
Fast-HotStuff: A Fast and Robust BFT Protocol for
Blockchains

Mohammad M. Jalalzai∗†, Jianyu Niu∗†, Chen Feng∗† and Fangyu Gai∗†
∗School of Engineering, University of British Columbia (Okanagan Campus)

†Blockchain@UBC, The University of British Columbia, Vancouver, BC, Canada
{m.jalalzai, jianyu.niu, chen.feng, fangyu.gai}@ubc.ca

Abstract—The HotStuff protocol is a breakthrough in Byzan-
tine Fault Tolerant (BFT) consensus that enjoys both responsive-
ness and linear view change. It creatively adds an additional
round to classic BFT protocols (like PBFT) using two rounds.
This brings us to an interesting question: Is this additional
round really necessary in practice? In this paper, we answer this
question by designing a new two-round BFT protocol called Fast-
HotStuff, which enjoys responsiveness and efficient view change
that is comparable to linear view change in terms of performance.
Compared to (three-round) HotStuff, Fast-HotStuff has lower
latency and is more robust against performance attacks that
HotStuff is susceptible to.

Index Terms—Blockchain, BFT, Consensus, Latency, Perfor-
mance, Security.

I. INTRODUCTION

Byzantine fault-tolerant (BFT) consensus has received con-
siderable attention in the last decade due to its promising
application in blockchains. Several state-of-the-art BFT pro-
tocols including Tendermint [1], Pala [2], Casper FFG [3],
and HotStuff [4] have been proposed. These protocols not
only support linear message complexity by using advanced
cryptography like aggregated or threshold signatures, but also
enable frequent leader rotation by adopting the chain structure
(which is popular in blockchains). What is more, these protocols
can be pipelined, which can further improve their performances,
and meanwhile, make them much simpler to implement.

The HotStuff protocol is the first to achieve both linear
view change1 and responsiveness, solving a decades-long open
problem in BFT consensus. Linear view change enables fast
leader rotation while responsiveness drives the protocol to con-
sensus at the speed of actual network delay. Both are desirable
properties in the blockchain space. To achieve both properties,
HotStuff uses threshold signatures and creatively adopts a three-
chain commit rule (which takes three uninterrupted rounds
of communication among replicas to commit a block). This
is in contrast with the two-chain commit rule commonly
used in most other BFT protocols [1]–[3], [5], [6]. In BFT
protocols, a decision is made after going through several phases
and each phase usually takes one round of communication
before moving to the next. Furthermore, HotStuff introduces a
chained structure borrowed from blockchain to pipeline all the
phases into a unifying propose-vote pattern which significantly

1In HotStuff [4], the linear view change has been defined as the number of
signatures/authenticators sent over the wire during consensus.

simplifies the protocol. Perhaps for this reason, pipelined
HotStuff (also called chained HotStuff) has been adopted by
Facebook’s DiemBFT [7] (previously known as LibraBFT),
Flow platform [8], as well as Cypherium Blockchain [9].

To make these achievements (linear view change and
responsiveness) HotStuff has made trade-offs. First, it adds a
round of consensus to the classic two-round BFT consensus.
Secondly, to achieve higher throughput a rotating primary in
pipelined HotStuff proposes a block without waiting for the
previously proposed block to get committed (proposals are
pipelined). This results in the formation of forks which can
be exploited by Byzantine primaries to overwrite blocks from
honest primaries before they are committed. Hence, forking
in HotStuff results in lower throughput and higher latency. It
should be noted that classic BFT protocols [5], [10], [11] do
not allow fork formation (later we will discuss how forks are
formed in HotStuff).

The forking attack in pipelined HotStuff is made possible
because a malicious primary can use an old QC2 instead of
the latest one to construct a new proposal. This is valid if
the QC is no more than two views older than the latest one
according to HotStuff’s voting rule. As such, the previous
blocks that have not been committed will be forked. In the
pipelined HotStuff a child block is proposed after votes for its
parent block are collected by the primary, without waiting for
the parent block to get committed. This is in contrast with the
classic BFT protocols, where the primary does wait for the
parent block to get committed before proposing the child block.
As a result, this optimization in HotStuff enables the formation
of forks (of uncommitted blocks) in pipelined HotStuff, which
in turn allows a malicious primary block to override blocks
from honest primaries (more details about forking attack is
given in Section III).

To address above mentioned problems we designed Fast-
HotStuff. Fast-HotStuff’s design is shaped by four requirements
mentioned below:
• R1: Low Latency. Our goal is to reduce the three-round

communication latency to two rounds. In this way, blocks
can be committed with around 30% less delay.

• R2: Responsiveness.: The protocol should operate at
the speed of wire rather than waiting for the maximum

2QC stands for quorum certificate that contains the parent block hash and
n− f votes from replicas for the parent block. Hence in HotStuff, a block
uses the QC to point to its parent.

1

ar
X

iv
:2

01
0.

11
45

4v
8

 [
cs

.D
C

]
 2

3
M

ar
 2

02
1

network latency to commit a block. A two-round (two-
chain) variant of HotStuff [4], Tendermint [1] and Casper
[3] have been built on synchronous core and has to wait
for the maximum network delay (lacks responsiveness).
But these two-round protocols do not suffer from high
view change complexity.

• R3: Scalability. Responsive two-round BFT protocols
suffer from expensive view change algorithms. During
view change, a newly selected primary collects information
from replicas in the form of QC to propose the next
block/request. In PBFT [5] O(n3) authenticators/signatures
are exchanged and processed during view change. More
recent protocols like SBFT [11], Zyzzyva [12] and
BFT-Smart [13] have reduced the number of signatures
transmitted and processed within the network to O(n2).
Therefore for a large n (network size), the view change
cost is high, causing an enormous delay. This becomes
an even bigger problem when using a rotating primary
protocol where the primary is replaced after each block
proposal. Therefore, scalability can be achieved through
efficient view change. In HotStuff only one QC3 is sent
and verified during consensus. This is why it achieves
linear view change.

• R4: Robustness Against Forking Attack. As discussed,
forking attacks significantly, reduces the protocol perfor-
mance in terms of latency and throughput. Therefore, the
newly designed protocol should be robust against forking
attack.

Fast-HotStuff is designed to fulfill the above-mentioned
requirements. The basic idea behind our Fast-HotStuff is simple.
Unlike HotStuff, a primary in Fast-HotStuff has to provide a
proof that it has included the latest QC in the proposed block.
The QC in a block points to its parent block. Therefore, by
providing proof of the latest/highest QC, a Byzantine primary
cannot perform a forking attack (R4). It is because now
the Byzantine primary cannot use an older QC due to the
requirement of the proof of the latest QC included in the block.
Moreover, the presence of the proof for the latest QC helps
a replica to achieve consensus within two rounds. It provides
the guarantee that if a replica committed a block B at the end
of the second round, eventually all other replicas will commit
the same block at the same height (R1). Therefore, a replica
does not need to wait for the maximum network delay to make
sure other replicas have also committed the block B (R2). To
achieve the same guarantee HotStuff protocol has to wait for
three rounds (see Section III).

In Fast-HotStuff in the absence of primary failure, during
normal rotation or happy path4 of the primary (view change)
no overhead is needed. This means when no primary failure

3HotStuff uses threshold signature and Fast-HotStuff uses aggregated
signature scheme. But in practice, we show that both signature schemes
have comparable performance.

4HotStuff and Fast-HotStuff both use a rotating primary mechanism,
therefore there are mainly two types of view change 1) Happy path, in
which a block is successfully proposed and n− f votes are collected for it
and 2) the primary failed to propose block, other replicas timeout and move
to the next view (primary).

occurs then the primary rotation or the view change requires
only one QC to send and verified. Therefore, the happy-path in
Fast-HotStuff is linear. Unfortunately, we are not able to avoid
the transfer of quadratic view change messages over the wire
during view change due to primary failure (also called unhappy
path). But we were able to reduce the number of signatures to
be processed (verified) by each replica by the factor of O(n).
The number of authenticators (aggregated signatures) to be
verified in Fast-HotStuff during unhappy path is reduced to
only two. This is in contrast with other two-chain responsive
BFT protocols [?], [11]–[14] where O(n) authenticators need
to be verified by each replica. Therefore reducing the number
of signatures to be verified significantly improves performance.
The tradeoff for improvements achieved in Fast-HotStuff is a
small overhead each time a primary fails (unhappy path). For
example, this overhead is at most ≈ 1.4% of the block size
(1MB) and ≈ 0.7% of 2MB block for the network size of 100
replicas. We also show in Sections IV and V that this overhead
does not have a significant impact on performance. Overall,
during the unhappy-path, the view change is optimized by
reducing the number of authenticators to be verified by each
replica. Whereas during happy path the protocol enjoys linear
view change (R3).

The rest of the paper is organized as follows. In Section II,
we describe the system model. In Section III, we present a
brief overview of classic HotStuff protocol. Section IV provides
algorithms for basic Fast-HotStuff and pipelined Fast-HotStuff
protocols as well as their safety and liveness proofs. This
section also discusses how pipelined Fast-HotStuff is robust
to forking attacks. Evaluation and related work are presented
in Sections V and VI, respectively. The paper is concluded in
Section VII.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider a system with n = 3 f +1 parties (also called
replicas) denoted by the set N such that the system can tolerate
at most f Byzantine replicas. Byzantine replicas may behave
in an arbitrary manner, whereas correct (or honest) replicas
follow the protocol which results in the execution of identical
commands at the same order. We assume a partial synchronous
model presented in [15], where the network is synchronous
with a known bound on message transmission delay denoted by
∆. This known bound on message transmission holds after an
unknown asynchronous period called Global Stabilization Time
(GST). All exchanged messages are signed. Adversaries are
computationally bound and cannot forge signatures or message
digests (hashes) but with negligible probability.

B. Preliminaries

Signature Aggregation. Fast-HotStuff uses signature aggrega-
tion [16]–[18] to obtain a single collective signature instead
of appending all replica signatures when a primary fails. As
the primary p receives the message Mi with their respective
signatures σi ← signi(Mi) from each replica i, the primary
then uses these received signatures to generate an aggregated

2

signature σ← AggSign({Mi,σi}i∈N). The aggregated signature
can be verified by replicas given the messages M1,M2, . . . ,My
where 2 f +1≤ y≤ n, the aggregated signature σ , and public
keys PK1,PK2, . . . ,PKy. To authenticate message senders as
done in previous BFT-based protocols [5], [10], [19] each
replica i keeps the public keys of other replicas in the network.
Quorum Certificate (QC) and Aggregated QC. A block’s B
quorum certificate (QC) is proof that more than 2n/3 nodes (out
of n) have voted for this block. A QC comprises an aggregated
signature or threshold (from n− f signatures from distinct
replicas) built by signing block hash in a specific view. A
block is certified when its QC is received and certified blocks’
freshness is ranked by their view numbers. In particular, we
refer to a certified block with the highest view number that
a node knows as the latest/highest certified block. The latest
QC a node knows is called highQC. A node keeps track of
QCs for each block and keeps updating the highQC as new
blocks get certified. It should be noted that unlike classic BFT
in HotStuff and Fast-HotStuff the QC is also used to point to
the parent block. An aggregated QC or AggQC is simply a
vector built from a concatenation of n− f or 2 f +1 QCs.

View and View Number. During each view, a dedicated
primary is responsible for proposing a block. Each view is
identified by a monotonically increasing number called view
number. Each replica uses a deterministic function to translate
the view number to a replica ID, which will act as primary
for that view. Therefore, the primary/leader of each view is
known to all replicas. Similar to the HotStuff, in Fast-HotStuff
primaries are selected in a round-robin manner.

Block and Block Tree. Clients send transactions to primary,
who then batch transactions into blocks. Block data structure
also has a field that it uses to point to its parent. In the case
of HotStuff and Fast-HotStuff, a QC (which is built from
n− f votes) is used as a pointer to the parent block. Every
block except the genesis block must specify its parent block
and include a QC for the parent block. In this way, blocks are
chained together. As there may be forks, each replica maintains
a block tree (referred to as blockTree) of received blocks. Two
blocks Bv+1 and Bv+2 are conflicting if they have a common
predecessor block (Bv in this case). The parent block Bv is the
vertex of the fork as shown in Figure 1.

Chain and Direct Chain. If a block B is being added over
the top of a block B′ (such that B = B′.parent), then these two
blocks make one-chain. If another block B∗ is added over the
top of the block B, then B, B′, and B∗ make two-chain and so on.
There are two ways that the chain or tree of blocks grows. First,
the chain grows in a continuous manner where the chain is made
between two consecutive blocks. For example for two blocks B
and B′ we have B.curView=B′.curView+1 and B=B′.parent.
Thus a direct chain exists between block B and B′. But there
is also the possibility that one or more views between two
views fail to generate block due to primary being Byzantine
or network failure. In that case B.curView = B′.curView+ k
where k > 1 and B = B′.parent and direct chain does not exist
between B and B′.

QC Bv+1

QC Bv

QC Bv+2

QC Bv+1

QC Bv-1

Fig. 1. A simple case of conflicting blocks. Block Bv is fork vertex, and
blocks Bv+1 and Bv+2 are two conflicting blocks.

III. HOTSTUFF IN A NUTSHELL

In this section, we provide a brief description of the three-
chain HotStuff protocol. There are two variants of the three-
chain HotStuff protocol, the basic and pipelined HotStuff. Since
pipelined HotStuff is mainly used due to its higher throughput,
here, we will focus on pipelined HotStuff.

A. Pipelined HotStuff

We describe the pipelined HotStuff operation beginning in
the view v. At the beginning of the view v a dedicated primary
is selected by all replicas operating in the view number v. The
primary proposes a block Bv (broadcast to all replicas) that
extends the block certified by the highQC it has seen. Upon
receipt of the first proposed block from the primary, each
replica sends its vote (a signature on the block) to the primary
of view v. Upon receipt of n− f votes, the primary of the view
v builds a QC and forwards the QC to the primary of the view
v+1. The QC of the view v is the highQC that the primary of
the view v+1 is holding. Therefore, the primary in the view
v+1 will propose its block (Bv+1) with the QC from the view
v as shown in the Figure 2.

Every replica has to keep track of two local parameters
in HotStuff 1) last voted view, the latest view when the
replica has voted and 2) last locked view, the view of the
grandparent block of the last voted view. As it can be seen
in the figure 2, when a replica votes for the block Bv+2 during
view v+2 its last voted view will be v+2 and it locks the
grandparent block of the block Bv+2. Hence, last locked view
will be the view v. In order to vote each replica makes sure
that the received block satisfies the voting conditions. Voting
conditions include 1) the proposed block extends the block at
the last locked view or 2) the view number of the received
block’s parent is greater than the last locked view. If any of
the voting conditions are satisfied then the replica will vote
and update its last voted view and the last locked view to
the new blocks grandparent if the latter has a higher view
number than the current last locked view. For example, when
the replica receives the block for view v+3 (Bv+3) it then makes
sure voting conditions are met. As it can be seen, the block
Bv+3 extends the last locked view (view v), satisfying the first
condition (though second condition is also satisfied as view of
the parent of Bv+3 is greater than v or v+2 > v). Therefore
the replica will vote for Bv+3. The replica then increments its
last voted view to v+3, its last locked view to v+1. Then
the replica checks its block tree to see if there is any block that
needs to be committed. If there are three blocks added over
the top of each other during consecutive (uninterrupted) views

3

QC Bv+3QC Bv+1 QC Bv+2QC Bv

Fig. 2. The chain structure of pipelined HotStuff. Curved arrows denote
the Quorum certificate references.

(Bv,Bv+1,Bv+2) and extended by at least one another block
(in this case Bv+3), then the replica will commit the block Bv
and all its predecessor blocks. The first three blocks added to
the chain during consecutive uninterrupted views make two-
direct chain. For the first block in the two-direct chain to get
committed, an additional block (may not form a direct chain)
is need to extend it and make it a three-chain.

Overall, the HotStuff primaries propose blocks, and replicas
vote on the proposed blocks. Replicas commit a block if there
is a two-direct chain extended by another block making 3-chain.
Replicas movie to the next view either when they receive a
valid block with a QC or when the primary fails to propose the
block, and replicas timeout (wait for a proposal until timeout
period). In either case, the pacemaker module provides view
synchronization.

Three-round vote collection in HotStuff. As we discussed
previously, the primary in the view v+1 collects votes for the
view v+ 1, builds a QC, and will forward it to the primary
of the view v+2. This QC will be the highQC (QC with the
highest view) for primary in view v+2. The primary of the
view V +2 will then include this QC into its block and will
propose it during the view V +2. As it can be seen, replicas
do not broadcast their votes as the classic PBFT protocol [5].
The distribution of QC through the primary (within a block),
gives rise to the possibility that if the primary fails, then a
subset of replicas may receive the QC.

Now we consider if HotStuff changes its commit rule to a
two-chain while not waiting for a three-chain chain, then it
may result in an infinite non-deciding scenario. If the primary
of view v+2 fails after sending its block Bv+2 along with the
QC for the view v+1 to a single replica i, the replica i will
lock the block Bv+1(in three-chain rule replica i will lock the
grandparent of the received block or Bv). Since other replicas
have not received block Bv+2, they timeout and move to the
next view while having their lock on view v (Bv).

The next primary in the v+3 will receive 2 f +1 view change
messages from replicas (excluding i). Since other replicas have
QC for the view v as the highest QC (highQC) therefore the
primary v+3 proposes a block using the QC for the view v.
Since replica i has locked the view v+ 1, it will reject the
competitive proposal. While other 2 f replicas vote as each
of them has locked on the view v. Since the primary, only
collects 2 f votes it cannot prepare a QC. Therefore, replicas in
the view v+3 timeout and move to the next view. Just during
this time a Byzantine replica sends its vote to the primary and
the primary builds a QC, sending it to only one honest replica
before it fails. Therefore, the other honest replica gets locked
into the view v+3. Since honest replicas are getting locked,
other proposals will not be able to collect enough votes causing
an indefinite non-deciding scenario. Therefore, HotStuff has
to lock after two rounds of communication and commit after

QC Bv+3

QC Bv+1 QC Bv+2QC Bv

Fig. 3. Forking attack by the primary of the view v+3.

three rounds.
Forking Attack. A Byzantine primary in pipelined HotStuff

can deliberately generate forks to override the blocks from the
honest primary. As it can be seen in Figure 3, blocks Bv+1 and
Bv+2 are honest blocks and the Byzantine primary will propose
block Bv+3 using the QC for the block Bv. Other replicas will
vote for Bv+3 as it satisfies the voting rule (Bv+3 parent’s view
is at least equal to the Bv view (v) or Bv+3 extends Bv). Since
Bv+3 has higher view than Bv+2, next primary will extend
Bv+3. As a result, the resources (computing, bandwidth, etc.)
spend on these blocks are wasted. Transactions of reverted
blocks will have to be re-proposed by another primary. Hence,
these transactions encounter additional latency. Moreover, since
forking overrides the honest blocks it also breaks the direct
chain relation among blocks (refer to Section II). This results
in delaying the block commitment as the commit rule require
that for a block to get commit, at least the first two blocks over
the top of it should make a 2-direct chain (two blocks from
consecutive views). Forking attack makes it difficult to design
an incentive mechanism like PoS over the top of HotStuff as
blocks from honest primaries will not be able to get committed
and hence honest primaries will less likely to earn rewards5.

IV. FAST-HOTSTUFF

Fast-HotStuff operates in a series of views with monotoni-
cally increasing view numbers. Each view number is mapped
to a unique dedicated primary known to all replicas. The basic
idea of Fast-HotStuff is simple. The primary has to convince
voting replicas that its proposed block is extending the block
pointed by the highQC. Once replicas are convinced that the
proposed QC is the highQC, it checks if two-direct chain is
formed over the top of the parent of the block pointed by the
highQC. Then a replica can safely commit the parent of the
block pointed by the highQC.

Unlike HotStuff (where a block is committed in three rounds),
in the Fast-HotStuff protocol, a replica i can optimistically
commit/execute a block during at the end of the second round
while guaranteeing that all other correct replicas will also
commit the same block in the same sequence eventually. This
guarantee is valid when either one of the two conditions is met:
1) the block proposed by the primary is built by using a
QC that is the highQC held by the majority of the honest
replicas, or 2) by a QC higher than the highQC being held
by a majority of replicas. Therefore, the primary has to
incorporate proof of the highQC in every block it proposes,
which can be verified by every replica.

Interestingly, the inclusion of the proof of the highQC by the
primary in Fast-HotStuff also enables us to design a responsive

5More details about this is part of our future work

4

two-chain consensus protocol. Indeed, the presence of the proof
for the highQC guarantees that a replica can safely commit a
block after two-chain without waiting for the maximum network
delay as done in two-chain HotStuff [4], Tendermint [1], and
Casper [3]. Therefore, Fast-HotStuff achieves responsiveness
only with a two-chain structure (which means two rounds of
communication) in comparison to the three-chain structure in
HotStuff (three rounds of communication).

Algorithm 1: Utilities for replica i
1 Func CreatePrepareMsg(type, aggQC, qc, cmd):
2 b.type ← type
3 b.AggQC ← aggQC
4 b.QC ← qc
5 b.cmd ← cmd
6 return b
7 End Function
8 Func GenerateQC(V):
9 qc.type ← m.type : m ∈V

10 qc.viewNumber ← m.viewNumber : m ∈V
11 qc.block ← m.block : m ∈V
12 qc.sig ← AggSign(qc.type, qc.viewNumber, qc.block,i,

{m.Sig |m ∈V})
13 return qc
14 End Function
15 Func CreateAggQC(ηSet):
16 aggQC.QCset ← extract QCs from ηSet
17 aggQC.sig ← AggSign(curView,

{qc.block|qc.block ∈ aggQC.QCset}, {i|i ∈ N},
{m.Sig|m ∈ ηSet})

18 return aggQC
19 End Function
20 Func BasicSafeProposal(b,qc):
21 return b extends from highQC.block
22 End Function
23 Func PipelinedSafeBlock(b,qc, aggQC):
24 if QC then
25 return b.viewNumber ≥ curView∧b.viewNumber ==

qc.viewNumber+1
26 end
27 if AggQC then
28 highQC← extract highQc from AggregatedQC
29 return b extends from highQC.block
30 end
31 End Function

Since HotStuff has two three-chain variant (the basic and
the pipelined HotStuff), therefore we present two-chain basic
Fast-HotStuff as well as pipelined Fast-HotStuff protocols.
First, we present the basic optimised two-chain Fast-HotStuff
and then extend it to an optimized two-chain pipelined Fast-
HotStuff protocol. As mentioned earlier the basic Fast-HotStuff
is two-chain protocol and uses the aggregated signature scheme.
Moreover, basic Fast-HotStuff needs the proof for the highQC
in the form of n− f QCs attached in the proposed block by
the primary in order to be able to guarantee safety and liveness
as a two-chain protocol. In the case of blockchains since block
size is usually large (multiples of Megabytes), this overhead
has little effect on performance metrics like throughput and
latency. We also show that the protocol requires only two QCs
to be verified instead of n− f QCs. Then we further optimized

pipelined Fast-HotStuff by introducing proposal pipelining.
Moreover, for pipelined Fast-HotStuff, the block include a
single QC during happy path and similar to the basic Fast-
HotStuff only two QCs need to be verified in case of the
primary failure.

A. Basic Fast-HotStuff

The algorithm for two-chain Responsive basic HotStuff is
given in Algorithm 2. Below we describe how the basic Fast-
HotStuff algorithm operates. Fast-HotStuff operates in three
phases PREPARE, PRECOMMIT and COMMIT. The function of
each phase is described below.

PREPARE phase. Initially the primary
replica waits for new-view messages η =
〈”NEWV IEW”,curView, prepareQC, i〉 from n− f replicas.
The NEWVIEW message contains four field indicating
message type (NEWVIEW), current view (curView), the
latest PrepareQC known to replica i, and replica id i. The
NEWV IEW message is signed by each replica over fields
〈curView, prepareQC.block, i〉. prepareQC.block is presented
by the hash of the block for which prepareQC was built
(hash is used to identify the block instead of using the
actual block). The primary creates and signs a prepare
message (B = 〈”Prepare”,AggQC,commands,curView,h, i〉)
and broadcasts it to all replicas as shown Algorithm 2. We
can also use the term block proposal or simply block for
PREPARE message. AggQC is the aggregated QC build from
valid η messages collected from n− f replicas.

Upon receipt of prepare message B from the primary,
a replica i verifies AggQC, extracts highQC as well from
PREPARE message and then checks if the proposal is safe.
Verification of AggQC involves verification of aggregated
signatures built from n− f η messages and verification of
the latest PrepareQC. Signature verification of each QC is not
necessary, a replica only needs to make sure messages are
valid. BasicSa f eProposal predicate makes sure a replica only
accepts a proposal that extends from the highQC.block.

If a replica notices that it is missing a block it can
download it from other replicas. At the end of PREPARE
phase, each replica sends its vote v to the primary. Any vote
message v sent by a replica to the primary is signed on tuples
〈type,viewNumber,block, i〉. Each vote has a type, such that
v.type ∈ {PREPARE,PRECOMMIT,COMMIT} (Here again
block hash can be used to represent the block to save space
and bandwidth).

PRECOMMIT phase. The primary collects PREPARE
votes from n− f replicas and builds PrepareQC. The primary
then broadcasts PrepareQC to all replicas in PRECOMMIT
message. Upon receipt of a valid PRECOMMIT message, a
replica will respond with a PRECOMMIT vote to the primary.
Here (in line 25-27 Algorithm 2) replica i also checks if it
has committed the block for highQC called HighQC.block.
Since the majority of replicas have voted for HighQC.block,
it is safe to commit it.

COMMIT phase. Similar to PRECOMMIT phase, the
primary collects PRECOMMIT votes from n− f replicas

5

and combines them into PrecommitQC. As a replica receives
and verifies the PrecommitQC, it executes the commands. The
replica increments newNumber and begins the next view.

New-View. Since a replica always receives a message
from the primary at a specific viewNumber, therefore, it
has to wait for a timeout period during all phases. If
NEXTVIEW(viewNumber) utility interrupts waiting, the
replica increments viewNumber and starts next view.

Algorithm 2: Basic Fast-HotStuff for replica i
1 foreachin curView ← 1,2,3,...
2 . Prepare Phase
3 if i is primary then
4 wait until (n− f) η messages are received:

ηSet ← ηSet ∪η

5 aggQC←CreateAggQC(ηSet)
6 B← CreatePrepareMsg(Prepare,aggQC, client’s

command)
7 broadcast B
8 end
9 if i is normal replica then

10 wait for prepare B from primary(curView)
11 HighQC← extract highQc from B.AggQC
12 if BasicSafeProposal(B, HighQC) then
13 Send vote v for prepare message to

primary(curView)
14 end
15 end
16 . Pre−Commit Phase
17 if i is primary then
18 wait for (n− f) prepare votes: V ←V ∪ v
19 PrepareQC ← BasicGenerateQC(V)
20 broadcast PrepareQC
21 end
22 if i is normal replica then
23 wait for PrepareQC from primary(curView)
24 Send Precommit vote v to primary(curView)
25 if have not committed HighQC.block then
26 commit HighQC.block
27 end
28 end
29 . Commit Phase
30 if i is primary then
31 wait for (n− f) votes: V ←V ∪ v
32 PrecommitQC ← GenerateQC(V)
33 broadcast PrecommitQC
34 end
35 if i is normal replica then
36 wait for PrecommitQC from primary(curView)
37 execute new commands through PrecommitQC.block
38 respond to clients
39 . New-View
40 check always for nextView interrupt then
41 goto this line if nextView(curView) is called

during “wait for” in any phase
42 Send η to primary(curView+1)
43 end
44 end

B. Correctness Proof for Basic Fast-HotStuff

Correctness of a consensus protocol involves proof of
safety and liveness. Safety and liveness are the two important

properties of consensus algorithms. In this section, we provide
proofs for safety and liveness properties of Fast-HotStuff. We
begin with two standard definitions.

Definition 1 (Safety). A protocol is safe if the following
statement holds: if at least one correct replica commits a
block at the sequence (blockchain height) s in the presence of
f Byzantine replica, then no other block will ever be committed
at the sequence s.

Definition 2 (Liveness). A protocol is alive if it guarantees
progress in the presence of at most f Byzantine replica.

Next, we introduce several technical lemmas. The first lemma
shows that for each view, at most only block can get certified
(get n− f votes).

Lemma 1. If any two valid QCs, qc1 and qc2 with same type
qc1.type = qc2.type and conflicting blocks i.e., qc1.block = B
conflicts with qc2.block = B′, then we have qc1.viewNumber 6=
qc2.viewNumber.

Proof. We can prove this lemma by contradiction. Furthermore,
we assume that qc1.viewNumber = qc2.viewNumber. Now let’s
consider, N1 is a set of replicas that have voted for for
block B in qc1(|N1| ≥ 2 f + 1). Similarly, N2 is another set
of replicas that have voted for block B′ and whose votes
are included in qc2 (|N2| ≥ 2 f + 1). Since n = 3 f + 1 and
f = n−1

3 , this means there is at least one correct replica j such
that j ∈ N1∩N2 (which means j has voted for both qc1 and
qc2). But a correct replica only votes once for each phase
in each view. Therefore, our assumption is false and hence,
qc1.viewNumber 6= qc2.viewNumber.

The second lemma proves that if a single replica has
committed a block at the view v then all other replicas will
commit the same block at the view v.

Lemma 2. If at least one correct replica has received
PrecommitQC for block B, then the PrepareQC for block B
will be the highQC (latest QC) for next (child of block B) block
B′.

Proof. The primary begins with a new view v+1 as it receives
n− f NEWVIEW messages. Here for ease of understanding,
we assume v + 1, basically B′ could have been proposed
during any view v′ > v. We show that any combination
of n− f NEWVIEW messages have at least one of those
NEWVIEW message received by the primary containing
highQC (PrepareQC for block B) for block B.

We know that in previous view v, a set of replicas R1 of
size |R1| ≥ 2 f +1 have voted for PrepareQC (which is built
from votes for block B). Similarly, another set of replicas R2
of size |R2| ≥ 2 f +1 have sent their NEWVIEW messages to
the primary of view v+1 after the end of view v . Since the
total number of replicas is n = 3 f +1 and f = n−1

3 , therefore,
R1∩R2 = R, such that, |R| ≥ f +1, which means that there is
at least one correct replica in R2 that has sent its PrepareQC
as highQC in NEWVIEW message to the primary. Therefore,
when primary of view v+1 proposes B′, the PrepareQC for

6

block B will be the highQC. In other words B′ will point to B
as its parent (through highQC).

The third lemma proves that if a replica commits a block
then it will not be reverted.

Lemma 3. A correct replica will not commit two conflicting
blocks.

Proof. From lemma 1 we know that each correct replica
votes only once for each view and therefore view number
for conflicting blocks B and B′ will not be the same. Therefore,
we can assume that B.curView < B′.curView. Based on lemma
2 we know that if at least one correct replica has received
PrecommitQC for block B (have committed B), then the
PrepareQC for block B will be the highQC for the next block
B′ (child of block B). Therefore, any combination of n− f
PrepareQCs in AggQC for B′ will include at least one highQC
such that highQC.block = B or highQC.block.view = B.view.
But for B′ to be conflicting with B it has to point to the
parent of B at least. Consequently, first it is not possible for
a primary to build a valid PREPARE message B′ in which
highQC.block.view < B.view. Secondly, if a primary tries to
propose a block with invalid AggQC, it will be rejected by the
replica based on Algorithm 2 line 12.

Lemmas 1, 2 and 3 provide a safety proof for basic Fast-
HotStuff consensus protocol. To ensure liveness, Fast-HotStuff
has to make sure in each view a replica is selected as a primary
and the view number is incremented. Moreover, we should
also show that the protocol will eventually add a block to the
chain/tree of blocks (a block to the blockchain) or will result
in view change in case of failure.

In Fast-HotStuff a new primary is chosen deterministically
in a round-robin manner. If a replica times out, it employs
exponential-backoff used in PBFT [5] to double its timeout
value. This guarantees that eventually during GST there will
be an interval Tf when timeout values from all correct replicas
intersect and this bounded period is enough to reach a decision
during consensus. Below we provide liveness proof for our
Fast-HotStuff protocol.

Lemma 4. After GST, there is a time Tf , when there is an
honest primary and all correct/honest replicas are in the same
view. As a result, a decision is reached during Tf .

Proof. Based on lemma 2, at the beginning of a view, the
primary will have the latest PrepareQC or highQC from n− f
replicas. As per assumption, all correct replicas are in the same
view, therefore the correct primary will propose a PREPARE
message with AggQC containing the latest PrepareQC, which
is extracted by each replica. Since all replicas are in the same
view until bounded Tf time, therefore all replicas successfully
complete PREPARE, PRECOMMIT, and COMMIT phase.

Efficient View Change (R3) As a replica moves to the next
view, it will send its NEWV IEW (η) to the next primary. The
primary aggregates n− f η messages and their signatures into

an AggQC and sends back to all replicas. Upon receipt of a
block containing an AggQC, first the aggregated signature for
the n− f (η) messages needs to be verified. The first check
(verification of aggregated signature of AggQC) verify that the
AggQC that is built from η messages has n− f valid QCs
(QCs come from n− f distinct replicas). It further guarantees
that at least f +1 QCs out of n− f are from honest replicas.
Based on Lemma 2 we know that out of these f +1 QCs from
honest replicas at least one of them is a valid highQC.

Therefore, a replica only needs to find a QC with highest
view among QCs in AggQC by looping over the view numbers
of QCs. Next, the replica has to verify the aggregated signature
of highQC or latest QC. As a result, we do not need to verify
the remaining n− f −1 QCs as a replica only needs to verify
highQC and make sure if the block extends highQC.block. This
helps to reduce the signature verification cost for AggQC (n− f
QCs) during view change by the factor of O(n) independent
of signature scheme used. For example, the the quadratic
verification cost of AggQC in [17] can be reduced to linear. This
is due to the fact that the verification cost of each aggregated
signature is linear in [17]. Therefore, each replica has to verify
only two QCs. Similarly linear cost of AggQC in [20] can be
reduced to constant for each replica because verification cost
of each aggregated signature (in [20]) is constant and each
replica has to verify only two QCs. This optimization can be
used by any two-chain BFT-based consensus protocol during
view change where replicas have to receive and process n− f
QCs.

There is a possibility that the η messages containing
highQC are invalid. This means η does not meet formatting
requirements or its view number is incorrect. In this case, the
replica can simply reject the block proposal.

C. Pipelined Fast-Hotstuff

Pipelined Fast-HotStuff has been optimized in different ways
in comparison to the basic Fast-HotStuff. First similar to the
piplined HotStuff, it pipelines requests and proposes them in
each phase to increase the throughput. Secondly, during normal
view change when no primary failure occurs the protocol
does not require additional overhead. But the proof of the
latest/highest QC in the block in pipelined Fast-HotStuff carries
a small overhead (AggQC) in the block during view v if the
primary in view v−1 fails.

Blocks can be added into the chain during happy path with
no failure or the primary fails and the next primary will have
to add its block into the chain. Unlike HotStuff, pipelined
Fast-HotStuff addresses these two cases differently. Indeed,
there are two ways a primary can convince replicas that the
proposed block extends the latest QC (highQC). In case of
contiguous chain growth, a primary can only propose a block
during view v if it is able to build a QC from n− f votes
received during the view v−1. Therefore in a contiguous case,
each replica signs the vote , the primary will build a QC from
n− f received votes and include it in the next block proposal.
Therefore, the block will contain only the QC for view v−1.
As a result, for the block during view v, the QC generated

7

from votes in v−1 is the proof of highQC. It should be noted
that in pipelined Fast-HotStuff, a replica commits a block if
two direct chain is formed over the top of it. In other words, a
block is committed if two blocks from consecutive views are
added over the top of it. Similarly, if a primary during view
v did not receive n− f votes from view v−1 (this means the
primary during view v−1 has failed), then it can only propose
a block if it has received n− f η (NEWVIEW) messages from
distinct replicas for view v. In this case, the primary during
view v has to propose a block with aggregated QC or AggQC
from n− f replicas (R1, R2).

The signatures on η are aggregated to generate a single
aggregated signature in AggQC. Therefore, there are basically
two types of blocks that can be proposed by a primary: a block
with QC if the primary is able to build a QC from previous
view or a block with AggQC if the previous primary has failed.
It should be noted that to verify AggQC a replica only needs to
verify the aggregated signature of AggQC and the highQC in
the AggQC as described previously. The highQC can simply be
found by looping over view numbers of each QC and choose
the highest one (R3).

The chain structure in pipelined Fast-HotStuff is shown
in Figure 4. Here, we can see that upon receipt of block
Bv+2 (during the view v+2), a two-chain with direct chain is
completed for the block Bv. Now a replica can simply execute
the block Bv. Since there is no primary failure for views v
through view v+ 2, only highQC is included in the block
proposal. Similarly, the primary for the view v+3 has failed,
therefore, the primary for the view v+ 4, has to propose a
block with AggQC (small overhead). Upon receipt of Bv+4, the
highQC (highQC) can be extracted from AggQC. In this case,
the QC for the block Bv+2 has been selected as the highQC.

As it can be seen the algorithm mainly has two components:
the part executed by the primary and the part run by replicas.
The primary either receives votes that it will aggregate into
a QC or NEWVIEW messages containing QC from n− f
replicas that the primary will aggregate into AggQC (Algorithm
3 lines 23-25 and 2-9). The primary then builds a proposal in the
form of PREPARE message also called a block. PREPARE
also contains QC or AggQC depending on if it has received
n− f votes or NEWVIEW messages (Algorithm 3 lines 2-11).
The primary then proposes the block to replicas ((Algorithm 3
line 11)).

Upon receipt of block B (containing a QC) through
a proposal, each replica can check the condition
B.viewNumber == B.QC.viewNumber + 1 and accept
the proposal if the condition is met. On other hand, if the
block contains a valid AggQC, then each replica extracts
the highQC from AggQC and checks if the block extends
the highQC.block. These checks are performed through
PipelinedSa f eBlock predicate (Algorithm 1). If the check was
successful, each replica sends back a vote to the next primary
(Algorithm 3 lines 13-16). After that, each replica commits
the grandparent of the received block if direct chain is formed
between the received block and its parent as well as parent
of the received block and its grand parent (Algorithm 3, lines

Block Bv PREPARE PRECOMMIT COMMIT

PRECOMMIT COMMIT

highQC Bv+1

Block Bv+1 PREPARE

Block Bv+2 PREPARE

Block Bv+4 PREPARE

PRECOMMIT

highQC Bv highQC Bv+2 highQC Bv+4

Fig. 4. Pipeined/Chained Fast-HotStuff where a QC can serve in different
phases simultaneously. Note that the primary for view v+3 has failed.

17-21). In other words, a block is committed if two blocks are
built over top of it in consecutive views (two-chain is complete)
without waiting for the maximum network delay (R1, R2).

Resilience against Forking Attack (R4). Unlike pipelined
HotStuff, pipelined Fast-HotStuff is robust to forking attacks.
In Fast-HotStuff the primary has to provide the proof of the
latest QC included in the block. This proof can be provided
in two ways. First, if there is no primary failure, then for
the proposed block B∗ and the QC it contains (qc), we have
B.view = qc.view+1. Secondly, if there is a primary failure in
the previous view than the primary has to include the AggQC
(n− f QCs). This guarantees at least one of the QCs in the
AggQC is the latest QC held by the majority of replicas or
a QC higher than the latest QC being held by the majority
of replicas. The inclusion of proof within block prevents the
primary from using an old QC to generate forks. If a primary
does not provide appropriate proof, its proposal can be rejected.
Furthermore, such a proposal can be used as a proof to blacklist
the primary.

D. Correctness Proof for Pipelined Fast-HotStuff

We can establish the safety and liveness of pipelined Fast-
HotStuff in a way similar to what we have proven for the basic
Fast-HotStuff. For safety we want to prove that if a block is
committed by a replica, then it will never be revoked. Moreover,
if a replica commits a block then all other replica will eventually
commit the same block at the same block sequence/height.

Lemma 5. If B and B’ are two conflicting blocks, then only
one of them will be committed by a replica.

Proof. From lemma 1, we know that each correct replica
votes only once for each view and therefore view number for
conflicting blocks B.curView < B′.curView and we assume
that block B is already committed. Now, a replica r receives
a PREPARE message in the form of block B′. Since B′ is
a conflicting block to B therefore, the highQC in the block
must point to an ancestor of block B. In this case we consider
B∗ as the parent of B (B.parent = B∗) and B′.QC.block = B∗.
Since B′ extends from B∗ which is parent of B, therefore
first condition in PipelinedSa f eBlock predicate fails because
highQC in B′ (B′.QC) extends the parent of B (B∗) but not B.
Similarly, second condition in PipelinedSa f eBlock predicate
also fails because B′.viewNumber = B′.QC.viewNumber + k,
where k > 1.

8

Algorithm 3: pipelined Fast-HotStuff for block i
1 foreachin curView ← 1,2,3,...
2 if i is primary then
3 if n− f η msgs are received then
4 aggQC←CreateAggQC(ηSet)
5 B← CreatePrepareMsg(Prepare,aggQC,⊥ ,

client’s command)
6 end
7 if n− f v msgs are received then
8 qc← GenerateQC(V)

CreatePrepareMsg(Prepare,⊥, qc, client’s
command)

9 end
10 broadcast B
11 end
12 if i is normal replica then
13 wait for B from primary(curView)
14 if PipelinedSafeBlock(B,B.qc,⊥) ∨

PipelinedSafeBlock(B,⊥,B.aggQC) then
15 Send vote v for prepare message to

primary(curView+1)
16 end
17 // start commit phase on B∗’s grandparent if direct

chain exists among B∗, its parent and B∗’s
grandparent

18 if (B∗.parent = B′′∧B∗ .view = B′′.view+1)∧
(B′′.parent = B′∧B′′.view = B′.view+1) then

19 execute new commands through B′
20 respond to clients
21 end
22 end
23 if i is next primary then
24 wait until (n− f) v/η for current view are received:

ηSet ← ηSet ∪η ∨V ←V ∪ v
25 end
26 . Finally
27 check always for nextView interrupt then
28 goto this line if nextView(curView) is called during

“wait for” in any phase
29 Send η to primary(curView+1)
30 end

Fig. 5. Safety violation scenario.

Lemma 6. If a block B is committed by a replica i at the
height h, then no other replica i∗ in the network will commit
another block B∗ at the height h.

Proof. For the sake of contradiction let’s assume that it is
possible that if block B at the height h is committed only by a
single replica i then at least one another replica i∗ can commit
another block B∗ the height h.The chain of each replica i and
i∗ is given in the Figure 5. Now we analyze different cases
arise from our assumption.

Case 1: When qc∗.view < qc.view. In this case, since
qc∗.view < qc.view therefore, qc∗.view < highQC.view. As a
result, qc∗ will not be selected as highQC by any honest replica
(based on Lemma 2).

Case 2: When qc∗.view == qc.view. Two QCs pointing
to two different blocks cannot be same.

Case 3: When qc’.view > qc*.view > qc.view In the third
case, there is a possibility that a number of replicas hold a QC
qc∗ such that qc∗.view > qc.view. qc∗ has not been propagated
to the majority of honest nodes due to the network partition.
The qc∗.block is conflicting block to block B. After the view
change the new primary p (that is aware of qc∗) includes
qc∗ in the AggQC. If qc∗ is accepted then it is possible that
other replicas may commit a block B∗ which is conflicting to
block B. But this is not possible due to the two-direct chain
requirements to commit a block (qc.view+ 1 = qc′.view) in
Algorithm 3 lines 18-20. Therefore, there can be no such qc∗,
with a view qc′.view > qc∗.view > qc.view when replica i has
committed the block B.

Case 4: When qc*.view == qc’.view Two QCs pointing
to two different blocks cannot be the same.

Case 5: When qc*.view > qc’.view We know that qc′

has been built from n− f replica votes that have seen the qc.
Therefore, the qc is the highqc for n− f replicas of which at
least f +1 are honest. Hence, when the primary collect n− f η

messages (NEWVIEW) during view change at least one of η

will contain qc or a QC that extends the qc (based on Lemma
2). Therefore qc∗ that does not extend qc will not be formed.
Hence, our assumption is proved to be false. Therefore, if a
block is committed by a replica i at height h then no other
block can be committed at the height h.

This lemma confirms that if a single replica commits a block
B, then no conflicting block to B will be committed by another
replica. This lemma is developed to address a subtle safety
violation scenario due to the network partition that was reported
in Gemini [21] (that simulates Byzantine scenarios at scale)
by Facebook’s Diem group (previously known as Novi). We
also successfully verified the safety of revised Fast-HotStuff
using the Twins simulator for Fast-HotStuff developed by Diem
team6.

E. Performance Penalty of direct chain Condition

Direct chain has a high cost in HotStuff protocol due to the
forking attack. Each time when a Byzantine primary over-
rides blocks for honest primaries it not only reduces the
throughput but also prevents direct chain formation. This results
in increased latency. On the other hand, since a forking attack
is not possible in HotStuff, a direct parent cannot be broken
through forking. But it is possible that a direct chain is broken
when a primary fails to propose a block and replicas timeout.
Since replicas wait for the maximum timeout period ∆, which
is very large than the actual wire speed δ (δ � ∆). Therefore,

6https://github.com/asonnino/twins-simulator

9

incurring latency in the order of δ (due to lack of direct chain)
is negligible when the overall delay is in the order of ∆.

The liveness proof for pipelined Fast-HotStuff is similar
to the proof for Basic Fast-HotStuff and is omitted here for
brevity.

F. Communication complexity

We separate our analysis on communication complexity
of Fast-HotStuff in happy path and unhappy path. In happy
path, the communication complexity of pipelined Fast-HotStuff
is the same with HotStuff, and both are O(nl + nk) where
l is the block payload size and k is the size of a vote or
the NEWVIEW message. While in unhappy path (primary
failure), the communication complexity of the pipelined Fast-
HotStuff is O(nl+n2k). As in applications such as blockchain,
the block size l is usually large (in megabytes), therefore, nl
is the dominating component in communication complexity
and n2k has negligible effect on performance. That is why
even in unhappy path, Fast-HotStuff still achieve a similar
performances with HotStuff.

(a) Fast-HotStuff Latency

(b) Fast-HotStuff Throughput

Fig. 6. Performance tests with 1MB block size

V. EVALUATION

As pipelined HotStuff is widely adopted due to its higher
throughput, we implemented prototypes of pipelined Fast-
HotStuff and pipelined HotStuff using Go programming
language. For cryptographic operations we used dedis advanced
crypto library in Go [22] . Moreover, for hashing values, we

(a) Fast-HotStuff Latency

(b) Fast-HotStuff Throughput

Fig. 7. Performance tests with 2MB block size

Fig. 8. Comparing Signature Schemes.

used SHA256 hashing in the Go crypto library 7. We tested Fast-
HotStuff’s performance on Amazon cloud (AWS) with different
network sizes 40,70,100,130,160 (to compare performance
and scalability) and different block sizes (1MB and 2MB). We
used t2.micro replicas in AWS, where each replica has a single
vCPU (virtual CPU) comparable to a single core with 1GB
memory. The bandwidth was set to 500 Mb/sec (62.5 MB/sec)
and the latency between two end points was set to 50 msec.
We also performed forking attack on each network of different
sizes, k = 1000 times and took mean of the average throughput
of the network and the latency incurred by blocks affected by
this attack.

We compared pipelined Fast-HotStuff’s performance
(throughput and latency) against pipelined HotStuff in three

7https://golang.org/pkg/crypto/sha256/

10

scenarios: 1) during happy path (when no failure occurs),
therefore, the primary only includes the QC in the block (red
vs blue curves), 2) when the previous primary fails and the
next primary in the Fast-HotStuff has to include the aggregated
QC ((n− f) QCs) in the block (red vs green curves), and 3)
when HotStuff and Fast-HotStuff come under forking attack.
Results achieved from each case are discussed below:

1) As the results shown in Figure 6a and 7a, during happy
path when no failure occurs, Fast-HotStuff outperforms
HotStuff in terms of latency. HotStuff’s throughput (in
red) slightly decreases against Fast-HotStuffs throughput
(in blue) due to O(n2) time complexity for interpolation
calculation at the primary when n increases (Figure 6b
and 7b).

2) We did not consider the timeout period taken by replicas
to recover, as our main objective is to show that even
the inclusion of aggregated QC (small overhead) after a
primary failure has a negligible effect on pipelined Fast-
HotStuff’s performance. Therefore, just after GST (after
primary failure), when an honest primary is selected,
HotStuff does not incur additional overhead. However,
HotStuff needs an additional round of consensus during
happy (normal) as well as unhappy (failure) cases in
comparison to Fast-HotStuff. As a result, the throughput
and latency of HotStuff during the happy path or unhappy
path just after primary failure is the same and is shown
by the red curve (by ignoring the timeout period).
Consequently, HotStuff’s throughput (in red) is slightly
better than Fast-HotStuff’s throughput (in green). See in
Figure 6b and Figure 7b. Despite the small overhead, Fast-
HotStuff’s latency (in green) is lower than the HotStuff’s
latency (red) as shown in Figure 6a and Figure 7a.

3) Forking attack effects in Fast-HotStuff and HotStuff can
be observed in Figure 6a and b and Figure 7a and b
by comparing blue vs. cyan curves. Since forking attack
has no effect on Fast-Hotstuf (as explained in subsection
IV-F), there is no difference between Fast-HotStuff’s
normal throughput and latency and its throughput and
latency under attack. As such, we did not use additional
curves representing the performance of Fast-HotStuff
under attack in Figure 6a and b and Figure 7a and b (blue).
By contrast, under attack, HotStuff’s latency increases
and its throughput decreases significantly (shown with
cyan curve) .

HotStuff uses t-out-of-n threshold signatures [16] and the
Fast-HotStuff uses aggregated signatures as stated previously.
The crypto library we used (Dedis advanced crypto library)
supports both aggregated and threshold signatures. In order
to better understand the effects of signature schemes on each
protocol’s performance we also compared the latency caused by
each signature type during consensus. Higher latency cause by
cryptographic operations during consensus will result in higher
latency and lower throughput. In both aggregated signature
as well as threshold signature there are three main steps for
signature verification in HotStuff and Fast-HotStuff. First, each

replica signs a message (vote, NEWV IEW) and sends it to the
primary. Second, the primary builds an aggregated signature
or threshold signature from n− f messages received from
distinct replicas and sends it back to each replica. Third,
each replica verifies the aggregated or threshold signature
associated with the messages received from the primary. The
cost for the first step is small and constant (for constant size
message) for both threshold signature as well as aggregated
signature. Therefore, we ignore this cost. The computation
cost of aggregating signatures into a single constant size
aggregated signature by the primary replica is small, resulting in
a negligible delay. It is shown by the green curve in the Figure
8. However, the cost of building threshold signature from n− f
partial signatures received by the primary replica from n− f
replicas (shown by the yellow curve) in the threshold signatures
is quadratic as it uses O(t2) (t = n− f) time polynomial
interpolation. Conversely, the computation cost of verification
in threshold signature is small and results in a constant delay
per replica shown by the red curve. However, the cost of
verifying aggregated signature in the aggregated signature
scheme is linear, resulting in a linear delay shown by the
blue curve. In summary, we can see that building threshold
signatures in the primary from partial signatures is expensive
in threshold signatures. Although threshold signatures have
constant verification costs, the latency induced in the primary
prevents threshold signatures from having any performance
gain in comparison to the aggregated signature scheme.

VI. RELATED WORK

There have been multiple works on improving BFT protocols
performance and scalability [10], [13], [23]. But these protocols
suffer from expensive view change where either the message
complexity or a number of signatures/authenticators to be
verified grows quadraticly. Moreover, these protocols do not
employ a primary rotation mechanism.

Other protocols that offer a simple mechanism of leader/pri-
mary replacement include Casper [3] and Tendermint [1]. But
both of these protocols have synchronous cores where replicas
in the network have to wait for the maximum network latency
before moving to the next round. In other words, these protocols
lack responsiveness which will result in high-performance
degradation.

PBFT [5] has quadratic message complexity during happy
path or normal operation. During view change each replica
has to process at least O(n2) signatures. Moreover, PBFT
does not use rotating primary. On the otherhand, Fast-HotStuff
uses rotating primary, pipelined Fast-HotStuff has linear view
change during normal primary rotation (view change). In case
of failure, primary rotation in Fast-HotStuff in each replica
the processing cost of signatures is either linear or constant
depending on signature scheme used.

SBFT [11] has linear communication complexity during
normal operation. SBFT does not employ rotating primary
mechanism. When Fast-HotStuff and SBFT use the same
signature scheme, replicas in Fast-HotStuff will have to verify
O(n) signatures less than the SBFT.

11

HotStuff [4] is designed to not only keep a simple leader
change process but also maintain responsiveness. These features
along with the pipelining optimization have provided an
opportunity for wide adoption of the HotStuff [7] protocol.
HotStuff has linear view change but we show that in practice
during primary failure (unhappy path) Fast-Hotstuff’s view
change performance is comparable to HotStuff. LibraBFT [7]
is a variant of HotStuff. Unlike the HotStuff that uses threshold
signatures, Libra BFT uses aggregated signatures. LibraBFT
uses broadcasting during primary failure. LibraBFT also has
three-chain structure and is susceptible to forking attacks.

Pala BFT [2] is another variant of HotStuff (though the paper
has not been peer reviewed) that introduces a strong notion
of synchrony. Every replica has to multicast any message it
has seen, making the protocol highly expensive. Pala requires
that the clocks in replicas are synchronous and with negligible
bounded skew. Pala is also susceptible to forking attacks. On
the other hand, Fast-HotStuff does not require any notion of
synchronous clock and is highly event-driven once a block is
proposed by the primary. This makes Fast-HotStuff a highly
reliable and robust protocol that can safely be used over the
Internet where message latency may not be always uniform.
Fast-HotStuff is also robust against forking attack as mentioned
previously.

VII. CONCLUSION

In this paper, we presented Fast-Hotstuff which is a two-
chain consensus protocol with efficient and simplified view
change. It achieves consensus in two rounds of communication.
Moreover, Fast-Hotstuff is robust against forking attacks.
Whereas HotStuff lacks resilience against forking attacks. Fast-
Hotstuff achieves these unique advantages by adding a small
amount of overhead in the block. This overhead is only required
in rare situations when a primary fails. Our experimental results
show that whether the overhead is included in the proposed
block or not, Fast-Hotstuff outperforms Hotstuff in terms of
latency. Fast-HotStuff outperforms HotStuff in terms of latency
and throughput under forking attack.

ACKNOWLEDGEMENT

The authors gratefully acknowledge valuable discussions
with Dr. Dahlia Malkhi and her team which helped to improve
this work. Specifically by finding a subtle safety violation
through their automated testing tool for BFT consensus Gemini
[21].

REFERENCES

[1] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Jun 2016.

[2] T.-H. H. Chan, R. Pass, and E. Shi, “Pala: A simple partially synchronous
blockchain,” Cryptology ePrint Archive, Report 2018/981, 2018, https:
//eprint.iacr.org/2018/981.

[3] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[4] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstuff:
Bft consensus with linearity and responsiveness,” in Proceedings of the
2019 ACM PODC, ser. PODC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 347–356.

[5] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design
and Implementation, ser. OSDI ’99. Berkeley, CA, USA: USENIX
Association, 1999, pp. 173–186.

[6] M. M. Jalalzai, C. Feng, C. Busch, G. G. R. I. au2, and J. Niu, “The
hermes bft for blockchains,” 2020.

[7] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State machine
replication in the libra blockchain,” 2019.

[8] A. Hentschel, Y. Hassanzadeh-Nazarabadi, R. M. Seraj, D. Shirley, and
L. Lafrance, “Flow: Separating consensus and compute - block formation
and execution,” ArXiv, vol. abs/2002.07403, 2020.

[9] Y. Guo, Q. Yang, H. Zhou, W. Lu, and S. Zeng, “Syetem and methods
for selection and utilizing a committee of validator nodes in a distributed
system,” Cypherium Blockchain, Feb 2020, patent.

[10] M. M. Jalalzai and C. Busch, “Window based BFT blockchain consensus,”
in iThings, IEEE GreenCom, IEEE (CPSCom) and IEEE SSmartData
2018, July 2018, pp. 971–979.

[11] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. K. Reiter, D. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: a
scalable decentralized trust infrastructure for blockchains,” CoRR, vol.
abs/1804.01626, 2018.

[12] R. Kotla, A. Clement, E. Wong, L. Alvisi, and M. Dahlin, “Zyzzyva:
Speculative Byzantine fault tolerance,” Commun. ACM, vol. 51, no. 11,
pp. 86–95, Nov. 2008.

[13] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine replication for
the masses with bft-smart,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2014, pp. 355–362.

[14] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Byzantine replication under
attack,” in 2008 IEEE International Conference on Dependable Systems
and Networks With FTCS and DCC (DSN), vol. 00, June 2008, pp.
197–206. [Online]. Available: doi.ieeecomputersociety.org/10.1109/DSN.
2008.4630088

[15] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of
partial synchrony,” J. ACM, vol. 35, no. 2, pp. 288–323, Apr. 1988.

[16] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Proceedings of the 7th International Conference on the Theory
and Application of Cryptology and Information Security: Advances in
Cryptology, ser. ASIACRYPT ’01. Berlin, Heidelberg: Springer-Verlag,
2001, p. 514–532.

[17] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifiably
encrypted signatures from bilinear maps,” in Proceedings of the 22nd
International Conference on Theory and Applications of Cryptographic
Techniques. Berlin, Heidelberg: Springer-Verlag, 2003, pp. 416–432.

[18] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for
smaller blockchains,” in Advances in Cryptology – ASIACRYPT 2018,
T. Peyrin and S. Galbraith, Eds. Cham: Springer International Publishing,
2018, pp. 435–464.

[19] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982.

[20] A. , “Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme,” in Proceedings of
the 6th International Workshop on Theory and Practice in Public
Key Cryptography: Public Key Cryptography, ser. PKC ’03. Berlin,
Heidelberg: Springer-Verlag, 2003, p. 31–46.

[21] S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and
D. Malkhi, “Gemini: Bft systems made robust.”

[22] P. Jovanovic, J. R. Allen, T. Bowers, and G. Bosson, “dedis kyber,” 2020.
[23] M. M. Jalalzai, C. Busch, and G. G. Richard, “Proteus: A scalable

bft consensus protocol for blockchains,” in 2019 IEEE International
Conference on Blockchain (Blockchain), 2019, pp. 308–313.

12

https://eprint.iacr.org/2018/981
https://eprint.iacr.org/2018/981
doi.ieeecomputersociety.org/10.1109/DSN.2008.4630088
doi.ieeecomputersociety.org/10.1109/DSN.2008.4630088

	I Introduction
	II System Model and Preliminaries
	II-A System Model
	II-B Preliminaries

	III HotStuff in a nutshell
	III-A Pipelined HotStuff

	IV Fast-HotStuff
	IV-A Basic Fast-HotStuff
	IV-B Correctness Proof for Basic Fast-HotStuff
	IV-C Pipelined Fast-Hotstuff
	IV-D Correctness Proof for Pipelined Fast-HotStuff
	IV-E Performance Penalty of direct chain Condition
	IV-F Communication complexity

	V Evaluation
	VI Related Work
	VII Conclusion
	References

