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ABSTRACT

Multi-valued validated asynchronous Byzantine agreement (MVBA),

proposed in the elegant work of Cachin et al. (CRYPTO ’01), is fun-

damental for critical fault-tolerant services such as atomic broadcast

in the asynchronous network. It was left as an open problem to

asymptotically reduce the O(�n2+λn2+n3) communication (where
n is the number of parties, � is the input length, and λ is the security
parameter). Recently, Abraham et al. (PODC ’19) removed the n3

term to partially answer the question when input is small. How-

ever, in other typical cases, e.g., building atomic broadcast through

MVBA, the input length � ≥ λn, and thus the communication is
dominated by the �n2 term and the problem raised by Cachin et al.

remains open.

We fill the gap and answer the remaining part of the above

open problem. In particular, we present twoMVBA protocols with

O(�n + λn2) communicated bits, which is optimal when � ≥ λn.
We also maintain other benefits including optimal resilience to

tolerate up to n/3 adaptive Byzantine corruptions, optimal expected
constant running time, and optimal O(n2) messages.
At the core of our design, we propose asynchronous provable

dispersal broadcast (APDB) in which each input can be split and

dispersed to every party and later recovered in an efficient way.

Leveraging APDB and asynchronous binary agreement, we de-

sign an optimalMVBA protocol, Dumbo-MVBA; we also present

a general self-bootstrap framework Dumbo-MVBA� to reduce the

communication of any existingMVBA protocols.

CCS CONCEPTS

• Theory of computation → Distributed algorithms; • Secu-

rity and privacy → Cryptography.
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1 INTRODUCTION

Byzantine agreement (BA) was proposed by Lamport, Pease and

Shostak in their seminal papers [26, 32] and considered the scenario

that a few spacecraft controllers input some readings from a sensor

and try to decide a common output, despite some of them are

faulty [35]. The original specification of BA [32] allows input to be

multi-valued, for example, the sensor’s reading in the domain of

{0, 1}� . This general case is also known as multi-valued BA [34],

which generalizes the particular case of binary BA where input is

restricted to either 0 or 1 [26, 30].

Recently, the renewed attention to multi-valued BA is gathered

in the asynchronous setting [2, 18, 21, 29], due to an unprecedented

demand of deploying asynchronous atomic broadcast (ABC) [13]

that is usually instantiated by sequentially executing multi-valued

asynchronous BA instances with some fine-tuned validity [10, 16].

The elegant work of Cachin et al. in 2001 [10] proposed external

validity for multi-valued BA and defined validated asynchronous

BA, from which a simple construction of ABC can be achieved. In

this multi-valued validated asynchronous BA (MVBA), each party

takes a value as input and decides one of the values as output, as

long as the decided output satisfies the external validity condition.

Later, MVBA was used as a core building block to implement a

broad array of fault-tolerant protocols beyond ABC [9, 24, 33].

The firstMVBA construction was given in the same paper [10]

against computationally-bounded adversaries in the authenticated

setting with the random oracle and setup assumptions (e.g., PKI

and established threshold cryptosystems). The solution tolerates

maximal Byzantine corruptions up to f < n/3 and attains expected
O(1) running time and O(n2)messages, but it incurs O(�n2 +λn2 +
n3) communicated bits, which is large. Here, n is the number of

parties, � represents the bit-length of MVBA input, and λ is the
security parameter that captures the bit-length of digital signatures.

As such, Cachin et al. raised the open problem of reducing the

communication ofMVBA protocols (and thus improve their ABC

construction) [10], which is rephrased as:

How to asymptotically improve the communication cost of the

MVBA protocol by an O(n) factor?

After nearly twenty years, in a recent breakthrough of Abra-

ham et al. [2], the n3 term in the communication complexity was

removed, and they achieved optimal O(n2) word communication,
conditioned on each system word can encapsulate a constant num-

ber of input values and some small-size strings such as digital

signatures. Their result can be directly translated to bit communi-

cation as a partial answer to the above question, when the input

length � is small (e.g., comparable to λ).
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Nevertheless, both of the aboveMVBA constructions contain the

�n2 term in their communication complexities, which was reported

in [10] as a major obstacle-ridden factor in a few typical use-cases

where the input length � is not that small. For instance, Cachin

et al. [10] noticed their ABC construction requires the underlying

MVBA’s input length � to be at least O(λn), as eachMVBA input

is a set of (n − f ) digitally signed ABC inputs. In this case, the

�n2 term becomes the dominating factor. For this reason, it was

even considered in [18, 29] that existing MVBA is sub-optimal

for constructing ABC due to the large communication. It follows

that, despite the recent breakthrough of [2], the question from [10]

remains open for the moderately large input size � ≥ O(λn).

Our contributions. We answer the remaining part of the open

question for large inputs and present the firstMVBA protocols with

expected O(�n + λn2) communicated bits. More precisely,

Theorem 1.1. There exist protocols in the authenticated setting

with setup assumptions and random oracle, such that it solves the

MVBA problem [2, 10] amongn parties against an adaptive adversary

controlling up to f ≤ � n−13 � parties, with expected O(�n + λn2)
communicated bits and expected constant running time, where � is

the input length and λ is a cryptographic security parameter.

Table 1: Asymptotic performance ofMVBA protocols among

n parties with �-bit input and λ-bit security parameter.

Protocols Comm. (Bits) Word† Time Msg.

Cachin et al. [10]‡ O(�n2 + λn2 + n3) O(n3) O(1) O(n2)

Abraham et al. [2] O(�n2 + λn2) O(n2) O(1) O(n2)

Our Dumbo-MVBA O(�n + λn2) O(n2) O(1) O(n2)

Our Dumbo-MVBA� O(�n + λn2) O(n2) O(1) O(n2)

† [2] defines a word to contain a constant number of signatures/inputs.
‡ [10] realizes that their construction can be generalized against adaptive

adversary, when given threshold cryptosystems with adaptive security.

Our result not only improves communication complexity upon [2,

10] as illustrated in Table 1, but also is optimal in the asynchronous

setting regarding the following performance metrics1:

(1) The execution incurs O(�n + λn2) bits on average, which

coincides with the optimal communication O(�n) when � ≥
O(λn). This optimality can be seen trivially, since each hon-
est party has to receive the �-bit output, indicating a mini-

mum communication of Ω(�n) bits.
(2) As [2], it can tolerate an adaptive adversary controlling up

to � n−13 � Byzantine parties, which achieves the optimal re-

silience in the asynchronous network according to the upper

bound of resilience presented by Bracha [8].

(3) Same to [2, 10], it terminates in expected constant asynchro-

nous rounds with overwhelming probability, which is essen-

tially asymptotically optimal for asynchronous BA [3, 19].

(4) As [2, 10], it attains asymptotically optimal O(n2) messages,
which meets the lower bound of the messages of optimally-

resilient asynchronous BA against adaptive adversary [1, 2].

1 To measure communication cost, Abraham et al. [2] define a word to contain a con-
stant number of signatures and input values, and then consider word communication.

Our protocols also achieve optimal O(n2) word communication as [2], because they

attain (i) optimal O(n2) messages and (ii) every message is not larger than a word.

Techniques & challenges. Let us first have a very brief tour of

the existingMVBA constructions [2, 10]. In the first phase of [10],

each party broadcasts its input value to all others using a broad-

cast protocol. Once receiving sufficient values, each party informs

everyone else which values it has received to form a O(n2) size
“matrix”. Then a random party Pl is elected, and an asynchronous

binary agreement (ABA) is run by the parties to vote on whether to

output vl depending on if enough parties have already received vl .
The ABA will be repeated until 1 is returned. The recent study [2],

instead, expands the conventional design idea of ABA and directly

constructs MVBA in the following way: first, multiple rounds of

broadcasts are executed by every party to form commit proofs. A

random party Pl is elected. If any party already receives a commit

proof for vl , it decides to output vl ; and other undecided parties
use vl as input to enter a repetition of the whole procedure. We

can see that [2] get rid of the O(n3) communication as the phase
that each party receives a O(n2) size matrix is removed.
We observe that in the first phase of both [2, 10], every party

broadcasts its own input to all parties for checking external validity,

which already results in �n2 communicated bits. Note that aMVBA

protocol only outputs a single party’s input, it is thus unnecessary

for every party to send its input to all parties. Following the obser-

vation, we design Dumbo-MVBA, a novel reduction fromMVBA to

ABA by using a dispersal-then-recast methodology to reduce com-

munication. Instead of letting each party directly send its input to

everyone, we let everyone to disperse the coded fragments of its

input across the network. Later, after the dispersal phase has been

completed, the parties could (randomly) choose a dispersed value to

collectively recover it. Thanks to the external predicate, all parties

can locally check the validity of the recovered value, such that they

can consistently decide to output the value, or to repeat random

election of another dispersed value to recover.

Challenges remain due to our multiple efficiency requirements.

For example, the number of messages to disperse a value is at most

linear, otherwise n dispersals would cost more than quadratic mes-
sages and makeMVBA not optimal regarding message complexity.

The requirement rules out a few related candidates such as asyn-

chronous verifiable information dispersal (AVID) [12, 22] that needs

O(n2) messages to disperse a value. In addition, the protocol must
terminate in expected constant time, that means at most a constant

number of dispersed values will be recovered on average.

We therefore propose asynchronous provable dispersal broadcast

(APDB) for the efficiency purpose, which weakens the agreement

of AVID when the sender is corrupted. In this way, we realize a

meaningful dispersal protocol with only O(n) messages. We also

introduce two succinct “proofs” in APDB as hinted by the nice work

of Abraham et al. [2]. During the dispersal of APDB, two proofs

lock anddone could be produced: (i) when any honest party delivers
a lock proof, enough parties have delivered the coded fragments of

the dispersed value, and thus the value can be collectively recovered

by all honest parties, and (ii) the done proof attests that enough
parties deliver lock , so all honest parties can activate ABA with

input 1 and then decide 1 to jointly recover the dispersed value.

To take the most advantage of APDB, we leverage the design in

[2] to let the parties exchange their done proofs to collectively

quit all dispersals, and then borrow the idea in [10] to randomly

elect a party and vote via ABA to decide whether to output the
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elected party’s input value (if the value turns to be valid after being

recovered). Intuitively, this idea reduces the communication, since

(i) each fragment has only O(�/n) bits, so n dispersals of �-bit input
incur only O(�n) bits, (ii) the parties can reconstruct a valid value
after expected constant number of ABA and recoveries. See detailed

discussions in Section 4.

Finally, we present another general self-bootstrap technique

Dumbo-MVBA� to reduce the communication of any existingMVBA.

After applying our APDB protocol, we can use small input (i.e., the

“proofs” of APDB) to invoke the underlyingMVBA to pick the dis-

persed value to recast, thus reducing the communication of the

underlyingMVBA. In addition, though Dumbo-MVBA� is center-

ing around the advanced building block of MVBA instead of the

basic module of binary agreement, it can better utilizeMVBA to re-

move the rounds generating the done proof in APDB, which further

results in a much simpler modular design.

Related validity conditions. The asynchronous BA problem [5, 8,

14] was studied in diverse flavors, depending on validity conditions.

Strong validity [20, 31] requires that if an honest party outputsv ,
then v is input of some honest party. This is arguably the strongest

notion of validity for multi-valued BA. The sequential execution

of BA instances with strong validity gives us an ABC protocol,

even in the asynchronous setting. Unfortunately, implementing

strong validity is not easy. In [20], the authors even proved some

disappointing bounds of strong validity in the asynchronous setting,

which include: (i) the maximal number of corruptions is up to f <

n/(2� + 1), and (ii) the optimal running time is O(2�) asynchronous

rounds, where � is the input size in bit.

Weak validity [17, 25], only requires that if all honest parties

input v , then every honest party outputs v . This is one of most
widely adopted validity notions for multi-valued BA. However, it

states nothing about output when the honest parties have different

inputs. Weak validity is strictly weaker than strong validity [20, 31],

except that they coincide in binary BA [11, 28, 30]. Abraham et al.

[2] argued: it is not clear how to achieve a simple reduction from

ABC to asynchronous multi-valued BA with weak validity; in par-

ticular, the sequential execution of multi-valued BA instances with

weak validity fails in the asynchronous setting, because non-default

output is needed for the liveness [10] or censorship resilience [29].

To circumvent the limits of above validity notions, Cachin et al.

[10] proposed external validity, which requires the decided output of

honest parties to satisfy a globally known predicate. This delicately

tuned notion brings a few definitional advantages: (i) compared to

strong validity, it is easier to be instantiated, (ii) in contrast with

weak validity, ABC is simply reducible to it. For example, Cachin et

al. [10] showcased a simple reduction from ABC toMVBA 2. This

succinct construction centers around a specific external validity

condition, namely, input/output must be a set containing 2f + 1
valid message-signature pairs generated by distinct parties, where

each signed message is an ABC input. Although their reduction

is simple, the communication cost (per delivered bit) in their ABC

was cubic (and is still amortizedly quadratic even if using the recent

technique of batching in [29]), mainly because the communication

2 There are some other validity notions of multi-valued BA such as vector validity
(a.k.a. asynchronous common subset) [5, 16] that are also alternatives to instantiate
ABC. We omit discussions about these validity notions, and focus on external validity.

cost of the underlying MVBA module contains a quadratic term

factored by theMVBA’s input length.

2 PROBLEM FORMULATION

2.1 System model

We use the standard notion [2, 10] to model the system consisting

of n parties and an adversary in the authenticated setting.

Established identities & trusted setup. There are n designated
parties denoted by {Pi }i ∈[n], where [n] is short for {1, . . . ,n}
through the paper. Moreover, we consider the trusted setup of

threshold cryptosystems, namely, before the start of the protocol,

each party has gotten its own secret key share and the public keys as

internal states. For presentation simplicity, we consider this trusted

setup for granted, while in practice it can be done via a trusted

dealer or distributed key generation protocols [7, 23, 27].

Adaptive Byzantine corruption. The adversary A can adap-

tively corrupt any party at any time during the course of protocol

execution, until A already controls f parties (e.g., 3f + 1 = n). If a
party Pi was not corrupted by A at some stage of the protocol, it

followed the protocol and kept all internal states secret against A,

and we say it is so-far-uncorrupted. Once a party Pi is corrupted by

A, it leaks all internal states to A and remains fully controlled by

A to arbitrarily misbehave. By convention, the corrupted party is

also called Byzantine fault. If and only if a party is not corrupted

through the entire execution, we say it is honest.

Computationmodel. Following standard cryptographic practices

[10, 11], we let the n parties and the adversaryA to be probabilistic

polynomial-time interactive Turing machines (ITMs). A party Pi is

an ITM defined by the protocol: it is activated upon receiving an

incomingmessage to carry out some computations, update its states,

possibly generate some outgoing messages, and wait for the next

activation.A is a probabilistic ITM that runs in polynomial time (in

the number of message bits generated by honest parties). Moreover,

we explicitly require the message bits generated by honest parties to

be probabilistic uniformly bounded by a polynomial in the security

parameter λ, which was formulated as efficiency in [2, 10] to rule

out infinite protocol executions and thus restrict the run time of

the adversary through the entire protocol. Same to [10] and [2], all

system parameters (e.g., n) are bounded by polynomials in λ.

Asynchronous network. Any two parties are connected via an

asynchronous reliable authenticated point-to-point channel. When

a party Pi attempts to send a message to another party Pj , the

adversary A is firstly notified about the message; then, A fully

determines when Pj receives the message, but cannot drop or

modify this message if both Pi and Pj are honest. The network

model also allows the adaptive adversary A to perform “after-the-

fact removal”, that is, whenA is notified about some messages sent

from a so-far-uncorrupted party Pi , it can delay these messages

until it corrupts Pi to drop them.

2.2 Design goal: validated asynchronous BA

We review hereunder the definition of (multi-valued) validated

asynchronous Byzantine agreement (MVBA) due to [2, 10].

Definition 2.1. In anMVBA protocol with an external Predicate :

{0, 1}� → {true, f alse}, the parties take values satisfyingPredicate
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as inputs and aim to output a common value satisfying Predicate.

TheMVBA protocol guarantees the properties down below except

with negligible probability, for any identification id, under the in-

fluence of any probabilistic polynomial-time adaptive adversary:

• Termination. If every honest partyPi is activated on identi-

fication id, with taking as input a valuevi s.t. Predicate(vi ) =
true , then every honest party outputs a value v for id.

• External-Validity. If an honest party outputs a value v for

id, then Predicate(v) = true .
• Agreement. If any two honest parties output v and v ′ for

id respectively, then v = v ′.

• Quality. If an honest party outputs v for id, the probability

that v was proposed by the adversary is at most 1/2.

We make the following remarks about the above definition:

(1) Input length. We focus on the general case that the input

length � can be a function in n. We emphasize that it cap-

tures many realistic scenarios. One remarkable example is

to build ABC aroundMVBA as in [10] where the length of

eachMVBA input is at least O(λn).
(2) External-validity is a fine-grained validity requirement of BA.

In particular, it requires the common output of the honest

parties to satisfy a pre-specified global predicate function.

(3) Quality was proposed by Abraham et al. in [2], which not

only rules out trivial solutions w.r.t. some trivial predicates

(e.g., output a known valid value) but also captures “fairness”

to prevent the adversary from fully controlling the output.

2.3 Quantitative metrics

We consider the following standard quantitative metrics to charac-

terize the performance aspects ofMVBA protocols:

• Resilience. AnMVBA protocol is said f -resilient, if it can
tolerate an (adaptive) adversary that corrupts up to f parties.
If 3f + 1 = n, the MVBA protocol is said to be optimally-

resilient [8]. Through the paper, we focus on the optimally-

resilientMVBA against adaptive adversary.

• Message complexity. The message complexity measures

the expected number of overall messages generated among

the honest parties during the protocol execution. For the

optimally-resilient MVBA against adaptive adversary, the

lower bound of message complexity is expected Ω(n2) [1, 2].
• Communication complexity. We consider the standard

notion of communication complexity to characterize the

expected number of bits sent among the honest parties dur-

ing the protocol. For the optimally-resilientMVBA against

adaptive adversary, the lower bound of communication com-

plexity is Ω(�n + n2), where the �n term represents a trivial

lower bound that all honest parties have to deliver an exter-

nally valid value of � bits in length [1, 2, 29], and the n2 terms
is a reflection of the lower bound of message complexity.

• Round complexity (running time). We follow the stan-

dard approach due to Canetti and Rabin [14] to measure the

running time of protocols by asynchronous rounds. Essen-

tially, this measurement counts the number of messaging

“rounds”, when the protocol is embedded into a lock-step tim-

ing model. For asynchronous BA, the expected O(1) round

complexity is optimal [3, 19].

The above communication, message and round complexities are

probabilistically uniformly bounded independent to the adversary as

[10]. This complexity notion of messages or communications brings

about the advantage that is closed under modular composition. We

thus can design and analyze protocols in a modular way.

3 PRELIMINARIES & NOTATIONS

Cryptographic abstractions. Our design uses a few cryptographic

primitives/protocols. We briefly describe their high-level abstrac-

tions here (see the full version for formal definitions):

• Erasure code. A (k,n)-erasure code scheme [6] consists of
a tuple of two deterministic algorithms Enc and Dec. The

Enc algorithm maps any vector v = (v1, · · · ,vk ) of k data
fragments into an vector m = (m1, · · · ,mn ) of n coded frag-
ments, such that any k elements in the code vector m is

enough to reconstruct v due to the Dec algorithm.

• Position-binding vector commitment. For an established

position-binding n-vector commitment (VC), there is a tuple
of algorithms (VCom,Open,VerifyOpen). On input a vector

m of any n elements, the algorithm VCom produces a com-

mitment vc for the vector m. On input m and vc , the Open
algorithm can reveal the elementmi committed invc at the i-
th position while producing a short proof πi , which later can
be verified by VerifyOpen. Relying on computational Diffie-

Hellman assumption and collision-resistant hash function,

there exists a VC scheme [15], such that all above algorithms

are deterministic and the length of vc and πi is O(λ)-bit.
• Threshold signature. Given an established (t ,n)-threshold
signature, each party Pi has a private function denoted by

SignShare(t )(ski , ·) to produce its “partial” signature, and

there are also three public functionsVerifyShare(t ),Combine(t )
and VerifyThld(t ), which can respectively validate the “par-

tial” signature, combine “partial” signatures into a “full” sig-

nature, and validate the “full” signature. Note the subscript

(t) denotes the threshold t through the paper. In particular,
we consider adaptively secure threshold signature scheme,

where all partial/full signatures are O(λ)-bit [27].
• Common coin. A (t ,n)-Coin is a protocol among n parties,
through which any t honest parties can mint a common coin
r uniformly sampled over {0, 1}κ . The adversary corrupting
up to f parties (where f < t ) cannot predicate coin r , unless
t − f honest parties invoke the protocol. We consider a

Coin protocol secure against adaptive adversary, with O(n2)
messages, O(λn2) bits, and constant running time [28].

• Identity election. In our context, an identity Election pro-

tocol is a (2f + 1,n)-Coin protocol that returns a common
value over {1, · · · ,n}. Through the paper, this particular

Coin is under the descriptive alias Election, which is also a

standard term due to Ben-Or and El-Yaniv [4].

• Asynchronous binary agreement. In an asynchronous bi-

nary agreement (ABA) protocol among n parties, the honest
parties input a single bit, and aim to output a common bit

b ∈ {0, 1} which shall be input of at least one honest party.

We consider an ABA protocol secure against adaptive adver-

sary controlling up to � n−13 � parties, with O(n2) messages,

O(λn2) bits and expected constant running time [28].
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Other notations. We use 〈x ,y〉 to denote a string concatenating
two strings x and y. Any message between two parties is of the
form (MsgType, ID, . . . ), where ID represents the identifier that

tags the protocol instance and MsgType specifies the message type.

Moreover, Π[ID] refers to an instance of the protocol Π with iden-

tifier ID, and y ← Π[ID](x) means to invoke Π[ID] on input x and
obtain y as output.

4 ASYNCHRONOUS PROVABLE DISPERSAL
BROADCAST

The dominating O(�n2) term in the communication complexity of

existingMVBA protocols [2, 10] is because every party broadcasts

its own input all other parties. This turns out to be unnecessary, as

in theMVBA protocol, only one single party’s input is decided as

output. To remedy the needless communication overhead inMVBA,

we introduce a new dispersal-then-recast methodology, through

which each party Pi only has to spread the coded fragments of its

input vi to every other party instead of its entire input.
This section introduces the core building block, namely, the

asynchronous provable dispersal broadcast (APDB), to instantiate

the dispersal-then-recast idea. The notion is carefully tailored to be

efficiently implementable. Especially, in contrast to related AVID

protocols [12, 22], APDB can disperse a value at a cost of linear

messages instead of O(n2), as a reflection of following trade-offs:

• The APDB notion weakens AVID, so upon that a party out-

puts a coded fragment in the dispersal instance of APDB,

there is no guarantee that other parties will output the con-

sistent fragments. Thus, it could be not enough to recover

the dispersed value by only f + 1 honest parties, as these
parties might receive (probably inconsistent) fragments.

• To compensate the above weakenings, we let the sender to

spread the coded fragments of its input along with a succinct

vector commitment of all these fragments, and then produce

two succinct “proofs” lock and done. The “proofs” facilitate:

(i) the lock proof ensures that 2f + 1 parties receive some
fragments that are committed in the same vector commit-

ment, so the honest parties can either recover the same value,

or output ⊥ (that means the committed fragments are incon-

sistent); (ii) the done proof ensures that 2f + 1 parties deliver
valid locks, thus allowing the parties to reach a common

decision, e.g., via a (biased) binary BA [10], to all agree to

jointly recover the dispersed value, which makes the value

deemed to be recoverable.

In this way, the overall communication of dispersing a value

can be brought down to minimum as the size of each fragment is

only O(�/n) where � is the length of input v . Moreover, this well-
tuned notion can be easily implemented in light of [2] and costs

only linear messages. These efficiencies are needed to achieve the

optimal communication and message complexities forMVBA.

Defining asynchronous provable dispersal broadcast. Formally,

the syntax and properties of a APDB protocol are defined as follows.

Definition 4.1. An APDB protocol with a sender Ps consists of a

provable dispersal subprotocol (PD) and a recast subprotocol (RC)

with a pair of validation functions (ValidateLock,ValidateDone):

• PD subprotocol. In the PD subprotocol (with identifier ID)

among n parties, a designated sender Ps inputs a value v ∈

{0, 1}� , and aims to split v into n encoded fragments and

disperses each fragment to the corresponding party. During

the PD subprotocol with identifier ID, each party is allowed

to invoke an abandon(ID) function. After PD terminates,

each party shall output two strings store and lock , and the
sender shall output an additional string done .
Note that the lock and done strings are said to be valid for
the identifier ID, if and only if ValidateLock(ID, lock) = 1

and ValidateDone(ID,done) = 1, respectively.
• RC subprotocol. In the RC subprotocol (with identifier ID),

all honest parties take the output of the PD subprotocol (with

the same ID) as input, and aim to output the value v that

was dispersed in the RC subprotocol. Once RC is completed,

the parties output a common value in {0, 1}� ∪ ⊥.

An APDB protocol (PD, RC) with identifier ID satisfies the follow-

ing properties except with negligible probability:

• Termination. If the sender Ps is honest and all honest par-

ties activate PD[ID] without invoking abandon(ID), then
each honest party would output store and valid lock for ID;
additionally, the sender Ps outputs valid done for ID.

• Recast-ability. If all honest parties invoke RC[ID] with in-

putting the output of PD[ID] and at least one honest party

inputs a valid lock , then: (i) all honest parties recover a com-
mon value; (ii) if the sender dispersed v in PD[ID] and has

not been corrupted before at least one party delivers valid

lock , then all honest parties recover v in RC[ID].

Intuitively, the recast-ability captures that the valid lock is a
“proof” attesting that the input value dispersed via PD[ID]

can be consistently recovered by all parties through collec-

tively running the corresponding RC[ID] instance.

• Provability. If the sender of PD[ID] produces valid done ,
then at least f + 1 honest parties output valid lock .
Intuitively, the provability indicates that done is a “complete-
ness proof” attesting that at least f + 1 honest parties output
valid locks, such that the parties can exchange locks and
then vote via ABA to reach an agreement that the dispersed

value is deemed recoverable.

• Abandon-ability. If every party (and the adversary) cannot

produce valid lock for ID and f + 1 honest parties invoke
abandon(ID), no party would deliver valid lock for ID.

Overview of our APDB protocol. For the PD subprotocol with

identifier ID, it has a simple structure of four one-to-all or all-to-

one rounds: sender
Store
−−−−→ parties

Stored
−−−−→ sender

Lock
−−−→ parties

Locked
−−−−−→

sender. Through a Store message, every party Pi receives store :=
〈vc,mi , i,πi 〉, where mi is an encoded fragment of the sender’s

input, vc is a (deterministic) commitment of the vector of all frag-
ments, and πi attestsmi ’s inclusion in vc at the i-th position; then,
through Stored messages, the parties would give the sender “par-

tial” signatures for the string 〈Stored, ID,vc〉; next, the sender com-
bines 2f +1 valid “partial” signatures, and sends every party the com-
bined “full” signature σ1 for the string 〈Stored, ID,vc〉 via Locked
messages, so each party can deliver lock := 〈vc,σ1〉; finally, each
party sends a “partial” signature for the string 〈Locked, ID,vc〉,
such that the sender can again combine the “partial” signatures to
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produce a valid “full” signature σ2 for the string 〈Locked, ID,vc〉,
which allows the sender to deliver done := 〈vc,σ2〉.

For the RC subprotocol, it has only one-round structure, as each

party only has to take some output of PD subprotocol as input (i.e.,

lock and store), and multicasts these inputs to all parties. As long as
an honest party inputs a valid lock , there are at least f + 1 honest
parties deliver valid stores that are bound to the vector commitment
vc included in lock , so all parties can eventually reconstruct the
dispersed value that was committed in the commitment vc .

Algorithm 1 Validation func of APDB protocol, with identifier ID

function ValidateStore(i′, store):
1: parse store as 〈vc, i,mi , πi 〉
2: return VerifyOpen(vc,mi , i, πi ) ∧ i = i′

function ValidateLock(ID, lock ):
3: parse lock as 〈vc, σ1 〉
4: return VerifyThld(2f +1)( 〈Stored, ID, vc 〉, σ1)

function ValidateDone(ID, done):
5: parse done as 〈vc, σ2 〉
6: return VerifyThld(2f +1)( 〈Locked, ID, vc 〉, σ2)

Algorithm 2 PD subprotocol, with identifier ID and sender Ps

let S1 ← { }, S2 ← { }, stop ← 0

/* Protocol for the sender Ps */

1: upon receiving an input value v do
2: m ← Enc(v), where v is parsed as a f + 1 vector andm is a n vector
3: vc ← VCom(m)
4: for each j ∈ [n] do
5: πj ← Open(vc,mj , j)
6: let store := 〈vc,mi , i, πi 〉 and send (Store, ID, store) to Pj

7: wait until |S1 | = 2f + 1
8: σ1 ← Combine(2f +1)( 〈Stored, ID, vc 〉, S1)
9: let lock := 〈vc, σ1 〉 andmulticast (Lock, ID, lock ) to all parties

10: wait until |S2 | = 2f + 1
11: σ2 ← Combine(2f +1)( 〈Locked, ID, vc 〉, S2)
12: let done := 〈vc, σ2 〉 and deliver done

13: upon receiving (Stored, ID, ρ1, j ) from Pj for the first time do
14: if VerifyShare(2f +1)( 〈Stored, ID, vc 〉, (j, ρ1, j )) = 1 and stop = 0 then

15: S1 ← S1 ∪ (j, ρ1, j )

16: upon receiving (Locked, ID, ρ2, j ) from Pj for the first time do
17: if VerifyShare(2f +1)( 〈Locked, ID, vc 〉, (j, ρ2, j )) =1 and stop = 0 then

18: S2 ← S2 ∪ (j, ρ2, j )

/* Protocol for each party Pi */

19: upon receiving (Store, ID, store) from sender Ps for the first time do
20: if ValidateStore(i, store) = 1 and stop = 0 then
21: deliver store and parse it as 〈vc, i,mi , πi 〉
22: ρ1,i ← SignShare(2f +1)(ski , 〈Stored, ID, vc 〉)

23: send (Stored, ID, ρ1,i ) to Ps

24: upon receiving (Lock, ID, lock ) from sender Ps for the first time do
25: if ValidateLock(ID, lock ) = 1 and stop = 0 then
26: deliver lock and parse it as 〈vc, σ1 〉
27: ρ2,i ← SignShare(2f +1)(ski , 〈Locked, ID, vc 〉)

28: send (Locked, ID, ρ2,i ) to Ps

procedure abandon(ID):
29: stop ← 1

Details of our APDB protocol. As illustrated in Alg 1, the APDB

protocol is designed with a few functions called as ValidateStore,

ValidateLock and ValidateDone to validate done , lock and store ,
respectively. ValidateStore is to check the store received by the

Algorithm 3 RC subprotocol with identifier ID, for each party Pi

let C ← [ ]

1: upon receiving input (store, lock ) do
2: if lock � ∅ then
3: multicast (RcLock, ID, lock ) to all

4: if store � ∅ then
5: multicast (RcStore, ID, store) to all

6: upon receiving (RcLock, ID, lock ) do
7: if ValidateLock(ID, lock ) = 1 then
8: multicast (RcLock, ID, lock ) to all, if was not sent before
9: parse lock as 〈vc, σ1 〉
10: wait until |C[vc] | = f + 1
11: v ← Dec(C[vc])
12: if VCom(Enc(v)) = vc then return v
13: else return ⊥

14: upon receiving (RcStore, ID, store) from Pj for the first time do
15: if ValidateStore(j, store) = 1 then
16: parse store as 〈vc,mj , j, πj 〉
17: C[vc] ← C[vc] ∪ (j,mj )
18: else discard the invalid message

party Pi includes a fragment mi that is committed in a vector

commitment vc at the i-th position, ValidateLock validates lock
to verify that 2f + 1 parties (i.e., at least f + 1 honest parties)
receive the fragments that are correctly committed in the same

vector commitment vc , and ValidateDone validates done to verify
that 2f + 1 parties (i.e., at least f + 1 honest parties) have delivered
valid locks (that contain the same vc).

PD subprotocol. The details of the PD subprotocol are shown in

Algorithm 2. In brief, a PD instance with identifier ID (i.e., PD[ID])

allows a designated sender Ps to disperse a value v as follows:

(1) Store-then-Stored (line 1-6, 13-15, 19-23). When the sender

Ps receives an input value v to disperse, it encodes v to gen-

erate a vector of coded fragmentsm = (m1, . . . ,mn ) by an

(f + 1,n)-erasure code; then, Ps commitsm in a vector com-

mitment vc . Then Ps sends store including the commitment
vc , the i-th coded fragmentmi and the commitment open-

ing πi to each party Pi by Store messages. Upon receiving

(Store, ID, store) from the sender, Pi verifies whether store
is valid. If that is the case, Pi delivers store and sends a

(2f + 1,n)-partial signature ρ1,i for 〈Stored, ID,vc〉 back to
the sender through a Stored message.

(2) Lock-then-Locked (line 7-9, 16-18, 24-28). Upon receiving 2f +
1 valid Stored messages from distinct parties, the sender Ps
produces a full signature σ1 for the string 〈Stored, ID,vc〉.
Then,Ps sends lock includingvc andσ1 to all parties through
Lock messages. Upon receiving Lock message, Pi verifies

whether σ1 is deemed as a valid full signature. If that is the
case, Pi delivers lock = 〈vc,σ1〉, and sends a (2f + 1,n)-
partial signature ρ2,i for the string 〈Locked, ID,vc〉 back to
the sender through a Locked message.

(3) Done (line 10-12). Once the sender Ps receives 2f + 1 valid
Locked messages from distinct parties, it produces a full

signature σ2 for 〈Locked, ID,vc〉. Then Ps outputs the com-

pleteness proof done = 〈vc,σ2〉 and terminates the dispersal.
(4) Abandon (line 29). A party can invoke abandon(ID) to ex-

plicitly stop its participation in this dispersal instance with

identification ID. In particular, if f + 1 honest parties invoke
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abandon(ID), the adversary can no longer corrupt the sender
of PD[ID] to disperse anything across the network.

RC subprotocol. The construction of the RC subprotocol is shown

in Algorithm 3. The input of RC subprotocol consists of lock and
store , which were probably delivered during the PD subprotocol.

In brief, the execution of a RC instance with identification ID is as:

(1) Recast (line 1-5). If the party Pi inputs lock and/or store , it
multicasts them to all parties.

(2) Deliver (line 6-18). If the party Pi receives a valid lock mes-
sage, it waits for f + 1 valid stores bound to this lock , such
that Pi can reconstruct a value v (or a special symbol ⊥).

Security intuition. The tuple of protocols in Algorithm 2 and

3 realize APDB among n parties against the adaptive adversary

controlling up to f ≤ � n−13 � parties, given (i) (f +1,n)-erasure code,
(ii) deterministic n-vector commitment with the position-binding
property, and (iii) established (2f + 1,n)-threshold signature with
adaptive security. The high-level intuition is: (i) if any honest party

outputs valid lock , then at least f + 1 honest parties receives the
code fragments committed in the same vector commitment, and

the position-binding property ensures that the honest parties can

collectively recover a common value (or the common ⊥) from these

committed fragments; (ii) whenever any party can produce a valid

done , it attests that 2f + 1 (namely, at least f + 1 honest) parties
have indeed received valid locks. The detailed proofs are deferred
to the full version.

Complexities. The complexities of our APDB construction can

be briefly analyzed as: (i) The PD subprotocol has 4 one-to-all (or

all-to-one) rounds, which attains O(n) messages and O(1) running

time; in addition, each message in PD contains at most O(�/n + λ)
bits, including: a fragment of input having O(�/n) bits, a vector
commitment having O(λ) bits, and an openness proof having O(λ)
bits, so the overall bits of the O(n) messages in PD are O(� + λn);
(ii) The RC subprotocol only has one all-to-all round, which incurs

O(n2)messages and constant running time;moreover, eachmessage
in RC contains at most O(�/n+λ) bits, as it has at most a O(�/n)-bit
fragment, a O(λ)-bit commitment, and a O(λ)-bit openness proof,
such that the total communicated bits in each RC are O(n� + n2λ).

5 AN OPTIMALMVBA PROTOCOL FROM ABA

We now apply our dispersal-then-recast methodology to design
the optimalMVBA protocol Dumbo-MVBA, using APDB and ABA.

It is secure against adaptively corrupted � n−13 � parties, and attains

optimal running time and message complexity; in addition, it costs

O(�n + λn2) bits, which is asymptotically better than all previous
results [2, 10] and optimal for sufficiently large input.

5.1 Overview of Dumbo-MVBA

As illustrated in Figure 1, the basic ideas of our Dumbo-MVBA pro-

tocol are: (i) the parties disperse their own input values through n
concurrent PD instances, until they consistently realize that enough

dones proofs for the PD instances (i.e., 2n/3) have been produced, so
they can make sure that enough honest input values (i.e., n/3) have
been firmly locked across the network; (ii) eventually, the parties

can exchange dones proofs to explicitly stop all PD instances; (iii)

then, the parties can invoke a common coin protocol Election to

randomly elect a PD instance; (iv) later, the parties exchange their

lock proofs of the elected PD instance and then leverage ABA to

vote on whether to invoke the corresponding RC instance to recast

the elected dispersal; (v) when ABA returns 1, all parties would ac-

tivate the RC instance and might probably recast a common value

that is externally valid; otherwise (i.e., either ABA returns 0 or RC

recasts invalid value), they repeat Election, until an externally valid

value is elected and collectively reconstructed.

Algorithm 4 Dumbo-MVBA protocol with identifier id and exter-

nal Predicate, for each party Pi

let provens ← 0, RDY ← { }
for each j ∈ [n] do

let store[j] ← ∅, lock [j] ← ∅, rc-ballot [j] ← 0
initialize a provable dispersal instance PD[〈id, j 〉]

1: upon receiving input vi s.t. Predicate(vi ) = true do
2: pass vi into PD[〈id, i 〉] as input
3: wait for receiving any valid Finish message
4: for each k ∈ {1, 2, 3, . . . } do
5: l ← Election[〈id, k 〉]
6: if lock [l ] � ∅ then multicast (RcBallotPrepare, id, l, lock )
7: else multicast (RcBallotPrepare, id, l, ⊥)
8: wait for rc-ballot [l ] = 1 or 2f + 1 (RcBallotPrepare, id, l, ·) mes-

sages from distinct parties
9: b ← ABA[〈id, l 〉](rc-ballot [l ])
10: if b = 1 then
11: vl ← RC[〈id, l 〉](store[l ], lock [l ])
12: if Predicate(vl ) = true then output vl

13: upon PD[〈id, j 〉] delivers store do
14: store[j] ← store

15: upon PD[〈id, j 〉] delivers lock do
16: lock [j] ← lock

17: upon PD[〈id, i 〉] delivers done do
18: multicast (Done, id, done)

19: upon receiving (Done, id, done) from party Pj for the first time do
20: if ValidateDone(〈id, j 〉, done) =1 then
21: provens ← provens + 1
22: if provens = 2f + 1 then
23: ρrdy,i ← SignShare(f +1)(ski , 〈Ready, id〉)

24: multicast (Ready, id, ρrdy,i )

25: upon receiving (Ready, id, ρrdy, j ) from party Pj for the first time do

26: if VerifyShare(f +1)( 〈Ready, id〉, (j, ρrdy, j )) =1 then

27: RDY ← RDY ∪ (j, ρrdy, j )
28: if |RDY | = f + 1 then
29: σrdy ← Combine(f +1)( 〈Ready, id〉, RDY )
30: multicast (Finish, id, σrdy ) to all, if was not sent before

31: upon receiving (Finish, id, σrdy ) from party Pj for the first time do

32: if VerifyThld(f +1)( 〈Ready, id〉, σrdy ) = 1 then

33: abandon(〈id, j 〉) for each j ∈ [n]
34: multicast (Finish, id, σrdy ) to all, if was not sent before
35: else discard this invalid message

36: upon receiving (RcBallotPrepare, id, l, lock ) from Pj do
37: if ValidateLock(〈id, l 〉, lock ) = 1 then
38: lock [l ] ← lock
39: rc-ballot [l ] ← 1

5.2 Details of the Dumbo-MVBA protocol

Our Dumbo-MVBA protocol invokes the following modules: (i)

asynchronous provable dispersal broadcast APDB := (PD,RC); (ii)

asynchronous binary agreement ABA against adaptive adversary;

(iii) (f + 1,n) threshold signature with adaptive security; and (iv)
adaptively secure (2f + 1,n)-Coin scheme (in the alias Election)

that returns random numbers over [n].
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Figure 1: The execution flow of Dumbo-MVBA.

Each instance of the underlying modules can be tagged by a

unique extended identifier ID. These explicit IDs extend id and are

used to distinguish multiple activated instances of every underlying

module. For instance, (PD[ID],RC[ID) represents a pair of (PD, RC)

instance with identifier ID, where ID := 〈id, i〉 extends the identifi-
cation id to represent a specific APDB instance with a designated

sender Pi . Similarly, ABA[ID] represents an ABA instance with

identifier ID, where ID := 〈id,k〉 and k ∈ {1, 2, . . . }.

Protocol execution. Hereunder we are ready to present the de-

tailed protocol description (as illustrated in Algorithm 4). Specifi-

cally, an Dumbo-MVBA instance with identifier id proceeds as:

(1) Dispersal phase (line 1-2, 13-18). The n parties activate n con-
current instances of the provable dispersal PD subprotocol.

Each party Pi is the designated sender of a particular PD in-

stance PD[〈id, i〉], through which Pi can disperse the coded

fragments of its input vi across the network.
(2) Finish phase (line 3, 19-35). This has a three-round structure

to allow all parties consistently quit PD instances. It begins

when a sender produces the done proof for its PD instance

and multicasts done to all parties through a Done message,
and finishes when all parties receive a Finish message at-

testing that at least 2f + 1 PD instances has been “done”.

In addition, once receiving valid Finish, a party invokes

abandon() to explicitly quit from all PD instances.

(3) Elect-ID phase (line 5). Then all parties invoke the coin scheme

Election, such that they obtain a common pseudo-random

number l over [n]. The common coin l represents the identi-
fier of a pair of (PD[〈id, l〉],RC[〈id, l〉]) instances.

(4) Recast-vote phase (line 6-9, 36-39). Upon obtaining the coin

l , the parties attempt to agree on whether to invoke the

RC[〈id, l〉] instance or not. This phase has to cope with a ma-
jor limit of RC subprotocol, that the RC[〈id, l〉] instance re-
quires all parties to invoke it to reconstruct a common value.

To this end, the recast-vote phase is made of a two-step struc-

ture. First, each party multicasts its locally recorded lock[l]
through RcBallotPrepare message, if the PD[〈id, l〉] in-
stance actually delivers lock[l]; otherwise, it multicasts ⊥
through RcBallotPrepare message. Then, each party waits

for up to 2f + 1 RcBallotPrepare from distinct parties, if it

sees valid lock[l] in these messages, it immediately activates
ABA[〈id, l〉] with input 1, otherwise, it invokes ABA[〈id, l〉]
with input 0. The above design follows the idea of biased val-

idated binary agreement presented by Cachin et al. in [10],

and ABA[〈id, l〉] must return 1 to each party, when f + 1
honest parties enter the phase with valid lock[l].

(5) Recast phase (line 10-12). When ABA[〈id, l〉] returns 1, all
honest parties would enter this phase and there is always at

least one honest party has delivered the valid lock regard-
ing RC[〈id, l〉]. As such, the parties can always invoke the
corresponding RC[〈id, l〉] instance to reconstruct a common
value vl . In case the recast value vl does not satisfy the

external predicate, the parties can consistently go back to

elect-ID phase, which is trivial because all parties have the

same external predicate; otherwise, they output vl .

Security intuition. The Dumbo-MVBA protocol described by Al-

gorithm 4 solves asynchronous validate byzantine agreement among

n parties against adaptive adversary controlling f ≤ � n−13 � parties,

given (i) adaptively secure f -resilientAPDB protocol, (ii) adaptively
secure f -resilient ABA protocol, (iii) adaptively secure (f + 1,n)-
Coin protocol (in the random oracle model), and (iv) adaptively

secure (f + 1,n) threshold signatures. We defer the detailed proofs

to the full paper and highlight here the key intuitions as follows:

• Termination and safety of finish phase. If any honest party

leaves the finish phase and enters the elect-ID phase, then: (i)

all honest parties will leave the finish phase, and (ii) at least

2f + 1 parties have produced done proofs for their dispersals.
• Termination and safety of elect-ID phase. Since the thresh-

old of Election is 2f + 1, A cannot learn which dispersals

are elected to recover before f + 1 honest parties explicitly
abandon all dispersals, which prevents the adaptive adver-

sary from “tampering” the values dispersed by uncorrupted

parties. Moreover, Election terminates in constant time.

• Termination and safety of recast-vote and recast. The honest

parties would consistently obtain either 0 or 1 from recast-

vote. If recast-vote returns 1, all parties invoke a RC instance

to recast the elected dispersal, which will recast a common

value to all parties. Those cost expected constant time.

• Quality of recast-vote and recast. The probability that recast-

vote returns 1 is at least 2/3. Moreover, conditioned on recast-

vote returns 1, the probability that the recast phase returns

an externally valid value is at least 1/2.

Complexities. In addition, Dumbo-MVBA achieves: (i) asymptot-

ically optimal round and message complexities, and (ii) asymptoti-

cally optimal communicated bits O(�n + λn2) for any input � ≥ λn.
The breakdown of its cost can be briefly summarized as:
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• The dispersal phase (i.e., n PD instances) terminates in con-

stant time, with O(n2) messages and O(�n + λn2) bits, since
each PD instance terminates in constant time with O(n)
messages and O(� + λn) bits; the finish phase consists of 3
all-to-all broadcasts, which terminates in constant time with

O(λn2) bits and O(n2) messages.
• With the sequential repetition of the elect-ID phase, the

recast-vote phase and the recast phase, the probability of not

terminating decreases exponentially. In particular, the elect-

ID phase (i.e., a common coin) terminates in constant time

with O(n2) messages and O(λn2) bits, the recast-vote phase
(i.e., an all-to-all broadcast plus an ABA instance) returns in

expected constant timewithO(n2)messages andO(λn2) bits,
and the recast phase (i.e., a RC instance) halts in constant

time with O(n2) messages and O(�n + λn2) bits. Moreover,
the elect-ID and recast-vote phases are repeated for three

times on average, while the recast-phase is invoked twice

on average. To sum up, the sequential repetition of these

phases would incur only expected constant running time,

O(n2) messages, and O(�n + λn2) bits.

6 A GENERIC OPTIMALMVBA FRAMEWORK

The dispersal-then-recast methodology can also be applied to boot-
strap any existingMVBA to realize optimal communication for suffi-

ciently large input. We call this extension protocolDumbo-MVBA�.

The key idea is to invoke the underlyingMVBAwith taking as input

the small-size proofs of APDB. Though Dumbo-MVBA� is a “re-

duction” fromMVBA toMVBA itself, an advanced module instead

of more basic building block such as binary agreement, this self-

bootstrap technique can better utilizeMVBA to achieve a simple

modular design as explained in Figure 2, and we note it does not

require the full power of APDB (and thus can potentially remove

the rounds of communication generating the done proof).

Figure 2: The execution flow of Dumbo-MVBA�.

Overview of Dumbo-MVBA� framework. As shown in Figure

2, the generic framework still follows the idea of dispersal-then-
recast : (i) each party disperses its own input value and obtains a
lock proof attesting the recast-ability of its own dispersal; (ii) then,
the parties can invoke any existingMVBA as a black-box to “elect”

a valid lock proof, and then recover the already-dispersed value,

until all parties recast and decide an externally valid value.

This genericDumbo-MVBA� framework presents a simple mod-

ular design that can enhance any existingMVBA protocol to achieve

optimal communication for sufficiently large input, without scar-

ifying the message complexity and running time of underlying

MVBA. In particular, when instantiating the framework with using

the MVBA protocol due to Abraham et al. [2], we can obtain an

optimalMVBA protocol that outperforms the state-of-the-art, since

it achieves only O(n� +n2λ) communicated bits, without giving up
the optimal running time and message complexity.

Protocol execution. Here is our generic Dumbo-MVBA� frame-

work. Informally, a Dumbo-MVBA� instance with identification id

(see the formal description in the full paper) proceeds as:

(1) Dispersal phase (line 1-3, 8-11). n concurrent PD instances

are activated. Each party Pi is the designated sender of the

instance PD[〈id, i〉], through which Pi disperses its input’s

fragments across the network.

(2) Elect-ID phase (line 4-5). As soon as the party Pi delivers

locki during its dispersal instance PD[〈id, i〉], it takes the
proof locki as input to invoke a concrete MVBA instance

with identifier 〈id,k〉, where k ∈ {1, 2, . . . }. The external

validity of underlyingMVBA instance is specified to output

a valid lockl for any PD instance PD[〈id, l〉].
(3) Recast phase (line 6-7). Eventually, the MVBA[〈id,k〉] in-

stance returns to all parties a common lockl proof for the
PD[〈id, l〉] instance, namely,MVBA elects a party Pl to re-

cover its dispersal. Then, all honest parties invoke RC[〈id, l〉]
to recover a common value vl . If the recast vl is not valid,
every party Pi can realize locally due to the same global

Predicate, so each Pi can consistently go back the elect-ID

phase to repeat the election by running anotherMVBA[〈id,k+
1〉] instance with still passing locki as input, until a valid vl
can be recovered by an elected RC[〈id, l〉] instance.

Note the repetition of the phase (2) and the phase (3) can termi-

nate in expected constant time, as the quality of every underlying

MVBA instance ensures that there is at least 1/2 probability of elect-

ing a PD instance whose sender was not corrupted before invoking

MVBA. As such, the probability of not recovering any externally

valid value to halt exponentially decreases with the repetition of

elect-ID and recast. Hence only few (i.e., two) underlying MVBA

instances and RC instances will be executed on average.

Security& complexities.Dumbo-MVBA� realizes (optimal)MVBA

among n parties against adaptive adversary controlling f ≤ � n−13 �

parties, given (i) f -resilient APDB protocol against adaptive adver-

sary (with all properties but abandon-ability and provability), (ii)

adaptively secure f -resilientMVBA protocol. We defer the detailed

proofs for the hereinabove conclusions to the full version.

The cost of Dumbo-MVBA� is incurred by: (i) n concurrent PD
instances; (ii) few expected constant number (i.e., two) of under-

lying MVBA instances; (iii) few expected constant number (i.e.,

two) of RC instances. Recall the complexities of PD and RC pro-

tocols: PD costs O(n) messages, O(� + nλ) bits, and O(1) running

time; RC costs O(n2) messages, O(n� + n2λ) bits, and O(1) run-

ning time. Suppose the underlyingMVBA module incurs expected

O(polyr t (n)) running time, expected O(polymc (n)) messages, and

expected O(polycc (�, λ,n)) bits, where O(polymc (n)) ≥ O(n2) and

O(polycc (�, λ,n)) ≥ O(�n + n2) due to the lower bounds of adap-
tively secureMVBA. Thus the complexities of Dumbo-MVBA� are:

• Running time: Since PD and RC are deterministic pro-

tocols with constant running timing, the running time of

Dumbo-MVBA� is dominated by the underlyingMVBAmod-

ule, namely, O(polyr t (n)).
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• Message complexity: The message complexity of n PD

instances (or a RC instance) is O(n2). The message com-
plexity of the underlying MVBA is O(polymc (n)), where

O(polymc (n)) ≥ O(n2). As such, the messages complexity
of Dumbo-MVBA� is dominated by the underlyingMVBA

protocol, namely, O(polymc (n)).
• Communication complexity: The communication of n
concurrent PD instances (or a RC instance) is O(n� + n2λ).
The underlyingMVBAmodule incurs O(polycc (λ, λ,n)) bits.
So the overall communication complexity ofDumbo-MVBA�

is O(�n + λn2 + polycc (λ, λ,n)).

As such, Dumbo-MVBA� reduces the communication of the un-

derlyingMVBA fromO(polycc (�, λ,n)) toO(�n+λn2+polycc (λ, λ,n)),
which removes all superlinear terms factored by � in the communi-

cation complexity. In particular, for sufficiently large input whose

length � ≥ max(λn, polycc (λ, λ,n)/n), Dumbo-MVBA� coincides

with the asymptotically optimal O(n�) communication.

Concrete instantiation. Dumbo-MVBA� can be instantiated by

extending the MVBA protocol of Abraham et al. [2]. Moreover,

Abraham et al. achieved expected O(1) running time, O(n2) mes-
sages and O(n2� + n2λ) bits, and our Dumbo-MVBA� framework

can extend their result to attain O(n� +n2λ) bits without scarifying
the optimal running time and message complexity, which therefore

instantiates optimalMVBA for sufficient input length � ≥ O(nλ).

7 CONCLUSION

We present twoMVBA protocols that reduce the communication

cost of prior art [2, 10] by an O(n) factor, where n is the number of
parties. These communication-efficientMVBA protocols also attain

other optimal properties, asymptotically. Our results complement

the recent breakthrough of Abraham et al. at PODC ’19 [2] and

solve the remaining part of the long-standing open problem from

Cachin et al. at CRYPTO ’01 [10].

OurMVBA protocols can immediately be applied to construct

efficient asynchronous atomic broadcast with reduced communica-

tion blow-up as previously suggested in [10] and [29]. Moreover,

they can provide better building blocks for the Dumbo BFT proto-

cols [21], the recent constructions of practical asynchronous atomic

broadcast that rely onMVBA at their heart for efficiency.

There are still a few interesting open problems left in the domain

of MVBA, such as exploring various trade-offs to further reduce

the communication and message complexities, e.g., by restricting

the power of adversary and/or the number of corruptions.
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