
HotStu�: BFT Consensus in the Lens of Blockchain

Maofan Yin
1,2

, Dahlia Malkhi
2
, Michael K. Reiter

2,3
, Guy Golan Gueta

2
, and Ittai Abraham

2

1
Cornell University,

2
VMware Research,

3
UNC-Chapel Hill

Abstract

We present HotStu�, a leader-based Byzantine fault-tolerant replication protocol for the partially synchronous

model. Once network communication becomes synchronous, HotStu� enables a correct leader to drive the pro-

tocol to consensus at the pace of actual (vs. maximum) network delay—a property called responsiveness—and with

communication complexity that is linear in the number of replicas. To our knowledge, HotStu� is the �rst par-

tially synchronous BFT replication protocol exhibiting these combined properties. HotStu� is built around a novel

framework that forms a bridge between classical BFT foundations and blockchains. It allows the expression of other

known protocols (DLS, PBFT, Tendermint, Casper), and ours, in a common framework.

Our deployment of HotStu� over a network with over 100 replicas achieves throughput and latency comparable

to that of BFT-SMaRt, while enjoying linear communication footprint during leader failover (vs. cubic with BFT-

SMaRt).

1 Introduction

Byzantine fault tolerance (BFT) refers to the ability of a computing system to endure arbitrary (i.e., Byzantine) failures

of its components while taking actions critical to the system’s operation. In the context of state machine replication

(SMR) [35, 47], the system as a whole provides a replicated service whose state is mirrored across n deterministic

replicas. A BFT SMR protocol is used to ensure that non-faulty replicas agree on an order of execution for client-

initiated service commands, despite the e�orts of f Byzantine replicas. This, in turn, ensures that then−f non-faulty

replicas will run commands identically and so produce the same response for each command. As is common, we are

concerned here with the partially synchronous communication model [25], whereby a known bound ∆ on message

transmission holds after some unknown global stabilization time (GST). In this model, n ≥ 3f + 1 is required

for non-faulty replicas to agree on the same commands in the same order (e.g., [12]) and progress can be ensured

deterministically only after GST [27].

When BFT SMR protocols were originally conceived, a typical target system size was n = 4 or n = 7, deployed

on a local-area network. However, the renewed interest in Byzantine fault-tolerance brought about by its application

to blockchains now demands solutions that can scale to much larger n. In contrast to permissionless blockchains such

as the one that supports Bitcoin, for example, so-called permissioned blockchains involve a �xed set of replicas that

collectively maintain an ordered ledger of commands or, in other words, that support SMR. Despite their permis-

sioned nature, numbers of replicas in the hundreds or even thousands are envisioned (e.g., [42, 30]). Additionally,

their deployment to wide-area networks requires setting ∆ to accommodate higher variability in communication

delays.

The scaling challenge. Since the introduction of PBFT [20], the �rst practical BFT replication solution in the

partial synchrony model, numerous BFT solutions were built around its core two-phase paradigm. The practical

aspect is that a stable leader can drive a consensus decision in just two rounds of message exchanges. The �rst phase

guarantees proposal uniqueness through the formation of a quorum certi�cate (QC) consisting of (n−f) votes. The

second phase guarantees that the next leader can convince replicas to vote for a safe proposal.

The algorithm for a new leader to collect information and propose it to replicas—called a view-change—is the

epicenter of replication. Unfortunately, view-change based on the two-phase paradigm is far from simple [38], is

bug-prone [4], and incurs a signi�cant communication penalty for even moderate system sizes. It requires the new

leader to relay information from (n − f) replicas, each reporting its own highest known QC. Even counting just

1

ar
X

iv
:1

80
3.

05
06

9v
6

 [
cs

.D
C

]
 2

3
Ju

l 2
01

9

authenticators (digital signatures or message authentication codes), conveying a new proposal has a communication

footprint of O(n3) authenticators in PBFT, and variants that combine multiple authenticators into one via threshold

digital signatures (e.g., [18, 30]) still send O(n2) authenticators. The total number of authenticators transmitted if

O(n) view-changes occur before a single consensus decision is reached is O(n4) in PBFT, and even with threshold

signatures is O(n3). This scaling challenge plagues not only PBFT, but many other protocols developed since then,

e.g., Prime [9], Zyzzyva [34], Upright [22], BFT-SMaRt [13], 700BFT [11], and SBFT [30].

HotStu� revolves around a three-phase core, allowing a new leader to simply pick the highest QC it knows of.

It introduces a second phase that allows replicas to “change their mind” after voting in the phase, without requiring

a leader proof at all. This alleviates the above complexity, and at the same time considerably simpli�es the leader

replacement protocol. Last, having (almost) canonized all the phases, it is very easy to pipeline HotStu�, and to

frequently rotate leaders.

To our knowledge, only BFT protocols in the blockchain arena like Tendermint [15, 16] and Casper [17] fol-

low such a simple leader regime. However, these systems are built around a synchronous core, wherein proposals

are made in pre-determined intervals that must accommodate the worst-case time it takes to propagate messages

over a wide-area peer-to-peer gossip network. In doing so, they forego a hallmark of most practical BFT SMR solu-

tions (including those listed above), namely optimistic responsiveness [42]. Informally, responsiveness requires that a

non-faulty leader, once designated, can drive the protocol to consensus in time depending only on the actual mes-

sage delays, independent of any known upper bound on message transmission delays [10]. More appropriate for

our model is optimistic responsiveness, which requires responsiveness only in bene�cial (and hopefully common)

circumstances—here, after GST is reached. Optimistic or not, responsiveness is precluded with designs such as Ten-

dermint/Casper. The crux of the di�culty is that there may exist an honest replica that has the highest QC, but the

leader does not know about it. One can build scenarios where this prevents progress ad in�nitum (see Section 4.4

for a detailed liveless scenario). Indeed, failing to incorporate necessary delays at crucial protocol steps can result in

losing liveness outright, as has been reported in several existing deployments, e.g., see [3, 2, 19].

Our contributions. To our knowledge, we present the �rst BFT SMR protocol, called HotStu�, to achieve the

following two properties:

• Linear View Change: After GST, any correct leader, once designated, sends only O(n) authenticators to

drive a consensus decision. This includes the case where a leader is replaced. Consequently, communication

costs to reach consensus after GST is O(n2) authenticators in the worst case of cascading leader failures.

• Optimistic Responsiveness: After GST, any correct leader, once designated, needs to wait just for the �rst

n − f responses to guarantee that it can create a proposal that will make progress. This includes the case

where a leader is replaced.

Another feature of HotStu� is that the costs for a new leader to drive the protocol to consensus is no greater

than that for the current leader. As such, HotStu� supports frequent succession of leaders, which has been argued

is useful in blockchain contexts for ensuring chain quality [28].

HotStu� achieves these properties by adding another phase to each view, a small price to latency in return

for considerably simplifying the leader replacement protocol. This exchange incurs only the actual network delays,

which are typically far smaller than ∆ in practice. As such, we expect this added latency to be much smaller than that

incurred by previous protocols that forgo responsiveness to achieve linear view-change. Furthermore, throughput

is not a�ected due to the e�cient pipeline we introduce in Section 5.

In addition to the theoretical contribution, HotStu� also provides insights in understanding BFT replication in

general and instantiating the protocol in practice (see Section 6):

• A framework for BFT replication over graphs of nodes. Safety is speci�ed via voting and commit graph rules.

Liveness is speci�ed separately via a Pacemaker that extends the graph with new nodes.

• A casting of several known protocols (DLS, PBFT, Tendermint, and Casper) and one new (ours, HotStu�), in

this framework.

HotStu� has the additional bene�t of being remarkably simple, owing in part to its economy of mechanism: There

are only two message types and simple rules to determine how a replica treats each. Safety is speci�ed via voting

and commit rules over graphs of nodes. The mechanisms needed to achieve liveness are encapsulated within a

Pacemaker, cleanly separated from the mechanisms needed for safety. At the same time, it is expressive in that it

2

allows the representation of several known protocols (DLS, PBFT, Tendermint, and Casper) as minor variations. In

part this �exibility derives from its operation over a graph of nodes, in a way that forms a bridge between classical

BFT foundations and modern blockchains.

We describe a prototype implementation and a preliminary evaluation of HotStu�. Deployed over a network with

over a hundred replicas, HotStu� achieves throughput and latency comparable to, and sometimes exceeding, those

of mature systems such as BFT-SMaRt, whose code complexity far exceeds that of HotStu�. We further demonstrate

that the communication footprint of HotStu� remains constant in face of frequent leader replacements, whereas

BFT-SMaRt grows quadratically with the number of replicas.

Protocol

Authenticator complexity

Responsiveness

Correct leader Leader failure (view-change) f leader failures

DLS [25] O(n4) O(n4) O(n4)
PBFT [20] O(n2) O(n3) O(fn3) X
SBFT [30] O(n) O(n2) O(fn2) X
Tendermint [15] / Casper [17] O(n2) O(n2) O(fn2)

Tendermint
*

/ Casper
* O(n) O(n) O(fn)

HotStu� O(n) O(n) O(fn) !

*

Signatures can be combined using threshold signatures, though this optimization is not mentioned in their original works.

Table 1: Performance of selected protocols after GST.

2 Related work

Reaching consensus in face of Byzantine failures was formulated as the Byzantine Generals Problem by Lamport et

al. [37], who also coined the term “Byzantine failures”. The �rst synchronous solution was given by Pease et al. [43],

and later improved by Dolev and Strong [24]. The improved protocol has O(n3) communication complexity, which

was shown optimal by Dolev and Reischuk [23]. A leader-based synchronous protocol that uses randomness was

given by Katz and Koo [32], showing an expected constant-round solution with (n− 1)/2 resilience.

Meanwhile, in the asynchronous settings, Fischer et al. [27] showed that the problem is unsolvable determin-

istically in asynchronous setting in face of a single failure. Furthermore, an (n − 1)/3 resilience bound for any

asynchronous solution was proven by Ben-Or [12]. Two approaches were devised to circumvent the impossibility.

One relies on randomness, initially shown by Ben-Or [12], using independently random coin �ips by processes until

they happen to converge to consensus. Later works used cryptographic methods to share an unpredictable coin and

drive complexities down to constant expected rounds, and O(n3) communication [18].

The second approach relies on partial synchrony, �rst shown by Dwork, Lynch, and Stockmeyer (DLS) [25]. This

protocol preserves safety during asynchronous periods, and after the system becomes synchronous, DLS guarantees

termination. Once synchrony is maintained, DLS incurs O(n4) total communication and O(n) rounds per decision.

State machine replication relies on consensus at its core to order client requests so that correct replicas execute

them in this order. The recurring need for consensus in SMR led Lamport to devise Paxos [36], a protocol that

operates an e�cient pipeline in which a stable leader drives decisions with linear communication and one round-

trip. A similar emphasis led Castro and Liskov [20, 21] to develop an e�cient leader-based Byzantine SMR protocol

named PBFT, whose stable leader requires O(n2) communication and two round-trips per decision, and the leader

replacement protocol incurs O(n3) communication. PBFT has been deployed in several systems, including BFT-

SMaRt [13]. Kotla et al. introduced an optimistic linear path into PBFT in a protocol named Zyzzyva [34], which

was utilized in several systems, e.g., Upright [22] and Byzcoin [33]. The optimistic path has linear complexity, while

the leader replacement protocol remains O(n3). Abraham et al. [4] later exposed a safety violation in Zyzzyva, and

presented �xes [5, 30]. On the other hand, to also reduce the complexity of the protocol itself, Song et al. proposed

Bosco [49], a simple one-step protocol with low latency on the optimistic path, requiring 5f + 1 replicas. SBFT [30]

introduces anO(n2) communication view-change protocol that supports a stable leader protocol with optimistically

linear, one round-trip decisions. It reduces the communication complexity by harnessing two methods: a collector-

based communication paradigm by Reiter [45], and signature combining via threshold cryptography on protocol

votes by Cachin et al. [18].

A leader-based Byzantine SMR protocol that employs randomization was presented by Ramasamy et al. [44], and

a leaderless variant named HoneyBadgerBFT was developed by Miller et al. [39]. At their core, these randomized

3

Byzantine solutions employ randomized asynchronous Byzantine consensus, whose best known communication

complexity was O(n3) (see above), amortizing the cost via batching. However, most recently, based on the idea in

this HotStu� paper, a parallel submission to PODC’19 [8] further improves the communication complexity toO(n2).

Bitcoin’s core is a protocol known as Nakamoto Consensus [40], a synchronous protocol with only probabilistic

safety guarantee and no �nality (see analysis in [28, 41, 6]). It operates in a permissionless model where participants

are unknown, and resilience is kept via Proof-of-Work. As described above, recent blockchain solutions hybridize

Proof-of-Work solutions with classical BFT solutions in various ways [26, 33, 7, 17, 29, 31, 42]. The need to address

rotating leaders in these hybrid solutions and others provide the motivation behind HotStu�.

3 Model

We consider a system consisting of a �xed set of n = 3f + 1 replicas, indexed by i ∈ [n] where [n] = {1, . . . , n}. A

set F ⊂ [n] of up to f = |F | replicas are Byzantine faulty, and the remaining ones are correct. We will often refer

to the Byzantine replicas as being coordinated by an adversary, which learns all internal state held by these replicas

(including their cryptographic keys, see below).

Network communication is point-to-point, authenticated and reliable: one correct replica receives a message

from another correct replica if and only if the latter sent that message to the former. When we refer to a “broadcast”,

it involves the broadcaster, if correct, sending the same point-to-point messages to all replicas, including itself.

We adopt the partial synchrony model of Dwork et al. [25], where there is a known bound ∆ and an unknown

Global Stabilization Time (GST), such that after GST, all transmissions between two correct replicas arrive within

time ∆. Our protocol will ensure safety always, and will guarantee progress within a bounded duration after GST.

(Guaranteeing progress before GST is impossible [27].) In practice, our protocol will guarantee progress if the system

remains stable (i.e., if messages arrive within ∆ time) for su�ciently long after GST, though assuming that it does

so forever simpli�es discussion.

Cryptographic primitives. HotStu� makes use of threshold signatures [48, 18, 14]. In a (k, n)-threshold signa-

ture scheme, there is a single public key held by all replicas, and each of the n replicas holds a distinct private

key. The i-th replica can use its private key to contribute a partial signature ρi ← tsigni(m) on message m.

Partial signatures {ρi}i∈I , where |I| = k and each ρi ← tsigni(m), can be used to produce a digital signature

σ ← tcombine(m, {ρi}i∈I) on m. Any other replica can verify the signature using the public key and the func-

tion tverify . We require that if ρi ← tsigni(m) for each i ∈ I , |I| = k, and if σ ← tcombine(m, {ρi}i∈I), then

tverify(m,σ) returns true. However, given oracle access to oracles {tsigni(·)}i∈[n]\F , an adversary who queries

tsigni(m) on strictly fewer than k − f of these oracles has negligible probability of producing a signature σ for the

message m (i.e., such that tverify(m,σ) returns true). Throughout this paper, we use a threshold of k = 2f + 1.

Again, we will typically leave invocations of tverify implicit in our protocol descriptions.

We also require a cryptographic hash function h (also called a message digest function), which maps an arbitrary-

length input to a �xed-length output. The hash function must be collision resistant [46], which informally requires

that the probability of an adversary producing inputs m and m′ such that h(m) = h(m′) is negligible. As such,

h(m) can serve as an identi�er for a unique input m in the protocol.

Complexity measure. The complexity measure we care about is authenticator complexity, which speci�cally is

the sum, over all replicas i ∈ [n], of the number of authenticators received by replica i in the protocol to reach

a consensus decision after GST. (Again, before GST, a consensus decision might not be reached at all in the worst

case [27].) Here, an authenticator is either a partial signature or a signature. Authenticator complexity is a useful

measure of communication complexity for several reasons. First, like bit complexity and unlike message complexity,

it hides unnecessary details about the transmission topology. For example, n messages carrying one authenticator

count the same as one message carrying n authenticators. Second, authenticator complexity is better suited than bit

complexity for capturing costs in protocols like ours that reach consensus repeatedly, where each consensus decision

(or each view proposed on the way to that consensus decision) is identi�ed by a monotonically increasing counter.

That is, because such a counter increases inde�nitely, the bit complexity of a protocol that sends such a counter

cannot be bounded. Third, since in practice, cryptographic operations to produce or verify digital signatures and to

produce or combine partial signatures are typically the most computationally intensive operations in protocols that

use them, the authenticator complexity provides insight into the computational burden of the protocol, as well.

4

4 Basic HotStu�

HotStu� solves the State Machine Replication (SMR) problem. At the core of SMR is a protocol for deciding on a

growing log of command requests by clients. A group of state-machine replicas apply commands in sequence order

consistently. A client sends a command request to all replicas, and waits for responses from (f + 1) of them. For the

most part, we omit the client from the discussion, and defer to the standard literature for issues regarding numbering

and de-duplication of client requests.

The Basic HotStu� solution is presented in Algorithm 2. The protocol works in a succession of views numbered

with monotonically increasing view numbers. Each viewNumber has a unique dedicated leader known to all. Each

replica stores a tree of pending commands as its local data structure. Each tree node contains a proposed command

(or a batch of them), metadata associated with the protocol, and a parent link. The branch led by a given node is

the path from the node all the way to the tree root by visiting parent links. During the protocol, a monotonically

growing branch becomes committed. To become committed, the leader of a particular view proposing the branch

must collect votes from a quorum of (n− f) replicas in three phases, prepare, pre-commit, and commit.

A key ingredient in the protocol is a collection of (n − f) votes over a leader proposal, referred to as a quorum

certi�cate (or “QC” in short). The QC is associated with a particular node and a view number. The tcombine utility

employs a threshold signature scheme to generate a representation of (n− f) signed votes as a single authenticator.

Below we give an operational description of the protocol logic by phases, followed by a precise speci�cation in

Algorithm 2, and conclude the section with safety, liveness, and complexity arguments.

4.1 Phases

prepare phase. The protocol for a new leader starts by collecting new-view messages from (n − f) replicas.

The new-view message is sent by a replica as it transitions into viewNumber (including the �rst view) and carries

the highest prepareQC that the replica received (⊥ if none), as described below.

The leader processes these messages in order to select a branch that has the highest preceding view in which

a prepareQC was formed. The leader selects the prepareQC with the highest view, denoted highQC , among the

new-view messages. Because highQC is the highest among (n− f) replicas, no higher view could have reached a

commit decision. The branch led by highQC .node is therefore safe.

Collecting new-view messages to select a safe branch may be omitted by an incumbent leader, who may simply

select its own highest prepareQC as highQC . We defer this optimization to Section 6 and only describe a single,

uni�ed leader protocol in this section. Note that, di�erent from PBFT-like protocols, including this step in the leader

protocol is straightforward, and it incurs the same, linear overhead as all the other phases of the protocol, regardless

of the situation.

The leader uses the createLeaf method to extend the tail of highQC .node with a new proposal. The method

creates a new leaf node as a child and embeds a digest of the parent in the child node. The leader then sends the new

node in a prepare message to all other replicas. The proposal carries highQC for safety justi�cation.

Upon receiving the prepare message for the current view from the leader, replica r uses the safeNode predicate

to determine whether to accept it. If it is accepted, the replica sends a prepare vote with a partial signature (produced

by tsignr) for the proposal to the leader.

safeNodepredicate. The safeNode predicate is a core ingredient of the protocol. It examines a proposal message

m carrying a QC justi�cation m.justify , and determines whether m.node is safe to accept. The safety rule to accept

a proposal is the branch of m.node extends from the currently locked node lockedQC .node . On the other hand, the

liveness rule is the replica will accept m if m.justify has a higher view than the current lockedQC . The predicate is

true as long as either one of two rules holds.

pre-commit phase. When the leader receives (n − f) prepare votes for the current proposal curProposal , it

combines them into a prepareQC . The leader broadcasts prepareQC in pre-commit messages. A replica responds

to the leader with pre-commit vote having a signed digest of the proposal.

commit phase. The commit phase is similar to pre-commit phase. When the leader receives (n−f) pre-commit
votes, it combines them into a precommitQC and broadcasts it in commit messages; replicas respond to it with a

commit vote. Importantly, a replica becomes locked on the precommitQC at this point by setting its lockedQC
to precommitQC (Line 25 of Algorithm 2). This is crucial to guard the safety of the proposal in case it becomes a

consensus decision.

5

decide phase. When the leader receives (n − f) commit votes, it combines them into a commitQC . Once

the leader has assembled a commitQC , it sends it in a decide message to all other replicas. Upon receiving a

decide message, a replica considers the proposal embodied in the commitQC a committed decision, and executes

the commands in the committed branch. The replica increments viewNumber and starts the next view.

nextView interrupt. In all phases, a replica waits for a message at view viewNumber for a timeout period,

determined by an auxiliary nextView(viewNumber) utility. If nextView(viewNumber) interrupts waiting, the

replica also increments viewNumber and starts the next view.

4.2 Data Structures

Messages. A message m in the protocol has a �xed set of �elds that are populated using the Msg() utility shown

in Algorithm 1. m is automatically stamped with curView , the sender’s current view number. Each message has

a type m.type ∈ {new-view, prepare, pre-commit, commit,decide}. m.node contains a proposed node (the leaf

node of a proposed branch). There is an optional �eld m.justify . The leader always uses this �eld to carry the QC

for the di�erent phases. Replicas use it in new-view messages to carry the highest prepareQC . Each message sent

in a replica role contains a partial signature m.partialSig by the sender over the tuple 〈m.type , m.viewNumber ,

m.node〉, which is added in the voteMsg() utility.

Quorum certi�cates. A Quorum Certi�cate (QC) over a tuple 〈type, viewNumber ,node〉 is a data type that com-

bines a collection of signatures for the same tuple signed by (n − f) replicas. Given a QC qc, we use qc.type ,

qc.viewNumber , qc.node to refer to the matching �elds of the original tuple.

Tree and branches. Each command is wrapped in a node that additionally contains a parent link which could be

a hash digest of the parent node. We omit the implementation details from the pseudocode. During the protocol, a

replica delivers a message only after the branch led by the node is already in its local tree. In practice, a recipient

who falls behind can catch up by fetching missing nodes from other replicas. For brevity, these details are also

omitted from the pseudocode. Two branches are con�icting if neither one is an extension of the other. Two nodes

are con�icting if the branches led by them are con�icting.

Bookkeeping variables. A replica uses additional local variables for bookkeeping the protocol state: (i) a viewNumber ,

initially 1 and incremented either by �nishing a decision or by a nextView interrupt; (ii) a locked quorum certi�cate

lockedQC , initially ⊥, storing the highest QC for which a replica voted commit; and (iii) a prepareQC , initially ⊥,

storing the highest QC for which a replica voted pre-commit. Additionally, in order to incrementally execute a com-

mitted log of commands, the replica maintains the highest node whose branch has been executed. This is omitted

below for brevity.

4.3 Protocol Speci�cation

The protocol given in Algorithm 2 is described as an iterated view-by-view loop. In each view, a replica performs

phases in succession based on its role, described as a succession of “as” blocks. A replica can have more than one role.

For example, a leader is also a (normal) replica. Execution of as blocks across roles can be proceeded concurrently.

The execution of each as block is atomic. A nextView interrupt aborts all operations in any as block, and jumps to

the “Finally” block.

Algorithm 1 Utilities (for replica r).

1: functionMsg(type , node , qc)

2: m.type ← type
3: m.viewNumber ← curView
4: m.node ← node
5: m.justify ← qc
6: returnm
7: function voteMsg(type , node , qc)

8: m← Msg(type,node, qc)
9: m.partialSig ← tsignr(〈m.type,m.viewNumber ,m.node〉)

10: returnm
11: procedure createLeaf(parent , cmd)

12: b.parent ← parent

6

13: b.cmd ← cmd
14: return b
15: function QC(V)

16: qc.type ← m.type : m ∈ V
17: qc.viewNumber ← m.viewNumber : m ∈ V
18: qc.node ← m.node : m ∈ V
19: qc.sig ← tcombine(〈qc.type, qc.viewNumber , qc.node〉, {m.partialSig | m ∈ V })
20: return qc

21: function matchingMsg(m, t, v)

22: return (m.type = t) ∧ (m.viewNumber = v)

23: function matchingQC(qc, t, v)

24: return (qc.type = t) ∧ (qc.viewNumber = v)

25: function safeNode(node , qc)

26: return (node extends from lockedQC .node) ∨ // safety rule

27: (qc.viewNumber > lockedQC .viewNumber) // liveness rule

Algorithm 2 Basic HotStu� protocol (for replica r).

1: for curView ← 1, 2, 3, . . . do
. prepare phase

2: as a leader // r = leader(curView)
// we assume special new-view messages from view 0

3: wait for (n− f) new-view messages: M ← {m | matchingMsg(m,new-view, curView − 1)}

4: highQC ←
(
argmax

m∈M
{m.justify .viewNumber}

)
.justify

5: curProposal ← createLeaf(highQC .node, client’s command)
6: broadcast Msg(prepare, curProposal , highQC)

7: as a replica

8: wait for message m : matchingMsg(m, prepare, curView) from leader(curView)
9: if m.node extends from m.justify .node ∧

safeNode(m.node,m.justify) then
10: send voteMsg(prepare,m.node,⊥) to leader(curView)

. pre-commit phase

11: as a leader

12: wait for (n− f) votes: V ← {v | matchingMsg(v, prepare, curView)}
13: prepareQC ← QC(V)
14: broadcast Msg(pre-commit,⊥, prepareQC)

15: as a replica

16: wait for message m : matchingQC(m.justify , prepare, curView) from leader(curView)
17: prepareQC ← m.justify
18: send voteMsg(pre-commit,m.justify .node,⊥) to leader(curView)

. commit phase

19: as a leader

20: wait for (n− f) votes: V ← {v | matchingMsg(v, pre-commit, curView)}
21: precommitQC ← QC(V)
22: broadcast Msg(commit,⊥, precommitQC)

23: as a replica

24: wait for message m : matchingQC(m.justify , pre-commit, curView) from leader(curView)
25: lockedQC ← m.justify
26: send voteMsg(commit,m.justify .node,⊥) to leader(curView)

. decide phase

27: as a leader

28: wait for (n− f) votes: V ← {v | matchingMsg(v, commit, curView)}
29: commitQC ← QC(V)
30: broadcast Msg(decide,⊥, commitQC)

31: as a replica

32: wait for message m from leader(curView)
33: wait for message m : matchingQC(m.justify , commit, curView) from leader(curView)

7

34: execute new commands through m.justify .node , respond to clients

. Finally

35: nextView interrupt: goto this line if nextView(curView) is called during “wait for” in any phase

36: send Msg(new-view,⊥, prepareQC) to leader(curView + 1)

4.4 Safety, Liveness, and Complexity

Safety. We �rst de�ne a quorum certi�cate qc to be valid if tverify(〈qc.type , qc.viewNumber , qc.node〉, qc.sig)
is true.

Lemma 1. For any valid qc1, qc2 in which qc1.type = qc2.type and qc1.node con�icts with qc2.node , we have

qc1.viewNumber 6= qc2.viewNumber .

Proof. To show a contradiction, suppose qc1.viewNumber = qc2.viewNumber = v. Because a valid QC can be

formed only with n − f = 2f + 1 votes (i.e., partial signatures) for it, there must be a correct replica who voted

twice in the same phase of v. This is impossible because the pseudocode allows voting only once for each phase in

each view.

Theorem 2. If w and b are con�icting nodes, then they cannot be both committed, each by a correct replica.

Proof. We prove this important theorem by contradiction. Let qc1 denote a valid commitQC (i.e., qc1.type =
commit) such that qc1.node = w, and qc2 denote a valid commitQC such that qc2.node = b. Denote v1 =
qc1.viewNumber and v2 = qc2.viewNumber . By Lemma 1, v1 6= v2. W.l.o.g. assume v1 < v2.

We will now denote by vs the lowest view higher than v1 for which there is a valid prepareQC , qcs (i.e.,

qcs.type = prepare) where qcs.viewNumber = vs, and qcs.node con�icts with w. Formally, we de�ne the fol-

lowing predicate for any prepareQC :

E(prepareQC) :=(v1 < prepareQC .viewNumber ≤ v2) ∧ (prepareQC .node con�icts with w).

We can now set the �rst switching point qcs:

qcs := arg min
prepareQC

{prepareQC .viewNumber | prepareQC is valid ∧ E(prepareQC)} .

Note that, by assumption such a qcs must exist; for example, qcs could be the prepareQC formed in view v2.

Of the correct replicas that sent a partial result tsignr(〈qc1.type , qc1.viewNumber , qc1.node〉), let r be the �rst

that contributed tsignr(〈qcs.type , qcs.viewNumber , qcs.node〉); such an rmust exist since otherwise, one of qc1.sig
and qcs.sig could not have been created. During view v1, replica r updates its lock lockedQC to a precommitQC
on w at Line 25 of Algorithm 2. Due to the minimality of vs, the lock that replica r has on the branch led by w is not

changed before qcs is formed. Otherwise r must have seen some other prepareQC with lower view because Line 17

comes before Line 25, contradicting to the minimality. Now consider the invocation of safeNode in the prepare

phase of view vs by replica r, with a message m carrying m.node = qcs.node . By assumption, m.node con�icts

with lockedQC .node , and so the disjunct at Line 26 of Algorithm 1 is false. Moreover, m.justify .viewNumber > v1
would violate the minimality of vs, and so the disjunct in Line 27 of Algorithm 1 is also false. Thus, safeNode must

return false and r cannot cast a prepare vote on the con�icting branch in view vs, a contradiction.

Liveness. There are two functions left unde�ned in the previous section: leader and nextView. Their de�nition

will not a�ect safety of the protocol, though they do matter to liveness. Before giving candidate de�nitions for them,

we �rst show that after GST, there is a bounded duration Tf such that if all correct replicas remain in view v during

Tf and the leader for view v is correct, then a decision is reached. Below, we say that qc1 and qc2 match if qc1 and

qc2 are valid, qc1.node = qc2.node , and qc1.viewNumber = qc2.viewNumber .

Lemma 3. If a correct replica is locked such that lockedQC = precommitQC , then at least f+1 correct replicas voted

for some prepareQC matching lockedQC .

Proof. Suppose replica r is locked on precommitQC . Then, (n − f) votes were cast for the matching prepareQC
in the prepare phase (Line 10 of Algorithm 2), out of which at least f + 1 were from correct replicas.

8

11766
高亮

11766
高亮

Theorem 4. After GST, there exists a bounded time period Tf such that if all correct replicas remain in view v during
Tf and the leader for view v is correct, then a decision is reached.

Proof. Starting in a new view, the leader collects (n − f) new-view messages and calculates its highQC before

broadcasting a prepare messsage. Suppose among all replicas (including the leader itself), the highest kept lock

is lockedQC = precommitQC ∗. By Lemma 3, we know there are at least f + 1 correct replicas that voted for a

prepareQC ∗matching precommitQC ∗, and have already sent them to the leader in theirnew-viewmessages. Thus,

the leader must learn a matching prepareQC ∗ in at least one of these new-view messages and use it as highQC in

its prepare message. By the assumption, all correct replicas are synchronized in their view and the leader is non-

faulty. Therefore, all correct replicas will vote in the prepare phase, since in safeNode, the condition on Line 27

of Algorithm 1 is satis�ed (even if the node in the message con�icts with a replica’s stale lockedQC .node , and so

Line 26 is not). Then, after the leader assembles a valid prepareQC for this view, all replicas will vote in all the

following phases, leading to a new decision. After GST, the duration Tf for these phases to complete is of bounded

length.

The protocol is Optimistically Responsive because there is no explicit “wait-for-∆” step, and the logical disjunc-

tion in safeNode is used to override a stale lock with the help of the three-phase paradigm.

We now provide simple constructions for leader andnextView that su�ce to ensure that after GST, eventually a

view will be reached in which the leader is correct and all correct replicas remain in this view for Tf time. It su�ces

for leader to return some deterministic mapping from view number to a replica, eventually rotating through all

replicas. A possible solution for nextView is to utilize an exponential back-o� mechanism that maintains a timeout

interval. Then a timer is set upon entering each view. When the timer goes o� without making any decision, the

replica doubles the interval and calls nextView to advance the view. Since the interval is doubled at each time, the

waiting intervals of all correct replicas will eventually have at least Tf overlap in common, during which the leader

could drive a decision.

Livelessness with two-phases. We now brie�y demonstrate an in�nite non-deciding scenario for a “two-phase”

HotStu�. This explains the necessity for introducing a synchronous delay in Casper and Tendermint, and hence for

abandoning (Optimistic) Responsiveness.

In the two-phase HotStu� variant, we omit the pre-commit phase and proceed directly to commit. A replica

becomes locked when it votes on a prepareQC . Suppose, in view v, a leader proposes b. It completes the prepare

phase, and some replica rv votes for the prepareQC , say qc, such that qc.node = b. Hence, rv becomes locked on

qc. An asynchronous network scheduling causes the rest of the replicas to move to view v+ 1 without receiving qc.

We now repeat ad in�nitum the following single-view transcript. We start view v + 1 with only rv holding

the highest prepareQC (i.e. qc) in the system. The new leader l collects new-view messages from 2f + 1 replicas

excluding rv . The highest prepareQC among these, qc′, has view v − 1 and b′ = qc′.node con�icts with b. l then

proposes b′′ which extends b′, to which 2f honest replicas respond with a vote, but rv rejects it because it is locked

on qc, b′′ con�icts with b and qc′ is lower than qc. Eventaully, 2f replicas give up and move to the next view. Just

then, a faulty replica responds to l’s proposal, l then puts together a prepareQC (v+1, b′′) and one replica, say rv+1

votes for it and becomes locked on it.

Complexity. In each phase of HotStu�, only the leader broadcasts to all replicas while the replicas respond to

the sender once with a partial signature to certify the vote. In the leader’s message, the QC consists of a proof of

(n−f) votes collected previously, which can be encoded by a single threshold signature. In a replica’s response, the

partial signature from that replica is the only authenticator. Therefore, in each phase, there are O(n) authenticators

received in total. As there is a constant number of phases, the overall complexity per view is O(n).

5 Chained HotStu�

It takes three phases for a Basic HotStu� leader to commit a proposal. These phases are not doing “useful” work

except collecting votes from replicas, and they are all very similar. In Chained HotStu�, we improve the Basic

HotStu� protocol utility while at the same time considerably simplifying it. The idea is to change the view on every

prepare phase, so each proposal has its own view. This reduces the number of message types and allows for pipelining

of decisions. A similar approach for message type reduction was suggested in Casper [1].

9

· · · · · ·QC cmd1

v1

QC v1 cmd2

v2

QC v2 cmd3

v3

QC v3 cmd4

v4

QC v4 cmd5

v5

prepare

decide

commit

pre-commit

pre-commit

prepare

decide

commit

commit

pre-commit

prepare

decide

decide

commit

pre-commit

prepare

prepare

decide

commit

pre-commit

cmd1

cmd2

cmd3

cmd4

cmd5

Figure 1: Chained HotStu� is a pipelined Basic HotStu� where a QC can serve in di�erent phases simultaneously.

· · · · · ·cmd QC cmd QC cmd QC cmd QC cmd

b : v3 b′ : v4 b′′ : v5 b∗ : v6 v8

Figure 2: The nodes at views v4, v5, v6 form a Three-Chain. The node at view v8 does not make a valid One-Chain

in Chained HotStu� (but it is a valid One-Chain after relaxation in the algorithm of Section 6).

More speci�cally, in Chained HotStu� the votes over a prepare phase are collected in a view by the leader into a

genericQC . Then the genericQC is relayed to the leader of the next view, essentially delegating responsibility for

the next phase, which would have been pre-commit, to the next leader. However, the next leader does not actually

carry a pre-commit phase, but instead initiates a new prepare phase and adds its own proposal. This prepare

phase for view v + 1 simultaneously serves as the pre-commit phase for view v. The prepare phase for view v + 2
simultaneously serves as the pre-commit phase for view v+ 1 and as the commit phase for view v. This is possible

because all the phases have identical structure.

The pipeline of Basic HotStu� protocol phases embedded in a chain of Chained HotStu� proposals is depicted in

Figure 1. Views v1, v2, v3 of Chained HotStu� serve as the prepare, pre-commit, and commit Basic HotStu� phases

for cmd1 proposed in v1. This command becomes committed by the end of v4. Views v2, v3, v4 serve as the three

Basic HotStu� phases for cmd2 proposed in v2, and it becomes committed by the end of v5. Additional proposals

generated in these phases continue the pipeline similarly, and are denoted by dashed boxes. In Figure 1, a single

arrow denotes the b.parent �eld for a node b, and a double arrow denotes b.justify .node .

Hence, there are only two types of messages in Chained HotStu�, a new-view message and generic-phase

generic message. The generic QC functions in all logically pipelined phases. We next explain the mechanisms

in the pipeline to take care of locking and committing, which occur only in the commit and decide phases of Basic

HotStu�.

Dummy nodes. The genericQC used by a leader in some view viewNumber may not directly reference the pro-

posal of the preceding view (viewNumber−1). The reason is that the leader of a preceding view fails to obtain a QC,

either because there are con�icting proposals, or due to a benign crash. To simplify the tree structure, createLeaf

extends genericQC .node with blank nodes up to the height (the number of parent links on a node’s branch) of the

proposing view, so view-numbers are equated with node heights. As a result, the QC embedded in a node b may not

refer to its parent, i.e., b.justify .node may not equal b.parent (the last node in Figure 2).

One-Chain, Two-Chain, and Three-Chain. When a node b∗ carries a QC that refers to a direct parent, i.e.,

b∗.justify .node = b∗.parent , we say that it forms a One-Chain. Denote by b′′ = b∗.justify .node . Node b∗ forms a

Two-Chain, if in addition to forming a One-Chain, b′′.justify .node = b′′.parent . It forms a Three-Chain, if b′′ forms

a Two-Chain.

Looking at chain b = b′.justify .node , b′ = b′′.justify .node , b′′ = b∗.justify .node , ancestry gaps might occur at

any one of the nodes. These situations are similar to a leader of Basic HotStu� failing to complete any one of three

phases, and getting interrupted to the next view by nextView.

If b∗ forms a One-Chain, the prepare phase of b′′ has succeeded. Hence, when a replica votes for b∗, it should

remember genericQC ← b∗.justify . We remark that it is safe to update genericQC even when a One-Chain is not

direct, so long as it is higher than the current genericQC . In the implementation code described in Section 6, we

indeed update genericQC in this case.

10

If b∗ forms a Two-Chain, then the pre-commit phase of b′ has succeeded. The replica should therefore update

lockedQC ← b′′.justify . Again, we remark that the lock can be updated even when a Two-Chain is not direct—safety

will not break—and indeed, this is given in the implementation code in Section 6.

Finally, if b∗ forms a Three-Chain, the commit phase of b has succeeded, and b becomes a committed decision.

Algorithm 3 shows the pseudocode for Chained HotStu�. The proof of safety given by Theorem 5 in Appendix A

is similar to the one for Basic HotStu�. We require the QC in a valid node refers to its ancestor. For brevity, we

assume the constraint always holds and omit checking in the code.

Algorithm 3 Chained HotStu� protocol.

1: procedure createLeaf(parent , cmd , qc)

2: b.parent ← branch extending with blanks from parent to height curView
3: b.cmd ← cmd
4: b.justify ← qc
5: return b

6: for curView ← 1, 2, 3, . . . do
. generic phase

7: as a leader // r = leader(curView)
// M is the set of messages collected at the end of previous view by the leader of this view

8: highQC ←
(
argmax

m∈M
{m.justify .viewNumber}

)
.justify

9: if highQC .viewNumber > genericQC .viewNumber then genericQC ← highQC

10: curProposal ← createLeaf(genericQC .node, client’s command, genericQC)
// prepare phase

11: broadcast Msg(generic, curProposal ,⊥)

12: as a replica

13: wait for message m : matchingMsg(m, generic, curView) from leader(curView)
14: b∗ ← m.node ; b′′ ← b∗.justify .node ; b′ ← b′′.justify .node ; b← b′.justify .node
15: if safeNode(b∗, b∗.justify) then

16: send voteMsg(generic, b∗,⊥) to leader(curView + 1)

// start pre-commit phase on b∗’s parent

17: if b∗.parent = b′′ then
18: genericQC ← b∗.justify

// start commit phase on b∗’s grandparent

19: if (b∗.parent = b′′) ∧ (b′′.parent = b′) then
20: lockedQC ← b′′.justify

// start decide phase on b∗’s great-grandparent

21: if (b∗.parent = b′′) ∧ (b′′.parent = b′) ∧ (b′.parent = b) then

22: execute new commands through b, respond to clients

23: as the next leader

24: wait for all messages: M ← {m | matchingMsg(m, generic, curView)}
until there are (n− f) votes: V ← {v | v.partialSig 6= ⊥ ∧ v ∈M}

25: genericQC ← QC(V)

. Finally

26: nextView interrupt: goto this line if nextView(curView) is called during “wait for” in any phase

27: send Msg(generic,⊥, genericQC) to leader(curView + 1)

6 Implementation

HotStu� is a practical protocol for building e�cient SMR systems. Because of its simplicity, we can easily turn Algo-

rithm 3 into an event-driven-style speci�cation that is almost like the code skeleton for a prototype implementation.

As shown in Algorithm 4, the code is further simpli�ed and generalized by extracting the liveness mechanism

from the body into a module named Pacemaker. Instead of the next leader always waiting for a genericQC at the

end of the generic phase before starting its reign, this logic is delegated to the Pacemaker. A stable leader can skip

this step and streamline proposals across multiple heights. Additionally, we relax the direct parent constraint for

11

maintaining the highest genericQC and lockedQC , while still preserving the requirement that the QC in a valid

node always refers to its ancestor. The proof of correctness is similar to Chained HotStu� and we also defer it to the

appendix of [50].

Data structures. Each replica u keeps track of the following main state variables:

V [·] mapping from a node to its votes.

vheight height of last voted node.

block locked node (similar to lockedQC).

bexec last executed node.

qchigh highest known QC (similar to genericQC) kept by

a Pacemaker.

bleaf leaf node kept by a Pacemaker.

It also keeps a constant b0, the same genesis node known by all correct replicas. To bootstrap, b0 contains a hard-

coded QC for itself, block , bexec , bleaf are all initialized to b0, and qchigh contains the QC for b0.

Pacemaker. A Pacemaker is a mechanism that guarantees progress after GST. It achieves this through two ingre-

dients.

The �rst one is “synchronization”, bringing all correct replicas, and a unique leader, into a common height for a

su�ciently long period. The usual synchronization mechanism in the literature [25, 20, 15] is for replicas to increase

the count of ∆’s they spend at larger heights, until progress is being made. A common way to deterministically elect

a leader is to use a rotating leader scheme in which all correct replicas keep a prede�ned leader schedule and rotate

to the next one when the leader is demoted.

Second, a Pacemaker needs to provide the leader with a way to choose a proposal that will be supported by

correct replicas. As shown in Algorithm 5, after a view change, in onReceiveNewView, the new leader collects

new-view messages sent by replicas through onNextSyncView to discover the highest QC to satisfy the second

part of the condition in onReceiveProposal for liveness (Line 18 of Algorithm 4). During the same view, however,

the incumbent leader will chain the new node to the end of the leaf last proposed by itself, where no new-view

message is needed. Based on some application-speci�c heuristics (to wait until the previously proposed node gets a

QC, for example), the current leader invokes onBeat to propose a new node carrying the command to be executed.

It is worth noting that even if a bad Pacemaker invokes onPropose arbitrarily, or selects a parent and a QC capri-

ciously, and against any scheduling delays, safety is always guaranteed. Therefore, safety guaranteed by Algorithm 4

alone is entirely decoupled from liveness by any potential instantiation of Algorithm 5.

Algorithm 4 Event-driven HotStu� (for replica u).

1: procedure createLeaf(parent , cmd , qc, height)
2: b.parent ← parent ; b.cmd ← cmd ;

3: b.justify ← qc; b.height ← height ; return b

4: procedure update(b∗)
5: b′′ ← b∗.justify .node ; b′ ← b′′.justify .node
6: b← b′.justify .node

// pre-commit phase on b′′

7: updateQCHigh(b∗.justify)

8: if b′.height > block .height then
9: block ← b′ // commit phase on b′

10: if (b′′.parent = b′) ∧ (b′.parent = b) then
11: onCommit(b)
12: bexec ← b // decide phase on b

13: procedure onCommit(b)
14: if bexec .height < b.height then
15: onCommit(b.parent); execute(b.cmd)

16: procedure onReceiveProposal(Msgv(generic, bnew ,⊥))

17: if bnew .height > vheight ∧ (bnew extends block∨
18: bnew .justify .node.height > block .height) then
19: vheight ← bnew .height
20: send(getLeader(), voteMsgu(generic, bnew ,⊥))

21: update(bnew)

22: procedureonReceiveVote(m = voteMsgv(generic, b,⊥))

23: if ∃〈v, σ′〉 ∈ V [b] then return // avoid duplicates

24: V [b]← V [b] ∪ {〈v,m.partialSig〉} // collect votes

25: if |V [b]| ≥ n− f then

26: qc ← QC({σ | 〈v′, σ〉 ∈ V [b]})
27: updateQCHigh(qc)

28: function onPropose(bleaf , cmd , qchigh)

29: bnew ← createLeaf(bleaf , cmd , qchigh , bleaf .height + 1)
// send to all replicas, including u itself

30: broadcast(Msgu(generic, bnew ,⊥))
31: return bnew

Algorithm 5 Code skeleton for a Pacemaker (for replica u).

12

// We assume Pacemaker in all correct replicas will have

synchronized leadership after GST.

1: function getLeader // . . . speci�ed by the application

2: procedure updateQCHigh(qc′high)

3: if qc′high .node.height > qchigh .node.height then
4: qchigh ← qc′high
5: bleaf ← qchigh .node

6: procedure onBeat(cmd)

7: if u = getLeader() then
8: bleaf ← onPropose(bleaf , cmd , qchigh)

9: procedure onNextSyncView

10: send Msg(new-view,⊥, qchigh) to getLeader()

11: procedureonReceiveNewView(Msg(new-view,⊥, qc′high))

12: updateQCHigh(qc′high)

Algorithm 6 update replacement for two-phase HotStu�.

1: procedure update(b∗)
2: b′ ← b∗.justify .node ; b← b′.justify .node
3: updateQCHigh(b∗.justify)

4: if b′.height > block .height then block ← b′

5: if (b′.parent = b) then onCommit(b); bexec ← b

Two-phase HotStu� variant. To further demonstrate the �exibility of the HotStu� framework, Algorithm 6

shows the two-phase variant of HotStu�. Only the update procedure is a�ected, a Two-Chain is required for reach-

ing a commit decision, and a One-Chain determines the lock. As discussed above (Section 4.4), this two-phase variant

loses Optimistic Responsiveness, and is similar to Tendermint/Casper. The bene�t is fewer phases, while liveness

may be addressed by incorporating in Pacemaker a wait based on maximum network delay. See Section 7.3 for

further discussion.

QC QC· · ·
b b∗

height k height k + 1

QC QC QC· · ·
b b′ b∗

height k height k + 1 height k + 2

(a) One-Chain (DLS, 1988) (b) Two-Chain (PBFT, 1999)

QC QC QC· · ·
b b′ b∗

height k height k + 1 height k + 2

∆ ∆ ∆

QC QC QC· · · · · ·
b b′ b∗

height k height k + 1 height k′
∆ ∆ ∆

(c) Two-Chain w/ delay (Tendermint, 2016) (d) Two-Chain w/ delay (Casper, 2017)

QC QC QC QC· · · · · ·
b b′ b′′ b∗

height k height k + 1 height k + 2 height k′

(e) Three-Chain (HotStu�, 2018)

Figure 3: Commit rules for di�erent BFT protocols.

7 One-Chain and Two-Chain BFT Protocols

In this section, we examine four BFT replication protocols spanning four decades of research in Byzantine fault

tolernace, casting them into a chained framework similar to Chained HotStu�.

Figure 3 provides a birds-eye view of the commit rules of �ve protocols we consider, including HotStu�.

In a nutshell, the commit rule in DLS [25] is One-Chain, allowing a node to be committed only by its own leader.

The commit rules in PBFT [20], Tendermint [15, 16] and Casper [17] are almost identical, and consist of Two-Chains.

They di�er in the mechanisms they introduce for liveness, PBFT has leader “proofs” of quadratic size (no Linearity),

Tendermint and Casper introduce a mandatory ∆ delay before each leader proposal (no Optimistic Responsiveness).

HotStu� uses a Three-Chain rule, and has a linear leader protocol without delay.

13

7.1 DLS

The simplest commit rule is a One-Chain. Modeled after Dwork, Lynch, and Stockmeyer (DLS), the �rst known

asynchronous Byzantine Consensus solution, this rule is depicted in Figure 3(a). A replica becomes locked in DLS

on the highest node it voted for.

Unfortunately, this rule would easily lead to a deadlock if at some height, a leader equivocates, and two correct

replicas became locked on the con�icting proposals at that height. Relinquishing either lock is unsafe unless there

are 2f + 1 that indicate they did not vote for the locked value.

Indeed, in DLS only the leader of each height can itself reach a commit decision by the One-Chain commit rule.

Thus, only the leader itself is harmed if it has equivocated. Replicas can relinquish a lock either if 2f + 1 replicas did

not vote for it, or if there are con�icting proposals (signed by the leader). The unlocking protocol occurring at the

end of each height in DLS turns out to be fairly complex and expensive. Together with the fact that only the leader

for a height can decide, in the best scenario where no fault occurs and the network is timely, DLS requires n leader

rotations, andO(n4) message transmissions, per single decision. While it broke new ground in demonstrating a safe

asynchronous protocol, DLS was not designed as a practical solution.

7.2 PBFT

Modeled after PBFT, a more practical appraoch uses a Two-Chain commit rule, see Figure 3(b). When a replica votes

for a node that forms a One-Chain, it becomes locked on it. Con�icting One-Chains at the same height are simply

not possible, as each has a QC, hence the deadlock situation of DLS is avoided.

However, if one replica holds a higher lock than others, a leader may not know about it even if it collects informa-

tion from n− f replicas. This could prevent leaders from reaching decisions ad in�nitum, purely due to scheduling.

To get “unstuck”, the PBFT unlocks all replicas by carrying a proof consisting of the highest One-Chain’s by 2f + 1
replicas. This proof is quite involved, as explained below.

The original PBFT, which has been open-sourced [20] and adopted in several follow up works [13, 34], a leader

proof contains a set of messages collected from n− f replicas reporting the highest One-Chain each member voted

for. Each One-Chain contains a QC, hence the total communication cost is O(n3). Harnessing signature combining

methods from [45, 18], SBFT [30] reduces this cost to O(n2) by turning each QC to a single value.

In the PBFT variant in [21], a leader proof contains the highest One-Chain the leader collected from the quorum

only once. It also includes one signed value from each member of the quorum, proving that it did not vote for a higher

One-Chain. Broadcasting this proof incurs communication complexity O(n2). Note that whereas the signatures on

a QC may be combined into a single value, the proof as a whole cannot be reduced to constant size because messages

from di�erent members of the quorum may have di�erent values.

In both variants, a correct replica unlocks even it has a higher One-Chain than the leader’s proof. Thus, a correct

leader can force its proposal to be accepted during period of synchrony, and liveness is guaranteed. The cost is

quadratic communication per leader replacement.

7.3 Tendermint and Casper

Tendermint has a Two-Chain commit rule identical to PBFT, and Casper has a Two-Chain rule in which the leaf does

not need to have a QC to direct parent. That is, in Casper, Figure 3(c,d) depicts the commit rules for Tendermint and

Casper, respectively.

In both methods, a leader simply sends the highest One-Chain it knows along with its proposal. A replica unlocks

a One-Chain if it receives from the leader a higher one.

However, because correct replicas may not vote for a leader’s node, to guarantee progress a new leader must

obtain the highest One-Chain by waiting the maximal network delay. Otherwise, if leaders only wait for the �rst

n− f messages to start a new height, there is no progress guarantee. Leader delays are inherent both in Tendermint

and in Casper, in order to provide liveness.

This simple leader protocol embodies a linear leap in the communication complexity of the leader protocol,

which HotStu� borrows from. As already mentioned above, a QC could be captured in a single value using threshold-

signatures, hence a leader can collect and disseminate the highest One-Chain with linear communication complexity.

However, crucially, due to the extra QC step, HotStu� does not require the leader to wait the maximal network delay.

14

8 Evaluation

We have implemented HotStu� as a library in roughly 4K lines of C++ code. Most noticeably, the core consensus

logic speci�ed in the pseudocode consumes only around 200 lines. In this section, we will �rst examine baseline

throughput and latency by comparing to a state-of-art system, BFT-SMaRt [13]. We then focus on the message cost

for view changes to see our advantages in this scenario.

8.1 Setup

We conducted our experiments on Amazon EC2 using c5.4xlarge instances. Each instance had 16 vCPUs supported

by Intel Xeon Platinum 8000 processors. All cores sustained a Turbo CPU clock speed up to 3.4GHz. We ran each

replica on a single VM instance, and so BFT-SMaRt, which makes heavy use of threads, was allowed to utilize 16

cores per replica, as in their original evaluation [13]. The maximum TCP bandwidth measured by iperf was around

1.2 Gigabytes per second. We did not throttle the bandwidth in any run. The network latency between two machines

was less than 1 ms.

Our prototype implementation of HotStu� uses secp256k1 for all digital signatures in both votes and quorum

certi�cates. BFT-SMaRt uses hmac-sha1 for MACs (Message Authentication Codes) in the messages during normal

operation and uses digital signatures in addition to MACs during a view change.

All results for HotStu� re�ect end-to-end measurement from the clients. For BFT-SMaRt, we used the micro-

benchmark programs ThroughputLatencyServer and ThroughputLatencyClient from the BFT-SMaRt website

(https://github.com/bft-smart/library). The client program measures end-to-end latency but not throughput, while

the server-side program measures both throughput and latency. We used the throughput results from servers and

the latency results from clients.

8.2 Base Performance

We �rst measured throughput and latency in a setting commonly seen in the evaluation of other BFT replication

systems. We ran 4 replicas in a con�guration that tolerates a single failure, i.e., f = 1, while varying the operation

request rate until the system saturated. This benchmark used empty (zero-sized) operation requests and responses

and triggered no view changes; we expand to other settings below. Although our responsive HotStu� is three-phase,

we also run its two-phase variant as an additional baseline, because the BFT-SMaRt baseline has only two phases.

10 60 110 160 210 260 310

Throughput (Kops/sec)

0

10

20

30

40

L
a
te

n
cy

(m
s)

BS-b100
BS-b400
BS-b800
HS2-b100
HS2-b400
HS2-b800
HS3-b100
HS3-b400
HS3-b800

Figure 4: Throughput vs. latency with di�erent choices

of batch size, 4 replicas, 0/0 payload.

10 60 110 160 210 260 310

Throughput (Kops/sec)

0

10

20

30

L
a
te

n
cy

(m
s)

BS-p0
BS-p128
BS-p1024
HS2-p0
HS2-p128
HS2-p1024
HS3-p0
HS3-p128
HS3-p1024

Figure 5: Throughput vs. latency with di�erent choices

of payload size, 4 replicas, batch size of 400.

Figure 4 depicts three batch sizes for both systems, 100, 400, and 800, though because these systems have di�er-

ent batching schemes, these numbers mean slightly di�erent things for each system. BFT-SMaRt drives a separate

consensus decision for each operation, and batches the messages from multiple consensus protocols. Therefore, it

has a typical L-shaped latency/throughput performance curve. HotStu� batches multiple operations in each node,

and in this way, mitigates the cost of digital signatures per decision. However, above 400 operations per batch, the

latency incurred by batching becomes higher than the cost of the crypto. Despite these di�erences, both three-phase

(“HS3-”) and two-phase (“HS2-”) HotStu� achieves comparable latency performance to BFT-SMaRt (“BS-”) for all

three batch sizes, while their maximum throughput noticeably outperformed BFT-SMaRt.

15

https://github.com/bft-smart/library

For batch sizes of 100 and 400, the lowest-latency HotStu� point provides latency and throughput that are better

than the latency and throughput simultaneously achievable by BFT-SMaRT at its highest throughput, while incurring

a small increase in latency. This increase is partly due to the batching strategy employed by HotStu�: It needs three

additional full batches (two in the two-phase variant) to arrive at a decision on a batch. Our experiments kept the

number of outstanding requests high, but the higher the batch size, the longer it takes to �ll the batching pipeline.

Practical deployments could be further optimized to adapt the batch size to the number of outstanding operations.

Figure 5 depicts three client request/reply payload sizes (in bytes) of 0/0, 128/128, and 1024/1024, denoted “p0”,

“p128”, and “p1024” respectively. At all payload sizes, both three-phase and two-phase HotStu� outperformed BFT-

SMaRt in throughput, with similar or comparable latency.

Notice BFT-SMaRt uses MACs based on symmetric crypto that is orders of magnitude faster than the asymmetric

crypto in digital signatures used by HotStu�, and also three-phase HotStu� has more round trips compared to two-

phase PBFT variant used by BFT-SMaRt. Yet HotStu� is still able to achieve comparable latency and much higher

throughput. Below we evaluate both systems in more challenging situations, where the performance advantages of

HotStu� will become more pronounced.

8.3 Scalability

To evaluate the scalability of HotStu� in various dimensions, we performed three experiments. For the baseline, we

used zero-size request/response payloads while varying the number of replicas. The second evaluation repeated the

baseline experiment with 128-byte and 1024-byte request/response payloads. The third test repeated the baseline

(with empty payloads) while introducing network delays between replicas that were uniformly distributed in 5ms

± 0.5ms or in 10ms ± 1.0ms, implemented using NetEm (see https://www.linux.org/docs/man8/tc-netem.html). For

each data point, we repeated �ve runs with the same setting and show error bars to indicate the standard deviation

for all runs.

The �rst setting is depicted in Figure 6a (throughput) and Figure 6b (latency). Both three-phase and two-phase

HotStu� show consistently better throughput than BFT-SMaRt, while their latencies are still comparable to BFT-

SMaRt with graceful degradation. The performance scales better than BFT-SMaRt when n < 32. This is because

we currently still use a list of secp256k1 signatures for a QC. In the future, we plan to reduce the cryptographic

computation overhead in HotStu� by using a fast threshold signature scheme.

The second setting with payload size 128 or 1024 bytes is denoted by “p128” or “p1024” in Figure 7a (throughput)

and Figure 7b (latency). Due to its quadratic bandwidth cost, the throughput of BFT-SMaRt scales worse than HotStu�

for reasonably large (1024-byte) payload size.

The third setting is shown in Figure 8a (throughput) and Figure 8b (latency) as “5ms” or “10ms”. Again, due to

the larger use of communication in BFT-SMaRt, HotStu� consistently outperformed BFT-SMaRt in both cases.

8.4 View Change

To evaluate the communication complexity of leader replacement, we counted the number of MAC or signature

veri�cations performed within BFT-SMaRt’s view-change protocol. Our evaluation strategy was as follows. We

injected a view change into BFT-SMaRt every one thousand decisions. We instrumented the BFT-SMaRt source

48 16 32 64 128

Number of Nodes (n)

0

50

100

150

200

250

300

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

BFT-SMaRt
HotStuff-2S
HotStuff-3S

(a) Throughput

4 8 16 32 64 128

Number of Nodes (n)

10

20

30

L
a
te

n
cy

(m
s)

BFT-SMaRt
HotStuff-2S
HotStuff-3S

(b) Latency

Figure 6: Scalability with 0/0 payload, batch size of 400.

16

https://www.linux.org/docs/man8/tc-netem.html

48 16 32 64 128

Number of Nodes (n)

0

100

200

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

BFT-SMaRt-p128
BFT-SMaRt-p1024
HotStuff-2S-p128
HotStuff-2S-p1024
HotStuff-3S-p128
HotStuff-3S-p1024

(a) Throughput

48 16 32 64 128

Number of Nodes (n)

0

50

100

L
a
te

n
cy

(m
s)

BFT-SMaRt-p128
BFT-SMaRt-p1024
HotStuff-2S-p128
HotStuff-2S-p1024
HotStuff-3S-p128
HotStuff-3S-p1024

(b) Latency

Figure 7: Scalability for 128/128 payload or 1024/1024 payload, with batch size of 400.

4 8 16 32 64 128

Number of Nodes (n)

10

20

30

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

BFT-SMaRt-5ms
BFT-SMaRt-10ms
HotStuff-2S-5ms
HotStuff-2S-10ms
HotStuff-3S-5ms
HotStuff-3S-10ms

(a) Throughput

48 16 32 64 128

Number of Nodes (n)

40

60

80

100

L
a
te

n
cy

(m
s)

BFT-SMaRt-5ms
BFT-SMaRt-10ms
HotStuff-2S-5ms
HotStuff-2S-10ms
HotStuff-3S-5ms
HotStuff-3S-10ms

(b) Latency

Figure 8: Scalability for inter-replica latency 5ms ± 0.5ms or 10ms ± 1.0ms, with 0/0 payload, batch size of 400.

code to count the number of veri�cations upon receiving and processing messages within the view-change protocol.

Beyond communication complexity, this measurement underscores the cryptographic computation load associated

with transferring these authenticated values.

Figure 9a and Figure 9b show the number of extra authenticators (MACs and signatures, respectively) processed

for each view change, where “extra” is de�ned to be those authenticators that would not be sent if the leader remained

stable. Note that HotStu� has no “extra” authenticators by this de�nition, since the number of authenticators remains

the same regardless of whether the leader stays the same or not. The two �gures show that BFT-SMaRt uses cubic

numbers of MACs and quadratic numbers of signatures. HotStu� does not require extra authenticators for view

changes and so is omitted from the graph.

Evaluating the real-time performance of leader replacement is tricky. First, BFT-SMaRt got stuck when triggering

frequent view changes; our authenticator-counting benchmark had to average over as many successful view changes

as possible before the system got stuck, repeating the experiment many times. Second, the actual elapsed time

for leader replacement depends highly on timeout parameters and the leader-election mechanism. It is therefore

impossible to provide a meaningful comparison.

9 Conclusion

Since the introduction of PBFT, the �rst practical BFT replication solution in the partial synchrony model, numer-

ous BFT solutions were built around its core two-phase paradigm. The �rst phase guarantees proposal uniqueness

through a QC. The second phase guarantees that a new leader can convince replicas to vote for a safe proposal. This

requires the leader to relay information from (n−f) replicas, each reporting its own highest QC or vote. Generations

of two-phase works thus su�er from a quadratic communication bottleneck on leader replacement.

HotStu� revolves around a three-phase core, allowing a new leader to simply pick the highest QC it knows of.

This alleviates the above complexity and at the same time considerably simpli�es the leader replacement protocol.

Having (almost) canonized the phases, it is very easy to pipeline HotStu�, and to frequently rotate leaders.

17

4 8 16 32 64 128

Number of Replicas (n)

0

2

4

6

A
u
th

en
ti

ca
to

rs
(a

)
×106

BFT-SMaRt-MAC
a = 3.1n3

(a) MACs

4 8 16 32 64 128

Number of Replicas (n)

0

2

4

6

A
u
th

en
ti

ca
to

rs
(a

)

×104

BFT-SMaRt-Sig
a = 4.2n2

(b) Signatures

Figure 10: Number of extra authenticators used for each BFT-SMaRt view change.

Acknowledgements

We are thankful to Mathieu Baudet, Avery Ching, George Danezis, François Garillot, Zekun Li, Ben Maurer, Kartik

Nayak, Dmitri Perelman, and Ling Ren, for many deep discussions of HotStu�, and to Mathieu Baudet for exposing

a subtle error in a previous version posted to the ArXiv of this manuscript.

References

[1] Casper �g with one message type, and simpler fork choice rule. https://ethresear.ch/t/

casper-�g-with-one-message-type-and-simpler-fork-choice-rule/103, 2017.

[2] Istanbul bft’s design cannot successfully tolerate fail-stop failures. https://github.com/jpmorganchase/quorum/

issues/305, 2018.

[3] A livelock bug in the presence of byzantine validator. https://github.com/tendermint/tendermint/issues/1047,

2018.

[4] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Ramakrishna Kotla, and Jean-Philippe Martin. Re-

visiting fast practical byzantine fault tolerance. CoRR, abs/1712.01367, 2017.

[5] Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean-Philippe Martin. Revisiting fast practical Byzantine fault

tolerance: Thelma, velma, and zelma. CoRR, abs/1801.10022, 2018.

[6] Ittai Abraham and Dahlia Malkhi. The blockchain consensus layer and BFT. Bulletin of the EATCS, 123, 2017.

[7] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solida: A blockchain pro-

tocol based on recon�gurable byzantine consensus. In 21st International Conference on Principles of Distributed

Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, pages 25:1–25:19, 2017.

[8] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Validated asynchronous byzantine agreement with

optimal resilience and asymptotically optimal time and word communication. In Proceedings of the 2019 ACM

Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29-August 2, 2019,

2019.

[9] Yair Amir, Brian A. Coan, Jonathan Kirsch, and John Lane. Prime: Byzantine replication under attack. IEEE

Trans. Dependable Sec. Comput., 8(4):564–577, 2011.

[10] Hagit Attiya, Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Bounds on the time to reach agreement

in the presence of timing uncertainty. J. ACM, 41(1):122–152, 1994.

18

https://ethresear.ch/t/casper-ffg-with-one-message-type-and-simpler-fork-choice-rule/103
https://ethresear.ch/t/casper-ffg-with-one-message-type-and-simpler-fork-choice-rule/103
https://github.com/jpmorganchase/quorum/issues/305
https://github.com/jpmorganchase/quorum/issues/305
https://github.com/tendermint/tendermint/issues/1047

[11] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevic, Vivien Quéma, and Marko Vukolic. The next 700 BFT

protocols. ACM Trans. Comput. Syst., 32(4):12:1–12:45, 2015.

[12] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended

abstract). In Proceedings of the Second Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, Montreal, Quebec, Canada, August 17-19, 1983, pages 27–30, 1983.

[13] Alysson Neves Bessani, João Sousa, and Eduardo Adílio Pelinson Alchieri. State machine replication for the

masses with BFT-SMART. In 44th Annual IEEE/IFIP International Conference on Dependable Systems and Net-

works, DSN 2014, Atlanta, GA, USA, June 23-26, 2014, pages 355–362, 2014.

[14] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryptology, 17(4):297–

319, 2004.

[15] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis, 2016.

[16] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. CoRR, abs/1807.04938,

2018.

[17] Vitalik Buterin and Virgil Gri�th. Casper the friendly �nality gadget. CoRR, abs/1710.09437, 2017.

[18] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical asynchronous

byzantine agreement using cryptography. J. Cryptology, 18(3):219–246, 2005.

[19] Christian Cachin and Marko Vukolic. Blockchain consensus protocols in the wild. CoRR, abs/1707.01873, 2017.

[20] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the Third USENIX

Symposium on Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana, USA, February

22-25, 1999, pages 173–186, 1999.

[21] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery. ACM Trans.

Comput. Syst., 20(4):398–461, 2002.

[22] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Michael Dahlin, and Taylor Riche.

Upright cluster services. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP

2009, Big Sky, Montana, USA, October 11-14, 2009, pages 277–290, 2009.

[23] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement. J. ACM,

32(1):191–204, 1985.

[24] Danny Dolev and H. Raymond Strong. Polynomial algorithms for multiple processor agreement. In Proceedings

of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages

401–407, 1982.

[25] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial synchrony. J.

ACM, 35(2):288–323, 1988.

[26] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. Bitcoin-ng: A scalable blockchain

protocol. In 13th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2016, Santa Clara,

CA, USA, March 16-18, 2016, pages 45–59, 2016.

[27] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with one faulty

process. J. ACM, 32(2):374–382, 1985.

[28] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applica-

tions. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, So�a, Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 281–310,

2015.

19

[29] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling byzan-

tine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles,

Shanghai, China, October 28-31, 2017, pages 51–68, 2017.

[30] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K. Reiter, Dragos-

Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: a scalable decentralized trust infrastructure for

blockchains. CoRR, abs/1804.01626, 2018.

[31] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview series, consensus

system. CoRR, abs/1805.04548, 2018.

[32] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. J. Comput.

Syst. Sci., 75(2):91–112, 2009.

[33] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Kho�, Linus Gasser, and Bryan Ford. En-

hancing bitcoin security and performance with strong consistency via collective signing. CoRR, abs/1602.06997,

2016.

[34] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L. Wong. Zyzzyva: Speculative

byzantine fault tolerance. ACM Trans. Comput. Syst., 27(4):7:1–7:39, 2009.

[35] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–565,

1978.

[36] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.

[37] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem. ACMTrans. Program.

Lang. Syst., 4(3):382–401, 1982.

[38] James Mickens. The saddest moment. ;login:, 39(3), 2014.

[39] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT protocols. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,

October 24-28, 2016, pages 31–42, 2016.

[40] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf, 2008.

[41] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks. In

Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II, pages 643–673, 2017.

[42] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant con�rmation. In Advances in Cryp-

tology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 3–33, 2018.

[43] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence of faults. J.

ACM, 27(2):228–234, 1980.

[44] HariGovind V. Ramasamy and Christian Cachin. Parsimonious asynchronous byzantine-fault-tolerant atomic

broadcast. In Principles of Distributed Systems, 9th International Conference, OPODIS 2005, Pisa, Italy, December

12-14, 2005, Revised Selected Papers, pages 88–102, 2005.

[45] Michael K. Reiter. The rampart toolkit for building high-integrity services. In Theory and Practice in Distributed

Systems, International Workshop, Dagstuhl Castle, Germany, September 5-9, 1994, Selected Papers, pages 99–110,

1994.

[46] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: De�nitions, implications, and

separations for preimage resistance, second-preimage resistance, and collision resistance. In Bimal K. Roy and

Willi Meier, editors, Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi, India, February 5-7,

2004, Revised Papers, volume 3017 of Lecture Notes in Computer Science, pages 371–388. Springer, 2004.

20

https://bitcoin.org/bitcoin.pdf

· · ·

· · ·

· · · · · ·

w w′

b b′

QC cmd

QC cmd

w′′

b′′

Figure 11: w and b both getting committed (impossible). Nodes horizontally arranged by view numbers.

[47] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM

Comput. Surv., 22(4):299–319, 1990.

[48] Victor Shoup. Practical threshold signatures. In Advances in Cryptology - EUROCRYPT 2000, International Con-

ference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding,

pages 207–220, 2000.

[49] Yee Jiun Song and Robbert van Renesse. Bosco: One-step byzantine asynchronous consensus. In Distributed

Computing, 22nd International Symposium, DISC 2008, Arcachon, France, September 22-24, 2008. Proceedings,

pages 438–450, 2008.

[50] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstu�: Bft consensus in

the lens of blockchain. CoRR, abs/1803.05069, 2018.

A Proof of Safety for Chained HotStu�

Theorem 5. Let b and w be two con�icting nodes. Then they cannot both become committed, each by an honest replica.

Proof. We prove this theorem by contradiction. By an argument similar to Lemma 1, b and w must be in di�er-

ent views. Assume during an exectuion b becomes committed at some honest replica via the QC Three-Chain

b, b′, b′′, b∗, likewise, w becomes committed at some honest replica via the QC Three-Chain w,w′, w′′, w∗. Since

each of b, b′, b′′, w, w′, w′′ get its QC, then w.l.o.g., we assume b is created in a view higher than w′′, namely,

b′.justify .viewNumber > w∗.justify .viewNumber , as shown in Figure 11.

We now denote by vs the lowest view higher than vw′′ = w∗.justify .viewNumber in which there is a qcs such

that qcs.node con�icts with w. Let vb = b′.justify .viewNumber . Formally, we de�ne the following predicate for

any qc:

E(qc) :=(vw′′ < qc.viewNumber ≤ vb) ∧ (qc.node con�icts with w).

We can now set the �rst switching point qcs:

qcs := arg min
qc

{qc.viewNumber | qc is valid ∧ E(qc)}.

By assumption, such qcs exists, for example, qcs could be b′.justify . Let r denote a correct replica in the in-

tersection of w∗.justify and qcs. By assumption on the minimality of qcs, the lock that r has on w is not changed

before qcs is formed. Now consider the invocation of safeNode in view vs by r, with a message m carrying a

con�icting node m.node = qcs.node . By assumption, the condition on the lock (Line 26 in Algorithm 1) is false.

On the other hand, the protocol requires t = m.node.justify .node to be an ancestor of qcs.node . By minimal-

ity of qcs, m.node.justify .viewNumber ≤ vw′′ . Since qcs.node con�icts with w, t cannot be w,w′ or w′′. Then,

m.node.justify .viewNumber < w′.justify .viewNumber , so the other half of the disjunct is also false. Therefore, r
will not vote for qcs.node , contradicting the assumption of r.

21

The liveness argument is almost identical to Basic HotStu�, except that we have to assume after GST, two con-

secutive leaders are correct, to guarantee a decision. It is omitted for brevity.

B Proof of Safety for Implementation Pseudocode

Lemma 6. Let b and w be two con�icting nodes such that b.height = w.height , then they cannot both have valid

quorum certi�cates.

Proof. Suppose they can, so both b and w receive 2f + 1 votes, among which there are at least f + 1 honest replicas

voting for each node, then there must be an honest replica that votes for both, which is impossible because b and w
are of the same height.

Notation 1. For any node b, let “←” denote parent relation, i.e. b.parent ← b. Let “
∗←” denote ancestry, that is, the

re�exive transitive closure of the parent relation. Then two nodes b, w are con�icting i�. b
∗
��← w ∧ w

∗
��← b. Let “⇐”

denote the node a QC refers to, i.e. b.justify .node ⇐ b.

Lemma 7. Let b and w be two con�icting nodes. Then they cannot both become committed, each by an honest replica.

Proof. We prove this important lemma by contradiction. Let b and w be two con�icting nodes at di�erent heights.

Assume during an execution, b becomes committed at some honest replica via the QC Three-Chain b(⇐ ∧ ←
)b′(⇐ ∧ ←)b′′ ⇐ b∗; likewise, w becomes committed at some honest replica via the QC Three-Chain w(⇐ ∧ ←
)w′(⇐ ∧ ←)w′′ ⇐ w∗. By Lemma 1, since each of the nodes b, b′, b′′, w, w′, w′′ have QC’s, then w.l.o.g., we assume

b.height > w′′.height , as shown in Figure 11.

We now denote by qcs the QC for a node with the lowest height larger than w′′.height , that con�icts with w.

Formally, we de�ne the following predicate for any qc:

E(qc) := (w′′.height < qc.node.height ≤ b.height) ∧ (qc.node con�icts with w)

We can now set the �rst switching point qcs:

qcs := arg min
qc

{qc.node.height | qc is valid ∧ E(qc)}.

By assumption, such qcs exists, for example, qcs could be b′.justify . Let r denote a correct replica in the intersec-

tion of w∗.justify and qcs. By assumption of minimality of qcs, the lock that r has on w is not changed before qcs is

formed. Now consider the invocation of onReceiveProposal, with a message carrying a con�icting node bnew such

that bnew = qcs.node . By assumption, the condition on the lock (Line 17 in Algorithm 4) is false. On the other hand,

the protocol requires t = bnew .justify .node to be an ancestor of bnew . By minimality of qcs, t.height ≤ w′′.height .
Since qcs.node con�icts withw, t cannot bew,w′ orw′′. Then, t.height < w.height , so the other half of the disjunct

is also false. Therefore, r will not vote for bnew , contradicting the assumption of r.

Theorem 8. Let cmd1 and cmd2 be any two commands where cmd1 is executed before cmd2 by some honest replica,

then any honest replica that executes cmd2 must executes cmd1 before cmd2.

Proof. Denote by w the node that carries cmd1, b carries cmd2. From Lemma 6, it is clear the committed nodes are

at distinct heights. Without loss of generality, assume w.height < b.height . The commit of w are b are triggered by

some onCommit(w′) and onCommit(b′) in update, where w
∗← w′ and b

∗← b′. According to Lemma 7, w′ must

not con�ict with b′, so w does not con�ict with b. Then w
∗← b, and when any honest replica executes b, it must �rst

executes w by the recursive logic in onCommit.

B.1 Remarks

In order to shed insight on the tradeo�s taken in the HotStu� design, we explain why certain constraints are neces-

sary for safety.

22

Why monotonic vheight? Suppose we change the voting rule such that a replica does not need to vote mono-

tonically, as long as it does not vote more than once for each height. The weakened constraint will break safety. For

example, a replica can �rst vote for b and then w. Before learning about b′, b′′, it �rst delivers w′, w′′, assuming the

lock is on w, and vote for w′′. When it eventually delivers b′′, it will �ip to the branch led by b because it is eligible

for locking, and b is higher than w. Finally, the replica will also vote for b′′, causing the commit of both w and b.

Why direct parent? The direct parent constraint is used to ensure the equality b.height > w′′.height used in

the proof, with the help of Lemma 6. Suppose we do not enforce the rule for commit, so the commit constraint is

weakened tow
∗← w′

∗← w′′ instead ofw ← w′ ← w′′ (same for b). Consider the case wherew′.height < b.height <
b′.height < w′′.height < b′′.height . Chances are, a replica can �rst vote for w′′, and then discover b′′ to switch to

the branch by b, but it is too late since w could be committed.

23

	1 Introduction
	2 Related work
	3 Model
	4 Basic HotStuff
	4.1 Phases
	4.2 Data Structures
	4.3 Protocol Specification
	4.4 Safety, Liveness, and Complexity

	5 Chained HotStuff
	6 Implementation
	7 One-Chain and Two-Chain BFT Protocols
	7.1 DLS
	7.2 PBFT
	7.3 Tendermint and Casper

	8 Evaluation
	8.1 Setup
	8.2 Base Performance
	8.3 Scalability
	8.4 View Change

	9 Conclusion
	A Proof of Safety for Chained HotStuff
	B Proof of Safety for Implementation Pseudocode
	B.1 Remarks

