest parties decide.
• Efficiency: The number of messages generated by the honest
parties is probabilistically uniformly bounded.

3 ASYMPTOTICALLY OPTIMAL VABA
PROTOCOL

In this section we give a protocol for asynchronous byzantine agree-

ment, secure against an adaptive adversary that controls up to

f < n/3 parties, with expected word communication O(n2) and
expected running timeO(1). We present a modular implementation,

which consists of three sub protocols: a simple two-round broad-

cast primitive we call Provable-Broadcast, a simple Leader-Election
protocol, and another primitive, we call Proposal-Promotion, which
is built on top of 4 sequential instances of Provable-Broadcast. In

Section 3.1, we give an overview of the protocols, and in Section 3.2

we present detailed pseudocode and description.

3.1 Our VABA protocol overview
Provable-Broadcast. The Provable-Broadcast is a simple two-

round broadcast that adds an external validity to the basic echo

multicast protocol from [10, 32]. In the first round, the sender sends

a message, that contains a value and a proof for external validity,

to all parties. In the second round, each party first validates, with

an external validation function (which implements a logic of the

protocol that is implemented on top of the broadcast), that the mes-

sage is valid. Then, it (1) delivers the message (value and proof), (2)

threshold-signs it, and (3) sends the signed share back to the sender.

When the sender gets n − f properly signed shares, it combines

them into one threshold signature and returns it. An illustration of

the Provable-Broadcast protocol appears in Figure 1. Informally, the

provability property of this simple broadcast satisfies the following:

(1) An honest sender returns a threshold signature which he can

later use to prove that at least f + 1 honest parties delivered the

message; and (2) a faulty sender cannot produce two such proofs

for two different messages. This proof is later used by the sender

for external validity in other parts of the VABA protocol.

Proposal-Promotion. As we explain below, the VABA protocol

works in a view-basedmanner, where in each view the parties partic-

ipate inn concurrent Proposal-Promotion sub-protocols. Each party

i is acting as the leader of the ith Proposal-Promotion invocation

and tries to promote its proposal by distributing them to all other

parties. The distribution inside a Proposal-Promotion sub-protocol

consists of 4 sequential steps, each of which invokes an instances of

a Provable-Broadcast. An illustration of the sub-protocol appears

in Figure 2. All parties participating in an instance of a Proposal-

Promotion maintain 3 local variables: key, lock, and commit. The
key variable stores the message (value and proof) delivered in the

second step (second instance of the Provable-Broadcast), the lock
variable stores the message delivered in the third step, and the

commit variable stores the message delivered in the fourth step.

For clarity, we refer to these delivery events as key delivery, lock
delivery, and commit delivery, respectively.

Figure 1: Provable-Broadcast illustration. The message ex-
ternal validation by all parties is omitted. When a party re-
ceives a value v and a proof σ from the sender, it first uses
σ to externally validate v, and only then deliver, sign, and
send its share ν back to the sender.

A leader (the initiating party) of a Proposal-Promotion invocation

that successfully completes gets a proof of its completeness, which

is the threshold signature output of the last Provable-Broadcast in-

stance therein. As for the external validity of the Provable-Broadcast

steps inside a Proposal-Promotion, we distinguish between the first

instance and the last 3. For the first instance (first step) the leader

provides a proof key that the proposed value (the one to be pro-

moted) is safe for the current view of the VABA protocol. (More

details on this below). For each of the other 3 instances, the leader

provides the threshold signature output of the preceding Provable-

Broadcast instance, which is a proof of its successful completion.

Informally, the provability property together with the external va-

lidity of Provable-Broadcast guarantee the following:

• All values delivered by honest parties in the key, lock, and
commit deliveries are (1) equal and (2) satisfy the safety

logic of the higher level VABA protocol for this view.

• A valid completeness proof indicates that at least f + 1 hon-
est parties delivered commit. In addition, if an honest party

delivered commit, then at least f + 1 honest parties previ-
ously delivered lock, and if an honest party delivered lock,
then at least f + 1 honest parties previously delivered key.

Leader-Election. The Leader-Election primitive is a simple one-

round protocol that uses the cryptographic threshold coin-tossing

abstraction to elect a unique leader
6
among the parties for each

view. In every view R, each party pi uses coin-sharei (R) to produce

a share ρi and sends it to all other parties. When a party gets f + 1
proper shares for view R it uses the function coin-toss to compute

the leader of view R. Informally, the main properties are that (1) all

honest parties agree on the leader, (2) the adversary cannot predict

who is the leader unless one honest party participates, and (3) every

party has an equal probability to became the leader of every view.

6
Note that every instance of a Proposal-Promotion has a unique leader, but here we

choose among them one unique leader for each view.
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Figure 2: Illustration of the 4 steps of a Proposal-Promotion sub protocol.

Putting everything together into the VABA protocol. The Proposal-
Promotion and the Leader-Election sub-protocols are used as build-

ing blocks for our VABA protocol. The protocol works in a view-

based manner, where each view consists of three phases: Leader-
nomination, Leader-election, andView-change. In the Leader-nomination
Phase, each party promotes its proposal value via the Proposal-

Promotion sub-protocol. Parties wait to learn that n − f instances

of Proposal-Promotion, initiated by different parties, have completed
by getting n − f such proofs. (Recall that the promote function re-

turns a proof of completion that indicates that at least f + 1 honest
parties delivered commit in that instance). Then, in the Leader-
election Phase, parties choose a unique leader uniformly at ran-

dom, via the Leader-Election primitive. Finally, in the View-change
Phase, parties learn what happened in the elected leader’s Proposal-

Promotion protocol and update their local state accordingly. This is

done by an all-to-all communication, where each party sends to all

other parties the key, lock, and commit it delivered (if any) in the

Proposal-Promotion sub-protocol initiated by the chosen leader. If

they learn that some party delivered commit(⟨v,σ ⟩) (where σ is a

valid proof for v to be committed), they can decide v . Otherwise,
they need to carefully adopt a value, (by analysing what key and

lock were delivered), and continue to the next view.

The local state of each party includes two essential variables

LOCK and KEY, which are updated at the end of each round (based

on the received view-change messages) and used by the first in-

stance of the Provable-Broadcast in every Proposal-Promotion to

determine whether the promoted value is externally valid. Infor-

mally, the KEY variable stores a view number view, a value v and

a proof σ s.t. (1) a key = ⟨v,σ ⟩ was received in the View-change
phase of view, (2) σ is a proof forv’s delivery in the second instance

of the Provable-Broadcast in the Proposal-Promotion of view, and
(3) view is the highest view that satisfies (1) and (2). The LOCK
variable stores a view number that corresponds to the highest view

in which a view-change message with a valid lock (contains ⟨v,σ ⟩
s.t. σ is a proof forv’s delivery in the third instance of the Provable-

Broadcast in the Proposal-Promotion of view) was received. In-
formally, the external validity function in the first instance of the

Provable-Broadcast of each Proposal-Promotion checks that the

promoted value is attached to a valid key that was obtained in view

that is at least large as the the view of the local variable LOCK.
An high-level illustration appears in Figure 3, and more details are

given in the description below.

Our protocol guarantees that at least n − f Proposal-Promotion

instances complete in the broadcast phase before a leader is elected.

If the elected leader has completed its Proposal-Promotion (imply-

ing that at least f + 1 honest parties delivered a commit) then
even an adaptive adversary cannot prevent progress. Otherwise,

the view-change phase ensures that agreement is not violated even

if a bad leader is elected. Since the probability to choose a leader

that completed its Proposal-Promotion is constant, the number of

views in the protocol is constant in expectation. More concretely,

the probability to choose a completed broadcast is greater than 2/3,

and thus the number of views in expectation is less than 3/2.

Communication complexity. Each of the key, lock, and commit
variables stores one value and one threshold signature. Therefore,

the total word complexity of the View-change phase is O(n2). The
word complexity of a single instance of Proposal-Promotion is

O(n), which leads to total O(n2) word complexity of the Leader-

nomination phase. Since the Leader-election phase has a single

round all-to-all communication with messages of size 1 word, we

get that all to all, our VABA protocol has an optimal O(n2) word
complexity in expectation.

3.2 Detailed VABA protocol description
In this section we give a detailed description of our VABA proto-

col. A formal proof and a complexity analysis appear in the full

paper [2]. For better readability we use the top down approach.

We first present the VABA protocol and then describe the sub-

protocols it uses. The formal definition of the properties as well

as the pseudocode of the simple Leader-election primitive are de-

ferred to Appendix B. As defined in the model, there is an external

function, called EX-VABA-VAL(v), which checks if v is a valid value

for the byzantine agreement. An instance of the high-level VABA

protocol is identified with a parameter id . Every instance of every

sub-protocol is identified with a parameter ID, which extends id .
For example, the ID of pi ’s Proposal-Promotion in view view is

⟨id, i,view⟩, and the ID of the second instance of the Provable-

Broadcast therein is ⟨⟨id, i,view⟩, 2⟩.

Local variables. We start by presenting the local variables parties

maintain (see Algorithm 1). All parties maintain two cross-view

variables, LOCK and KEY :

• The LOCK variable stores the highest view number for which

the party ever received a view-change message that includes

a lock that was delivered in the Proposal-Promotion of the

chosen leader of this view.

• The KEY variable stores the 3-tuple: view, proof and value,

derived from the maximum view for which the party ever
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Figure 3: An illustration of a single view in the VABA protocol. Blue thin arrows represent messages and black thick arrows
represent invocations and responds of sub-protocols.

received a view-change message that includes a key (com-

posing of value and proof) that was delivered in the Proposal-

Promotion of the chosen leader of this view.

In addition, all parties maintain per-view variables: For a viewview ,

each party stores the elected leader of this view in Leader [view],
and few variables, PPdone[view], PPskip[view], skip[view], which
are used to make sure that at least n − f parties completed their

Proposal-Promotion before some honest party moves to the leader

election phase.

Algorithm 1 Local variables initialization for party pi .

LOCK ← 0

KEY ← ⟨0, vi , ⊥⟩ with selectors view, value, proof ▷ vi is pi ’s input
for every view ≥ 1, initialize:

Leader [view ] ← ⊥
PPdone[view ] ← 0

PPskip[view ] ← {}
skip[view ] ← f alse

The pseudocode of the top VABA protocol appears in algorithms 2

and 3. We next describe the phases in each view:

Leader nomination phase. Each party promotes, using a Proposal-

Promotion sub-protocol, the value and key it has adopted from the

previous views, as determined in the View-Change Phase (explained

below); at view 1, a party promotes its input and an empty key.

Parties participate in n concurrent Proposal-Promotions, and each

party sends a done notification about the completion of its own

Proposal-Promotion carrying its output for proof. When a party

receivesn− f such notifications, it sends a signature share on a skip-
sharemessage. For termination, each party waits to obtain (directly

or indirectly) a combined threshold skip signature, forwards it to

others, and moves to the Leader-election phase (even if its Proposal-

Promotion has not completed due to abandon invocation of other

parties).

Leader election phase. Once a party enters the Leader-election

Phase, it abandons all the Proposal-Promotion instances (more

details on abandon is given below). The parties elect a leader via the

leader election primitive and continue to the next phase as if only

the chosen leader’s Proposal-Promotion ever occurred. From now

on, we refer to the Proposal-Promotion of the leader of a viewview

Algorithm 2 Validated asynchronous byzantine agreement with

identification id : protocol for party pi .

1: view ← 1

2: while true do
3: ID ← ⟨id, i, view ⟩ ▷ Leader nomination phase

4: key ← ⟨KEY .view, KEY .proof ⟩
5: σ ← promote(ID ,⟨KEY .value, key ⟩)
6: wait for promote to return or skip[view ] to become true
7: if skip[view ] = false then
8: send “id, done, view, KEY .value, σ ” to all parties

9: wait until skip[view ] = true
▷ Leader election phase

10: for all k=1,. . . ,n do
11: abandon(⟨id, k, view ⟩) ▷ abandon Proposal-Promotion

with ID = ⟨id, k, view ⟩
12: Leader [view ] ← elect (⟨id, view ⟩)

▷ View-change phase

13: IDleader = ⟨id, Leader [view ], view ⟩
14: send “id, View-change, view, дetKey(IDleader ),

дetLock (IDleader ), дetCommit (IDleader )”

to all parties

15: wait for View-change messages from n − f different parties

16: view ← view + 1

as the Proposal-Promotion of view view , and refer to its delivery

events as the deliveries of view view .

View-change phase. In the View-change Phase of every view,

parties report their delivery events (value and proof) of this view

(delivery in the chosen leader’s Proposal-Promotion) to all other

parties. Each partywaits to collectn− f reports. Recall that Proposal-
Promotion provides the following guarantees: If some honest party

delivers a commit, then f + 1 honest parties deliver lock, hence
all honest parties recieve this lock in the view-change exchange.

Similarly, if some honest party delivers a lock, then f + 1 honest
parties deliver a key, hence all honest parties receive this key.

Once a party has collected n − f view-change messages, it pro-

cesses them as follows. If it receives a commit with a value v , it
decides v . Otherwise, if it receives a lock, it increases its LOCK
variable to the current view. Last, if it receives a key, it updates its
KEY variable to store the current view and the received key. If it
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Algorithm 3 Validated asynchronous byzantine agreement with

identification id : messages.

1: upon receiving “id, done, view, v, σ ” from party pk for the first

time do
2: if threshold-validate(⟨⟨⟨id, k, view ⟩, 4⟩, v ⟩, σ ) then
3: PPdone[view ] ← PPdone[view ] + 1
4: if “skip-share” message was not sent yet in view view then
5: if PPdone[view ] = n − f then
6: ρ ← sigh-share(⟨id, skip, view ⟩)
7: send “id, skip-share, view, ρ” to all parties

8: upon receiving “id, skip-share, view, ρ” from party pk for the first

time in view view do
9: if share-validate(⟨id, skip, view ⟩, k, ρ) then
10: PPskip[view ] ← PPskip[view ] ∪ {ρ }
11: if |PPskip[view ] | = n − f then
12: σ ← threshold-sign(PPskip[view ])
13: send “id, skip, view, σ ” to all parties

14: upon receiving “id, skip, view, σ ” do
15: if threshold-validate(⟨id, skip, view ⟩, σ ) = true then
16: skip[view ] ← true
17: if “skip” message was not sent yet in view view then
18: send “id, skip, view, σ ” to all parties

19: upon receiving “id, View-change, view, ⟨v2, σ2 ⟩, ⟨v3, σ3 ⟩, ⟨v4, σ4 ⟩”
do

20: leader← Leader[view ]
21: if v4 , ⊥ then
22: if threshold-validate(⟨⟨⟨id, leader, view ⟩, 3⟩, v4 ⟩, σ4) then
23: decide v4

24: if v3 , ⊥ ∧ view > lock then
25: if threshold-validate(⟨⟨⟨id, leader, view ⟩, 2⟩, v3 ⟩, σ3) then
26: LOCK ← view
27: if v2 , ⊥ ∧ view > key .view then
28: if threshold-validate(⟨⟨⟨id, leader, view ⟩, 1⟩, v2 ⟩, σ2) then
29: KEY ← ⟨view, v2, σ2 ⟩

did not reach a decision, a party adopts the value v of its (up-to-

date) KEY variable and moves to the next view, where it promotes
v together with KEY as proof for the external validation function

(EX-PB-VAL) of the Provable-Broadcast.
Asmentioned above, a party participates in a Proposal-Promotion

only if the message m = ⟨v, ⟨R,σkey⟩⟩ (note that ⟨R,v,σkey⟩ =
KEY) passes the external validation test. The external validation EX-
PB-VAL includes a crucial key-locking mechanism (see Algorithm 5,

lines 18 to 28). In particular, in view j > 1, a party checks that

the σkey is valid for v and R (meaning that σkey is a proof that

key(⟨v,σkey⟩) could have been deliverd by an honest party in the

Proposal-Promotion of view R), and that the view R is at least as

large as the LOCK variable. We prove in the full paper [2] that the

key-locking mechanism together with the fact that parties abandon

all broadcasts before sending the view-change messages guarantee

agreement and satisfy progress. Here we give some intuition for

the proof:

• Lock Safety: If some party has a proof for commit delivery in
viewR, then at least f +1 honest parties previously delivered
lock and thus locked (lock = R) in view R.

Algorithm 4 Provable-Broadcast with identification ID: Protocol
for the sender

Local variables initialization:
S = {}

1: upon PB(ID ,⟨v, σ ⟩) invocation do
2: send “ID, send, ⟨v, σ ⟩” to all parties

3: wait until |S | = n − f
4: return threshold-sign(S )

5: upon receiving “ID, ack, ρk ” form party pk for the first time do
6: if share-validate(⟨ID, v ⟩, k, ρk ) = true then
7: S ← S ∪ {ρk }

• Key Safety: If some party has a proof for commit delivery
with a valuev in view R, then it is not possible for a party to

have a valid key that contains a value other than v in view

higher than or equal to R.

• Key Progress: If some party pi is locked in view R, then at

least f +1 honest parties delivered a key in R before sending

the view-change messages of view R, and thus all honest

parties will have a KEY with view at least R. Meaning that

all honest parties will have a key to “unlock” pi in the next

view.

We now continue to the detailed description of the VABA sub-

protocols:

Provable-Broadcast. In addition towhat ismention in the overview

above, Provable-Broadcast also exposes a PB-abandon(ID)API, which
parties invoke to explicitly stop their participation in the Provable-

Broadcast protocol associated with identification ID – no message

is delivered and no signed share is sent after PB-abandon(ID) is
invoked. A Provable-Broadcast of a messagem = ⟨v,σ ⟩ with iden-

tification ID is denoted PB(ID,m). The external validation function

used by the Provable-Broadcast is denoted by EX-PB-VAL(ID, ⟨v,σ ⟩).
This function has access to the local variables of the high-level

VABA protocol. For better readability, the formal definition of

the properties satisfied by Provable-Broadcast is deferred to Ap-

pendix A. The pseudocode of the sub-protocol and the EX-PB-
VAL((ID, ⟨v,σ ⟩)) function appear in Algorithms 4 and 5. The EX-
PB-VAL((ID, ⟨v,σ ⟩)) function implements an important logic of the

VABA protocol. The proof σ consists of two proofs ⟨view,σkey ⟩
and σin . If ID is an identification of a first Provable-Broadcast in-

stance of some Proposal-Promotion sub-protocol, then ⟨view,σkey ⟩
is passed to function called check-key to check ifv is a safe proposal

for the current view by verifying that (1) σkey is a valid key from

view view and (2) view is not smaller than LOCK . Otherwise, EX-
PB-VAL checks that σin is a valid output of the preceding instance

of Provable-Broadcast by verifying that it is the correct threshold

signature.

Proposal-Promotion. Besides the promote function mentioned in

the overview, Proposal-Promotion also has an abandon function

that invokes PB-abandon on all 4 instances of Provable-Broadcast

therein. In addition, it also exposes getKey, getLock, and getCommit
API for the VABA protocol to be able to get the delivered key, lock,
and commit, respectively. For clarity and readability we do not
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Algorithm 5 Provable-Broadcast with identification ID: Protocol
for a party pi

Local variables initialization:
stop← f alse

1: upon receiving “ID, send, ⟨v, σ ⟩” from the sender do
▷ parse ID as ⟨⟨id, k, j ⟩, l ⟩; Pk is the sender

2: if stop = f alse ∧ EX-PB-VAL(ID,⟨v, σ ⟩) = true then
3: stop← true
4: ρi ← share-signi (⟨ID, v ⟩)
5: deliver ⟨v, σ ⟩
6: send “ID, ack, ρi ” to the sender

7: upon PB-abandon(ID) do
8: stop← true

9: procedure EX-PB-VAL(ID, ⟨v, σ ⟩)
10: parse ID as ⟨ID, step ⟩ ▷ ID is the identification of the higher

level Proposal-Promotion; step is the

Provable-Broadcast instance therein

11: parse σ as ⟨key, σin ⟩
12: if step = 1 then ▷ first instance of PB in a Proposal-Promotion

13: if check-key(v,key) then
14: return true

15: if step > 1 ∧ threshold-validate(⟨⟨ID, step − 1⟩, v ⟩, σin ) then
16: return true

17: return false

18: procedure check-key(v, key)
19: if EX-VABA-VAL(v ) = false then ▷ external VABA validity check

20: return false

21: parse key as ⟨view, ρ ⟩
22: if view , 1 then ▷ need to validate the key

23: if threshold-validate(⟨⟨⟨id, Leader[view ], view ⟩, 1⟩, v ⟩, ρ)
= false then

24: return false

25: if view ≥ LOCK then
26: return true

27: else
28: return false ▷ the key was obtained in a view that is smaller

than the view on which LOCK is locked

define formal properties for the Proposal-Promotion sub-protocol.

Instead, we use it for exposition modularity and prove the VABA

protocol by using the Provable-Broadcast properties directly. The

pseudocode of Proposal-Promotion appears in Algorithms 7 and 6.

4 DISCUSSION
Our protocol addresses an open problem introduced by Cachin et al.

[10] and reduces the expected word communication from O(n3) to
O(n2) against an asynchronous adaptive adversary. We also show

that in the standard definition of an asynchronous adaptive adver-

sary this expected word communication is asymptotically optimal

for any protocol that obtains the standard definition of termination

(liveness) as defined [10, 11]. An interesting open question is related

to protocols that obtain weak termination in the adaptive setting:

is there a Ω(n2) lower bound against an adaptive adversary that

is required to deliver all messages sent by parties before they are

Algorithm 6 Proposal-Promotion with identification ID: Protocol
for all parties.

Local variables initialization:
key = lock = commit = ⟨⊥,⊥⟩

1: upon delivery(⟨ID, step⟩, ⟨v, ⟨key,σin⟩⟩) do
2: if step = 2 then
3: key← ⟨v,σin⟩
4: if step = 3 then
5: lock← ⟨v,σin⟩
6: if step = 4 then
7: commit← ⟨v,σin⟩

8: upon abandon(ID) do
9: for step = 1, . . . , 4 do
10: PB-abandon(⟨ID, step⟩)

11: Upon getKey(ID) return key
12: Upon getLock(ID) return lock
13: Upon getCommit(ID) return commit

Algorithm 7 Proposal-Promotion with identification ID: Protocol
for a sender.

1: upon promote(ID,⟨v,key⟩) invocation do
2: σin ← ⊥
3: for step = 1, .., 4 do
4: σin ← PB(⟨ID, step⟩, ⟨v, ⟨key,σin⟩⟩)
5: return σin

corrupted? or does there exist a protocol with near linear expected

word communication under this weak termination property?
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Appendix A PROVABLE-BROADCAST
PROPERTIES

Provable-Broadcast with identification ID satisfies the following

properties except with negligible probability:

• PB-Integrity: An honest party delivers a message at most

once.

• PB-Validity: If an honest party pi deliversm, then EX-PB-
VALi (id,m) = true .

• PB-Abandon-ability:An honest party does not deliver any
message after it invokes PB-abandon(ID).
• PB-Provability: For all v,v ′, if the sender can produce

strings σ ,σ ′ s.t. threshold-validate(⟨id,v⟩,σ ) = true and
threshold-validate(⟨id,v ′⟩,σ ′) = true, then (1) v = v ′ and
(2) f + 1 honest parties delivered a messagem s.t.m.v = v .
• PB-Termination: If the sender is honest, no honest party

invokes PB-abandon(ID), all messages among honest parties

arrive, and themessagem that is being broadcast is externally

valid, then (1) all honest parties deliverm, and (2) PB(ID,m)

returns (to the sender) σ , which satisfies

threshold-validate(⟨ID,m.v⟩,σ ) = true.
Note that an Provable-Broadcast does not guarantee any agree-

ment property, however, when several instances are combined to-

gether (e.g., Proposal-Promotion) strong and useful properties can

be guaranteed.

Appendix B LEADER-ELECTION:
PROPERTIES AND PSEUDOCODE

The Leader-Election primitive provides one operation to elect a

unique party (called a leader) among the parties. An instance of a

leader election primitive is identified via an identification ID, and
exposes an operation elect(ID) to all parties, which returns a party

p ∈ Π. Formal definitions are given below and the pseudocode

appears in Algorithm 8.

A protocol for leader election associated with id id satisfies the

following properties except with negligible probability.

• Termination: If f + 1 honest parties invoke elect(), and all

messages among honest parties arrive, then all invocations

by honest parties return.

• Agreement: All invocations of elect(id) by honest parties

return the same party.

• Validity: If an invocation of elect(id) by an honest party

returns, it returns a party p with probability 1/|Π | for every
p ∈ Π.
• Unpredictability: The probability of the adversary to pre-

dict the returned value of elect(id) invocation by an honest

party before it returns is at most 1/|Π | + ϵ(k), where ϵ(k) is
a negligible function.

Algorithm 8 Leader election. Protocol for party pi

Local variables initialization:
1: Σ← {}

2: upon elect(id) do
3: ρi ← coin-sharei (ID)
4: send “share, ID, ρi ” to all parties

5: wait until |Σ| = f + 1
6: return coin-toss(ID, Σ)

7: upon receiving “share, ID, ρ j ” from pj for the first time do
8: if coin-share-validate(id, j, ρ j ) = true then
9: Σ← Σ ∪ {ρ j }
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