
The Honey Badger of BFT Protocols

Andrew Miller
University of Illinois, Urbana-Champaign

Yu Xia
Tsinghua University

Kyle Croman
Cornell University

Elaine Shi
Cornell University

Dawn Song
University of California, Berkeley

ABSTRACT
The surprising success of cryptocurrencies has led to a surge of inter-
est in deploying large scale, highly robust, Byzantine fault tolerant
(BFT) protocols for mission-critical applications, such as financial
transactions. Although the conventional wisdom is to build atop a
(weakly) synchronous protocol such as PBFT (or a variation thereof),
such protocols rely critically on network timing assumptions, and
only guarantee liveness when the network behaves as expected. We
argue these protocols are ill-suited for this deployment scenario.

We present an alternative, HoneyBadgerBFT, the first practical
asynchronous BFT protocol, which guarantees liveness without mak-
ing any timing assumptions. We base our solution on a novel atomic
broadcast protocol that achieves optimal asymptotic efficiency. We
present an implementation and experimental results to show our
system can achieve throughput of tens of thousands of transactions
per second, and scales to over a hundred nodes on a wide area net-
work. We even conduct BFT experiments over Tor, without needing
to tune any parameters. Unlike the alternatives, HoneyBadgerBFT
simply does not care about the underlying network.

1. INTRODUCTION
Distributed fault tolerant protocols are promising solutions for

mission-critical infrastructure, such as financial transaction data-
bases. Traditionally, they have been deployed at relatively small
scale, and typically in a single administrative domain where ad-
versarial attacks might not be a primary concern. As a representa-
tive example, a deployment of Google’s fault tolerant lock service,
Chubby [14], consists of five nodes, and tolerates up to two crash
faults.

In recent years, a new embodiment of distributed systems called
“cryptocurrencies” or “blockchains” have emerged, beginning with
Bitcoin’s phenomenal success [43]. Such cryptocurrency systems
represent a surprising and effective breakthrough [12], and open a
new chapter in our understanding of distributed systems.

Cryptocurrency systems challenge our traditional belief about the
deployment environment for fault tolerance protocols. Unlike the
classic “5 Chubby nodes within Google” environment, cryptocur-
rencies have revealed and stimulated a new demand for consensus
protocols over a wide area network, among a large number of nodes
that are mutually distrustful, and moreover, network connections
can be much more unpredictable than the classical LAN setting, or
even adversarial. This new setting poses interesting new challenges,
and calls upon us to rethink the design of fault tolerant protocols.

Robustness is a first-class citizen. Cryptocurrencies demonstrate
the demand for and viability of an unusual operating point that prior-
itizes robustness above all else, even at the expense of performance.
In fact, Bitcoin provides terrible performance by distributed systems

standards: a transaction takes on average 10 minutes to be commit-
ted, and the system as a whole achieves throughput on the order
of 10 transactions per second. However, in comparison with tradi-
tional fault tolerant deployment scenarios, cryptocurrencies thrive
in a highly adversarial environment, where well-motivated and mali-
cious attacks are expected (if not commonplace). For this reason,
many of Bitcoin’s enthusiastic supporters refer to it as the “Honey
Badger of Money” [41]. We note that the demand for robustness
is often closely related to the demand for decentralization — since
decentralization would typically require the participation of a large
number of diverse participants in a wide-area network.

Favor throughput over latency. Most existing works on scalable
fault tolerance protocols [6, 49] focus on optimizing scalability in
a LAN environment controlled by a single administrative domain.
Since bandwidth provisioning is ample, these works often focus on
reducing (cryptographic) computations and minimizing response
time while under contention (i.e., requests competing for the same
object).

In contrast, blockchains have stirred interest in a class of finan-
cial applications where response time and contention are not the
most critical factors, e.g., payment and settlement networks [1]. In
fact, some financial applications intentionally introduce delays in
committing transactions to allow for possible rollback/chargeback
operations.

Although these applications are not latency critical, banks and
financial institutions have expressed interest in a high-throughput
alternative of the blockchain technology, to be able to sustain high
volumes of requests. For example, the Visa processes 2,000 tx/sec
on average, with a peak of 59,000 tx/sec [1].

1.1 Our Contributions

Timing assumptions considered harmful. Most existing Byzan-
tine fault tolerant (BFT) systems, even those called “robust,” assume
some variation of weak synchrony, where, roughly speaking, mes-
sages are guaranteed to be delivered after a certain bound ∆, but
∆ may be time-varying or unknown to the protocol designer. We
argue that protocols based on timing assumptions are unsuitable for
decentralized, cryptocurrency settings, where network links can be
unreliable, network speeds change rapidly, and network delays may
even be adversarially induced.

First, the liveness properties of weakly synchronous protocols can
fail completely when the expected timing assumptions are violated
(e.g., due to a malicious network adversary). To demonstrate this,
we explicitly construct an adversarial “intermittently synchronous”
network that violates the assumptions, such that existing weakly
synchronous protocols such as PBFT [20] would grind to a halt
(Section 3).

Second, even when the weak synchrony assumptions are satis-
fied in practice, weakly synchronous protocols degrade significantly
in throughput when the underlying network is unpredictable. Ide-
ally, we would like a protocol whose throughput closely tracks
the network’s performance even under rapidly changing network
conditions. Unfortunately, weakly asynchronous protocols require
timeout parameters that are finicky to tune, especially in crypto-
currency application settings; and when the chosen timeout values
are either too long or too short, throughput can be hampered. As
a concrete example, we show that even when the weak synchrony
assumptions are satisfied, such protocols are slow to recover from
transient network partitions (Section 3).

Practical asynchronous BFT. We propose HoneyBadgerBFT, the
first BFT atomic broadcast protocol to provide optimal asymptotic
efficiency in the asynchronous setting. We therefore directly refute
the prevailing wisdom that such protocols a re necessarily impracti-
cal.

We make significant efficiency improvements on the best prior-
known asynchronous atomic broadcast protocol, due to Cachin et
al. [15], which requires each node to transmit O(N2) bits for each
committed transaction, substantially limiting its throughput for all
but the smallest networks. This inefficiency has two root causes.
The first cause is redundant work among the parties. However, a
naïve attempt to eliminate the redundancy compromises the fairness
property, and allows for targeted censorship attacks. We invent a
novel solution to overcome this problem by using threshold public-
key encryption to prevent these attacks. The second cause is the use
of a suboptimal instantiation of the Asynchronous Common Subset
(ACS) subcomponent. We show how to efficiently instantiate ACS
by combining existing but overlooked techniques: efficient reliable
broadcast using erasure codes [18], and a reduction from ACS to
reliable broadcast from the multi-party computation literature [9].

HoneyBadgerBFT’s design is optimized for a cryptocurrency-
like deployment scenario where network bandwidth is the scarce
resource, but computation is relatively ample. This allows us to take
advantage of cryptographic building blocks (in particular, threshold
public-key encryption) that would be considered too expensive in a
classical fault-tolerant database setting where the primary goal is to
minimize response time even under contention.

In an asynchronous network, messages are eventually delivered
but no other timing assumption is made. Unlike existing weakly
synchronous protocols where parameter tuning can be finicky, Hon-
eyBadgerBFT does not care. Regardless of how network conditions
fluctuate, HoneyBadgerBFT’s throughput always closely tracks the
network’s available bandwidth. Imprecisely speaking, HoneyBad-
gerBFT eventually makes progress as long as messages eventually
get delivered; moreover, it makes progress as soon as messages are
delivered.

We formally prove the security and liveness of our HoneyBad-
gerBFT protocol, and show experimentally that it provides better
throughput than the classical PBFT protocol [20] even in the opti-
mistic case.

Implementation and large-scale experiments. We provide a full-
fledged implementation of HoneyBadgerBFT, which will we release
as free open source software in the near future.1 We demonstrate
experimental results from an Amazon AWS deployment with more
than 100 nodes distributed across 5 continents. To demonstrate its
versatility and robustness, we also deployed HoneyBadgerBFT over
the Tor anonymous relay network without changing any parameters,
and present throughput and latency results.

1https://github.com/amiller/HoneyBadgerBFT

1.2 Suggested Deployment Scenarios
Among numerous conceivable applications, we highlight two

likely deployment scenarios that are sought after by banks, financial
institutions, and advocates for fully decentralized cryptocurrencies.

Confederation cryptocurrencies. The success of decentralized
cryptocurrencies such as Bitcoin has inspired banks and financial
institutions to inspect their transaction processing and settlement
infrastructure with a new light. “Confederation cryptocurrency” is
an oft-cited vision [24, 25, 47], where a conglomerate of financial
institutions jointly contribute to a Byzantine agreement protocol
to allow fast and robust settlement of transactions. Passions are
running high that this approach will streamline today’s slow and
clunky infrastructure for inter-bank settlement. As a result, several
new open source projects aim to build a suitable BFT protocol for
this setting, such as IBM’s Open Blockchain and the Hyperledger
project [40].

A confederation cryptocurrency would require a BFT protocol
deployed over the wide-area network, possibly involving hundreds
to thousands of consensus nodes. In this setting, enrollment can eas-
ily be controlled, such that the set of consensus nodes are known a
priori — often referred to as the “permissioned” blockchain. Clearly
HoneyBadgerBFT is a natural candidate for use in such confedera-
tion cryptocurrencies.

Applicability to permissionless blockchains. By contrast, decen-
tralized cryptocurrencies such as Bitcoin and Ethereum opt for a
“permissionless” blockchain, where enrollment is open to anyone,
and nodes may join and leave dynamically and frequently. To
achieve security in this setting, known consensus protocols rely on
proofs-of-work to defeat Sybil attacks, and pay an enormous price
in terms of throughput and latency, e.g., Bitcoin commits transac-
tions every ∼ 10 min, and its throughput limited by 7 tx/sec even
when the current block size is maximized. Several recent works
have suggested the promising idea of leveraging either a slower,
external blockchain such as Bitcoin or economic “proof-of-stake”
assumptions involving the underlying currency itself [32, 32, 35, 37]
to bootstrap faster BFT protocols, by selecting a random committee
to perform BFT in every different epoch. These approaches promise
to achieve the best of both worlds, security in an open enrollment,
decentralized network, and the throughput and response time match-
ing classical BFT protocols. Here too HoneyBadgerBFT is a natural
choice since the randomly selected committee can be geographically
heterogeneous.

2. BACKGROUND AND RELATED WORK
Our overall goal is to build a replicated state machine, where

clients generate and submit transactions and a network of nodes
receives and processes them. Abstracting away from application
specific details (such as how to represent state and compute tran-
sitions), it suffices to build a totally globally-consistent, totally-
ordered, append-only transaction log. Traditionally, such a primitive
is called total order or atomic broadcast [23]; in Bitcoin parlance,
we would call it a blockchain.

Fault tolerant state machine replication protocols provide strong
safety and liveness guarantees, allowing a distributed system to
provide correct service in spite of network latency and the failure
of some nodes. A vast body of work has studied such protocols,
offering different performance tradeoffs, tolerating different forms
of failures and attacks, and making varying assumptions about the
underlying network. We explain below the most closely related
efforts to ours.

2.1 Robust BFT Protocols
While Paxos [36], Raft [45], and many other well-known proto-

cols tolerate crash faults, Byzantine fault tolerant protocols (BFT),
beginning with PBFT [20], tolerate even arbitrary (e.g., maliciously)
corrupted nodes. Many subsequent protocols offer improved perfor-
mance, often through optimistic execution that provides excellent
performance when there are no faults, clients do not contend much,
and the network is well-behaved, and at least some progress other-
wise [2, 5, 33, 39, 51].

In general, BFT systems are evaluated in deployment scenarios
where latency and CPU are the bottleneck [49], thus the most effec-
tive protocols reduce the number of rounds and minimize expensive
cryptographic operations.

Clement et al. [22] initiated a recent line of work [4, 6, 10, 21,
22, 50] by advocating improvement of the worst-case performance,
providing service quality guarantees even when the system is under
attack — even if this comes at the expense of performance in the
optimistic case. However, although the “Robust BFT” protocols in
this vein gracefully tolerate compromised nodes, they still rely on
timing assumptions about the underlying network. Our work takes
this approach further, guaranteeing good throughput even in a fully
asynchronous network.

2.2 Randomized Agreement
Deterministic asynchronous protocols are impossible for most

tasks [27]. While the vast majority of practical BFT protocols steer
clear of this impossibility result by making timing assumptions, ran-
domness (and, in particular, cryptography) provides an alternative
route. Indeed we know of asynchronous BFT protocols for a variety
of tasks such as binary agreement (ABA), reliable broadcast (RBC),
and more [13, 15, 16].

Our work is most closely related to SINTRA [17], a system im-
plementation based on the asynchronous atomic broadcast protocol
from Cachin et al. (CKPS01) [15]. This protocol consists of a re-
duction from atomic broadcast (ABC) to common subset agreement
(ACS), as well as a reduction from ACS to multi-value validated
agreement (MVBA).

The key invention we contribute is a novel reduction from ABC
to ACS that provides better efficiency (by an O(N) factor) through
batching, while using threshold encryption to preserve censorship
resilience (see Section 4.4). We also obtain better efficiency by
cherry-picking from the literature improved instantiations of sub-
components. In particular, we sidestep the expensive MVBA primi-
tive by using an alternative ACS [9] along with an efficient RBC [18]
as explained in Section 4.4.

Table 1 summarizes the asymptotic performance of HoneyBad-
gerBFT with several other atomic broadcast protocols. Here “Comm.
compl.” denotes the expected communication complexity (i.e., total
bytes transferred) per committed transaction. Since PBFT relies
on weak synchrony assumptions, it may therefore fail to make
progress at all in an asynchronous network. Protocols KS02 [34]
and RC05 [46] are optimistic, falling back to an expensive recovery
mode based on MVBA. As mentioned the protocol of Cachin et
al. (CKPS01) [15] can be improved using a more efficient ACS
construction [9, 18]. We also obtain another O(N) improvement
through our novel reduction.

Finally, King and Saia [30,31] have recently developed agreement
protocols with less-than-quadratic number of messages by routing
communications over a sparse graph. However, extending these
results to the asynchronous setting remains an open problem.

Table 1: Asymptotic communication complexity (bits per trans-
action, expected) for atomic broadcast protocols

Async? Comm. compl.
Optim. Worst

PBFT no O(N) ∞

KS02 [34] yes O(N2) O(N3)
RC05 [46] yes O(N) O(N3)

CKPS01 [15] yes O(N3) O(N3)
CKPS01 [15]+ [9, 18] yes O(N2) O(N2)

HoneyBadgerBFT (this work) yes O(N) O(N)

3. THE GAP BETWEEN ASYNCHRONOUS
AND WEAKLY SYNCHRONOUS NET-
WORK MODELS

Almost all modern BFT protocols rely on timing assumptions
(such as partial or weak synchrony) to guarantee liveness. Purely
asynchronous BFT protocols have received considerably less atten-
tion in recent years. Consider the following argument, which, if it
held, would justify this narrowed focus:
[X] Weak synchrony assumptions are unavoidable, since in any

network that violates these assumptions, even asynchronous
protocols would provide unacceptable performance.

In this section, we present make two counterarguments that refute
the premise above. First, we illustrate the theoretical separation
between the asynchronous and weakly synchronous network models.
Specifically we construct an adversarial network scheduler that
violates PBFT’s weak synchrony assumption (and indeed causes it
to fail) but under which any purely asynchronous protocol (such
as HoneyBadgerBFT) makes good progress. Second, we make a
practical observation: even when their assumptions are met, weakly
synchronous protocols are slow to recover from a network partition
once it heals, whereas asynchronous protocols make progress as
soon as messages are delivered.

3.1 Many Forms of Timing Assumptions
Before proceeding we review the various standard forms of tim-

ing assumptions. In an asynchronous network, the adversary can
deliver messages in any order and at any time, but nonetheless must
eventually deliver every message sent between correct nodes. Nodes
in an asynchronous network effectively have no use for “real time”
clocks, and can only take actions based on the ordering of messages
they receive.

The well-known FLP [27] result rules out the possibility of de-
terministic asynchronous protocols for atomic broadcast and many
other tasks. A deterministic protocol must therefore make some
stronger timing assumptions. A convenient (but very strong) net-
work assumption is synchrony: a ∆-synchronous network guarantees
that every message sent is delivered after at most a delay of ∆ (where
∆ is a measure of real time).

Weaker timing assumptions come in several forms. In the un-
known-∆ model, the protocol is unable to use the delay bound as
a parameter. Alternatively, in the eventually synchronous model,
the message delay bound ∆ is only guaranteed to hold after some
(unknown) instant, called the “Global Stabilization Time.” Collec-
tively, these two models are referred to as partial synchrony [26].
Yet another variation is weak synchrony [26], in which the delay
bound is time varying, but eventually does not grow faster than a
polynomial function of time [20].

In terms of feasibility, the above are equivalent — a protocol that
succeeds in one setting can be systematically adapted for another.
In terms of concrete performance, however, adjusting for weak syn-
chrony means gradually increasing the timeout parameter over time

(e.g., by an “exponential back-off” policy). As we show later, this
results in delays when recovering from transient network partitions.

Protocols typically manifest these assumptions in the form of
a timeout event. For example, if parties detect that no progress
has been made within a certain interval, then they take a corrective
action such as electing a new leader. Asynchronous protocols do not
rely on timers, and make progress whenever messages are delivered,
regardless of actual clock time.

Counting rounds in asynchronous networks. Although the guar-
antee of eventual delivery is decoupled from notions of “real time,” it
is nonetheless desirable to characterize the running time of asynch-
ronous protocols. The standard approach (e.g., as explained by
Canetti and Rabin [19]) is for the adversary to assign each mes-
sage a virtual round number, subject to the condition that every
(r− 1)-message between correct nodes must be delivered before
any (r+1)-message is sent.

3.2 When Weak Synchrony Fails
We now proceed to describe why weakly synchronous BFT proto-

cols can fail (or suffer from performance degradation) when network
conditions are adversarial (or unpredictable). This motivates why
such protocols are unsuited for the cryptocurrency-oriented applica-
tion scenarios described in Section 1.

A network scheduler that thwarts PBFT. We use Practical Byzan-
tine Fault Tolerance (PBFT) [20], the classic leader-based BFT
protocol, a representative example to describe how an adversarial
network scheduler can cause a class of leader-based BFT proto-
cols [4, 6, 10, 22, 33, 50] to grind to a halt.

At any given time, the designated leader is responsible for propos-
ing the next batch of transactions. If progress isn’t made, either
because the leader is faulty or because the network has stalled, then
the nodes attempt to elect a new leader. The PBFT protocol critically
relies on a weakly synchronous network for liveness. We construct
an adversarial scheduler that violates this assumption, and indeed
prevents PBFT from making any progress at all, but for which Hon-
eyBadgerBFT (and, in fact, any asynchronous protocol) performs
well. It is unsurprising that a protocol based on timing assumptions
fails when those assumptions are violated; however, demonstrating
an explicit attack helps motivate our asynchronous construction.

The intuition behind our scheduler is simple. First, we assume
that a single node has crashed. Then, the network delays messages
whenever a correct node is the leader, preventing progress and
causing the next node in round-robin order to become the new
leader. When the crashed node is the next up to become the leader,
the scheduler immediately heals the network partition and delivers
messages very rapidly among the honest nodes; however, since the
leader has crashed, no progress is made here either.

This attack violates the weak synchrony assumption because it
must delay messages for longer and longer each cycle, since PBFT
widens its timeout interval after each failed leader election. On the
other hand, it provides larger and larger periods of synchrony as well.
However, since these periods of synchrony occur at inconvenient
times, PBFT is unable to make use of them. Looking ahead, Honey-
BadgerBFT, and indeed any asynchronous protocol, would be able
to make progress during these opportunistic periods of synchrony.

To confirm our analysis, we implemented this malicious scheduler
as a proxy that intercepted and delayed all view change messages
to the new leader, and tested it against a 1200 line Python imple-
mentation of PBFT. The results and message logs we observed were
consistent with the above analysis; our replicas became stuck in
a loop requesting view changes that never succeeded. In the Ap-

pendix A we give a complete description of PBFT and explain how
it behaves under this attack.

Slow recovery from network partitions. Even if the weak syn-
chrony assumption is eventually satisfied, protocols that rely on
it may also be slow to recover from transient network partitions.
Consider the following scenario, which is simply a finite prefix of
the attack described above: one node is crashed, and the network is
temporarily partitioned for a duration of 2D∆. Our scheduler heals
the network partition precisely when it is the crashed node’s turn to
become leader. Since the timeout interval at this point is now 2D+1∆,
the protocol must wait for another 2D+1∆ interval before beginning
to elect a new leader, despite that the network is synchronous during
this interval.

The tradeoff between robustness and responsiveness. Such be-
haviors we observe above are not specific to PBFT, but rather are
fundamentally inherent to protocols that rely on timeouts to cope
with crashes. Regardless of the protocol variant, a practitioner
must tune their timeout policy according to some tradeoff. At one
extreme (eventual synchrony), the practitioner makes a specific esti-
mate about the network delay ∆. If the estimate is too low, then the
system may make no progress at all; too high, and it does not utilize
the available bandwidth. At the other extreme (weak synchrony), the
practitioner avoids specifying any absolute delay, but nonetheless
must choose a “gain” that affects how quickly the system tracks
varying conditions. An asynchronous protocol avoids the need to
tune such parameters.

4. THE HoneyBadgerBFT PROTOCOL
In this section we present HoneyBadgerBFT, the first asynch-

ronous atomic broadcast protocol to achieve optimal asymptotic
efficiency.

4.1 Problem Definition: Atomic Broadcast
We first define our network model and the atomic broadcast prob-

lem. Our setting involves a network of N designated nodes, with
distinct well-known identities (P0 through PN−1). The nodes re-
ceive transactions as input, and their goal is to reach common agree-
ment on an ordering of these transactions. Our model particularly
matches the deployment scenario of a “permissioned blockchain”
where transactions can be submitted by arbitrary clients, but the
nodes responsible for carrying out the protocol are fixed.

The atomic broadcast primitive allows us to abstract away any
application-specific details, such as how transactions are to be inter-
preted (to prevent replay attacks, for example, an application might
define a transaction to include signatures and sequence numbers).
For our purposes, transactions are simply unique strings. In prac-
tice, clients would generate transactions and send them to all of
the nodes, and consider them committed after collecting signatures
from a majority of nodes. To simplify our presentation, we do not
explicitly model clients, but rather assume that transactions are cho-
sen by the adversary and provided as input to the nodes. Likewise,
a transaction is considered committed once it is output by a node.

Our system model makes the following assumptions:
• (Purely asynchronous network) We assume each pair of nodes

is connected by a reliable authenticated point-to-point channel
that does not drop messages.2 The delivery schedule is entirely
determined by the adversary, but every message sent between
correct nodes must eventually be delivered. We will be inter-
ested in characterizing the running time of protocols based on the

2Reliable channels can be emulated on top of unreliable channels
by resending transmissions, at the expense of some efficiency.

number of asynchronous rounds (as described in Section 2). As
the network may queue messages with arbitrary delay, we also
assume nodes have unbounded buffers and are able to process all
the messages they receive.

• (Static Byzantine faults) The adversary is given complete control
of up to f faulty nodes, where f is a protocol parameter. Note
that 3 f +1≤ N (which our protocol achieves) is the lower bound
for broadcast protocols in this setting.

• (Trusted setup) For ease of presentation, we assume that nodes
may interact with a trusted dealer during an initial protocol-
specific setup phase, which we will use to establish public keys
and secret shares. Note that in a real deployment, if an actual
trusted party is unavailable, then a distributed key generation
protocol could be used instead (c.f., Boldyreva [11]). All the
distributed key generation protocols we know of rely on timing
assumptions; fortunately these assumptions need only to hold
during setup.

DEFINITION 1. An atomic broadcast protocol must satisfy the
following properties, all of which should hold with high probabil-
ity (as a function 1− negl(λ) of a security parameter, λ) in an
asynchronous network and in spite of an arbitrary adversary:

• (Agreement) If any correct node outputs a transaction tx, then
every correct node outputs tx.

• (Total Order) If one correct node has output the sequence of trans-
actions 〈tx0,tx1, ...tx j〉 and another has output
〈tx′0,tx′1, ...tx′j′〉, then txi = tx′i for i≤min(j, j′).

• (Censorship Resilience) If a transaction tx is input to N− f correct
nodes, then it is eventually output by every correct node.
The censorship resilience property is a liveness property that

prevents an adversary from blocking even a single transaction from
being committed. This property has been referred to by other names,
for example “fairness” by Cachin et al. [15], but we prefer this more
descriptive phrase.

Performance metrics. We will primarily be interested in analyzing
the efficiency and transaction delay of our atomic broadcast protocol.
• (Efficiency) Assume that the input buffers of each honest node are

sufficiently full Ω(poly(N,λ)). Then efficiency is the expected
communication cost for each node amortized over all committed
transactions.

Since each node must output each transaction, O(1) efficiency
(which our protocol achieves) is asymptotically optimal. The above
definition of efficiency assumes the network is under load, reflecting
our primary goal: to sustain high throughput while fully utilizing
the network’s available bandwidth. Since we achieve good through-
put by batching, our system uses more bandwidth per committed
transaction during periods of low demand when transactions ar-
rive infrequently. A stronger definition without this qualification
would be appropriate if our goal was to minimize costs (e.g., for
usage-based billing).

In practice, network links have limited capacity, and if more
transactions are submitted than the network can handle, a guarantee
on confirmation time cannot hold in general. Therefore we define
transaction delay below relative to the number of transactions that
have been input ahead of the transaction in question. A finite
transaction delay implies censorship resilience.
• (Transaction delay) Suppose an adversary passes a transaction tx

as input to N− f correct nodes. Let T be the “backlog”, i.e. the
difference between the total number of transactions previously
input to any correct node and the number of transactions that have
been committed. Then transaction delay is the expected number

of asynchronous rounds before tx is output by every correct node
as a function of T .

4.2 Overview and Intuition
In HoneyBadgerBFT, nodes receive transactions as input and

store them in their (unbounded) buffers. The protocol proceeds
in epochs, where after each epoch, a new batch of transactions is
appended to the committed log. At the beginning of each epoch,
nodes choose a subset of the transactions in their buffer (by a policy
we will define shortly), and provide them as input to an instance
of a randomized agreement protocol. At the end of the agreement
protocol, the final set of transactions for this epoch is chosen.

At this high level, our approach is similar to existing asynch-
ronous atomic broadcast protocols, and in particular to Cachin
et al. [15], the basis for a large scale transaction processing sys-
tem (SINTRA). Like ours, Cachin’s protocol is centered around
an instance of the Asynchronous Common Subset (ACS) primitive.
Roughly speaking, the ACS primitive allows each node to propose
a value, and guarantees that every node outputs a common vector
containing the input values of at least N− 2 f correct nodes. It is
trivial to build atomic broadcast from this primitive — each node
simply proposes a subset of transactions from the front its queue,
and outputs the union of the elements in the agreed-upon vector.
However, there are two important challenges.

Challenge 1: Achieving censorship resilience. The cost of ACS
depends directly on size of the transaction sets proposed by each
node. Since the output vector contains at least N − f such sets,
we can therefore improve the overall efficiency by ensuring that
nodes propose mostly disjoint sets of transactions, thus committing
more distinct transactions in one batch for the same cost. Therefore
instead of simply choosing the first element(s) from its buffer (as
in CKPS01 [15]), each node in our protocol proposes a randomly
chosen sample, such that each transaction is, on average, proposed
by only one node.

However, implemented naïvely, this optimization would compro-
mise censorship resilience, since the ACS primitive allows the adver-
sary to choose which nodes’ proposals are ultimately included. The
adversary could selectively censor a transaction excluding whichever
node(s) propose it. We avoid this pitfall by using threshold encryp-
tion, which prevents the adversary from learning which transac-
tions are proposed by which nodes, until after agreement is already
reached. The full protocol will be described in Section 4.3.

Challenge 2: Practical throughput. Although the theoretical
feasibility of asynchronous ACS and atomic broadcast have been
known [9, 15, 17], their practical performance is not. To the best of
our knowledge, the only other work that implemented ACS was by
Cachin and Portiz [17], who showed that they could attain a through-
put of 0.4 tx/sec over a wide area network. Therefore, an interesting
question is whether such protocols can attain high throughput in
practice.

In this paper, we show that by stitching together a carefully chosen
array of sub-components, we can efficiently instantiate ACS and
attain much greater throughput both asymptotically and in practice.
Notably, we improve the asymptotic cost (per node) of ACS from
O(N2) (as in Cachin et al. [15, 17]) to O(1). Since the components
we cherry-pick have not been presented together before (to our
knowledge), we provide a self-contained description of the whole
construction in Section 4.4.

Modular protocol composition. We are now ready to present our
constructions formally. Before doing so, we make a remark about
the style of our presentation. We define our protocols in a modu-

lar style, where each protocol may run several instances of other
(sub)protocols. The outer protocol can provide input to and re-
ceive output from the subprotocol. A node may begin executing
a (sub)protocol even before providing it input (e.g., if it receives
messages from other nodes).

It is essential to isolate such (sub)protocol instances to ensure that
messages pertaining to one instance cannot be replayed in another.
This is achieved in practice by associating to each (sub)protocol
instance a unique string (a session identifier), tagging any messages
sent or received in this (sub)protocol with this identifier, and routing
messages accordingly. We suppress these message tags in our proto-
col descriptions for ease of reading. We use brackets to distinguish
between tagged instances of a subprotocol. For example, RBC[i]
denotes an ith instance of the RBC subprotocol.

We implicitly assume that asynchronous communications be-
tween parties are over authenticated asynchronous channels. In
reality, such channels could be instantiated using TLS sockets, for
example, as we discuss in Section 5.

To distinguish different message types sent between parties within
a protocol, we use a label in typewriter font (e.g., VAL(m) indi-
cates a message m of type VAL).

4.3 Constructing HoneyBadgerBFT from
Asynchronous Common Subset

Building block: ACS. Our main building block is a primitive called
asynchronous common subset (ACS). The theoretical feasibility of
constructing ACS has been demonstrated in several works [9, 15].
In this section, we will present the formal definition of ACS and use
it as a blackbox to construct HoneyBadgerBFT. Later in Section 4.4,
we will show that by combining several constructions that were
somewhat overlooked in the past, we can instantiate ACS efficiently!

More formally, an ACS protocol satisfies the following properties:
• (Validity) If a correct node outputs a set v, then |v| ≥ N− f and v

contains the inputs of at least N−2 f correct nodes.
• (Agreement) If a correct node outputs v, then every node outputs

v.
• (Totality) If N− f correct nodes receive an input, then all correct

nodes produce an output.

Building block: threshold encryption. A threshold encryption
scheme TPKE is a cryptographic primitive that allows any party
to encrypt a message to a master public key, such that the network
nodes must work together to decrypt it. Once f +1 correct nodes
compute and reveal decryption shares for a ciphertext, the plain-
text can be recovered; until at least one correct node reveals its
decryption share, the attacker learns nothing about the plaintext. A
threshold scheme provides the following interface:
• TPKE.Setup(1λ)→ PK,{SKi} generates a public encryption

key PK, along with secret keys for each party SKi
• TPKE.Enc(PK,m)→C encrypts a message m
• TPKE.DecShare(SKi,C)→ σi produces the ith share of the de-

cryption (or ⊥ if C is malformed)
• TPKE.Dec(PK,C,{i,σi})→ m combines a set of decryption

shares {i,σi} from at least f +1 parties obtain the plaintext m (or,
if C contains invalid shares, then the invalid shares are identified).

In our concrete instantiation, we use the threshold encryption scheme
of Baek and Zheng [7]. This scheme is also robust (as required by
our protocol), which means that even for an adversarially generated
ciphertext C, at most one plaintext (besides ⊥) can be recovered.
Note that we assume TPKE.Dec effectively identifies invalid de-
cryption shares among the inputs. Finally, the scheme satisfies the

Algorithm HoneyBadgerBFT (for node Pi)
Let B = Ω(λN2 logN) be the batch size parameter.
Let PK be the public key received from TPKE.Setup (executed
by a dealer), and let SKi be the secret key for Pi.
Let buf := [] be a FIFO queue of input transactions.
Proceed in consecutive epochs numbered r:

// Step 1: Random selection and encryption
• let proposed be a random selection of bB/Nc transactions from

the first B elements of buf
• encrypt x := TPKE.Enc(PK,proposed)

// Step 2: Agreement on ciphertexts
• pass x as input to ACS[r] //see Figure 4
• receive {v j} j∈S, where S⊂ [1..N], from ACS[r]

// Step 3: Decryption
• for each j ∈ S:

let e j := TPKE.DecShare(SKi,v j)

multicast DEC(r, j, i,e j)

wait to receive at least f + 1 messages of the form
DEC(r, j,k,e j,k)

decode y j := TPKE.Dec(PK,{(k,e j,k)})
• let blockr := sorted(∪ j∈S{y j}), such that blockr is sorted in a

canonical order (e.g., lexicographically)
• set buf := buf−blockr

Figure 1: HoneyBadgerBFT.

obvious correctness properties, as well as a threshold version of the
IND-CPA game.3

Atomic broadcast from ACS. We now describe in more detail our
atomic broadcast protocol, defined in Figure 1.

As mentioned, this protocol is centered around an instance of ACS.
In order to obtain scalable efficiency, we choose a batching policy.
We let B be a batch size, and will commit Ω(B) transactions in each
epoch. Each node proposes B/N transactions from its queue. To
ensure that nodes propose mostly distinct transactions, we randomly
select these transactions from the first B in each queue.

As we will see in Section 4.4, our ACS instantiation has a total
communication cost of O(N2|v|+ λN3 logN), where |v| bounds
the size of any node’s input. We therefore choose a batch size
B = Ω(λN2 logN) so that the contribution from each node (B/N)
absorbs this additive overhead.

In order to prevent the adversary from influencing the outcome we
use a threshold encryption scheme, as described below. In a nutshell,
each node chooses a set of transactions, and then encrypts it. Each
node then passes the encryption as input to the ACS subroutine. The
output of ACS is therefore a vector of ciphertexts. The ciphertexts
are decrypted once the ACS is complete. This guarantees that the
set of transactions is fully determined before the adversary learns
the particular contents of the proposals made by each node. This
guarantees that an adversary cannot selectively prevent a transaction
from being committed once it is in the front of the queue at enough
correct nodes.

4.4 Instantiating ACS Efficiently
Cachin et al. present a protocol we call CKPS01 that (implic-

3The Baek and Zheng threshold scheme also satisfies (the threshold
equivalent of) the stronger IND-CCA game, but this is not required
by our protocol.

Algorthm RBC (for party Pi, with sender PSender)
• upon input(v) (if Pi = PSender):

let {s j} j∈[N] be the blocks of an (N−2 f ,N)-erasure coding
scheme applied to v
let h be a Merkle tree root computed over {s j}
send VAL(h,b j,s j) to each party P j, where b j is the jth

Merkle tree branch
• upon receiving VAL(h,bi,si) from PSender,

multicast ECHO(h,bi,si)

• upon receiving ECHO(h,b j,s j) from party P j,
check that b j is a valid Merkle branch for root h and leaf s j,
and otherwise discard

• upon receiving valid ECHO(h, ·, ·) messages from N− f distinct
parties,
– interpolate {s′j} from any N−2 f leaves received
– recompute Merkle root h′ and if h′ 6= h then abort
– if READY(h) has not yet been sent, multicast READY(h)

• upon receiving f +1 matching READY(h) messages, if READY
has not yet been sent, multicast READY(h)

• upon receiving 2 f +1 matching READY(h) messages, wait for
N−2 f ECHO messages, then decode v

Figure 2: Reliable broadcast algorithm, adapted from Bracha’s
broadcast [13], with erasure codes to improve efficiency [18]

itly) reduces ACS to multi-valued validated Byzantine agreement
(MVBA) [15]. Roughly speaking, MVBA allows nodes to propose
values satisfying a predicate, one of which is ultimately chosen. The
reduction is simple: the validation predicate says that the output
must be a vector of signed inputs from at least N− f parties. Un-
fortunately, the MVBA primitive agreement becomes a bottleneck,
because the only construction we know of incurs an overhead of
O(N3|v|).

We avoid this bottleneck by using an alternative instantiation of
ACS that sidesteps MVBA entirely. The instantiation we use is due
to Ben-Or et al. [9] and has, in our view, been somewhat overlooked.
In fact, it predates CKPS01 [15], and was initially developed for a
mostly unrelated purpose (as a tool for achieving efficient asynch-
ronous multi-party computation [9]). This protocol is a reduction
from ACS to reliable broadcast (RBC) and asynchronous binary
Byzantine agreement (ABA). Only recently do we know of efficient
constructions for these subcomponents, which we explain shortly.

At a high level, the ACS protocol proceeds in two main phases. In
the first phase, each node Pi uses RBC to disseminate its proposed
value to the other nodes, followed by ABA to decide on a bit vector
that indicates which RBCs have successfully completed.

We now briefly explain the RBC and ABA constructions before
explaing the Ben-Or protocol in more detail.

Communication-optimal reliable roadcast. An asynchronous re-
liable broadcast channel satisfies the following properties:
• (Agreement) If any two correct nodes deliver v and v′, then v = v′.
• (Totality) If any correct node delivers v, then all correct nodes

deliver v
• (Validity) If the sender is correct and inputs v, then all correct

nodes deliver v
While Bracha’s [13] classic reliable broadcast protocol requires

O(N2|v|) bits of total communication in order to broadcast a mes-
sage of size |v|, Cachin and Tessaro [18] observed that erasure cod-
ing can reduce this cost to merely O(N|v|+λN2 logN), even in the

RBC2 RBC3

RBC1

BA1 BA2

BA3

Yes No
V1

Coin

Coin

Coin

Coin

Coin

Coin

Coin

Yes

(a) Normal

YesV2

(b) Wait for slow broadcast (c) Broadcast fails

No

….

….

Ti
m
e

Figure 3: (Illustrated examples of ACS executions.) Each exe-
cution of our protocol involves running N concurrent instances
of reliable broadcast (RBC), as well as N of byzantine agree-
ment (BA), which in turn use an expected constant number of
common coins. We illustrate several possible examples of how
these instances play out, from the viewpoint of Node 0. (a) In
the ordinary case, Node 0 receives value V1 (Node 1’s proposed
value) from the reliable broadcast at index 1. Node 0 therefore
provides input “Yes” to BA1, which outputs “Yes.” (b) RBC2
takes too long to complete, and Node 0 has already received
(N− f) “Yes” outputs, so it votes “No” for BA2. However, other
nodes have seen RBC2 complete successfully, so BA2 results in
“Yes” and Node 0 must wait for V2. (c) BA3 concludes with “No”
before RBC3 completes.

worst case. This is a significant improvement for large messages (i.e.,
when |v| � λN logN), which, (looking back to Section 4.3) guides
our choice of batch size. The use of erasure coding here induces at
most a small constant factor of overhead, equal to N

N−2 f < 3.
If the sender is correct, the total running time is three (asynch-

ronous) rounds; and in any case, at most two rounds elapse between
when the first correct node outputs a value and the last outputs a
value. The reliable broadcast algorithm shown in Figure 2.

Binary Agreement. Binary agreement is a standard primitive that
allows nodes to agree on the value of a single bit. More formally,
binary agreement guarantees three properties:
• (Agreement) If any correct node outputs the bit b, then every

correct node outputs b.
• (Termination) If all correct nodes receive input, then every correct

node outputs a bit.
• (Validity) If any correct node outputs b, then at least one correct

node received b as input.
The validity property implies unanimity: if all of the correct nodes
receive the same input value b, then b must be the decided value.
On the other hand, if at any point two nodes receive different inputs,
then the adversary may force the decision to either value even before
the remaining nodes receive input.

We instantiate this primitive with a protocol from Moustefaoui
et al. [42], which is based on a cryptographic common coin. We
defer explanation of this instantiation to the Appendix. Its expected
running time is O(1), and in fact completes within O(k) rounds with
probability 1− 2−k. The communication complexity per node is
O(Nλ), which is due primarily to threshold cryptography used in
the common coin.

Agreeing on a subset of proposed values. Putting the above pieces
together, we use a protocol from Ben-Or et al. [9] to agree on a set
of values containing the entire proposals of at least N− f nodes.

At a high level, this protocol proceeds in two main phases. In the

Algorithm ACS (for party Pi)
Let {RBCi}N refer to N instances of the reliable broadcast pro-
tocol, where Pi is the sender of RBCi. Let {BAi}N refer to N
instances of the binary byzantine agreement protocol.
• upon receiving input vi, input vi to RBCi // See Figure 2
• upon delivery of v j from RBC j, if input has not yet been pro-

vided to BA j, then provide input 1 to BA j. See Figure 11
• upon delivery of value 1 from at least N− f instances of BA,

provide input 0 to each instance of BA that has not yet been
provided input.

• once all instances of BA have completed, let C ⊂ [1..N] be the
indexes of each BA that delivered 1. Wait for the output v j for
each RBC j such that j ∈C. Finally output ∪ j∈Cv j .

Figure 4: Common Subset Agreement protocol (from Ben-Or
et al. [9])

first phase, each node Pi uses Reliable Broadcast to disseminate its
proposed value to the other nodes. In the second stage, N concurrent
instances of binary Byzantine agreement are used to agree on a bit
vector {b j} j∈[1..N], where b j = 1 indicates that P j’s proposed value
is included in the final set.

Actually the simple description above conceals a subtle challenge,
for which Ben-Or provide a clever solution.

A naïve attempt at an implementation of the above sketch would
have each node to wait for the first (N− f) broadcasts to complete,
and then propose 1 for the binary agreement instances corresponding
to those and 0 for all the others. However, correct nodes might
observe the broadcasts complete in a different order. Since binary
agreement only guarantees that the output is 1 if all the correct nodes
unaninimously propose 1, it is possible that the resulting bit vector
could be empty.

To avoid this problem, nodes abstain from proposing 0 until they
are certain that the final vector will have at least N − f bits set.
To provide some intuition for the flow of this protocol, we narrate
several possible scenarios in Figure 3. The algorithm from Ben-Or
et al. [9] is given in Figure 4. The running time is O(logN) in
expectation, since it must wait for all binary agreement instances to
finish. 4 When instantiated with the reliable broadcast and binary
agreement constructions described above, the total communication
complexity is O(N2|v|+λN3 logN) assuming |v| is the largest size
of any node’s input.

4.5 Analysis
First we observe that the agreement and total order properties

follow immediately from the definition of ACS and robustness of
the TPKE scheme.

THEOREM 1. (Agreement and total order). The HoneyBad-
gerBFT protocol satisfies the agreement and total order properties,
except for negligible probability.

PROOF. These two properties follow immediately from proper-
ties of the high-level protoocls, ACS and TPKE. Each ACS instance
guarantees that nodes agree on a vector of ciphertexts in each epoch
(Step 2). The robustness of TPKE guarantees that each correct node
decrypts these ciphertexts to consistent values (Step 3). This suffices
to ensure agreement and total order.

THEOREM 2. (Complexity). Assuming a batch size of B =
Ω(λN2 logN), the running time for each HoneyBadgerBFT epoch
4The expected running time can be reduced to O(1) (c.f. [8]) by run-
ning several instances in parallel, though this comes at the expense
of throughput.

is O(logN) in expectation, and the total expected communication
complexity is O(B).

PROOF. The cost and running time of ACS is explained in Sec-
tion 4.4. The N instances of threshold decryption incur one ad-
ditional round and an additional cost of O(λN2), which does not
affect the overall asymptotic cost.

The HoneyBadgerBFT protocol may commit up to B transactions
in a single epoch. However, the actual number may be less than this,
since some correct nodes may propose overlapping transaction sets,
others may respond too late, and corrupted nodes may propose an
empty set. Fortunately, we prove (in the Appendix) that assuming
each correct node’s queue is full, then B/4 serves as an lower bound
for the expected number of transactions committed in an epoch.5

THEOREM 3. (Efficiency). Assuming each correct node’s queue
contains at least B distinct transactions, then the expected number
of transactions committed in an epoch is at least B

4 , resulting in
constant efficiency.

Finally, we prove (in the Appendix) that the adversary cannot
significantly delay the commit of any transaction.

THEOREM 4. (Censorship Resilience). Suppose an adversary
passes a transaction tx as input to N− f correct nodes. Let T be the
size of the “backlog”, i.e. the difference between the total number of
transactions previously input to any correct node and the number of
transactions that have been committed. Then tx is commited within
O(T/B+λ) epochs except with negligible probability.

5. IMPLEMENTATION AND EVALUATION
In this section we carry out several experiments and performance

measurements using a prototype implementation of the HoneyBad-
gerBFT protocol. Unless otherwise noted, numbers reported in this
section are by default for the optimistic case where all nodes are
behaving honestly.

First we demonstrate that HoneyBadgerBFT is indeed scalable by
performing an experiment in a wide area network, including up to
104 nodes in five continents. Even under these conditions, Honey-
BadgerBFT can reach peak throughputs of thousands of transactions
per second. Furthermore, by a comparison with PBFT, a represen-
tative partially synchronous protocol, HoneyBadgerBFT performs
only a small constant factor worse. Finally, we demonstrate the
feasibility of running asynchronous BFT over the Tor anonymous
communication layer.

Implementation details. We developed a prototype implementa-
tion of HoneyBadgerBFT in Python, using the gevent library for
concurrent tasks.

For deterministic erasure coding, we use the zfec library [52],
which implements Reed-Solomon codes. For instantiating the com-
mon coin primitive, we implement Boldyreva’s pairing-based thresh-
old signature scheme [11]. For threshold encryption of transactions,
we use Baek and Zheng’s scheme [7] to encrypt a 256-bit ephemeral
key, followed by AES-256 in CBC mode over the actual payload.
We implement these threshold cryptography schemes using the
Charm [3] Python wrappers for PBC library [38]. For threshold sig-
natures, we use the provided MNT224 curve, resulting in signatures
(and signature shares) of only 65 bytes, and heuristically providing
112 bits of security.6 Our threshold encryption scheme requires a
5The actual bound is (1− e−1/3)B > B/4, but we use the looser
bound B/4 for readability.
6Earlier reports estimate 112 bits of security for the MNT224
curve [44]; however, recent improvements in computing discrete log
suggest larger parameters are required [28, 29].

symmetric bilinear group: we therefore use the SS512 group, which
heuristically provides 80 bits of security [44].7

In our EC2 experiments, we use ordinary (unauthenticated) TCP
sockets. In a real deployment we would use TLS with both client
and server authentication, adding insignificant overhead for long-
lived sessions. Similarly, in our Tor experiment, only one endpoint
of each socket is authenticated (via the “hidden service” address).

Our theoretical model assumes nodes have unbounded buffers.
In practice, more resources could be added dynamically to a node
whenever memory consumption reaches a watermark, (e.g., when-
ever it is 75% full) though our prototype implementation does not
yet include this feature. Failure to provision an adequate buffer
would count against the failure budget f .

5.1 Bandwidth Breakdown and Evaluation
We first analyze the bandwidth costs of our system. In all exper-

iments, we assume a constant transaction size of mT = 250 bytes
each, which would admit an ECDSA signature, two public keys,
as well as an application payload (i.e., approximately the size of
a typical Bitcoin transaction). Our experiments use the parameter
N = 4 f ,8 and each party proposes a batch of B/N transactions. To
model the worst case scenario, nodes begin with identical queues of
size B. We record the running time as the time from the beginning
of the experiment to when the (N− f)-th node outputs a value.

Bandwidth and breakdown findings. The overall bandwidth con-
sumed by each node consists of a fixed additive overhead as well
as a transaction dependent overhead. For all parameter values we
considered, the additive overhead is dominated by an O(λN2) term
resulting from the threshold cryptography in the ABA phases and
the decryption phase that follows. The ABA phase involves each
node transmitting 4N2 signature shares in expectation. Only the
RBC phase incurs a transaction-dependent overhead, equal to the
erasure coding expansion factor r = N

N−2 f . The RBC phase also
contributes N2 logN hashes to the overhead because of Merkle tree
branches included in the ECHO messages. The total communication
cost (per node) is estimated as:

mall = r(BmT+NmE)+N2((1+ logN)mH+mD+4mS)

where mE and mD are respectively the size of a ciphertext and
decryption share in the TPKE scheme, and mS is the size of a TSIG
signature share.

The system’s effective throughput increases as we increase the
proposed batch size B, such that the transaction-dependent portion
of the cost dominates. As Figure 5 shows, for N = 128, for batch
sizes up to 1024 transactions, the transaction-independent bandwidth
still dominates to overall cost. However, when when the batch size
reaches 16384, the transaction-dependent portion begins to dominate
— largely resulting from the RBC.ECHO stage where nodes transmit
erasure-coded blocks.

5.2 Experiments on Amazon EC2
To see how practical our design is, we deployed our protocol on

Amazon EC2 services and comprehensively tested its performance.
We ran HoneyBagderBFT on 32, 40, 48, 56, 64, and 104 Amazon
EC2 t2.medium instances uniformly distributed throughout its 8

7We justify the relatively weak 80-bit security level for our parame-
ters because the secrecy needs are short-lived as the plaintexts are
revealed after each batch is committed. To defend against precompu-
tation attacks, the public parameters and keys should be periodically
regenerated.
8The setting N = 4 f is not the maximum fault tolerance, but it is
convenient when f divides N.

100 101 102 103 104 105

Batch size (Tx) in log scale

10-2

10-1

100

101

102

C
o
m

m
u
n
ic

a
ti

o
n
 c

o
st

 p
e
r

n
o
d
e
 (

M
B

)

Nodes / Tolerance

8/2

16/4

32/8

64/16

128/32

ideal

Figure 5: Estimated communication cost in megabytes (per
node) for varying batch sizes. For small batch sizes, the fixed
cost grows with O(N2 logN). At saturation, the overhead factor
approaches N

N−2 f < 3.

105 106

Batch size (Tx) in log scale

102

103

104

T
h
ro

u
g
h
p
u
t

(T
x
 p

e
r

se
co

n
d
)

in
 l
o
g
 s

ca
le

Nodes / Tolerance

32/8
40/10
48/12

56/14
64/16
104/26

Figure 6: Throughput (transactions committed per second) vs
number of transactions proposed. Error bars indicate 95%
confidence intervals.

regions spanning 5 continents. In our experiments, we varied the
batch size such that each node proposed 256, 512, 1024, 2048, 4096,
8192, 16384, 32768, 65536, or 131072 transactions.

Throughput. Throughput is defined as the number of transactions
committed per unit of time. In our experiment, we use “confirmed
transactions per second” as our measure unit if not specified oth-
erwise. Figure 6 shows the relationship between throughput and
total number of transactions proposed by all N parties. The fault
tolerance parameter is set to be f = N/4.

Findings. From Figure 6 we can see for each setting, the through-
put increases as the number of proposed transactions increases. We
achieve throughput exceeding 20,000 transactions per second for
medium size networks of up to 40 nodes. For a large 104 node
network, we attain more than 1,500 transactions per second. Given
an infinite batch size, all network sizes would eventually converge
to a common upper bound, limited only by available bandwidth.
Although the total bandwidth consumed in the network increases
(linearly) with each additional node, the additional nodes also con-
tribute additional bandwidth capacity.

Throughput, latency, and scale tradeoffs. Latency is defined as
the time interval between the time the first node receives a client
request and when the (N− f)-th node finishes the consensus pro-

0 5000 10000 15000 20000
Throughput (Tx per second)

101

102

La
te

n
cy

 (
se

co
n
d
s)

 i
n
 l
o
g
 s

ca
le

Nodes / Tolerance

32/8
40/10

48/12
56/14

64/16
104/26

Figure 7: Latency vs. throughput for experiments over wide
area networks. Error bars indicate 95% confidence intervals.

8 nodes 16 nodes 32 nodes 64 nodes

0

0.5

1

1.5

2
·104

M
ax

im
um

T
hr

ou
gh

pu
t(

T
x

pe
rs

ec
on

d)

HoneyBadgerBFT
PBFT

Figure 8: Comparison with PBFT on EC2s

tocol. This is reasonable because the (N− f)-th node finishing the
protocol implies the accomplishment of the consensus for the honest
parties.

Figure 7 shows the relationship between latency and throughput
for different choices of N and f = N/4. The positive slopes indi-
cate that our experiments have not yet fully saturated the available
bandwidth, and we would attain better throughput even with larger
batch sizes. Figure 7 also shows that latency increases as the number
of nodes increases, largely stemming from the ABA phase of the
protocol. In fact, at N = 104, for the range of batch sizes we tried,
our system is CPU bound rather than bandwidth bound because our
implementation is single threaded and must verify O(N2) thresh-
old signatures. Regardless, our largest experiment with 104 nodes
completes in under 6 minutes.

Although more nodes (with equal bandwidth provisioning) could
be added to the network without affecting maximum attainable
throughput, the minimal bandwidth consumed to commit one batch
(and therefore the latency) increases with O(N2 logN). This con-
straint implies a limit on scalability, depending on the cost of band-
width and users’ latency tolerance.

Comparison with PBFT. Figure 8 shows a comparison with the
PBFT protocol, a classic BFT protocol for partially synchronous
networks. We use the Python implementation from Croman et
al. [24], running on 8, 16, 32, and 64 nodes evenly distributed
among Amazon AWS regions. Batch sizes were chosen to saturate
the network’s available bandwidth.

Fundamentally, while PBFT and our protocol have the same

asymptotic communication complexity in total, our protocol dis-
tributes this load evenly among the network links, whereas PBFT
bottlenecks on the leader’s available bandwidth. Thus PBFT’s at-
tainable throughput diminishes with the number of nodes, while
HoneyBadgerBFT’s remains roughly constant.

Note that this experiment reflects only the optimistic case, with no
faults or network interruptions. Even for small networks, HoneyBad-
gerBFT provides significantly better robustness under adversarial
conditions as noted in Section 3. In particular, PBFT would achieve
zero throughput against an adversarial asynchronous scheduler,
whereas HoneyBadgerBFT would complete epochs at a regular rate.

5.3 Experiments over Tor
To demonstrate the robustness of HoneyBadgerBFT, we run the

first instance (to our knowledge) of a fault tolerant consensus proto-
col carried out over Tor (the most successful anonymous communi-
cation network). Tor adds significant and varying latency compared
to our original AWS deployment. Regardless, we show that we can
run HoneyBadgerBFT without tuning any parameters. Hiding Hon-
eyBadgerBFT nodes behind the shroud of Tor may offer even better
robustness. Since it helps the nodes to conceal their IP addresses, it
can help them avoid targeted network attacks and attacks involving
their physical location.

Brief background on Tor. The Tor network consists of approxi-
mately 6,500 relays, which are listed in a public directory service.
Tor enables “hidden services,” which are servers that accept con-
nections via Tor in order to conceal their location. When a client
establishes a connection to a hidden service, both the client and
the server construct 3-hop circuits to a common “rendezvous point.”
Thus each connection to a hidden service routes data through 5
randomly chosen relays. Tor provides a means for relay nodes to
advertise their capacity and utilization, and these self-reported met-
rics are aggregated by the Tor project. According to these metrics,9

the total capacity of the network is ∼145Gbps, and the current
utilization is ∼65Gbps.

Tor experiment setup. We design our experiment setup such that
we could run all N HoneyBadgerBFT nodes on a single desktop
machine running the Tor daemon software, while being able to re-
alistically reflect Tor relay paths. To do this, we configured our
machine to listen on N hidden services (one hidden service for
each HoneyBadgerBFT node in our simulated network). Since each
HoneyBadgerBFT node forms a connection to each other node, we
construct a total of N2 Tor circuits per experiment, beginning and
ending with our machine, and passing through 5 random relays. In
summary, all pairwise overlay links traverse real Tor circuits con-
sisting of random relay nodes, designed so that the performance
obtained is representative of a real HoneyBadgerBFT deployment
over Tor (despite all simulated nodes running on a single host ma-
chine).

Since Tor provides a critical public service for many users, it
is important to ensure that research experiments conducted on the
live network do not adversely impact it. We formed connections
from only a single vantage point (and thus avoid receiving), and
ran experiments of short duration (several minutes) and with small
parameters (only 256 circuits formed in our largest experiment). In
total, our experiments involved the transfer of approximately five
gigabytes of data through Tor – less than a 1E-5 fraction of its daily
utilization.

Figure 9 shows how latency changes with throughput. In contrast
to our EC2 experiment where nodes have ample bandwidth, Tor

9https://metrics.torproject.org/bandwidth.html as of Nov 10, 2015

https://metrics.torproject.org/bandwidth.html

10-1 100 101 102 103

Throughput (Tx / s)

100

101

102

La
te

n
cy

 (
se

c)

4/1

8/2

16/4

Figure 9: Latency vs throughput for experiments running Hon-
eyBadgerBFT over Tor.

circuits are limited by the slowest link in the circuit. We attain a
maximum throughput of over 800 transactions per second of Tor.

In general, messages transmitted over Tor’s relay network tends
to have significant and highly variable latency. For instance, during
our experiment on 8 parties proposing 16384 transactions per party,
a single message can be delayed for 316.18 seconds and the delay
variance is over 2208 while the average delay is only 12 seconds.
We stress that our protocol did not need to be tuned for such network
conditions, as would a traditional eventually-synchronous protocol.

6. CONCLUSION
We have presented HoneyBadgerBFT, the first efficient and high-

throughput asynchronous BFT protocol. Through our implementa-
tion and experimental results we demonstrate that HoneyBadgerBFT
can be a suitable component in incipient cryptocurrency-inspired
deployments of fault tolerant transaction processing systems. More
generally, we believe our work demonstrates the promise of building
dependable and transaction processing systems based on asynch-
ronous protocol.

Acknowledgements. We thank Jay Lorch, Jonathan Katz, and Emin
Gün Sirer for helpful suggestions, and especially Dominic Williams
for several excellent discussions that inspired us to tackle this prob-
lem. This work is supported in part by NSF grants CNS-1314857,
CNS-1453634, CNS-1518765, CNS-1514261, and CNS-1518899,
DARPA grant N66001-15-C-4066, a Packard Fellowship, a Sloan
Fellowship, two Google Faculty Research Awards, and a VMWare
Research Award. This work was done in part while a subset of the
authors were visiting students at UC Berkeley, and while a subset
of the authors were visiting the Simons Institute for the Theory of
Computing, supported by the Simons Foundation and by the DI-
MACS/Simons Collaboration in Cryptography through NSF grant
CNS-1523467.

7. REFERENCES
[1] How a Visa transaction works.

http://apps.usa.visa.com/merchants/become-a-merchant/
how-a-visa-transaction-works.jsp, 2015.

[2] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie. Fault-scalable byzantine fault-tolerant
services. ACM SIGOPS Operating Systems Review,
39(5):59–74, 2005.

[3] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano,
M. Rushanan, M. Green, and A. D. Rubin. Charm: a
framework for rapidly prototyping cryptosystems. Journal of
Cryptographic Engineering, 3(2):111–128, 2013.

[4] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine
replication under attack. Dependable and Secure Computing,
IEEE Transactions on, 8(4):564–577, 2011.

[5] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane,
C. Nita-Rotaru, J. Olsen, and D. Zage. Steward: Scaling
byzantine fault-tolerant replication to wide area networks.
Dependable and Secure Computing, IEEE Transactions on,
7(1):80–93, 2010.

[6] P.-L. Aublin, S. Ben Mokhtar, and V. Quéma. Rbft:
Redundant byzantine fault tolerance. In Distributed
Computing Systems (ICDCS), 2013 IEEE 33rd International
Conference on, pages 297–306. IEEE, 2013.

[7] J. Baek and Y. Zheng. Simple and efficient threshold
cryptosystem from the gap diffie-hellman group. In Global
Telecommunications Conference, 2003. GLOBECOM’03.
IEEE, volume 3, pages 1491–1495. IEEE, 2003.

[8] M. Ben-Or and R. El-Yaniv. Resilient-optimal interactive
consistency in constant time. Distributed Computing,
16(4):249–262, 2003.

[9] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure
computations with optimal resilience. In Proceedings of the
thirteenth annual ACM symposium on Principles of
distributed computing, pages 183–192. ACM, 1994.

[10] A. Bessani, J. Sousa, and E. E. Alchieri. State machine
replication for the masses with bft-smart. In Dependable
Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP
International Conference on, pages 355–362. IEEE, 2014.

[11] A. Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-diffie-hellman-group signature
scheme. In Public key cryptographyâĂŤPKC 2003, pages
31–46. Springer, 2002.

[12] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. Kroll, and
E. W. Felten. Research perspectives on bitcoin and
second-generation digital currencies. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015.

[13] G. Bracha. Asynchronous byzantine agreement protocols.
Information and Computation, 75(2):130–143, 1987.

[14] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages
335–350. USENIX Association, 2006.

[15] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and
efficient asynchronous broadcast protocols. In Advances in
Cryptology – Crypto 2001, pages 524–541. Springer, 2001.

[16] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in
constantipole: Practical asynchronous byzantine agreement
using cryptography. In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing,
pages 123–132. ACM, 2000.

[17] C. Cachin, J. Poritz, et al. Secure intrusion-tolerant replication
on the internet. In Dependable Systems and Networks, 2002.
DSN 2002. Proceedings. International Conference on, pages
167–176. IEEE, 2002.

[18] C. Cachin and S. Tessaro. Asynchronous verifiable
information dispersal. In Reliable Distributed Systems, 2005.
SRDS 2005. 24th IEEE Symposium on, pages 191–201. IEEE,
2005.

[19] R. Canetti and T. Rabin. Fast asynchronous byzantine
agreement with optimal resilience. In Proceedings of the
twenty-fifth annual ACM symposium on Theory of computing,
pages 42–51. ACM, 1993.

http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transaction-works.jsp
http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transaction-works.jsp

[20] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance.
In OSDI, volume 99, pages 173–186, 1999.

[21] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. Upright cluster services. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 277–290. ACM, 2009.

[22] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making byzantine fault tolerant systems tolerate
byzantine faults. In NSDI, volume 9, pages 153–168, 2009.

[23] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic
broadcast: From simple message diffusion to Byzantine
agreement. Citeseer, 1986.

[24] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels,
A. Kosba, A. Miller, P. Saxena, E. Shi, E. G. Sirer, D. Song,
and R. W. and. On scaling decentralized blockchains — a
position paper. 3rd Bitcoin Research Workshop, 2015.

[25] G. Danezis and S. Meiklejohn. Centrally banked
cryptocurrencies. arXiv preprint arXiv:1505.06895, 2015.

[26] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM),
35(2):288–323, 1988.

[27] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM (JACM), 32(2):374–382, 1985.

[28] A. Guillevic. Kim-barbulescu variant of the number field sieve
to compute discrete logarithms in finite fields.
https://ellipticnews.wordpress.com/2016/05/02/kim-
barbulescu-variant-of-the-number-field-sieve-to-compute-
discrete-logarithms-in-finite-fields/, May 2016.

[29] T. Kim and R. Barbulescu. Extended tower number field sieve:
A new complexity for medium prime case. Technical report,
IACR Cryptology ePrint Archive, 2015: 1027, 2015.

[30] V. King and J. Saia. From almost everywhere to everywhere:
Byzantine agreement with O(n3/2) bits. In Distributed
Computing, pages 464–478. Springer, 2009.

[31] V. King and J. Saia. Breaking the O(n2) bit barrier: scalable
byzantine agreement with an adaptive adversary. Journal of
the ACM (JACM), 58(4):18, 2011.

[32] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi,
L. Gasser, and B. Ford. Enhancing bitcoin security and
performance with strong consistency via collective signing.
arXiv preprint arXiv:1602.06997, 2016.

[33] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative byzantine fault tolerance. In ACM
SIGOPS Operating Systems Review, volume 41, pages 45–58.
ACM, 2007.

[34] K. Kursawe and V. Shoup. Optimistic asynchronous atomic
broadcast. In in the Proceedings of International Colloqium
on Automata, Languages and Programming (ICALP05)(L
Caires, GF Italiano, L. Monteiro, Eds.) LNCS 3580. Citeseer,
2001.

[35] J. Kwon. TenderMint: Consensus without Mining, August
2014.

[36] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, 1998.

[37] L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, and
P. Saxena. Scp: A computationally-scalable byzantine
consensus protocol for blockchains. Cryptology ePrint
Archive, Report 2015/1168, 2015. http://eprint.iacr.org/.

[38] B. Lynn. On the implementation of pairing-based

cryptography. The Department of Computer Science and the
Committee on Graduate Studies of Stanford University, 2007.

[39] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: building
efficient replicated state machines for wans. In OSDI,
volume 8, pages 369–384, 2008.

[40] R. McMillan. Ibm bets big on bitcoin ledger. Wall Street
Journal.

[41] R. McMillan. How bitcoin became the honey badger of
money. Wired Magazine,
http://www.wired.com/2013/12/bitcoin_honey/, 2013.

[42] A. Mostefaoui, H. Moumen, and M. Raynal. Signature-free
asynchronous byzantine consensus with t< n/3 and o (n 2)
messages. In Proceedings of the 2014 ACM symposium on
Principles of distributed computing, pages 2–9. ACM, 2014.

[43] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
http://bitcon.org/bitcoin.pdf, 2008.

[44] NIST. Sp 800-37. Guide for the Security Certification and
Accreditation of Federal Information Systems, 2004.

[45] D. Ongaro and J. Ousterhout. In search of an understandable
consensus algorithm. In Proc. USENIX Annual Technical
Conference, pages 305–320, 2014.

[46] H. V. Ramasamy and C. Cachin. Parsimonious asynchronous
byzantine-fault-tolerant atomic broadcast. In OPODIS, pages
88–102. Springer, 2005.

[47] D. Schwartz, N. Youngs, and A. Britto. The Ripple Protocol
Consensus Algorithm, September 2014.

[48] V. Shoup. Practical threshold signatures. In EUROCRYPT,
pages 207–220. Springer, 2000.

[49] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. Bft
protocols under fire. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, NSDI’08, pages 189–204, Berkeley, CA,
USA, 2008. USENIX Association.

[50] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung.
Spin one’s wheels? byzantine fault tolerance with a spinning
primary. In Reliable Distributed Systems, 2009. SRDS’09.
28th IEEE International Symposium on, pages 135–144.
IEEE, 2009.

[51] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung.
Ebawa: Efficient byzantine agreement for wide-area networks.
In High-Assurance Systems Engineering (HASE), 2010 IEEE
12th International Symposium on, pages 10–19. IEEE, 2010.

[52] Z. Wilcox-O’Hearn. Zfec 1.4. 0. Open source code
distribution: http://pypi.python.org/pypi/ zfec, 2008.

APPENDIX
A. ATTACKING PBFT

PBFT. The PBFT protocol consists of two main workflows: a “fast
path” that provides good performance in optimistic case (when the
network is synchronous and the leader functions correctly), and a
“view-change” procedure to change leaders.

The fast path consists of three rounds of communication: PRE_PREPARE,
PREPARE, and COMMIT. The leader of a given view is responsible
for totally ordering all requests. Upon receiving a client request, the
leader multicasts a PRE_PREPARE message specifying the request
and a sequence number to all other replicas, who respond by mul-
ticasting a corresponding PREPARE message. Replicas multicast a
COMMIT message on receipt of 2 f PREPARE messages (in addition to
the corresponding PRE_PREPARE message), and execute the request
on receipt of 2 f +1 COMMIT messages (including their own).

https://ellipticnews.wordpress.com/2016/05/02/kim-barbulescu-variant-of-the-number-field-sieve-to-compute-discrete-logarithms-in-finite-fields/
https://ellipticnews.wordpress.com/2016/05/02/kim-barbulescu-variant-of-the-number-field-sieve-to-compute-discrete-logarithms-in-finite-fields/
https://ellipticnews.wordpress.com/2016/05/02/kim-barbulescu-variant-of-the-number-field-sieve-to-compute-discrete-logarithms-in-finite-fields/
http://eprint.iacr.org/
http://www.wired.com/2013/12/bitcoin_honey/
http://bitcon.org/bitcoin.pdf
http://pypi.python.org/pypi/zfec

Replicas increment their view number and multicast a VIEW_CHANGE
message to elect a new leader when a request takes too long to ex-
ecute (i.e., longer than a timeout interval), a previously initiated
view change has taken too long, or it receives f +1 VIEW_CHANGE
messages with a higher view number. The leader of the next view
is determined by the view number modulo the number of repli-
cas (thus, leadership is transferred in a round-robin manner). The
new leader multicasts a NEW_VIEW message once it receives 2 f +1
VIEW_CHANGE messages and includes them as proof of a valid view.
A replica accepts the NEW_VIEW mesage if its number is equal to or
greater than its own current view number, and resumes processing
messages as normal; however messages with lower view numbers
are ignored. The timeout interval is initialized to a fixed value (∆),
but increases by a factor of 2 with each consecutive unsuccessful
leader election.

An intermittently synchronous network that thwarts PBFT. The
scheduler does not drop or reorder any messages, but simply delays
delivering messages to whichever node is the current leader. In
particular, whenever the current leader is a faulty node, this means
that messages among all honest nodes are delivered immediately.
Shortly we provide a detailed illustration of the PBFT protocol
behaves under our attack.

To confirm our analysis, we implemented this malicious scheduler
as a proxy that intercepted and delayed all view change messages
to the new leader, and tested it against a 1200 line Python imple-
mentation of PBFT. The results and message logs we observed were
consistent with the above analysis; our replicas became stuck in a
loop requesting view changes that never succeeded.

Since this scheduler is intermittently synchronous, any purely
asynchronous protocol (including HoneyBadgerBFT) would make
good progress during periods of synchrony, regardless of preceding
intervals.

How PBFT behaves under attack. In Figure 10, we illustrate
our attack on PBFT. The scheduler does not drop or reorder any
messages, but simply delays delivering messages to whichever node
is the current leader. In particular, whenever the current leader is a
faulty node, this means that messages among all honest nodes are
delivered immediately.

We abbreviate client requests as “Req,” NEW_VIEW messages as
“N,” VIEW_CHANGE messages as “V,” and PRE_PREPARE messages
as “PP.” The subscript on a message indicates the view in which
it was sent. Here, © followed by a message indicates that this
message has been broadcast to all other nodes (called replicas) by
the replica specified by the column number, at the time specified by
the row number multiplied by the fixed timeout interval ∆. Simi-
larly, • followed by a message indicates that this message has been
delivered to the replica specified by the column number, at the time
specified by the row. As multiple VIEW_CHANGE messages for a
given view are sent to each individual node, •Vn indicates the de-
livery of all VIEW_CHANGE messages with view number n. A red
“X” appended to a delivered message indicates that the message
is ignored because the view number does not match that replica’s
current view. A “*” indicates that a timer has been started as a
result of the delivered message. “**” indicates that a replica’s view
number has incremented as a result of the delivered message(s). A
red region indicates that all broadcast operations from this replica
at this time will be delayed by ∆. A pink region indicates that the
receipt of all messages will be delayed by ∆.

In this example, the faulty replica 0 is initially the leader and with-
holds a PRE_PREPARE message for longer than the timeout period ∆.
This triggers all nodes to increment their view counter and multicast
a VIEW_CHANGE message for view number 1. The scheduler then

 0 (faulty) 1 2 3

0Δ ⚫ Req*

⚪ PP 0

view:0

⚫ Req*

view:0

⚫ Req*

view:0

⚫ Req*

view:0

1Δ ⚪ V 1
⚫ V 1 *

view:1

⚪ V 1

⚫ PP 0 X

view:1

⚪ V 1

⚫ PP 0 X

⚫ V 1 *

view:1

⚪ V 1

⚫ PP 0 X
⚫ V 1 *

view:1

3Δ ⚪ V 2

⚫ N 1 ,PP 1 X
⚫ V 2 *

view:2

⚫ V 1
⚪ N 1 ,PP 1 *
⚫ V 2 **
⚪ V 2

view:1/2

⚪ V 2

⚫ N 1 ,PP 1 X

view:2

⚪ V 2

⚫ N 1 ,PP 1 X

⚫ V 2 *

view:2

7Δ ⚪ V 3

⚫ N 2 ,PP 2 X
⚫ V 3 *

view:3

⚪ V 3

⚫ N 2 ,PP 2 X
⚫ V 3 *

view:3

⚫ V 2
⚪ N 2 ,PP 2 *
⚫ V 3 **
⚪ V 3

view:2/3

⚪ V 3
⚫ N 2 ,PP 2 X

view:3

T

im
e

Replicas

* Start timer
** Increment view
⚫ Message delivered
⚪ Message sent
X Message ignored by protocolSend withheld

Nn New View with view n
Vn View change for view n
PPn Pre-prepare from replica n
Req Client request

Delayed receive Rapid message delivery
between all honest parties

Figure 10: An intermittently synchronous scheduler that vio-
lates PBFT’s assumptions and indeed prevents it from making
progress. Only the first four phases are shown - the behavior
continues to repeat indefinitely. In the pink regions, messages
to the leader are delayed (for longer than the timeout ∆, thus vi-
olating the eventual-synchrony assumption). However, all other
messages are delivered at the ordinary rate between honest par-
ties, hence “intermittently synchronous.”

delays the delivery of all VIEW_CHANGE messages to replica 1 (the
leader in view 1). The view change operation for the remaining
nodes times out, as they do not receive a valid NEW_VIEW message
from replica 1. Nodes 0,2, and 3 then increment their view counters
to 2, and multicast another VIEW_CHANGE message. At this point,
the VIEW_CHANGE messages for view 1 are delivered to replica 1,
which responds by multicasting a NEW_VIEW and a PRE_PREPARE
message in view 1. These messages are then delivered and sub-
sequently ignored by all other nodes, as they have progressed to
view number 2. Replica 1 will then receive the VIEW_CHANGE mes-
sages for view 2, and increments its view counter accordingly. The
scheduler then delays the delivery of all VIEW_CHANGE messages to
replica 2, ensuring that the view change operation of all other nodes
times out again. This process will continue until the faulty replica
0 is again elected leader, at which point the scheduler will deliver
all messages at an accelerated rate while replica 0 withholds the
corresponding NEW_VIEW and PRE_PREPARE messages to trigger
another view change and repeat this cycle. The cycle may con-
tinue indefinitely so long as the scheduler withholds VIEW_CHANGE
messages from the intended non-faulty leader for longer than the

(exponentially increasing) timeout interval, preventing any view
changes from succeeding and stopping the protocol from making
any progress, despite the fact that at time intervals where replica
0 is the leader (0∆,8∆,64∆...) all non-faulty replicas are able to
communicate without any interference.

Intermittently synchronous networks. To more clearly illustrate
the difference between asynchronous networks, we introduce a new
network performance assumption, ∆-intermittently synchrony, which
is strictly weaker than even weak synchrony. The idea is that a ∆-
intermittently synchronous network approximates a ∆-synchronous
network in the sense that on average it delivers messages at a rate
of 1/∆. However, the delivery rate may be unevenly distributed in
time (e.g., “bursty”), delivering no messages at all during some time
intervals and delivering messages rapidly during others.

DEFINITION 2. A network is ∆-intermittently synchronous if for
any initial time T0, and for any duration D, there exists an interval
[T0,T1] such that T1 − T0 ≥ D and the number of asynchronous
rounds advanced during [T0,T1] is at least (T1−T0)/∆.

It is clearly the case that every ∆-synchronous network is also
∆-intermittently synchronous, since for every interval of duration
∆, messages sent prior to that interval are delivered by the end of
that interval. It is also clear that any intermittently synchronous
network guarantees eventual delivery (i.e., it is no weaker than the
asynchronous model).

Asynchronous protocols make progress whenever rounds of mes-
sages are delivered. Since an intermittently-synchronous network
guarantees messages are delivered on average within ∆, this means
any asynchronous protocol also makes progress at an average rate
of ∆.

B. DEFERRED PROOFS
We now restate and prove the theorems originally stated in Sec-

tion 4.5.

THEOREM 3. (Efficiency). Assuming each correct node’s queue
contains at least B distinct transactions, then the expected number
of transactions committed in an epoch is at least B

4 , resulting in
constant efficiency.

PROOF. First, we consider an experiment where the threshold-
encrypted ciphertexts are replaced with encryptions of random plain-
texts. In this case, the adversary does not learn any information about
the proposed batch for each honest party. We will first show that in
this experiment, the expected number of transactions committed in
an epoch is at least 1

4 B.
Experiment 1. Each correct node selects a random subset of B/N

distinct transactions from buf[: B], where buf[: B] denotes the first
B elements in its queue. The adversary selects N−2 f correct nodes
and let S denote the union of their proposed transactions — recall
that the ACS protocol guarantees that the agreed set contains at least
transactions proposed by N−2 f correct nodes. Let X1 denote the
number of distinct transactions in S.

The contents of buf[: B] can be adversarially chosen, and clearly,
the worst case is when buf[: B] is identical for all honest parties;
since otherwise E[X1] can only be greater.

We now consider a slightly different experiment where instead
of choosing B/N distinct elements from buf[: B]; each honest party
chooses a set of B/N elements from buf[: B] with replacement. The
expected number of distinct elements in the agreed set can only
be smaller in this stochastic process. Also note that we can bound
(N−2 f)(B/N)> B/3 since N > 3 f . Therefore, we will bound the

number of distinct items in the agreed set in Experiment 1 with the
following, much simpler experiment:

Experiment 2. Throw B
3 balls at B bins. Let X2 denote the

number of bins with at least one ball. Clearly, E[X2]≤ E[X1].
We now bound E[X2]. Since for each bin, the probability of being

empty is 1− 1
B

B/3
, the expected number of bins with at least one

ball is E[X2] = B(1− (1− 1
B)

B/3)> B(1− e−1/3)> 1
4 B.

We now claim that when the ciphertexts are instantiated with real
encryptions rather than random ones, no polynomial-time adversary
can cause the expected number of committed transactions in an
epoch to be smaller than B

4 . We can prove this by contradiction.
If some polynomial-time adversary A can cause the expectation
to be B

4 or smaller, then we can construct a distinguisher D that
can distinguish random vs. real ciphertexts by running A for Ω(λ)
many epochs. If the average number of transactions across these
epochs is smaller than 1

4 B, D guesses that the ciphertexts are real;
otherwise it guess they are random. By a standard Hoeffding bound,
D succeeds with 1− exp(−Ω(λ)) probability. Note that we rely
only on the semantic security (i.e., IND-CPA) of the underlying
threshold encryption scheme (not on a stronger definition like IND-
CCA2); this is because the adversary cannot decrypt any ciphertexts
in an epoch until the ACS subprotocol completes.

THEOREM 4. (Censorship Resilience). Suppose an adversary
passes a transaction tx as input to N− f correct nodes. Let T be the
size of the “backlog”, i.e. the difference between the total number of
transactions previously input to any correct node and the number of
transactions that have been committed. Then tx is commited within
O(T/B+λ) epochs except with negligible probability.

At the beginning of each epoch, each correct node can be in one
of two states: either (Type 1) tx appears in the front of its queue
(i.e., the first B elements), or else (Type 2) it queue has more than B
elements placed in front of tx.

The main idea is that in each epoch the adversary must include
the proposals of either at least dN/6e Type 1 nodes (a Type 1 epoch),
or at least dN/6e Type 2 nodes (a Type 2 epoch). In a Type 1 epoch,
tx is committed with probability at least 1− e−1/6. Clearly after
O(λ) such epochs, tx will likely have been committed. However, in
a Type 2 epoch, we expect to clear at least B(1−e−1/6) transactions
from the initial backlog.

We will therefore show that after O(T/B+ λ) Type 2 epochs,
with high probability all T transactions will have been committed.

LEMMA 1. After at most O(T/B+λ) Type 2 epochs, T trans-
actions from the backlog will have been committed with high proba-
bility.

Let ε > 0 be a constant, which we will use as a safety margin for
our tail bound analysis. Let X denote total number of committed
transactions after k epochs as described. Using the expectation
analysis from Theorem 3, the expected value of X is E[X]≥ kB

8 .
We choose the number of epochs to wait as k = max(λ , 8T

(1−ε)B),
which ensures that k ≥ λ and that E[X]−T ≥ εE[X].

Although the adversary may correlate its behavior from one epoch
to the next, the bound on E[X] depends only on the random choices
of the parties, which are independent. Therefore using Hoeffding’s
inequality, we have

Pr [X < T]≤ Pr [E[X]−X > εE[X]]

≤ exp(−Ω(E[X]2/kB2))≤ exp(−Ω(k)),

giving us the desired bound.

Algorithm BA (for party Pi)
• upon receiving input binput, set est0 := binput and proceed as

follows in consecutive epochs, with increasing labels r:
– multicast BVALr(estr)

– bin_valuesr := {}
– upon receiving BVALr(b) messages from f + 1 nodes, if
BVALr(b) has not been sent, multicast BVALr(b)

– upon receiving BVALr(b) messages from 2 f + 1 nodes,
bin_valuesr := bin_valuesr ∪{b}

– wait until bin_valuesr 6= /0, then
∗ multicast AUXr(w) where w ∈ bin_valuesr
∗ wait until at least (N − f) AUXr messages have been

received, such that the set of values carried by these
messages, vals are a subset of bin_valuesr (note that
bin_valuesr may continue to change as BVALr messages
are received, thus this condition may be triggered upon
arrival of either an AUXr or a BVALr message)
∗ s← Coinr.GetCoin() // See Figure 12
∗ if vals= {b}, then
· estr+1 := b
· if (b = s%2) then output b
∗ else estr+1 := s%2

• continue looping until both a value b is output in some round r,
and the value Coinr′ = b for some round r′ > r

Figure 11: Binary Byzantine Agreement from a Common Coin.
Note that in the algorithm, b ranges over {0,1}. This protocol
makes use of a sequence of common coins, labeled Coinr.

C. ASYNCHRONOUS BINARY BYZANTINE
AGREEMENT

Realizing binary agreement from a common coin. Binary agree-
ment allows nodes to agree on the value of a single bit. More
formally, binary agreement guarantees three properties:
• (Agreement) If any correct node outputs the bit b, then every

correct node outputs b.
• (Termination) If all correct nodes receive input, then every correct

node outputs a bit.
• (Validity) If any correct node outputs b, then at least one correct

node received b as input.
The validity property implies unanimity: if all of the correct nodes

receive the same input value b, then b must be the decided value.
On the other hand, if at any point two nodes receive different inputs,
then the adversary may force the decision to either value even before
the remaining nodes receive input.

We instantiate this primitive with a protocol based on crypto-
graphic common coin, which essentially act as synchronizing gad-
gets. The adversary only learns the value of the next coin after a
majority of correct nodes have committed to a vote — if the coin
matches the majority vote, then that is the decided value. The adver-
sary can influence the majority vote each round, but only until the
coin is revealed.

The Byzantine agreement algorithm from Moustefaoui et al. [42]
is shown in Figure 11. Its expected running time is O(1), and in
fact completes within O(k) rounds with probability 1−2−k. When
instantiated with the common coin defined below, the total commu-
nication complexity is O(λN2), since it uses a constant number of
common coins.

Realizing a common coin from a threshold signature scheme. A
common coin is a protocol that satisfies the following properties:
• If f +1 parties call GetCoin(), then all parties eventually receive

a common value, s.
• The value s is uniformly sampled in the range {0,1}λ , and cannot

be influenced by the adversary.
• Until at least one party calls GetCoin(), no information about s

is revealed to the adversary.
Following Cachin et al. [16], a common coin can be realized from

a unique threshold signature scheme. An (N, f)-threshold signature
scheme involves distributing shares of a signing key ski to each
of N parties. Given a message, a party using secret key ski can
compute a signature share on an arbitrary message m. Given f +1
such signature shares for message m, anyone can combine the shares
to produce a valid signature, which verifies under the public key
pk. With fewer than f +1 shares, (i.e., unless at least one honest
party deliberately computes and reveals a share), the adversary
learns nothing. We rely on an additional uniqueness property, which
guarantees that for a given public key pk, there exists exactly one
valid signature on each message m.

The idea of Cachin et al. [16] is simply to use the threshold
signature as a source of random bits, by signing a string that serves
as the “name” of the coin. This naturally allows the protocol to be
used to generate a sequence (or random-access table) of coins, and
makes it convenient to use in modular subprotocols.

Algorithm Coinsid for party Pi

sid is assumed to be a unique nonce that serves as “name” of
this common coin
• (Trusted Setup Phase): A trusted dealer runs pk,{ski} ←
ThresholdSetup to generate a common public key, as well as
secret key shares {ski}, one for each party (secret key ski is
distributed to party Pi). Note that a single setup can be used to
support a family of Coins indexed by arbitrary sid strings.
• on input GetCoin, multicast ThresholdSignpk(ski,sid)

• upon receiving at least f +1 shares, attempt to combine them
into a signature:

sig← ThresholdCombinepk({ j,s j})
if ThresholdVerifypk(sid) then deliver sig

Figure 12: A common coin based on threshold signatures [48]

We assume that ThresholdCombine is robust, in the sense that if
it is run with a set of more than f +1 signature shares, it rejects any
invalid ones. In particular, if 2 f +1 shares are provided, certainly
a valid subset of f + 1 is among them. In practice, any incorrect
shares detected this way can be used as evidence to incriminate a
node.

Concretely, we use an efficient threshold scheme [11] based on
bilinear groups and the Gap Diffie Hellman assumption. We use
TSIG to refer to this scheme. The common coin requires only one
asynchronous round to complete, and the communication cost is
O(Nλ) per node.

	Introduction
	Our Contributions
	Suggested Deployment Scenarios

	Background and Related Work
	Robust BFT Protocols
	Randomized Agreement

	The Gap Between Asynchronous and Weakly Synchronous Net- work Models
	Many Forms of Timing Assumptions
	When Weak Synchrony Fails

	The HoneyBadgerBFT Protocol
	Problem Definition: Atomic Broadcast
	Overview and Intuition
	Constructing HoneyBadgerBFT from Asynchronous Common Subset
	Instantiating ACS Efficiently
	Analysis

	Implementation and Evaluation
	Bandwidth Breakdown and Evaluation
	Experiments on Amazon EC2
	Experiments over Tor

	Conclusion
	References
	Attacking PBFT
	Deferred Proofs
	Asynchronous Binary Byzantine Agreement

