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PREFACE

This book started out as a revision of Distributed Operating Systems, but it
was soon apparent that so much had changed since 1995, that a mere revision
would not do the job. A whole new book was needed. Accordingly, this new book
has a new title; Distributed Systems: Principles and Paradigms. This change
reflects a shift in emphasis. While we still look at some operating systems issues,
the book now addresses distributed systems in a broader sense as well. For exam-
ple. the World Wide Web, which is arguably the biggest distributed system ever
built, was not even mentioned in the original book because it is not an operating
system. In this book it rates almost an entire chapter.

The book is structured in two parts: principles and paradigms. The first
chapter is a general introduction to the subject. Then come seven chapters on indi-
vidual principles we consider most important: communication, processes, naming,
synchronization, consistency and replication, fault tolerance, and security.

Actual distributed systems are usually organized around some paradigm, such
as “everything is a file.” The next four chapters each deal with a different para-
digm and describe several key systems that use that paradgim. The paradigms
covered are ohject-based systems, distributed file systems, document-based sys-
tems, and coordination-based systems.

The last chapter contains an annotatéd bibliography, which can be used as a
starting poini for additional siudy of this subject, and the list of works cited in this
hook.

The book is intended for a senior-level or a graduate course in computer sci-
ence. Consequently, it has a website with PowerPoint sheets and the figures used

xvii
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in the book in various formats. The website can be located starting from
www.prenhall.com/tanenbaum and clicking on the title of this book. A manual
with solutions to the exercises is available to professors using the book in a
course. They should contact their Prentice Hall representative for a copy. Of
course, the book is also well-suited for individuals outside of a university setting
wishing to learn more about this important topic.

A number of people have contributed to this book in various ways. We would
especially like to thank Amo Bakker, Gerco Ballintijn, Brent Callaghan, Scott
Cannon, Sandra Cornelissen, Mike Dahlin, Mark Darbyshire, Guy Eddon, Amr el
Abbadi, Vincent Freeh, Chandana Gamage, Ben Gras, Bob Gray, Michael van
Hartskamp, Philip Homburg, Andrew Kitchen, Ladislay Kohout, Bob Kutter, Jus-
sipekka Leiwo, Leah McTaggert, Eli Messenger, Donald Miller, Shivakant
Mishra, Jim Mooney, Matt Mutka, Rob Pike, Krithi Ramamritham, Shmuel
Rotenstreich, Sol Shatz, Gurdip Singh, Aditya Shivram, Vladimir Sukonnik,
Boleslaw Szymanski, Laurent Therond, and Leendert van Doorn for reading parts
of the manuscript and offering useful comments,

Finally, we would like to thank our families. Suzanne has been through this
process an even dozen times now. Not once has she said: “Enough is enough”
although surely the thought has occurred to her, Thank you. Barbara and Marvin
now have a much better idea of what professors do for a living and know the
difference between a good textbook and a bad one. They are now an inspiration
to me to try to produce more good ones than bad ones (AST).

Mariélle knew what she was in for when I told her I was in the book-writing
business again. She has been supportive from the start, noticing also that there
was more fun and less frustration for me than the last time (“Are you writing
chapters only once this time?”). Having Elke on your lap at 6 o’clock in the
morning while writing is not such a good idea, but it kept me focussed on
correctly setting priorities. In that respect, Max did a wonderful job as well, but
being older than Elke, he also knew when it was better to play with someone else.
They are great kids (MvS).



A GUIDE TO USING THIS BOOK

We have been using the material from this book for a number of years pri-
marily for senior-level and graduate courses. However, it has also been used as
the basis for one and two-day seminars on distributed systems and middleware for
an audience consistiug of (technical) ICT professionals. Below are some sugges-
tions about how it can be used based on our experience.

Senior and Graduate Courses

For senior and graduate courses the material can typically be covered in 12-15
weeks. We have noticed that for most students, distributed systems appear to con-
sist of a wealth of suhjects that all seem to be tightly coupled to each other. The
current organization of the hook by which we present the subjects in terms of dif-
ferent principles and teach each principle separately has greatly helped in keeping
students focused. The effect is that by the end of part one (Chaps. 1-8), before dis-
cussing paradigms, students already tend to have a fairly good impression of the
overall picture.

Nevertheless, the field of distributed systems covers many different subjects,
some of which are difficult to understand when studied for the first time. There-
fore, we strongly encourage students to study the appropriate chapters as the
course progresses. All sheets, which are available through the companion website
(www.prenhall.com/tanenbaumy), are handed out in advance allowing students to
actively participate during class. This approach has been quite successful and is
highly appreciated by the students.

xix



XX A GUIDE TO USING THIS BOOK

All the material can be covered in a 15-week course. Most of the time is
spent on teaching the principles of distributed systems, that is, the material
covered in the first eight chapters. When discussing paradigms, it is our experi-
ence that only the essentials ueed to be presented. Details of each case study are
more easily learned directly from the book than being taught during class. For
examnple, we devote only a single week to object-based systems, despite the fact
that there are approximately 80 pages devoted to these systemns in the book.
Below is a proposed class schedule showing which topics to cover in lectures.

Week Topic Chapter | Leacture on
1 Introduction 1 All
2 Communication 2 2.1-2.3
3 Communication 2 24-25
4 Processes 3 All
5 Naming 4 4142
6 Naming 4 43
6 Synchronization 5 5.1-5.2
7 Synchronization 5 5.3-5.6
8 Consistency and replication 6 6.1-6.4
9 Consistency and replication & 6.5-6.6
9 Favit tolerance 7 7.1-7.3
10 Faﬁl-t igl_erance 7 7.4-7.6
11 Security 8 8.1-8.2
12 Security B 8.3-8.7
13 Object-based systems g All
14 File systems 10 Al
15 Document-based systems 11 All
15 Coordination-based systems 12 All

Not all material is taught during class; students are expected to study specific
parts by themselves, especially the details. When there are fewer than 15 weeks
available for teaching. we suggest skipping the paradigm chapters and letting
interested students read those on their own.

For junior-level courses, we recommend spreading the material over two
semesters and adding lab assignments. For example, the students could work on a
situple distributed system by asking them to modify components such that they
can tolerate faults, handle multicast RPCs, and so on.
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Professional Seminars for Indnstry

For one and two-day seminars we use the book as essential background
material. Nevertheless, it is possible to cover the entire book in two days, pro-
vided that all details are skipped and an cmphasis is put only on the essentials of
distributed systems. In addition, to make the presentation more lively, it makes
sense 1o reorder the chaptlers. The purpose of this is to show early on how the
principles are used. Graduate students are used to getting 10 weeks of principles
before seeing how they can be applied (if at all), but professiomals are better
motivated if they see how the principles are actually used. A tentative schedule
for a two-day course that is divided into logical units is shown below,

Day 1
Unit | Min. Toplc Chap. Emphasis
1 90 Introduction 1 Client/server architecture
2 60 | Communication 2 RPC/RMI and messaging
3 60 Coordination-based systems 12 Messaging issues
4 60 Processes 3 Mobile code & agents
5 30 | Naming 4 Location tracking
6 90 Object-based systems 9 CORBA
Day 2
Unit | Min. Topic Chap. Emphasis
1 90 | Consistency and replication ] Models and protocols
2 60 | Document-based systems 11 Web caching/replication
3 60 Fault tolerance 7 Process groups and 2PC
4 90 | Security 8 Basic ideas
5 B0 Disttibuted file systems 10 NFS v3 and v4

Individual Study

The book can also be successfully used for individual study. If enough time
and motivation is present, the reader is advised to go through the entire book
COVer to cover,

If there is not enough time to go over all the material, we suggest to concen-
trate only on the most imporiant topics. The following table lists the sections we
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believe cover the most important subjects relevant to distributed systems, along
with illustrative examples.

[ Chapter Topic | Sections |

1 Introduction s 1.1,12,143,15
2 i Communication 22, 23,24 |
3 | Processes 3.3,3.4,35
4 Naming 41,42 J
5 Synchronization 52,583,586
6 | Consistency and replication | 6.1, 6.2.2, 8.2.5, 6.4, 6.5
7 Fauit tolerance 7.1, 721,722 73,741,743, 7.51
8 Security B.1,821, 8.2._2,_8.3, B.4 “<
g Object-based systerns 9.1,92, 9._4 -

10 Disiributed file systems 10.1, 10.4

11 Document-based sysiems 11.4

12 | Coordination-based systems | 12.1,12.2 or 12.3

It would be nice if we could make an estimate of how long it takes to cover the
suggested material, but that depends so much on the background of the reader that
it is impossible to say much in general. However, if this material is being read
during the evening by someone with a full time job, it is likely to take several
weeks at least.
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INTRODUCTION

Computer systems are undergoing a revolution. From 1945, when the modern
computer era began, until about 1985, computers were large and expensive. Even
minicomputers cost tens of thousands of dollars each. As a result, most organiza-
tions had only a handful of computers, and for lack of a way to connect them,
these operated independently from one another.

Starting in the mid-1980s, however, two advances in technology began to
change that situation. The first was the development of powerful microprocessors.
Initially, these were 8-bit machines, but soon 16-, 32-, and 64-bit CPUs hecame
common. Many of these had the computing power of a2 mainframe (i.e., large)
computer, but for a fraction of the price.

The amount of improvement that has occurred in computer technology in the
past half century is truly staggering and totally unprecedented in other industries.
From a machine that cost 100 million dollars and executed 1 instruction per
second, we have come to machines that cost 1000 dollars and are able to execute
10 million instructions per second, & price/performance gain of 1012, If cars had
improved at this rate in the same time period, a Rolls Royce would now cost 1
dollar and get a billion miles per gallon. (Unfortunately, it would probably also
have a 200-page manual telling how to open the door.)

The second development was the invention of high-speed computer networks.
Local-area networks or LANs allow hundreds of machines within a building to
be connected in such a way that small amounts of information can be transferred
between machines in a few microseconds or so. Larger amounts of data can be

1
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moved between machines at rates of 10 to 1000 million bits/sec. Wide-area net-
works or WANs allow millions of machines all over the earth to be connected at
speeds varying from 64 Kbps (kilobits per second) to gigabits per second.

The result of these technologies is that it is now not only feasible, but easy, to -
put together compuiing sysiems composed of large numbers of computers con-
nected by a high-speed network. They are usuvally called computer networks or
distributed systems, in contrast to the previous centralized systems (or single-
processor systems) consisting of a single computer, its peripherals, and perhaps
some remote terminals.

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

Various definitions of distributed systems have been given in the literature,
none of them satisfactory, and none of them in agreement with any of the others.
For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection af independent computers that
appears 1o its users as a single coherent system,

This definition has two aspects, The first one deals with hardware: the machines
are autonomous. The second one deals with software: the users think they are
dealing with a single system. Both are essential. We will come back to these
points later in this chapter after going over some background material on both the
hardware and the software,

Instead of going further with definitions, it is perhaps more useful to concen-
trate on important characteristics of distributed systems. One important cbarac-
teristic is that differences between the various computers and the ways in which
they communicate are hidden from users. The same holds for the internal organi-
zation of the distributed system. Another important characteristic is that users and
applications can interact with a distributed system in a consistent and uniform
way, regardless of where and when interaction takes place.

Distributed systems should also be relatively easy to expand or scale. This
characteristic is a direct consequence of having independent computers, but at the
same time, hiding how these computers actually take part in the system as a
whole. A distributed system will normally be continuously available, although
perhaps certain parts may be temporarily out of order. Users and applications
should not notice that parts are being replaced or fixed, or that new parts are
added to serve more users or applications.

To support heterogeneous computers and networks while offering a single-
system view, distributed systems are often organized by means of a layer of soft-
ware that is logically placed between a higher-level layer consisting of users and
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applications, and a layer underneath consisting of operating systems, as shown in
Fig. 1-1 Accordingly, such a distributed system is sometimes called middleware.

Machine A Machine B Machine C
i L |

Cistributed applications
I_1 T I

Middlewars service

Local O Local O8 Local 08

Network

Figure 1-1. A distributed system organized as middleware. Note that the
middleware layer extends over multiple machines.

Let us now take a look at several examples of disiributed systems. As a first
example, consider a network of workstations in a university or company depart-
ment. In addition to each user’s personal workstation, there might be a pool of
processors in the machine room that are not assigned to specific users but are allo-
cated dynamically as needed. Such a system might have a single file system, with
all files accessible from all machines in the same way and using the same path
name. Furthermore, when a user types a command, the system could look for the
best place to execute that command, possibly on the user’s own workstation, pos-
sibly on an idle workstation belonging to someone else, and possibly on one of the
unassigned processors in the machine room. If the system as a whole looks and
acts like a classical single-processor timesharing system (i.e., multi-user), it quali-
fies as a distributed system.

As a second example, consider a workflow information system that supports
the automatic processing of orders. Typically, such a system is used by people
from several departments, possibly at different locations. For example, people
from the sales department may be spread across a large region or an entire coun-
try. Orders are placed by means of laptop computers that are connected to the sys-
tem through the telephone network, possibly using cellular phones. Incoming ord-
crs are automatically forwarded to the planning department, resulting in new
internal shipping orders sent to the stock department, as well as billing orders to
be handled by the accounting department. The system will automatically forward
orders to an appropriate and availahle person. Users are totally unaware of how
orders physically flow through the system; to them it appears as if they are all
operating on a centralized database.

As a final example, consider the World Wide Web. The Web offers a simple,
consistent, and uniform model of distributed documents. To see a document, a
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user need merely activate a reference, and the document appears on the screen. In
theory (but definitely not in current practice) there is no need to know from which
server the document was fetched, let alone where that server is located. Publishing
2 document is simple: you only have to give it a unique name in the form of a
Uniform Resource Locator (URL) that refers to a local filc containing the
document’s content. If the World Wide Web would appear to its users as a gigan-
tic centralized document system, it, too, would qualify as a distributed system.
Unfortunately, we have not reached that point yet. For example, users are made
aware of the fact that documents are located at different places and are handled by
different servers.

1.2 GOALS

Just becanse it is possible to build distributed systems does not necessarily
mean that it is a good idea. After all, with current technology it is alse possible to
put four floppy disk drives on a personal computer. It is just that doing so would
be pointless. In this section we discuss four important goals that should be met to
make building a distributed system worth the effort. A distributed system should
easily connect users to resources; it should hide the fact that resources are distrib-
uied across a network; it should be open; and it should be scalable.

1.2.1 Connecting Users and Resources

The main goal of a distributed system is to make it easy for users to access
remote resources, and to share them with other users in a controlled way.
Resources can be virtually anytbing, but typical examples include printers, com-
puters, storage facilities, data, files, Web pages, and networks, to name just a few.
There are many reasons for wanting to share resources. One obvious reason is that
of economics. For example, it is cheaper to let a printer be shared by several users
than having to buy and maintain a separate printer for each user. Likewise, it
makes sense to share costly resources such as supercompuiers and high-
performance storage systems.

Connecting users and resources also makes it easier to collaborate and ex-
change information, as is best illustrated by the success of the Internet with its
simple protocols for exchanging files, mail, documents, audio, and video. The
connectivity of the Internet is now leading to numerous virtual organizations in
which geographically widely dispersed groups of people work together by means
of groupware, that is, software for collaborative editing, teleconferencing, and so
on. Likewise, the Internet connectivity has enabled electronic commerce allowing
us to huy and sell all kinds of goods without actually having to go to a store.

However, as connectivity and sharing increase, security is becoming more and
more important. In current practice, systems provide little protection against
eavesdropping or intrusion on communication. Passwords and other semsitive
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information are often sent as cleartext (i.e., unencrypted) through the network, or
stored at servers that we can only hope are trustworthy. In this sense, there is
much rcom for improvement. For example, it is currently possible to order goods
by merely supplying a credit card number. Rarely is proof required that the custo-
mer owns the card. 1n the foture, placing orders this way may be possible oniy if
you can actually prove you physically possess the card by using a card reader.

Another security problem is that of tracking communication to build up a
preference profile of a specific user (Wang et al., 1998). Such tracking explicitly
violates privacy, especially if it is done without notifying the user. A related prob-
lem is that increased connectivity can aiso lead to unwanted communication, such
as electronic junk mail often called spam. In such cases, what we may need is to
protect ourselves using special information filters that select incoming messages
based on their content.

1.2.2 Transparency

An important goal of a distributed system is to hide the fact that its processes
and resources are physically distributed across multiple computers. A distributed
system that is able to present itself to users and applications as if it were only a
single computer system is said to be transparent. Let us first take a look at what
kinds of transparency exist in distributed systems, and then address the question
whether transparency is always required.

Transparency in a Distributed System

The concept of transparency can be applied to several aspects of a distributed
system, as shown in Fig. 1-2.

Transparency ’ Description T -

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located I
Migration Hide that a resource may move to another location |
Relocation | Hide that a resource may be moved ta another location while in use |
Replication ' Hide that a resource is replicated - o

Concurrency % Hide that a rescurce may be shared by several competitive users
Failure

Hide ths failure and recovery of a resource
Persistence 1 Hide whether a (software) resource is in memory orondisk

Figure 1-2. Different forms of transparency in a distributed system (IS0, 199%),

Access transparency deals with hiding differences in data representation and
the way that resources can be accessed by users. For example, to send an integer

T mealea crraE e o w
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from an Intel-based workstation to a Sun SPARC machine requires that we take
into account that Intel orders its bytes in little endian format (i.e., the high-order
byte is transmitted first), and that the SPARC processor uses big endian format
(i.e., the low-order byte is transmitted first). Other differences in data representa-
tion may exist as well. For example, a distributed system may have computer sys-
tems that run different operating systems. each having their own file-naming con-
ventions, Differences in naming conventions, as well as how files can be manipu-
lated, should all be hidden from users and applications.

An important group of transparency types has to do with the location of a
resource. Location transparency refers to the fact that users cannot tell where a
resource is physically located in the system. Naming plays an important role in
achieving location transparency. In particular, location transparency can be
achieved by assigning only logical names to resources, that is, names in which the
location of a resource is not secretly encoded. An example of a such a name is the
URL http:/twww.prenhall. com/findex.htmi, which gives no clue about the location
of Prentice Hall's main Web server. The URL also gives no clue as to whether
index.html has always been at its current location or was recently moved there.
Distributed systems in which resources can be moved without affecting how that
resource can be accessed are said to provide miigration transparency. Even
stronger is the situation in which resources can be relocated while they are being
accessed without the user or application noticing anything. In such cases, the sys-
tem is said to support relocation transparency. An example of relocation trans-
parency is when mobile users can continuve to use their wireless laptop while mov-
ing from place to place without ever being (temporarily) disconnected.

As we shall see, replication plays an important role in distributed systems. For
example, resources may be replicated to increase availability or to improve per-
formance by placing a copy close to the place where it is accessed. Replication
transparency deals with hiding the fact that several copies of a resource exist. To
hide replication from users, it is necessary that all replicas have the same name.
Consequently, a system that supports replication transparency should generally
support location transparency as well, because it would otherwise be impossible to
refer 1o replicas at different locations.

We already mentioned that an important goal of distrihuted systems is to
allow sharing of resources. In many cases, sharing resources is done in a coopera-
tive way, as in the case of communication. However, there are also many exam-
ples of competiiive sharing of resources. For example, two independent users may
cach have stored their files on the same file server or may be accessing the same
tables in a shared database. In such cases, it is important that eacb user does not
notice that the other is making use of the same resource. This phenomenon is
called concurrency transparency. An important issue is that concurrent access
to a shared resource leaves that resource in a consistent state. Consistency can be
achieved throngh locking mechanisms, by which users are, in turn, given ex-
clusive access 10 the desired resource. A more refined mecbanism is to make use
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of transctions, but as we shall see in later chapters, transactions are difficult to
implement in distributed systems.

A popular alternative definition of a distributed system, due to Leslie Lam-
port, is “You know you have one when the crash of a computer you've never
heard of stops you frem getting any work done.” This description puts the finger
on another important issue of distributed systems design: dealing with failures.
Making a distributed system failure transparent means that a user does not
notice that a resource (he has possibly never heard of) fails to work properly, and
that the system subsequently recovers from that failure. Masking failures is one of
the hardest issues in distributed systems and is even impossible when certain
apparently realistic assumptions are made, as we will discuss in Chap. 7. The
main difficulty in masking failures lics iu the iuability to distinguish between a
dead resource and a painfully slow resource. For example, when contacting a busy
Web server, a browser will eventually time cut and report that the Web page is
unavailable. At that point, the user cannot conclude that the server is really down.

The last type of transparency that is often associated with distributed systems
is persistence transparency, which deals with masking wbether a resource is in
volatile memory or perhaps somewhere on a disk. For example, many object-
oriented databases provide facilities for directly invoking methods on stored
objects. What happens behind the scenes, is that the database server first copies
the object’s state from disk to main memory, performs the operation, and perhaps
writes that state back to secondary storage. The user, however, is unaware that the
server i1s moving state between primary and secondary memory. Persistence plays
an important role in distributed systems, bnt it is equally important for nondistrib-
uted systems.

Degree of Transparency

Although distribution transparency is generally preferable for any distributed
system, there are situations in which attempting to blindly hide all distribution
aspects from users is not always a good idea. An example is requesting your elec-
tronic newspaper to appear in your mailbox before 7 AM. local time, as usual,
while you are currently at the other end of the world living in a different time
zone. Your morning paper will not be the morning paper you are used to.

Likewise, a wide-area distributed system that connects a process in San Fran-
cisco to a process in Amsterdam cannot be expected to hide the fact that Mother
Nature will not allow it to send a message from one process to the other in less
than approximately 35 milliseconds. Practice shows that it actually takes several
hundreds milliseconds using a computer network. Signal transmission is not only
limited by the spced of light, but also by limited processing capacities of the inter-
mediate switches.

There is also a trade-off between a high degree of transparency and the per-
formance of a system. For example, many Internet applications repeatediy try to
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contact a server before finally giving up. Consequently, attempting to mask a tran-
sient server failure before trying another one may slow down the system as a
whole. In such a case, it may have been better to give up earlier, or at least let the
user cancel the attempts to make contact.

Another example is where we need to guarantee that several replicas, located
on different continents, need to be consistent all the time. In other words, if one
copy is changed, that change should be propagated to all copies before allowing
any other operation. It is c¢lear that a single update operation may now even take
seconds to complete, something that cannot be hidden from users.

The conclusion is that aiming for distribution transpareucy is a nice goal wheu
designing and implementing distributed systems, but that it should be considered
together with other issues such as performance.

1.2.3 Openness

Another important goal of distributed systems is openness. An open distrib-
uted system is a system that offers services according to standard rules that
describe the syntax and semantics of those services. For example, in computer
networks, standard rules govern the format, contents, and meaning of messages
sent and received. Such rules are formalized in protocols. In distributed systems,
services are generally specified through mterfaces, which are often described in
an Interface Definition Language (IDL). Interface definitions written in an IDL
nearly always capture only the syntax of services. In other words, they specify
precisely the names of the functions that are available together with types of the
parameters, return values, possible cxceptions that can be raised, and so on. The
hard part is specifying precisely what those services do, that is, the semantics of
interfaces. In practice, such specifications are given simply in an informal way by
means of natural language.

If properly specified, an interface definition allows an arbitrary process that
needs a certain interface to talk to another process that provides that interface. It
also allows two independent parties to build completely different implementations
of those interfaces, leading to two separate distributed systems that operate in
exactly the same way. Proper specifications are complete and neutral. Complete
means that everything that is necessary to make an implementation has indeed
been specified. However, many interface definitions are not at all complete, so
that it is necessary for a developer to add implementation-specific details. Just as
important is the fact that specifications do not prescribe what an implementation
should look like; they should be neutral. Completeness and neutrality are impor-
tant for interoperability and portability (Blair and Stefani, 1998), Interoperabil-
ity characterizes the extent by which two implementations of systems or com-
pouents from different mauufacturers can co-exist and work together by merely
relying on each other’s services as specified by a common standard. Portability
characterizes to what extent an application developed for a distributed system A
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can be executed, without modification, on a different distributed system 5 that
implements the same interfaces as A.

Another important goal for an open distributed system is that it should be flex-
ible, meaning that it should be easy to configure the system out of different com-
ponents possibly from different developers. Also, it should be easy to add new
components or replace existing ones without affecting those components that stay
in place. In other words, an open distributed system should also be extensible. For
example, in a flexible system, it should be relatively casy to add parts that run on
a different operating system, or even to replace an entire file system. As many of
us know from daily practice, attaining flexibility is easier said than done.

Separating Policy from Mechanism

To achieve flexibility in open distributed systems, it is crucial that the system
is organized as a collection of relatively small and easily replaceable or adaptable
components. This implies that we should provide definitions of not only the
highest-level interfaces, that is, those scen by users and applications, but also
definitions for interfaces to internal parts of the system and describe how those
parts intcract. This approach is relatively new. Many older and even contemporary
systems are constructed using a monolithic approach in which components are
only logically separated but implemented as one, huge program. This approach
makes it hard to replace or adapt a component without affecting the entire system.
Monolithic systems thus tend to be closed instead of open.

The need for changing a distributed system is ofien caused by a component
that does not provide the optimal policy for a specific user or application. As an
example, consider caching in the World Wide Web. Browsers generally allow a
user to adapt their caching policy by specifying the size of the cache, and whether
a cached document should always be checked for consistency, or perhaps only
once per sesston. However, the user cannot influence other caching parameters,
such as how long a document may remain in the cache, or which document should
be removed when the cache fills up. Also, it is impossible to make caching deci-
sions bascd on the conten of a document. For instance, a user may want to cache
railroad timetables knowing that these hardly change, but never information on
current traffic conditions on the highways.

What we need is a separation between policy and mechanism. In the case of
Web caching, for example, a browser should ideally provide facilities for only
storing documents, and at the same time allow users to decide which documents
are stored and for how long. In practice, this can be implemented by offering a
rich set of parameters that the user can set (dynamicaily). Even better is that a
user can implement his own policy in the form of a component that can be
plugged into the browser. Of course, that component must have an interface that
the browser can understand so that it call procedures of that interface.
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1.2.4 Scalability

Worldwide connectivity through the Internet is rapidly becoming at least as
common as being able to send a postcard to anyone anywhere around the world.
With this in mind, scalability is one of the most important design goals for
developers of distributed systems.

Scalability of a system can be measured along at least three different dimen-
sions (Neuman, 1994). First, a system can be scalable with respect to its size,
meaning that we can easily add more users and resources to the system. Second, a
geographically scalable system is one in which the users and resources may lic far
apart, Third, a system can be administratively scalable, meaning that it can still be
easy to manage even if it spans many independent administrative organizations.
Unfortunately, a system that is scalable in one or more of these dimensions often
exhibits some loss of performance as the system scales up.

Scalability Problems

When a system needs to scale, very different types of problems need to be
solved. Let us first consider scaling with respect to size. If more users or resources
need to be snpported, we are often confronted with the limitations of centralized
services, data, and algorithms (see Fig. 1-3). For example, many services are cen-
tralized in the sense that they are iraplemented by means of only a single server
running on a specific machine in the distributed system. The problem with this
scheme is obvious: the server can simply become a bottleneck as the number of
users grows. Even if we have virtually unlimited processing and storage capacity,
communication with that server will eventually prohibit further growth.

Unforinnately, using only a single server is sometimes unavoidable. Imagine
that we have a service for managing highly confidential information such as medi-
cal records, bank accounts, personal loans, and so on. In such cases, it may be
best to implement that service by means of a single server in a highly secured
separate room, and protected from other parts of the distributed system through
special network components, Copying the server to several locations to enhance

performance may be out of the question as it would make the service more vulner-
able to security attacks.

Concept Example
Centralized services A single server for all users
Centralized data A single on-iine telephone book
Centralized algorithms | Deing routing based on complete information

Figure 1-3. Examples of scalability limitations.

Just as bad as centralized

services ari trali
track of the telephone napacs © centralized data. How should we keep

1s and addresses of 50 million peoplie? Suppose that
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each data record could be fit into 50 characters. A single 2.5-gigabyte disk would
provide enough storage. But here again, having a single database would undoubt-
edly saturate all the communication lines into and out of it. Likewise, imagine
how the Internet would work if its Domain Name System (DNS) was still imple-
mented as a single table. DNS maintains information on millions of computers
worldwide and forms an essential service for locating Web servers. If each
request to resolve a URL had to be forwarded to that ene and only DNS server, it
is clear that no one would be using the Web (which, by the way, would probably
solve the problem again).

Finally, ceniralized algorithms are also a bad idea. In a large distributed sys-
tem, an enormous number of messages have to be routed over many lines. From a
theoretical point of view, the optimal way to do this is collect complete informa-
tion about the load on all machines and lines, and then run a graph theory algo-
rithm to compute all the optimal routes. This information can then be spread
around the system to improve the routing.

The trouble is that collecting and transporting all the input and output infor-
mation would again be a bad idea because these messages would overload part of
the network. In fact, any algorithm that operates hy collecting information from
all sites, sends it to a single machine for processing, and then distributes the
results must be avoided. Only decentralized algorithms should be used. These
algorithms generally have the following characteristics, which distinguish them
from centralized algorithms:

1. No machine has complete information about the system state.
2. Machines make decisions based only on local information.

3. Failure of one machine does not ruin the algorithm.
4

. There is no implicit assumption that a global clock exists.

The first three follow from what we have said so far. The last is perhaps less obvi-
ous but also important. Any algorithm that starts out with: “At precisely 12:00:00
all machines shall note the size of their output queue” will fail hecause it is
impossible to get all the clocks exactly synchronized. Algorithms should take into
account the lack of exact clock synchronization. The larger the system, the larger
the uncertainty. On a single LAN, with considerabie effort it may be possible to
get all clocks synchronized down to a few milliseconds, but doing this nationally
or internationally is tricky.

Geographical scalability has its own problems. One of the main reasons why
it is currently hard to scale existing distributed systems that were designed for
local-area uvetworks is that they are based on synchronous communication. In
this form of communication, a party requesting service, generally referred to as a
client, blocks until a reply is sent back. This approach generally works fine in
LANs where communication between two machines is generally at worst a few
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hundred microseconds. However, in a wide-area system, we need to take into
account that interprocess communication may be hundreds of milliseconds, three
orders of magnitude slower. Building interactive applications using synchronous
communication iu wide-area systems requires a great deal of care (and not a litile
patience).

Another problem that hinders geographical scalability is that communication
in wide-area networks is inherently unreliable, and virtually always point-to-point.
In contrast, local-area networks generally provide highly reliable communication
facilitics based on broadcasting, making it much easier to develop distributed sys-
tems. For example, consider the problem of locating a service. In a local-area sys-
tetu, a process can simply broadcast a message to every machine, asking if it is
running the service it needs. Only those machines that have that service respond,
each providing its network address in the reply message. Such a location scheme
is unthinkable in a wide-area system. Instead, special location services need to be
designed, which may need to scale worldwide and be capable of servicing a bil-
lion users. We return to such services in Chap. 4.

Geographical scalability is strongly related to the problems of centralized
solutions that hinder size scalability. If we have a system with many centralized
components, it is clear that geographical scalability will be limited due to the per-
formance and reliability problems resulting from wide-area communication. In
addition, centralized components now lead to a waste of network resources. Ima-
gine that a single mail server is used for an entire country. This would mean that
sending an e-mail to your neighbor would first have to go to the central mail
server, which may be hundreds of miles away. Clearly, this is not the way to go.

Finally, a difficult, and in many cases open question is how to scale a distrib-
uted system across multiple, independent administrative domains. A major proh-
lem that needs to be solved is that of conflicting policies with respect to resource
usage (and payment), management, and security.

For example, many components of a distributed system that reside within a
single domain can often be trusted by users that operate within that same domain.
In such cases, system administration may have tested and certified applications,
and may have taken special measnres to ensure that such components cannot be
tampered with. In essence, the users trust their system administrators. However,
this trust does not expand naturally across domain boundaries.

If a distributed system expands tc another domain, two types of security
measures need to be taken. First, the distributed sysiem has to protect itself
against malicious attacks from the new domain. For example, users from the new
domain may have only read access to the system’s file service in its original
domain. Likewise, facilities such as expenstve image sctters or high-performance
computers may not be made available to other users. Second, the new domain has
to protect itself against malicious attacks from the distributed system. A typical
example is that of downloading programs such as applets in Web browsers. Basi-
cally, the new domain does not know what to expect from such foreign code, and

B T p—
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may therefore decide to severely limit the access rights for such code. The prob-
lem, as we shall see in Chap. 8, is how to enforce those limitations.

Scaling Techniques

Having discussed some of the scalability problems brings us to the question of
how those problems can generally be solved. Because scalability problems in dis-
tributed systems appear as performance problems caused by limited capacity of
servers and network, there are basicaily only three techniques for scaling: hiding
comumunication latencies, distribution, and replication (see also Neuman, 1994).

Hiding communication latencies is applicable in the case of geographical sca-
lability. The basic idea is simple: {ry 1o avoid waiting for responses to remote ser-
vice requests as much as possible. For example, when a service has been
requested al a remote machine, an alternative to waiting for a reply from the
server is to do other useful work at the requester’s side, Essentially, this means
constructing the requesting application in such a way that it uses only asynchro-
nous commnnication. When a reply comes in, the application is interrupted and
a special handler is called to compleie the previously issued request. Asynchro-
nous communication can often be used in batch-processing systems and paralel
applications, in which more or less independent tasks can be scheduled for execu-
tion while another task is waiting for communication to complete. Alternatively, a
new thread of control can be started to perform the request. Although it blocks
waiting for the reply, other threads in the process can continue.

However, there are many applications that cannot make effective use of asyn-
chronous communication. For example, in interactive applications when a user
sends a request he will generally have nothing better to do than to wait for the
answer. In such cases, a much better solution is to reduce the overall communica-
tion, for example, by moving part of the computation tbat is normally done at the
server to the client process requesting the service. A typical case where this
approach works is accessing databases using forms. Normally, filling in forms is
done by sending a separate message for cach field, and waiting for an acknowl-
edgement from the server, as shown in Fig. 1-4(a). For example, the server may
check for syntactic errors before accepting an entry. A much better solution is to
ship the code for filling in the form, and possibly checking the entries, to the
client, and have the client return a completed form, as shown in Fig. 1-4(b). This
approach of shipping code is uow widely supported by the Web in the form of
Java applets.

Another important scaliug technique is distribution. Distribution involves
taking a component, splitting it into smaller parts, and subsequently spreading
those parts across the system. A good cxample of distribution is the Intemet
Domain Name Systemn (DNS). The DNS name space is hierarchically organized
into a tree of domains, which are divided into nonoverlapping zones, as shown in

- Fig. 1-5. The names in each zone are handled by a single name server. Without
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Figure 1-4. The difference between letting (a} a server or (b) a client check
forms as they are being filled.

going into too many details, one can think of each path name being the name of a
host in the Internet, and is thus associated with a network address of that host.
Basically, resolving a name means returning the network address of the associated
host. Consider. for example, the name nlvi.cs.flits. To resolve this name, it is
first passed to the server of zone Z7 (see Fig. 1-5) which returns the address of the
server for zone Z2, to which the rest of name, vu.csflits, can be handed. The
server for Z2 will return the address of the server for zone Z3, which is capable of
handling the last part of the name and will return the address of the associated
host.

This examples illustrates how the naming service, as provided by DNS, is dis-
tributed across several machines, thus avoiding that a single server has to deal
with all requests for name resolution.

As another example, consider the World Wide Web. To most users, the Web
appears to be an enormous document-based information system in which each
document has its own unique name in the form of a URL. Conceptually, it may
even appear as if there is only a single server. However, the Web is physically
distributed across a large number of servers, each handling a number of Web
documents. The name of the server handling a document is encoded into that
document’s URL. It is only because of this distribution of documents that the Web
has been capable of scaling to its current size.

Considering that scalability problems often appear in the form of performance
degradation, it is generally a good idea to actually replicate components across a
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Figure 1-5. An example of dividing the DNS name space into zones.
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distributed system. Replication not only increases availability, but also helps to
balance the load between components leading to beiter performance. Also, in geo-
graphically widely dispersed systems, having a copy nearby can hide much of the
communication latency problems mentioned before.

Caching is a special form of replication, although the distinction between the
two is often hard to make or even artificial. As in the case of replication, caching
results in making a copy of a resource, generally in the proximity of the client
accessing that resource. However, in contrast to replication, caching is a decision
made by the client of a resource, and not by the owner of a resource.

There is one serious drawback to caching and replication that may adversely
affect scalability. Because we now have multiple copies of a resource, modifying
one copy makes that copy different from the others. Consequently, caching and
replication leads to consistency problems.

To what extent inconsistencies can be tolerated depends highly on the usage
of a resource. For example, many Web users find it acceptable that their browser
returns a cached document of which the validity has not been checked for the last
few minutes. However, there are also many cases in which strong consistency
guarantees need to be met, such as in the case of electronic stock exchanges. The
problem with strong consistency is that an update must be immediately pro-
pagated to all other copies. Moreover, if two updates happen concurrently, it is
often also required that each copy is updated in the same order. Situations such as
these generally require some global synchronization mechanism. Unfortunately,
such mechanisms are extremely hard or even impossible to implement in a scal-
able way. Consequently, scaling by replication may introduce other, inherently
nonscalable solutions. We return to replication and consistency in Chap. 6.
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1.3 HARDWARE CONCEPTS

Even though all distributed systems consist of multiple CPUs, there are
several different ways the hardware can be organized, especially in terms of how
they are interconnected and how they communicate. In this section we will look
briefly at distributed system hardware, in particular, how the machines are con-
nected together. In the next section we will examine some of the software issues
related to distributed systems.

Various classification schemes for multiple CPU computer systems have been
proposed over the years, but none of them have really canght on and been widely
adopted. For our purposes, we consider only systems built from a collection of
independent computers. In Fig. 1-6, we divide all computers into two groups:
those that have shared memory, usually called maultiprocessors, and those that do
not, sometimes called multicomputers. The essential difference is this: in a mul-
tiprocessor, there is a single physical address space that is shared by all CPUs. If
any CPU writes, for example, the value 44 to address 1000, any other CPU subse-
quently reading from ifs address 1000 will get the value 44. All the machines
share the same memory.

Shared memory Private memory
W [

L = =

T T T T p| [#]
[e] [7] [P] [P) | T

=

Hez

— - H=]
Hz]
paseq-sng

£
=]
=]
|[ ""_‘E
] =
=]
paseq-yams

~

. S N /

\ ™, b oy
N, e X KA

FEEE| ¥
L I L= L |

[P | Processor | M | Memory

Figure 1-6. Different basic organizations of processors and memories in distributed
compuler systems.

In contrast, in a multicompuier, every machine has its own private memory,
After onc CPU writes the value 44 (0 address 1000, if another CPU reads address
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1000 it will get whatever value was there before. The write of 44 does not affect
its memory at all. A common example of a multicomputer is a collection of per-
sonal computers connected by a network.

Each of these categories can be further divided based on the architecture of
the iuterconnection network. In Fig. 1-6 we describe these two categories as bus
and switched. By bus we mean that there is a single network, backplane, bus,
cable, or other medium that connects all the machines. Cable television uses a
scheme like this: the cable company runs a wire down the street, and all the sub-
scribers have taps running to it from their television sets,

Switched systems do not have a single backbone like cable television.
Instead, there are individual wires from machine to machine with many different
wiring patterns in use. Messages move aloug the wires, with an explicit switching
decision made at each step to route the message along one of the outgoing wires.
The worldwide public telephoue system is organized in this way.

We make a further distinction between distributed computer systems that are
homogeneous and those that arc heterogeneous. This distinction is useful only
for multicomputers. In a homogeneous multicomputer, there is essentially only a
single interconnection network that uses the same technology everywhere. Like-
wise, all processors are the same and generally have access to the same amount of
private memory. Homogeneous multicomputers tend to be used more as parallel
systems (working on a single problem), just like multiprocessors.

In contrast, a heterogeneous muiticomputer system may contain a variety of
different, independent computers, which in turn are connected through different
networks. For example, a distributed computer system may be constructed from a
collection of different local-area computer networks, which are interconnected
through an FDDI or ATM-switched backbone.

In the following three sections, we will take a closer look at multiprocessors,
and homogeneous and heterogeneous multicomputer systems. Although these
topics are not directly rclated to our main concern, distributed systems, they will
shed some light on the subject because the organization of distributed syslems
often depends on the underlying hardware.

1.3.1 Multiprocessors

Multiprocessor systems all share a single key property: all the CPUs have
direct access to the shared memory. Bus-based multiprocessors consist of some
number of CPUs all connected to a common bus, along with 2 memory module. A
simple configuration is to have a high-speed backplane or motherboard into which
CPU and memory cards can be inserted.

Since thére is only one memory, if CPU A writes a word to memory and then
CPU B reads that word back a microsecond later, B will get the value just written.
A memory that has this property is said to be coberent. The problem with this
scheme is that with as few as 4 or 5 CPUs, the bus will usually be overloaded and
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performance will drop drastically. The solution is to add a high-speed cache
memory between the CPU and the bus, as shown in Fig. 1-7. The cache holds the
most recently accessed words. All memory requests go through the cache. If the
word requested is in the cache, the cache itself respords to the CPU, and no bus
request is made. If the cache is large enough, the probability of success, called the
hit rate, will be high, and the amount of bus traffic per CPU will drop dramati-
cally, allowing many more CPUs in the system. Cache sizes of 512 KB o 1 MB
are common, which often gives a hit rate of 90 percent or more.

cPU [ cru CPU | | Memoty
CacheL ‘ Cache[ @E ‘ !
[ 1 1
Bus

Figure 1-7. A bus-based multiprocessor.

However, the introduction of caches also creates a serious problem. Suppose
that two CPUs, A and B, each read the same word into their respective caches.
Then A overwrites the word. When B next reads that word, it gets the old value
from its cache, not the value A just wrote. The memory is now incoherent, and the
system is difficult to program. Caching is also used extensively in distributed sys-
tems, and there too we have to deal with the problem of incoherent memory. We
return 10 caching and memory coherence in Chap. 6. For more about bus-based
multiprocessors, see Lilja (1993).

The problem with bus-based multiprocessors is their limited scalability, even
when using caches. To build a multiprocessor with more than 256 processors, a
different method is needed 1o connect the CPUs with the memory. One possibility
is to divide the memory up into modules and connect them to the CPUs with a
crossbhar switch, as shown in Fig. 1-8(a). Each CPU and each memory has a con-
nection coming out of it, as shown. At every intersection is a tiny electromic
crosspoint switch that can be opened and closed in hardware. When a CPU wants
to access a particular memory, the crosspoint switch connecting them is closed
momentarily, to allow the access to take place. The virtue of the crossbar switch is
that many CPUs can be accessing memory at the same time, although if two CPUs
Iry to access the same memory simultaneocusly, one of them will have to wait.

The downside of the crossbar switch is that with n CPUs and n memories, 72
crosspoint switches are needed. For large », this number can be prohibitive. As a
result, people have looked for, and found, alternative switching networks that
require fewer switches. The omega network of Fig. 1-8(b) is one example. This
network comtains four 2 x 2 swilches, each having two inputs and two outputs.
Each switch can route either input to either output. A careful look at the figure
will show that with proper settings of the switches, every CPU can access every
memory. The drawback of switching networks such as these is that there may be
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Figure 1-8. (a) A crosshar switch. (b) An omega switching network.

several switching stages between the CPU and mcmory. Consequently, to ensure
low latency between CPU and memory, switching has to be extremely fast, which
is not going to be cheap.

People have attempted to reduce the cost of switching by going to hierarchical
systems. Some memory is associated with each CPU. Each CPU can access its
own local memory quickly, but accessing anybody else’s memory is slower. This
design gives rise to what is known as a NUMA (NonUniform Memory Access)
machine. Although NUMA machines have better average access times than
machines based on omega networks, they have the new complication that the

placement of the programs and data becomes critical in order to make most access
go to the local memory.

1.3.2 Homogeneous Multicomputer Systems

In contrast to multiprocessors, building a multicomputer is relatively easy.
Each CPU has a direct connection to its own local memory. The only problem left
is how the CPUs communicate with each other, Clearly, some interconnection
scheme is needed here, too, but since it is only for CPU-to-CPU communication,
the volume of traffic will be several orders of magnitude lower than when the
interconnection network is also used for CPU-to-memory traffic.

We will first take a look at homogeneous multicomputers. In these systems,
which are also referred to as System Area Networks (SANs), the nodes are
mounted in a big rack and are connected through a single, often high-performance
interconnection network. As before, we make a distinction between systems that
are based on a bus, and those that are based on a switch.
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In a bus-based multicomputer, the processors are connected through a shared
multiaccess network such as Fast Ethernet. The bandwidth of the network is typi-
cally 100 Mbps. As with bus-based multiprocessors, bus-bascd multicomputers
have limited scalability. Depending on how much the nodes actually need to com-
municate, one can generally not expect much performance from systems with
more than 25-100 nodes.

In a switch-based multicomputer, messages between the processors are routed
through an interconnection network instead of broadcast as in bus-based systems.
Many different topologies have been proposed and built. Two popular topologies
are meshes and hypercubes, as shown in Fig. 1-9. Grids are easy to understand
and lay out on printed circuit boards. They are best suited to problems that have
an inherent two-dimensional nature, such as graph theory or vision (e.g., robot
eyes or analyzing photographs).

(a) [{»)]

Figure 1-9, (a) Grid. (b) Hypercube.

A hypercube is an n-dimensional cube. The hypercube of Fig. 1-9(b) is four-
dimensional. It can be thought of as two ordinary cubes, each with 8 vertices and
12 edges. Each vertex is a CPU. Each edge is a connection between two CPUs.
The corresponding vertices in each of the two cubes are connected. To expand the
hypercube to five dimensions, we would add another set of two interconnected
cubes to the figure, connect the corresponding edges in the two halves, and so on.

Switched multicomputers can vary widely. At one end of the spectrum, there
arc Massively Parallel Processors (MPPs) which are huge, multimillion dollar
supercomputers consisting of thousands of CPUs. In many cases, the CPUs are no
different than the ones used in workstations or PCs. What makes a difference with
other multicomputers is the use of a high-performance proprietary interconnection
network. The network is designed to achieve low latency and high bandwidth.
Also, special measurements are taken to ensure fault tolerance. With thousands of
CPUs, it is inevitable that at least some CPUs will break down every week. Tt
would be onacceptable if a single failing CPU would bring down the entire
machine.

At the other end of the spectrum, we find a popular form of switched multi-
computers known as Clusters of Workstations (COWs), which are basically a
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collection of standard PCs or workstations connected through off-the-shelf com-
munication components such as Myrinet boards (Boden et al., 1995). It is the
interconnection network that distinguishes COWs from MPPs. Also, no special
measures are generally taken to ensure high /O bandwidth or to guard against
system failures. By and large, this approach makes COWSs simpie and cheap.

1.3.3 Heterogeneous Multicomputer Systems

Most distributed systems as they are used today are built on top of a hetero-
geneous multicomputer. This means that the computers that form part of the sys-
tem may vary widely with respect to, for example, processor type, memory sizes,
and IO handwidth. In fact, some of the computers may actually be high-
performance parallel systems, such as multiprocessors or homogeneous multicom-
puters.

Also, the interconnection network may he highly heterogencous as well. As
an example, the authors have helped build a home-brew distributed computer sys-
tem, called DAS, consisting of four clusters of multicomputers, interconnected
through a wide-area ATM-swilched backbone. Photos of the system and refer-
ences (o research using it are given at hup.//www.cs.vu.nl/~bal/das.htmi. The clus-
ters can also communicate using standard Internet facilities. Each cluster contains
the same CPUs (Pentium III), as well as interconnection network (Myrinet) hut
varies in their number of processors (64-128).

Another example of heterogeneity is the construction of large-scale multicom-
puters using existing networks and hackbones. For example, it s not uncommon
to have a campus-wide distributed system that is running on top of local-area net-
works from different departments, connected through a high-speed hackboune. In
wide-area systems, different sites may, in turn, be connected through puhlic net-
works as offered hy commercial carriers using network services such as SMDS or
frame relay.

In contrast to the systems discussed in the previous sections, many large-
scale, heterogeneous multicomputers lack a global system view, meaning that an
application cannot assume that the same performance or services are available
everywhere. For example, in the I-way project (Foster and Kesselman, 1998).
several high-performance computing centers were interconnected through the
Internet. The overall system model was that applications could reserve and use
resources at each site, but it was impossible to hide the differences between sites
from applications.

Due to their scale, inherent heterogeneity, and most of all, lack of a global
system view, sophisticated software is needed to huild applications for hetero-
geneous multicomputers. Here is where distributed systems fit in. To make it
unnecessary for application developers to worry about the underlying hardware,
distributed systems provide a software layer that shields applications from what is
going on at the hardware level (i.e., they provide transparency).
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1.4 SOFTWARE CONCEPTS

Hardware for distributed systems is important, but it is software that largely
determines what a distributed system actually looks like. Distributed systems are
very much like traditional operating systems. First, they act as resource
managers for the underlying hardware. allowing multiple users and applications
to share resources such as CPUs, memories, peripheral devices, the network, and
data of all kinds. Second, and perhaps more important, is that distributed systems
attempt to hide the intricacies and heterogeneous nature of the underlying hard-
ware by providing a virtual machine on which applications can be easily executed.

To undersiand the nature of distributed systems, we will therefore first take a
look at operating systems in relation to distributed computers. Operating systems
for distributed computers can be roughly divided into two categories: tightly-
coupled systems and loosely-coupled systems. In tightly-coupled systems, the op-
erating system essentially tries to maintain a single, global view of the resources it
manages. Loosely-coupled systems can be thought of as a collection of computers
each running their own operating system. However, these operating systems work
together 1o make their own services and resources available to the others.

This distinction between tightly-coupled and loosely-coupled systems is
related to the hardware classification given in the previous section. A tightly-
coupled operating systetu is generally referred to as a distributed operating sys-
tem (DOS), and is used for managing multiprocessors and homogeneous multi-
computers. Like traditional uniprocessor operating systems, the main goal of a
distributed operating system is to hide the intricacies of managing the underlying
hardware such that it can be shared by multiple processes.

The loosely-coupled network operating system (NOS) is used for hetero-
geneous multicomputer systems. Although managing the underlying hardware is
an important issue for a NOS, the distinction from traditional operating systems
comes from the fact local services are made available to remote clients. In the fol-
lowiug sections we will first take a look at tightly-coupled and loosely-coupled
operating systems.

To actually come to a distributed system, enhancements to the services of net-
work operating systems are needed such that a better support for distribution
transparency is provided. These enhancements lead to what is known as
middleware, and lie at the heart of modern distributed systems. Middleware is

also discussed in this section Fig. 1-10 summarizes the main issues with respect to
DOS, NOS, and middleware.

14.1 Distributed Operating Systems
There are two types of distributed operating systems. A multiprocessor

operating system manages the resources of a multiprocessor, A multicomputer
operating system is an operating system that is developed for homogeneous
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Systern Description Main goal
DOS Tightly-coupled operating system far muiti- Hide and manage
processors and homogensous multicomputers | hardware resources
NOS Loosely-coupled operating system for hetero- Offer local services
geneous multicomputers (LAN and WAN) to remote clients
Middleware | Additional layer atop of NOS implementing Provide distribution
general-purpose services transparency

Figure 1-10. An overview between DOS (Distributed Operating Systems),
NOS (Network Operating Systems), and middleware.

multicomputers. The functionality of distributed operating systems is essentially
the same as that of traditional operating systems for uniprocessor systems, except
that they handle multiple CPUs. Let us therefore briefly review uniprocessor
operating systems first. An introduction to operating systems for uniprocessors
and multiple processors can be found in (Tanenbaum, 2001).

Uniprocessor Operating Systems

Operating sysiems have traditionally been built (0 manage computers with
only a single CPU. The main goal of these systems is to allow users and applica-
tions an easy way of sharing resources such as the CPU, main memory, disks, and
peripheral devices. Sharing resources means that different applications can make
use of the same hardware in an isolated fashion. To an application, it appears as if
it has its own resources, and that there may be several applications executing on
the same system at the same time, each with their own set of resources. In this
sense, the operating system is said to implement a virtnal machine, offering mul-
titasking facilities to applications.

An important aspect of sharing resources in such a virtual machine, is that
applications are protected from each other. For example, it is not acceptable that if
two independent applications A and B are executed at the same time, that A can
alter the data of application B by simply accessing that part of main memory
where that data are currently stored. Likewise, we need to ensure that applications
can make use of facilities only as offered by the operating system. For instance, it
should generally be prevented that an application can directly copy messages to a
network interface. Instead, the operating system will provide communication
primitives, and only by means of these primitives should it be possible to send
messages between applications on different machines.

Consequently, the operating system should be in full control of how the
hardware resources are used and shared. Therefore, most CPUs support at least
two modes of operation. In kernel mode, all instructions are permitted to be exe-
cuted; and the whole memory and collection of all registers is accessible during
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execution. In contrast, in user mode, memory and register access is restricted. For
example, an application will not be allowed to access memory locations that lie
outside a range of addresses {set by the operating system), or directly access
device registers. While executing operating system code, the CPU is switched to
kernel mode. However, the only way to switch from user mode to kernel mode is
through system calls as implemented by the operating system. Because system
calls are the only basic services an operating system offers, and because the
hardware helps to restrict memory and register access, an operating system can be
put into full control.

Having two modes of operation has led to organizations of operating systems
in which virtually all operating system code is executed in kemel mode. The
result is often a huge, monolithic program that is run in a single address space.
The drawback of this approach is that it is often difficult to adapt the system. In
other words, it is hard to replace or adapt operating system components without
doing a complete shutdown and possibly even a full recompilation and re-
instailation. Monolithic operating systems are not a good idca from the perspec-
tive of openness, software engineering, reliability, or maintainability.

A more flexible approach is to organize the operating system into two parts.
The first part consists of a collection of modules for managing the hardware but
which can equally well be executed in user mode. For example, memory manage-
ment basically consists of keeping track of which parts of memory have been allo-
cated to processes, and which parts are free. The only time we need to execute in
kernel mode is when the registers of the MMU are set.

The second part of the operating system consists of a small microkernel con-
taining only the code that must execuie in kemel mode. In practice, a microkemel
need only contain the code for setting device registers, switching the CPU
between processes, manipulating the MMU, and capturing hardware interrupts. In
addition, it contains the code to pass system calls to calls on the appropriate user-
level operating system modules, and to return their results. This approach leads o
the organization shown in Fig. 1-11.

No direct data exchange between modules

»“—y y S
OS Interface User Memory Process File module
appfication module User mode
I ]
Kernel mode:
Systemn call - Microkernai
Hardwarg

Figure 1-11. Separating applications from operating system code through a microkernel.
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Their are many benefits to using microkemmels. An important one is its flexi-
bility: because a large part of the operating system is executed in user mode, it is
relatively easy to replace a module without having to recompile or re-install the
entire system. Another important issue 1s that user-level modules can, in principle,
be placed on diffcrent machines. For example, we can easily place a file manage-
ment module on a different machine than the one managiug a directory service. In
other words, the microkernel approach lends itself well to extending a uniproces-
sor operating system to distributed computers.

Microkemels have two important disadvantages. First, they are different from
the way current operating systems work, and trying to change any well-entrenched
status quo always meets massive resistance (“If this operating system is good
enough for my grandfather, it is good enough for me.”). Second, microkernels
have exira communication and thus a slight performance loss. However, given
how fast modermn CPUs are, a 20% performance loss is hardly fatal.

Multiprocessor Operating Systems

An important, but often not entirely obvious extension to uniprocessor operat-
ing systems, is support for multiple processors having access to a shared memory.
Conceptually, the extension is simple in that all data structures needed by the
operating system to manage the hardware, inciuding the multiple CPUs, are
placed into shared memory. The main difference is that these data are now acces-
sible by multiple processors, so that they have to be protected against concurrent
access to guarantee consistency.

However, many operating systerms, especially those for PCs and workstations,
cannot easily handle multiple CPUs. The main reason is that they have been
designed as monolithic programs that can be executed only with a single thread of
control. Adapting such operating systems for multiprocessors generally means
redesigning and reimplementing the entire kernel. Modern operating systems are
designed from the start to be able to handle multiple processors.

Multiprocessor operating systems aim o support high performance through
multiple CPUs. An important goal is to make the number of CPUs transparent to
the application. Achieving such transparency is relatively easy because the com-
munication between different (parts of) applications uses the same primitives as
those in multitasking uniprocessor operating systems. The idea is that all com-
munication is done by manipulating data at shared memory locations, and that we
only have to protect that data against simultaneous access. Protection is done
through synchronization primitives. Two important (and equivalent) primitives are
semaphores and monitors.

A semaphore can be thought of as an integer with two operations, down and
up. The down operation checks to see if the value of the semaphore is greater
than 0. If so, it decrements its value and continues. If the value is 0, the calling
process is blocked. The up operation does the opposite. It first checks whether
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there are any now-blocked processes that were unable to complete an earlier down
operation. If so, it unblocks one of them and then continues. Otherwise, it simply
increments the semaphore value. An unblocked process can simply continue by
returning from the down operation. An important property of semaphore opera-
tions is that they are atomie¢, meaning that once a down or up operation has
started, no other process can access the semaphore until the operaiton is com-
pleted (or until a process blocks).

Programming with semaphores to synchronize processes is known to be
ermor-prone except when used for simply protecting shared data. The main prob-
lem is that the use of semaphores can easily lead to unstructured code, similar o
that resulting from abundantly using the infamous goto statement. As an alterna-
tive, many modem systems that support concurrent programiming provide a library
for implementing monitors.

Formally, a monitor is a programming-language construct, similar to an ob-
ject in object-based programming (Hoare, 1974) A monitor can be thought of as a
module consisting of variables and procedures. Variables can be accessed only by
calling one of the monitor’s procedures. In this sense, a monitor is similar to an
object: an object has its own private data, which can be accessed only by means of
methods implemented by that object. The difference with objects, is that a moni-
tor will allow only a single process at a time to execute a procedure. In other
words, if a process A is executing a procedure contained in 2 monitor (we say that
A has entered the monitor), and a process B also calls one of the monitor’s pro-
cedures, B will be biocked until A completes (i.c., until A legves the monitor),

As an example, consider a simple monitor for protecting an integer variable as
shown in Fig. 1-12. The monitor contaius a single (privale) variable count that
can be accessed only by means of three (public) procedures for respectively read-
ing its current value, incrementing it by |, or decrementing it. The monitor con-
struct guarantees that any process that calls one of these procedures can atomi-
cally access the private data contained in the menitor.

manitor Counter {
private:
int count = D,
public:
int value{) {return count; }
void incr{}  { count = count + 1; }
void decr() { count = count —1;}

Figure 1-12. A monitor to protect an integer against concurrent access.

So far, monitors are useful for simply protecting shared data. However, more
is needed for conditionally blocking a process. For example, suppose we wish to

T R L I A,
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block a process calling the operation decr when it finds out that the value of count
has dropped to 0. For such purposes, monitors also contain what is known as con-
dition variables, which are special variables with two operations wait and signal.
When process A is inside a monitor, and calls wait on a condition variable con-
tained in that monitor, A will block and give up its exclusive access to the moni-
tor. Consequently, a process B that was waiting to enter the monitor can then con-
tinue. At a certain point, B may unblock process A by doing a signal on the condi-
tion variable that A is waiting on. To avoid having two processes active inside the
monitor, we adopt the scheme by which the signaling process must lecave the mon-
itor. We can now adapt our previous example. It can be verified that the monitor
shown in Fig. 1-13 is actually an implementation of a secmaphore as discussed
above.

monitor Counter {
private:
int count = 0;
int blocked _procs = 0,
condition unblocked;
public;
int value() { return count; }

void iner( ) {
if (blocked_procs == 0)
count =count + 1,
else
signal{ unblocked };
}

void decr{) {

if (count == 0) {
blocked_procs = blocked _procs + 1;
wall{ unblocked );
blocked_procs = biocked_procs — 1;

alse
count = count — 1;

Figure 1-13. A monitor to protect an integer against concurrent access, but
blocking a process.

The drawback of monitors is that they are programming-language constructs.
For example, Java provides a notion of monitors by essentially allowing each
object to protect itself against concurrent access through synchronized statements,
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and opcrations wait and notify on objects. Library support for monitors is generally
given by means of simple semaphores that can only take on the values 0 and |,
commonly relerred as mutex variables, with associated lock and unlock opera-
tions. Locking a mutex will succeed only if the mutex is 1, otherwise the calling
process will be blocked. Likewise, unlocking a mutex means setting its value to 1,
unless some waiting process could be unblocked. Condition variables with their
associated operations are also provided as library routines. More information en
synchronization primitives can be found in (Andrews, 2000).

Multicomputer Operating Systems

Operating systems for multicomputers are of a totally different structure and
complexity than multiprocessor operating systems. This difference is caused by
the fact that data structures for systemwide resource management can no longer
be easily shared by merely placing them in physically shared memory. Instead,
the only means of communication is throngh message passing. Multicomputer
opcrating systems are therefore generally organized as shown in Fig. 1-14.

Machine A Machine B Machine C
il 11

Distributed applications

T 1 . ——

Distributed operating systsm services

Kerna} Kemsl ‘ Kernhel

Network

Figure 1-14. General structure of a multicomputer operating system.

Each node has its own kernel containing modules for managing local
resources such as memory, the local CPU, a local disk, and so on. Also, each
node has a separate module for handling interprocessor communication, that is,
sending and receiving messages to and from other nodes.

Above each local kerne! is a common layer of software that implements the
operating system as a virtual machine supporting parallel and concurrent execu-
tion of various tasks. In fact, as we shall discuss shortly, this layer may even pro-
vide an abstraction of a multiprocessor machine. In other words, it provides a
complete software implementation of shared memory. Additional facilities com-
monly implemented in this layer are, for example, those for assigning a task to a
processor, masking hardware failures, providing transparent storage, and general
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interprocess communication. In other words, facilities that one would normally
expect from any operating system.

Multicomputer operating systems that do not provide a notion of shared
memory can offer only message-passing facilities to applications. Unfortunately,
the semantics of message-passing primitives may vary widely between different
systems. It is easiest to explain their differences by considering whether or not
messages are buffered. In addition, we need tw take into account when, if ever, a
sending or receiving process is blocked. Fig. 1-15 shows where buffering and
blocking can take place.

Possible
synchronization

Sender point -~ Receiver
i st A3 s
Sender — _—; Receiver
buffer ~T |- — buffer
s2 K

Network

Figure 1-15. Alternatives for blocking and buffering in message passing.

There are only two places where messages can possibly be buffered: at the
sender’s side or at the receiver’s side. This leads to four possible synchronization
points, that is, points at which a sender or receiver can possibly block. If there is a
buffer at the sender’s side, it makes sense to block the sender only when the
buffer is full, which is shown as synchronization point SI in Fig. 41-15. Alterna-
tively, putting a message into a buffer may return a status indicating whether the
operation succeeded. This avoids the sender being blocked when the buffer was
already full. Otherwise, wben there is no sender buffer, there are three alternative
points to block the sender: the message has been sent (shown as $2), the message
has arrived at the receiver (synchronization point S3), or the message has been
delivered to the receiver (at point S4). Note that if blocking takes place at either
82, §3, or §4, having a buffer at the sender’s side does not make any sense.

Blocking the receiver makes sense only at synchronization point S3, which
can happen only wben there is no receiver buffer, or when the buffer is empty. An
alternative is to let the receiver poll for incoming messages. However, doing so
often results in a waste of CPU time, or responding too late to incoming messages,
which in tum may lead to buffer overflows resulting in incoming messages having
to be dropped (Bhoedjang et al., 1998).

Another issue that is important for understanding message-passing semantics,
is whether or not communication is reliable. The distinguishing feature of reliable
communication is that the sender is given a guarantee that its messages will be
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received. In Fig. 1-15, this means that all messages are guaranieed to make it to
synchronization point §3. With unreliable communication, no such guarantee is
given. When there is a buffer at the sender’s side communication can either be
reliable or not. Likewise, the operating system need not guarantee reliable com-
munication when the sender is blocked at 52,

However, if the operating system blocks a sender until messages arrive at
either §3 or §4, it must guarantee reliable communication, or we may otherwise
find ourselves in a situation in which the sender is waiting for confirmation of
receipt or delivery, while in the meantime its message had been lost during
transmission. The relations between blocking, buffering, and guarantees regard-
ing reliable communication are summarized in Fig. 1-16.

o S_fnchronizatim point Send buffer | Reliable comm. guaranteed?
Block sender until buffer not full Yes Not necessary
Block sender until message sent No Not necessary
Block sender until message received | No Necessary
Block sender until message delivered | No Neceassary

Figure 1-16. Relation between blocking, buffering, and reliable communica-
tion.

Many of the issues involved in building multicomputer operating systems are
equally important for any distributed system. The main difference between mubti-
computer operating systems and distributed systems is that the former generally
assume that the underlying hardware is homogeneous and is to be fully managed.
Many distributed systems, however, are often built on top of existing operating
systems, as we will discuss shortly,

Distributed Shared Memory Systems

Practice shows that programming multicomputers is much harder than pro-
gramming multiprocessors. The difference is caused by the fact that expressing
communication in terms of processes accessing shared data and using simple syn-
chronization primitives like semaphores and monitors is much easier than having
only message-passing facilities available. Issues like buffering, blocking, and reli-
able communication only make things worse.

For this reason, there has been considerable research in emulating shared-
memory on multicomputers. The goal is to provide a virtual shared memaory
machine, running on a multicomputer, for which applications can be wriiten using
the shared memory model even though this is not present. The multicomputer
operating system plays a crucial role here.

One approacb is to use the virtual memory capabilities of each individual
node to support a large virtual address space, This leads to what is called a page-

Rl TR
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based distributed shared memory (DSM). The principle of page-based distrib-
uted shared memory is as follows. In a DSM system, the address space is divided
up into pages (typically 4 KB or 8 KB), with the pages being spread over all the
processors in the system. When a processor references an address that is not
present locally, a trap occurs, and the operating system fetches the page contaiu-
ing the address and restarts the faulting instruction, which now completes success-
fully. This concept is illustrated in Fig. 1-17(a) for au address space with 16 pages
and four processors. It is essentially normal paging, except that remote RAM is
being used as the backing store instead of the local disk.

Shared global address space
lof1]2]3]4]sl6[7]8]al10[11[12]13[1415]

Figure 1-17. (a) Pages of address space distributed among four machines. (b)
Situation after CPU 1 references page 10. (c) Situation if page 10 is read only
and replication is used.

In this example, if processor 1 references instructions or data in pages 0, 2, 5,
or 9, the references are done locally. References to other pages cause traps. For
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example, a reference to an address in page 10 will cause a trap to the operating
system, which then moves page 10 from machine 2 to machine 1, as shown in
Fig. 1-17(b).

One improvement to the basic sysiem that can frequently improve perfor-
mance considerably is to replicate pages that are read only, for example, pages
that contain program text, read-only constants, or other read-only daia structures.
For example, if page 10 in Fig. 1-17 is a section of program text, its use by pro-
cessor 1 can result in a copy being sent to processor 1, without the original in pro-
cessor 2’s memory being disturbed, as shown in Fig. 1-17(c). In this way, proces-
sors 1 and 2 can both reference page 10 as often as needed without causing traps
to fetch missing memory.

Another possibility is to replicate not only read-only pages, but all pages. As
long as reads are being done, there is effectively no difference between replicating
a read-only page and replicating a read-write page. However, if a replicated page
is suddenly modified, special action has to be taken to prevent having multiple,
inconsistent copies in existence. Typically all copies but one are invalidated
before allowing the write to proceed.

Further performance improvements can be made if we let go of strict con-
sistency between replicated pages. In other words, we allow a copy to be tem-
porarily different from the others. Practice has shown that this approach may
indeed help, but unfortunately, can also make life much harder for the program-
mer as he has to be aware of such inconsistencies. Considering that ease of pro-
gramming was an important reason for developing DSM systems in the first place,
weakeming consistency may not be a real altemative. We return to consistency
issues in Chap. 6.

Another issue in designing efficient DSM systems, is deciding how large
pages should be. Here, we are faced with similar trade-offs as in deciding on the
size of pages in uniprocessor virtual memory systems. For example, the cost of
transferring a page across a network is primarily determined by the cost of setting
up the transfer and not by the amount of data that is transferred. Consequently,
having large pages may possibly reduce the total number of transfers when large
portions of contiguous data need to be accessed. On the other hand, if a page con-
tains data of two independent processes on different processors, the operating sys-
tern may need to repeatedly transfer the page between those two processors, as
shown in Fig. 1-18. Having data belonging to two independent processes in the
same page is called false sharing.

After almost 15 years of research on distributed shared memory, DSM
researchers are still struggling to combine efficiency and programmability. To
attain high performance on large-scale multicomputers, programumers resort to
message passing despite its higher complexity compared to programming (virtual)
shared memory systems. It seems therefore justified to conclude that DSM for
high-performance parallel programming cannot fulfill its initial expectations.
More information on DSM can be found in (Protic et al., 1998).
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Figure 1-18. False sharing of a page between two independent processes.

1.4.2 Network Operating Systems

In contrast to distributed operating systems, network operating systems do not
assume that the underlying hardware is homogeneous and that it should be
managed as if it were a single system. Instead, they are generally constructed
from a collcetion of uniprocessor systems, each with its own operating system, as
shown in Fig. 1-19. The machines and their operating systems may be different,
but they are all connected to each other in a comnputer network. Also, network
operating systems provide facilities to allow users to make use of the services
available on a specific machine. It is perhaps easiest to describe network operat-
ing systems by taking a closer look at some services they typically offer.

Machine A Machine B Machine C
[ 1 |
Distributed applications
Metwaork OS Network O3S Network OS5
sarvices services services
Karnel Kemei Kernel
Network

Figure 1-19. General structure of a network operating system.

A service that is commonly provided by network operating systems is to allow
a user to log into another machine remotely by using a command such as
rlogin machine

The effect of this command is to turn the user’s own workstation into a remote
terminal logged into the remote machine. Assuming the user is sitting behind a
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graphical workstation, commands typed on the keyboard are sent to the remote
machine, and output from the remote machine is displayed in a window on the
user’s screen, To switch to a different remote machine, it is necessary to first open
a new window, and then to use the rlogin command to connect to another
machine. The selection of the machine is thus entirely manual.

Network operating systems often also have a remote copy command to copy
files from one machine to another. For example, a command such as

rep machine:file1 machinez:file2

might copy the file file! from machinel to machine2 and give it the name file2
there. Again here, the movement of files is explicit and requires the user to be
completely aware of where all files are located and where all commands are being
executed,

While better than nothing, this form of communication is extremely primitive
and has led system designers to search for more convenient forms of communica-
tion and information sharing. One approach is to provide a shared, global file sys-
tem accessible from all the workstations. The file system is supported by one or
more machines called file servers. The file servers accept requests from user pro-
grams running on the other (nonserver) machines, called clients, to read and write
files. Each incoming request is examined and executed, and the reply is sent back,
as illustrated in Fig. 1-20,

File server
Ciient 1 Client 2 £ | Disks on which
—, | Shared file system
Request Reply is stored
¥ w 7
Network

Figure 1-20, Two clients and a server in a network operating system.

File servers generally maintain hierarchical file systems, each with a roat
dircctory containing subdirectories and files. Workstations can import or mount
these file systems, augmenting their local file systems with those located on the
servers. For example, in Fig. 1-21, two file servers are shown. One has a directory
called games, while the other has a directory called work (directory names are
shown in boldface). These directories each contain several files. Both of the
clients shown have mounted both of the servers, but they have mounted them in
different places in their respective file systems. Client ! has mounted them in its
root directory, and can access them as /games and /work, respectively. Client 2,

like client 1, has mounted work in its root directory, but considers playing games
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as something that should perhaps be kept private. It therefore created a directory
called /private and mounted games there. Consequently, it can access pacwoman
using the path /jprivate/games/pacworman rather than /games/pacwoman.

Client 1 Client 2 Server 1 Server 2
/ / games work
private pacman mail
pacwoman teaching
pacchild research
(@
Client 1 Client 2
i /
lsgames r® private/games

Work e~ workr’—\i

pacman mail pacman malil

pacwoman teaching pacwoman teaching

pacchild research pacchild research
(b} (c)

Figure 1-21. Different clients may mount the servers in different places.

While it often does not matter where a client mounts a server in its directory
hierarchy, it is important to notice that different clients can have a different view
of the file systern. The name of a file depends on where it is being accessed from,
and how that machine has set up its file system. Because each client machine
operates relatively independently of the others, there is no guarantee that they all
present the same directory hicrarchy to their programs.

Network operating systems are clearly more primitive than distributed operat-
ing systems. The main distinction between the two types of operating systems is
that distributed operating systems make a serious attempt to realize full trans-
parency, that is, provide a single-system view.

The lack of transparency in network operating systems has some obvious
drawbacks. For example, they are often harder to use, as users are required to
explicitly log into remote machines, or copy files from one machine to another.
There is also a management problem. Because all machines in a network operat-
ing sysiem are independent, often they can only be managed independently. As a
consequence, a user can do a remote login to a machine X only if he has an
account on X. Likewise, if a user wants to use only a single password, changing a
password requires changing it explicitly on every machine. In the same line of
reasoning, it is seen that, in general, all access permissious have to be maintained
per machme as well. There is no simple way of changing permissions once they
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are the same everywhere. This decentralized approach to secunty sometimes
makes it hard to protect network operating systems against malicious attacks.

There are also some advantages compared to distributed operating systems,
As the nodes in a network operating system are highly independent of each other,
it is easy 1o add or remove a machine. In some cases, the only thing we need to do
to add a machine is to connect the machine to a common network and, subse-
quently, make its existence known to the other machines in that network. In the
Internet, for example, adding a new server is done precisely in this way. To make
a machine known across the Internet, we need merely provide its network address,
or better, give the machine a symbolic name that we subsequently enter into DNS,
along with its network address.

1.4.3 Middleware

Neither a distributed operating system or a network operating system really
qualifies as a distributed system according to our definition given in Sec. 1.1. A
distributed operating system is not intended to handle a collection of independent
computers, while a network operating systemn does not provide a view of a single
coherent system. The question comes to miud whether it is possible to develop a
distributed system that has the best of both worlds: the scalability and openness of
network operating systems and the transparency and related ease of use of distrib-
uted operating systems. The solution is to be found in an additional layer of soft-
ware that is used in network operating systems to more or less hide the heterogen-
eity of the collection of underlying platforms but also to improve distribution
transparency. Many modern distributed systems are constructed by means of such
an additional layer of what is called middleware. In this section we take a closer
look at what middleware actually constitutes by explaining some of its features.

Positioning Middleware

Many distributed applications make direct use of the programming interface
offered by network operating systems. For example, communication is often
expressed through operations on sockets, which allow processes on different
machines to pass each other messages (Stevens, 1998). In addition, applications
often make use of interfaces to the local file system. As we explained, a problem
with this approach is that distribution is hardly transparent. A solution is to place
an additional layer of software between applications and the network operating
system, offering a higher level of abstraction. Such a layer is accordingly called
middleware. It sits in the middle between applications and the network oOperating
system as shown in Fig, 1-22,

Each local system forming part of the underlying network operating system is
assumed to provide local resource management in addition to simple communica-
tion means to connect to other computers. In other words, middieware itself will
not manage an individual node; this is left entirely to the local oOperating system.
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Figure 1-22. General structure of a distributed system as middleware.

An important goal is to hide heterogeneity of the underlying platforms from
applications. Therefore, many middleware systems offer a more-or-less complete
collection of services and discourage using anything else but their interfaces to
those services. In other words, skipping the middleware layer and immediately
calling services of one of the underlying operating systems is often frowned upon.
We will return to middleware services shortly.

It is interesting to note that middieware was not invented as an academic exer-
cise in achieving distribution transparency. Afler the introduction and widespread
nse of network operating systems, many organizations found themselves having
lots of networked applications that could not be easily integrated into a single sys-
tem (Bernstein, 1996). At that point, manufacturers started to build higher-level,
application-independent services into their systems. Typical examples include
snpport for distributed transactions and advanced communication facilities.

Of course, agreeing on what the right middleware should be is not easy. An
approach is to set up an organization which subsequently defines a common stan-
dard for some middleware solution. At present, there are a number of such stan-
dards available. The standards are generally not compatible with each other, and
even worse, products implementing the same standard but from different
manufacturers rarely interwork. Surely, it will not be long before someone offers
“upperware” to remedy this defect.

Middleware Models

To make development and integration of distributed applications as simple as
possible, most middieware is based on some model, or paradigm, for describing
distribution and communication. A relatively simple model is that of treating
everything as a file. This is the approach originally introduced in UNIX and
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rigorously followed in Plan 9 (Pike et al., 1995). In Plan 9, all resources, inciud-
ing I/Q devices such as keyboard, mouse, disk, network interface, and so on, are
treated as files. Essentially, whether a file is local or remote makes no difference.
An application opens a file, reads and writes bytes, and closes it again. Because
files can be shared by several processes, communication reduces to simply access-
ing the same file.

A similar approach, but less strict than in Plan 9, is followed by middleware
centered around distributed file systems. In many cases, such middleware is
actually only one step beyond a network operating system in the sense that distri-
bution transparency is supported only for traditional files (i.e., files that are used
for merely storing data). For example, processes are often required to be started
explicitly on specific machines. Middleware based on distributed file systems has
proven to be reasonable scalable, which contributes to its popularity.

Another important early middleware model is that based on Remote Pro-
cedure Calis (RPCs). In this model, the emphasis is on hiding network commun-
ication by allowing a process to call a procedure of which an implementation is
located on a remote machine. When calling such a procedure, parameters are tran-
sparently shipped to the remote machine where the procedure is subsequently exe-
cuted, after which the results are sent back to the caller. It therefore appears as if
the procedure call was executed locally: the calling process remains unaware of
the fact that network communication took place, except perhaps for some loss of
performance. We return to remote procedure calls in the next chapter.

As object orientation came into vogue, it became apparent that if procedure
calls could cross machine boundaries, it should also be possible to invoke objects
residing on remote machines in a transparent fashion. This has now led to various
middleware systems offering a notion of distributed objects. The essence of dis-
tributed objects is that each object implements an interface that hides all the inter-
nal details of the object from its users. An interface consists of the methods that
the object implements, no more and uo less. The only thing that a process sees of
an object is its interface.

Distributed objects are often implemented by having each object itself located
on a siugle machine, and additionally making its interface available on many other
machines. When a process invokes a method, the interface implementation on the
process's machine simply transforms the method invocation into a message that is
sent to the object. The object executes the requested method and sends back the
result. The interface implementation subsequently transforms the reply message
into a return value, which is then handed over to the invoking process. As in the
case of RPC, the process may be kept completely unaware of the network com-
munication.

What models can do to simplify the use of networked systems is probably best
illustrated by the World Wide Web. The success of the Web is mainly due to the
extremely simple, yet highly effective model of distributed documents. Tn the
model of the Web, information is organized into documents, with each document
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residing at a machine transparently located somewhere in the world. Documents
contain links that refer to other documents. By following a link, the document to
which that link refers is fetched from its location and displayed on the user’s
screen. The concept of a document need not be restricted to only text-based infor-
mation. For example, the Web also supports audio and video documents, as well
as all kinds of interactive graphic-based documents.

We return (0 middleware paradigms extensively in the second part of the
book.

Middlewavre Services

There are a number of services common to many middleware systems. Invari-
ably, all middleware, one way or another, atiempts to implement access trans-
parency. by offering high-level communication facilities that hide the low-level
message passing through computer networks. The programming interface to the
transport layer as offered by network operating systems is thus entirely replaced
by other facilities. How communication is supported depends very much on the
model of distribution the middieware offers to users and applications. We already
mentioned remote procedure calls and distributed-object invocations. In addition,
many middleware sysiems provide facilities for transparent access to remote data,
such as distributed file systerus or distributed databases. Transparently fetching
documents as is done in the Web is another example of high-level (one-way) com-
munication.

An important service common to all middleware is that of naming. Name
services allow eatities to be shared and looked up (as in directories), and are com-
parable to telephone books and the yellow pages. Although naming may seem
simple at first thought, difficulties arise when scalability is taken into account.
Problems are caused by the fact that to efficiently look up a name in a large-scale
system, the location of the entity that is named must be assumed to be fixed. This
assumption is made in the World Wide Web, in which each document is currently
named by means of a URL. A URL contains the name of the server where the
document to which the URL refers is stored. Therefore, if the document is moved
to another server, its URL ceases to work.

Many middleware systems offer special facilities for storage, also referred to
as persistence. In its simplest form, persistence is offered through a distributed
file system, but more advanced middleware have integrated databases into their
systems, or otherwise provide facilities for applications to connect to databases.

In environments where data storage plays an important role, facilities are gen-
erally offered for distributed transactions. An important property of a transac-
tion is that it allows multiple read and write operations to occur atomically. Atom-
Icity means that the transaction either succeeds, so that all its write operations are
actually performed, or it fails, leaving all referenced data unaffected. Distributed
transactions operale on data that are possibly spread across multiple machines.
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Especially in the face of masking failures, which is often hard in distributed sys-
tems, it is important to offer services such as distributed transactions. Unfor-
tunately, transactions are hard ta scale across many local machines, let alone geo-
graphically dispersed machines.

Finally, virtnally all middleware systems that are used in nonexperimental
environments provide facilities for security. Compared to network operating sys-
tems, the problem with security in middleware is that it should be pervasive. In
principle, the middleware layer cannot rely on the underlying local operating sys-
tems to adequately support security for the complete network. Consequently,
security has to be partly implemented anew in the middleware layer itself. Com-
bined with the need for extensibility, security has turned out to be one of the hard-
est services to implement in distributed systems.

Middleware and Openness

Modern distributed systems are generally constructed as middleware for a
range of operating systems. In this way, applications built for a specific distrib-
uted system become operating system independent. Unfortunaiely, this indepen-
dence is often replaced by a strong dependency on specific middleware. Problems
are caused by the fact that middleware is often less open than claimed.

As we explained previously, a truly open distributed system is specified by
means of interfaces that are complete. Complete means that everything that is
needed for implementing the system, has indeed been specified. Incompleteness
of interface definitions leads to the situation in which system developers may be
forced to add their own interfaces. Consequently, we may end up in a situation in
which two middleware systems from different development teams adhere to the
same standard, but applications written for one system cannot be easily ported to
the other.

Equally bad is the situation in which incompleteness leads to a situation in
which two different implementations can never interoperate, despite the fact that
they implement exactly the same set of interfaces but different underlying proio-
cols. For example, if two different implementations rely on incompatible com-
munication protocols as available in the underlying network operating system,
there is litile hope that interoperability can be easily achieved. What we need is
that middleware protocols and the interfaces to the middleware are the same, as
shown in Fig, 1-23.

As another example, to ensure interoperability between different implementa-
tions, it is necessary that entities within the different systems are referenced in the
same way. If entities in one system are referred by means of URLs, while the
other system implements references using network addresses, it is clear that cross
referencing is going to be a problem. In such cases, the interface definitions
should have prescribed precisely what references look like.
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Same Application
programming
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Middieware Middleware
Cormmon
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Figure 1-23. In an open middleware-based distributed system, the protocols
used by each middleware layer should be the same, as well as the interfaces they
offer 1o applications.

A Comparison between Systems

A brief comparison between distributed operating systems, network operating
systems, and (middleware-based) distributed systems is given in Fig. 1-24.

Item Distributed 0S8 Network OS | Middleware-

Multiprec. | Multicomp. based DS

Degree of transparency 1 Very high High Low High

Same OS on all nodes? | Yes Yes No No

Number of copies of 0S| 1 N N N

Basis for communication | Shared Messages Files Model
memory specific

Hesource management Global, Gilobal, Per node Per node
central distributed -

Scalability No Moderately | Yes Varies

Openness Closed Closed Open Open

Figure 1-24. A comparison between multipracessor operating systems, multi-
compater operating systems, network operating systems, and middleware-based
distributed systems.

With respect to transparency, it is clear that distributed operating systems do a
better job than nctwork operating systems. In multiprocessor sysiems we have to
hide only that there are more processors, which is relatively easy. The hard part is
also hiding that memory is physically distribuied, which is why building multi-
compuier operating systems that support full distribution transparency is so diffi-
cult. Distributed systems often improve transparency by adopting a specific model
for distribution and communication. For example, distributed file systems are gen-
erally good at hiding the location and access to files. However, they lose some
generality as users are forced to express everything in terms of that specific
model, which may be sometimes inconvenient for a specific application.
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Distributed operating systems are homogeneous, implying that each node runs
the same operating system (kernel). In multiprocessor systems, no copies of tables
and such are nceded, as they can all be shared through main memory. In this case,
ali communication also happens through main memory, whereas in multicomputer
operating syslems messages are used. In network operating systems, one could
argue that communication is almost entirely file based. For example, in the Inter-
net, a lot of communication is done by transferring files. However, high-level
messaging in the form of electronic mail systems and bulletin boards is also used
extensively. Communication in middleware-based distributed systems depends on
the model specifically adopted by the system.

Resources in network operaling systems and distributed systems are managed
per node, which makes such systems relatively easy to scale. However, practice
shows that an implementation of the middleware layer in distributed systems often
has limited scalability. Distributed operating systems have global resource
management, making them harder to scale. Because of the centralized approach in
multiprocessor systems (i.e., all manageraent data is kept in main memory), these
systems are often hard to scale.

Finally, network operating systems and distributed systems win when it
comes to openness. In general, nodes support a standard communication protocol
such as TCP/IP, making interoperability easy. However, there may be a lot of
problems porting applications when many different kinds of operating systems are
used. In general, distributed operating systems are not designed to be open.
Instead, they are often optimized for performance, leading to many proprietary
solutions that sland in the way of an open system.

1.5 THE CLIENT-SERVER MODEL

Up to this point, we have hardly said anything on the actual organization of
distributed systems, which mainly centers around the question of how to organize
the processes in a system. Despite that, consensus on many distributed systems
issues is often hard to find, there is one issue that many researchers and practition-
ers agree upon: thinking in terms of clients that request services from servers
helps understanding and managing the complexity of distributed systems. In this
section, we take a closer look at the client-server model,

1.5.1 Clents and Servers

In the basic client-server model, processes in a distributed system are divided
into two (pqssibly overlapping) groups. A server is a process implementing a
specific service, for example, a file system service or a database service. A client
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is a process that requests a service from a server by sending it a request and subse-
quently waiting for the server’s reply. This client-server interaction, also known
as request-reply behavior is shown in Fig. 1-25

Wait for result
Client ——— e e

Reguest

Provide service Tima —»

Figure 1-25, General interaction between a client and a server.

Communication between a client and a server can be implemented by means
of a simple connectionless protocol when the underlying network is fairly reliable
as in many local-area networks. In these cases, when a client requests a service, it
simply packages a message for the server, identifying the service it wants, along
with the necessary input data. The message is then sent to the server. The latter, in
turn, will always wait for an incoming request, subsequently process it, and pack-
age the results in a reply message that is then sent to the client.

Using a connectionless protocol has the obvious advantage of being efficient.
As long as messages do not get lost or corrupted, the request/reply protocol just
sketched works fine, Unfortunately, making the protocol resistant to occasional
transmission failures is not trivial. The only thing we can do is possibly let the
client resend the request when no reply message comes in. The problem, however,
is that the client cannot detect whether the original request message was lost, or
that transmission of the reply failed. If the reply was lost, then resending a request
may result in performing the operation twice. If the operation was something like
“transfer $10,000 from my bank account,” then clearty, it would have been better
that we simply reported an error instead. On the other hand, if the opcration was
“tell me how much money T have left,” it would be perfectly acceptable to resend
the request. It is not hard to see that there is no single solution to this problem. We
defer a detailed discussion on handling transmission failures to Chap. 7.

As an alternative, many client-server systems use a reliable connection-
oriented protocol. Although this solution is not entirely appropriate in a local-area
network due to relatively low performance, it works perfectly fine in wide-area
systems in which communication is inherently unreliable. For example, virtually
all Internet application protocols are based on reliable TCP/IP connections. In this
case, whenever a client requests a service, it {irst sets up a connection to the
server before sending the request. The server generally uses that same connection
to send the reply message, after which the connection is torn down. The trouble is
that setting up and tearing down a connection is relatively costly, especially when
the request and reply messages are small. We will discuss an alternative solution
where connection management is combined with data (ransfer in the next chapter.
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An Example Client and Server

To provide more insight into how clients and servers work, in this section we
present an outline of a client and a file server in C. Both the client and the server
need to share some definitions, so we will collect these into a file called header.h,
which is shown in Fig. 1-26. Both the client and server include these definitions
using the

#include <header.h>

statement. This statement has the effect of causing a preprocessor to literally
insert the entire contents of header.h into the source program just before the com-
piler starts compiling the program.

/* Definitions needed by clients and servers. */

#idefine TRUE 1

#defina MAX_PATH 2556  /* maximum length of file name *f
#define BUF_SIZE 1024 /* how much data to transfer at once *f
#define FILE_SERVER 243  /* file server's network address *f
/* Definitions of the allowed operations */

#define CREATE i /* create a new file *f
#define READ 2 /* read data from a file and retum it Wi
#define WRITE 3 /* write data to a file Wi
#define DELETE 4 /* delete an existing file W)

/* Error codes, */

#define OK 0 /* operation performed correctly *f
#define E_BAD _OPER -1 /* unknown operation requested *f
#define E_BAD_PARAM -2 /* error in a parameter =/
#define E_IO . -3 /* disk error or other VO error *

/* Definition of the message format. */
struct message {

long source; /* sender's identity *
long dest; /* receiver's identity Wi
long opcode; f* requested operation i
long count, /* number of bytes to transfer *
long offset; " position in file to start 1O *
long result; /* result of the operation *
char name[MAX_PATH]; /* name of file being operated on */
char data[BUF _SIZE]; /* data to be read or written *f

Figure 1-26. The keader.h file used by the client and server.
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Let us first take a look at header.h. It starts out by defining two constants,
MAX_PATH and BUF_SIZE, that determine the size of two arrays needed in the
message. The former tells how many characters a file name (i.c., a path name like
{usrfast/books/opsys/chapter!.f) may contain. The latter fixes the amount of data
that may be read or written in one operation by setting the buffer size. The next
constant, FILE_SERVER, provides the network address of the file server so that
clients can send messages to it.

The second group of constants defines the operation numbers, These are
needed to ensure that the client and server agree on which code will represent a
read, which code will represent a write, and so on. We have shown only four here,
but in a real system there would normally be more.

Every reply contains a resnlt code. If the operation succeeds, the result code
often contains nseful information (such as the number of bytes actually read). If
there is no value to be returned (such as when a file is created), the value OX is
used. If the operation is unsuccessful for some reason, the result code tells why,
using codes such as E_BAD_OPER, E_BAD_PARAM, and so on.

Finally, we come to the most important part of header.h, the definition of the
message itself. In our example it is a structure with 8 fields. All requests from the
chient to the server use this format, as do all replies. In a real system, one would
probably not have a fixed format message (because not a]l the fields are needed in
all cases), but it makes the explanation simpler here. The source and dest fields
identify the sender and receiver, respectively. The opcode field is one of the
operations defined above, that is, create, read, write, or delete. The count and
offset fields are used for parameters. The resuir field is not used for client-to-
server requests but holds the result value for server-to-client replies. Finally, we
have two amrays. The first, name, holds the name of the file being accessed. The
second, data, holds the data sent back on a reply to read or the data sent to the
server on a write.

Let us now look at the code, as outlined in Fig. 1-27. In (a) we have the
server; in (b) we have the client. The server is straightforward. The main loop
starts out by calling receive to get a request message. The first parameter identi-
fies the caller by giving its address, and the second parameter points to a message
buffer where the incoming message can be stored. The procedure receive blocks
the server until a2 message arrives. When one comes in, the server continues and
dispatches on the opcode type. For each opcode, a different procedure is called.
The incoming message and a buffer for the outgoing message are given as param-
eters. The procedure examines the incoming message, m/, and builds the reply in
m2. It also returns a function value that is sent back in the result field. After the
send has completed, the server goes back to the top of the loop to execute receive
and wait for the next incoming message.,

In Fig. 1-27(b) we have a procedure ‘that copies a file using the server. The
body of the procedure consists of a loop that reads one block from the source file
and writes it to the destination file. The loop is repeated until the source file has
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been copied completely. The latter is indicated by the return code from the read,
which can be a zero or negative value,

The first part of the loop is concerned with building a message for the read
operation and sending it to the server. After the reply has been received, the
second part of the loop is entered, which takes the data just received and sends it
back to the server in the form of a write to the destination file. The programs of
Fig. 1-27 are just sketches of the code. Many details have been omitted. For
example, the do_xxx procedures (the ones that actually do the work) are not
shown, and no error checking is done. Still, the general idea of how a client and a
server interact should be clear. In the following sections we take a closer look at
some more of the organizational issues of the client-server model.

1.5.2 Application Layering

The client-server model has been subject to many debates and controversies.
One of the main issues was how to draw a clear distinction hetween a client and a
server. Not surprisingly, there is often no clear distinction. For example, a server
for a distributed database may continuously act as a client because it is forwarding
requests to different file servers responsible for impletenting the database tables.
In such a case, the database server itself essentially does no more than process
queries.,

However, considering that many client-server applications are targeted toward

supporting user access to databases, many people have advocated a distinction
between the following three levels:

}. The user-interface level
2. The processing level
3. The data level

The user-interface level contains all that is necessary to directly interface with the
user, such as display management. The processing level typically contains the
applications, whereas the data level contains the actual data that is being acted on.
In the following sections, we discuss each of these levels.

User-Interface Level

Clients typically implement the user-interface level. This level consists of the
programs that allow end users to interact with applications. There is a consider-
able difference in how sophisticated user-interface programs are.

The simplest user-interface program is nothing more than a character-based
screen. Such an interface has been typically used in mainframe environments. In
those cases where the mainframe controls all interaction, including the keyboard
and monitor, one can hardly speak of a client-server environment. However, in
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#include <header.h>
void main{void) {

}

struct message mt, m2;
intr;
while(TRUE) {
receive{FILE_SERVER, &ml);
switch{ml.opcode) {
case CREATE:
¢case READ:
case WRITE:
case DELETE:
default:
}
m2.result=r;
send(ml.source, &m2);

#include <header.h>
Int copy(char *src, char *dst){

struct message mi;

long position;

long ciient = 110,

initialize( );

position = 0;

do{
ml.opcode = READ:
ml.offset = position;
ml.count = BUF_SIZE;
strepy(&ml.name, src;
send(FILESERVER, &ml);
receive(client, &ml);

THE CLIENT-SERVER MODEL

f incoming/outgoing messages
/* result code

/* server runs forever

/* block waiting for a message

f* dispatch on type of request

r = do_create(&m!, &m?2); break;
r = do_read{&ml, &m2); break;

r = do_write(&ml, &m2); break;
r = do_delete(&ml, &m2); break;
r=E_BAD_OPER;

/* return result to client
/" send reply

(&)

*
*f
*f
*
"/

*/
*/

I proe. to copy file using the server */

* message buffer

#* current file position

/* client's address

/* prepare for execution

/* operation is a read

7 eurrent position in the file

/* how many bytes to read

f* copy name of file to be read

/* send message to the file server
/* block waiting for the reply

/* Write the data just received to the destination file.

ml.opcode = WRITE;
ml.offset = position;
ml.count = ml.resuit;
strepy(&mi.name, dst),;
send(FILE_SERVER, &ml);
receive(client, &ml};
position += ml.result;

} while{ ml.result = 0 };

/* operation is a write

/" current pasition in the file

/" how many bytes to write

/* copy name of fite to be written
/* send message to the file server
/* block waiting for the reply

7 ml.result is #bytes written

/* iterate untit done

return{ml.result >= 0 ? OK : ml result); /* retum OK or error code

Figure 1-27. (a) A sample server. (b} A client using that server to copy a file.
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; Ussr-interface
User intarface level
HTML page
Keyword expression containing list
HTML
generator Processing
Query I‘" Ranked list level
generator of page titles
3 Ranking
Database queries component
Wel page titles
Database with meta-information Data level

with Web pages

Figure 1-28. The general organization of an Internet search engine into three different
layers.

As a last example, consider a typical desktop package, consisting of a word
processor, a spreadsheet application, communication facilities, and so on. Such
“office’ suites are generally integrated through a common user interface that sup-
ports compound documents, and operates on files from the user’s home directory.
In this case, the processing level consists of a relatively large collection of pro-
grams, each having rather simple processing capabilities.

Data Level

The data level in the client-server model contains the programs that maintain
the actual data on which the applications operate. An important property of this
level is that data are persistent, that is, even if no application is running, data will
be stored somewhere for next use. In its simplest form, the data level consists of a
file system, but it is more common to use a full-fledged database. In the client-
server model, the data level is typically implemented at the server side.

Besides merely storing data, the data level is generally also respomsible for
keeping data consistent across different applications. When databases are being
used, maintaining consistency means that metadata such as table descriptions,
entry constraints and application-specific metadata are also stored at this level.
For example, in the case of a bank, we may want to generate a notification when a
customer’s credit card debt reaches a certain value. This type of information can
be matntained through a database trigger that activates a handler for that trigger at
the appropriate moment.

In traditional business-oriented environments, the data level is organized as a
relatioval database. Data independence is a keyword here. The data are organized
independent of the applications in such a way that changes in that organization do

T TR O UM AT
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not affect applications, and neither do the applications affect the data organiza-
tion. Using relational databases in the client-server model helps us separate the
processing level from the data level, as processing and data are considered
independent.

However, there is a growing class of applications for which rclational data-
bases are not the ideat choice. A characteristic feature of these applications is that
they operate on complex data types that are more easily modeled in terms of
objects than in terms of relations. Examples of such data types range from simple
polygons and circles to representations of aircraft designs, as is the case with
computer-aided design (CAD) systems. Likewise, for multimedia systems it is
much easier to operate on data types for audio and video streams with their
spectfic operations, than to model such streams in the form of tables of relations.

In those cases where data operations are more easily expressed in terms of
object manipulations, it makes sense to implement the data level by means of an
object-oriented database. Such a database not only supports the organization of
complex data in terms of objects, but also stores the implementation of the opera-
tions on those objects. Consequently, part of the functionality that was found in
the processing level is now moved to the data level.

1.5.3 Client-Server Architectures

The distinction into three logical levels as discussed in the previous section,
suggests a number of possibilities for physically distributing a client-server appli-
cation across several machines. The simplest organization is to have only two
types of machines:

1. A client machine containing only the programs implementing (part
of} the user-inlerface level

2. A server machine containing the rest, that is the programs imple-
menting the processing and data level

The problem with this organization is that it is not really distributed: everything is
handled by the server, while the client is essentially no more than a dumb termi-

nal. There are many other possibilities, of which we explore some of the more
common ones in this section.

Multitiered Architectures

_ One approach for organizing clients and servers is to distribute the programs
m the application layers of the previows section across different machines, as
shown in Fig. 1-29 (see also Umar, 1997: Jing et al., 1999). As a first step, we

B R e LUy
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make a distinction between only two kinds of machines: clients and servers, lead-
ing to what is also referred to as a (physically) two-tiered architecture.

Client maching

User interface I User interfacel I Userinterface | I User interfacel | Usear intarface i
e ! Appticati?_rl“’ I Application | I Apglication |
--~—-___$__ ‘‘‘‘ S 3 ____ v Database

e A B -

User interface e 2 -—~~-¢____‘___
[ Application | Application i rh—ﬂppiication ’ L T
I Database | | Database i | Database | LDatabase | [ Database ‘

Server machine
(a) (b} {c) {d) {e)

Figure 1-29. Alternative client-server organizations (a)-(e).

One possible organization is to have only the terminal-dependent part of the
user interface on the client machine, as shown in Fig. 1-29(a), and give the appli-
cations remotie control over the presentation of their data. An alternative is to
place the entire user-interface software on the client side, as shown in Fig. 1-
29(b). In such cases, we essentially divide the application into a graphical front
end, which communicates with the rest of the application (residing at the server)
through an application-specific protocol. In this model, the front end does no pro-
cessing other than necessary for presenting the application’s interface.

Continuing along this line of reasoning, we may also move part of the applica-
tion to the front end, as shown in Fig. 1-29(c). An example where this makes
sense is where the application makes use of a form that needs to be filled in
entirely before it can be processed. The front end can then check the correctness
and consistency of the form, and where necessary interact with the user. Another
example of the organization of Fig. 1-29(c), is that of a word processor in which
the basic editing functions execute on the client side where they operate on locally
cached, or in-memory data, but where the advanced support tcols such as check-
ing the spelling and grammar e¢xecnte on the server side.

In many client-server environments, the organizations shown in Fig. 1-29(d)
and Fig. 1-29(e) are particular popular. These organizations are used in the case
where the client macbine is a PC or workstation, connected through a network to a
distributed file system or database. Essentially, most of the application is running
on the client machine, but all operations on files or database eniries go to the
server. Fig. 1-29(e) represents the situation where the client’s local disk contains
part of the data. For example, when browsing the Weh, a client can gradually
build a huge cache on local disk of most recent inspected Web pages.
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When distinguishing only clients and servers, we miss the point that a server
may sometimes need to act as a client, as shown in Fig. 1-30, leading to a (physi-
cally) three-tiered architecture.

User interface Wait for result
(presentation)

Raquest
operation

RAaturn
result

Application _____ m—— ‘fa}'! .f 9[ _d_a_t?_

SENver

Reguest data Return data

Database
server »

Figure 1-30. An example of a server acting as client.

In this architecture, programs that form part of the processing level reside on a
separate server, but may additionally be partly distributed across the client and
server machines. A typical example of where a three-tiered architecture is used is
in transaction processing. In this case, a separate process, called the transaction
monitor, coordinates all transactions across possibly different data servers. We
return to transaction processing in later chapters.

Modern Architectures

Multitiered client-server architectures are a direct consequence of dividing
applications into a user-interface, processing components, and a data level. The
different tiers correspond directly with the logical organization of applications. In
many business environments, distributed processing is equivalent to organizing a
client-server application as a multiticred architecture. We refer to this type of dis-
tribution as vertical distribution. The characteristic feature of vertical distribu-
tion is that it is achieved by placing logically different components on different
machines. The term is related to the concept of vertical fragmentation as used in
distributed relational databases, where it means that tables are split column-wise,
and subsequently distributed across multiple machines (Oszu and Valduriez,
1999).

However, vertical distribution is only one way of organizing client-server
applications, and in many cases the least interesting one. In medern architectures,
it is often the distribution of the clients and the servers that counts, which we refer
to as horizontal distribution. In this type of distribution, a client or server may
be physically split up into logically equivalent parts, but cach part is operating on
its own share of the complete data set, thus balancing the load.
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As an example of a popular horizontal distribution, consider a Web server
replicated across several machines in a local-area network, as shown in Fig. 1-31.
Each server has the same set of Web pages, and each time a Web page is updated,
a copy is immediately placed at each server. When a request comes in, it is for-
warded to a server using a round-robin policy. It turns out that this form of hor-
izontal distribution can be quite effective for highly popular Web sites, provided
enough bandwidth is available.

Front end
handling
incoming Regplicated Web servers sach
requests containing the same Web pages
Requests |—— Disks
handled in & |- =
round-robin d.__;@____ &= =
fashicn r

Internet

Figure 1-31. An exampie of horizontal distribation of a Web service,

Although less apparent, clients can be distributed as well. For simple colla-
borative applications, we may even have the case where there is no server at all.
In such a case, we often talk about peer-to-peer distribution. What may happen,
for example, is that a user seeks contact with another user, after which both
launch the same application for starting a session. A third client may contact
either one of the two, and subsequently also launch the same application software.

A number of alternative organizations for client-server systems are discussed
in (Adler, 1995). We will come across many other organizations for distributed
systems as well in later chapters. We will see that systems are generally distrib-
uted both in a vertical and horizontal sense.

1.6 SUMMARY

Distributed systems consist of autonomous computers that work together to
give the appearance of a single coherent system. One important advantage is that
they make it easier to integrate different applications running on different comput-
ers into a single system. Another advantage is that when properly designed, dis-
tributed systems scale well with respect to the size of the underlying network.
These advantages often come at the cost of more complex software, degradation
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of performance, and also often weaker security. Nevertheless. there is consider-
able interest worldwide in building and installing distributed systems.

Different types of distributed systems exist. A distributed operating system
distinguishes itself by managing the hardware of tightly-coupled computer sys-
tems, which include muliiprocessors and homogeneous multicomputers. These
distributed sysiems do not really support autonomous computers, but do a good
job at providing a single-system view. A network operating system, on the other
band, is good at connecting different computers, each with their own operating
system, so that users can easily make use of each node’s local services. However,
network operating systems do not offer a single-system view the way that distrib-
uted operating systems do.

Modern distributed systemns are generally built by means of an additional
layer of software on top of a network operating system. This layer, called
middleware, is designed to hide the heterogeneity and distributed nature of the
underlying collection of computers. Middleware-based distributed systems gen-
erally adopt a specific model for expressing distribution and communication,
Popular models are based on remote procedure calls, distributed objects, files, and
documents.

Important 10 any distributed system is its internal organization. A widely
applied model is that of client processes requesting services at server processes. A
client sends a message to server and waits until the latter returns a reply. This
model s strongly related to traditional programming, in which services are imple-
mented as procedures in separate modules. A further refinement is often made by
distinguishing a user-interface level, a processing level, and a data level. The
server is generally responsible for the data level, whereas the user-interface level
is implemented at the client side. The processing level can be implemented at the
client, the server, or split between the two.

For modern distributed systems, this vertical organization of client-server
applications is not sufficient to build large-scale systems, What is needed is a hor-
izontal distribution by which clients and servers are physically distributed and
replicated across maliiple computers. A typical example in which horizontal dis-
tribution has been successfully applied is the World Wide Web.

PROBLEMS

L. What is the role of middle ware in a distributed system?

2. Explain what is meant by (distribution) transparency, and give examples of different
types of transparency.

3. Why is it sometimes so hard to hide the occurren.

distributed A ce and recovery from failures in a
istributed system
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4.

Why is it not always a good idea to aim at implementing the highest degree of trans-
parency possible?

5, What is an open distributed system and what benefits does openness provide?

6. Dcscribe precisely what is meant by a scalable system.

7. Scalability can be achieved by applying different techniques. What are these tech-

niques?

8. What is the difference between a multiprocessor and a multicomputer?

9. A multicomputer with 256 CPUs is organized as a 16 x 16 grid, What is the worst-

10.

11.

12.

13.
14,

15,

16.

17.

18.
19.

case delay (in hops) that a message migbt bave to take?

Now consider a 256-CPU hypercube. What is the worst-casc delay here, again in
hops?

What is the difference between a distributed operating system and a network operating
systern?

Explain how microkernels can be used to organize an operating system in a client-
server fashion.

Explain the principal operation of a page-based distributed shared memory system.

What is the reason for developing distributed shared memory systems? What do you
sce as the main problem hindering efficient implementations?

Explain what false sharing is in distributed shared memory systems, What possible
solutions do you sec?

An experimental file server is up 3/4 of the time and down 1/4 of the time, due to

bugs. How many times does this file server have to be replicated to give an availability
of at least 99 percent?

What is a three-tiered client-server architecture?
What is the difference between a vertical distribution and a borizontal distribution?

Cansider a chain of processes P, P,, ..., P, implementing a multitiered client-server
architecture. Process P; is client of process P,,,, and P; will return a reply to 2;_; only
after receiving a reply from P;,,. What are the main problems with this organization
when taking a look at the request-reply performance at process P, ?






COMMUNICATION

Interprocess communication is at the heart of all distributed systems. It makes
no sense to study distributed systems without carefully examining the ways that
processes on different machines can exchange information. Communication in
distributed systems is always based on low-level message passing as offered by
the underlying network, As we explained in the previous chapter, expressing coni-
munication through ntessage passing is harder than using primitives based on
shared memory. Modemn distributed systems often consist of thousands or even
millions of processes scattered across an unreliable network such as the Intemet.
Unless the primitive communication facilities of computer networks are replaced
by something else, development of large-scale distributed applications is ex-
tremely difficult.

In this chapter, we start by discussing the rules that communicating processes
must adhere to, known as protocols, and concentrate on structuring those proto-
cols in the form of layers. We then look at four widely-used models for communi-
cation: Remote Procedure Call (RPC), Remote Method Invocation {(RMI),
Message-Oriented Middleware (MOM), and streams.

Our first model for communication in distributed systems is the remote proce-
dure call (RPC). An RPC aims at hiding most of the intricacies of message pass-
ing, and is ideal for client-server applications. An improvement to the RPC model
comes in the form of remote method invocations (RMIs), which are based on a
notion of distributed objects. RPCs and RMIs are discussed in separate sections.
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In many distributed applications, communication does not follow the rather
strict pattern of client-server interaction. In those cases, it turns out that thinking
in terms of messages is more appropriate. However, the low-level communication
facilities of computer networks are in many ways not suitable due to their lack of
distribution transparency. An alternative is to use a high-level message-queuing
model, in which communication proceeds very much the same as in electronic
mail systems. Message-oriented middleware (MOM) is a subject important
enough to warrant a section of its own,.

With the advent of multimedia distributed systems, it became apparent that
many systems were lacking support for communication of continuous media, such
as audio and video. What is needed is the notion of a stream that can support the
continuous flow of messages, subject to various timing constraints. Streams are
discussed in the last section of this chapter.

2.1 LAYERED PROTOCOLS

Due to the absence of shared memory, all communication in distributed sys-
tems is based on exchanging (low level) messages. When process A wants to com-
municate with process B, it first builds a message in its own address space. Then it
executes a system call that causes the operating system to send the message over
the network to B. Although this basic idea sonnds simple enough, in order to
prevent chaos, A and B have 1o agree on the meaning of the bits being sent. If A
sends a brilliant new novel written in French and encoded in IBM’s EBCDIC
character code, and B expects the inventory of a supermarket written in English
and encoded in ASCI], communication will be less than optimal.

Many different agreements are needed. How many volts should be used to
signal a 0-bit, and how many volts for a 1-bit? How does the receiver know which
is the last bit of the message? How can it detect if a message has been damaged or
lost, and what should it do if it finds out? How long are numbers, strings, and
other data iterms, and how are they represented? In short, agreements are needed at
a variety of levels, varying from the low-level details of bit transmission to the
high-level details of how information is to be expressed.

To make it easier to deal with the numerous levels and issues involved in
communication, the International Standards Organization (ISO) developed a refer-
ence model that clearly identifies the various levels involved, gives them standard
names, and points out which Ievel should do which job. This model is called the
Open Systems Interconnection Reference Model (Day and Zimmerman, 1983},
usually abbreviated as ISO OSI or sometimes just the OSI model. It should be
emphasized that the protocols that were developed as part of the OSI mode] were
never widely used. However, the underlying model itself has proved to be quite
useful for understanding computer networks. Although we do not intend to give a
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full description of this model and all of its implications here, a short introduction
will be helpful. For more details, see (Tanenbaum, 1996).

The OSI model is designed to allow open sysiems {0 communicate. An open
system is one that is prepared to communicate with any other open system by
using standard rules that govern the format, contents, and meaning of the mes-
sages sent and received. These rules are formalized in what are called protocols.
To allow a group of computers to communicate over a network, they must all
agree on the protocols to be used. A distinction is made between two general
types of protocols. With connection-oriented protocols, before exchanging data
the sender and receiver first explicitly establish a connection, and possibly nego-
tiate the protocol they will use. When they are done, they must release (ter-
minate) the connection. The telephone is a connection-oriented communication
system, With connectionless protocols, no setup in advance is needed. The sender
Jjust transmits the first message when it is ready. Dropping a letter in a mailbox is
an example of connectionless communication. With computers, both connection-
oriented and connectionless communication are common.

Application | {MCToTomomtiTeemmmste s e e s e e 7
) _______Presentation protocol
Prasentation | (M mmmTTomooTesomomm e memm oo 6
Session | |-------—- Session protogol ______ 5
Transport protocot
Transport | MM-Tt00Too SRR 4
ee.___Networkprotocol __
Network 3
________ Data link protocel _______
Data fink 2
Physical pratocol
Physical | ™" """ WRICEPIOR 1

Network

Figure 2-1. Layers, interfaces, and protocols in the OST model.

In the OSI model, communication is divided up into seven levels or layers, as
shown in Fig. 2-1. Each layer deals with one specific aspect of the communica-
tion. In this way, the problem can be divided up into manageable pieces, each of
which can be solved independent of the others. Each layer provides an interface to
the one above it. The interface consists of a set of operations that together define
the service the layer is prepared 1o offcr its users.

When process A on machine 1 wants to communicate with process B on
machine 2, it builds a message and passes the message to the application layer on
its machine. This layer might be a library procedure, for example, but it could also
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be implemented in some other way (e.g., inside the operating system, on an exter-
nal network processor, etc.). The application layer software then adds a header to
the front of the message and passes the resuliing message across the layer 6/7
interface to the presentation layer. The presentation layer in turn adds its own
header and passes the result down to the session layer, and so on. Some lavers
add not only a header to the front, but also a trailer to the end. When it hits the
bottom, the physical layer actually transmits the message, which by now might
look as shown in Fig. 2-2.

— Data link layer header
Neatwork layer header
Transport layer header
— Session layar header
| Presentation layer header
; £ ; Application layer header

| ‘ ] l [ Message ‘ |4_ Data link

layer trailer
—
Bits that actually appear on the network

Figure 2-2. A typical message as it appears on the network.

When the message arrives at machine 2, it is passed upward, with each layer
stripping off and examining its own header. Finally, the message arrives at the
receiver, process B, which may reply to it using the reverse path. The information
in the layer n header is used for the layer n protocol.

As an example of why layered protocols are important, consider communica-
tion between two companies, Zippy Airlines and its caterer, Mushy Meals, Inc.
Every month, the head of passenger service at Zippy asks her secretary to contact
the sales manager’s secretary at Mushy to order 100,000 boxes of rubber chicken.
Traditionally, the orders have gone via the post office. However, as the postal
service deteriorates, at some point the (wo secretaries decide to abandon it and
communicate by FAX. They can do this without bothering their bosses, since their
protocel deals with the physical transmission of the orders, not their contents,

Similarly, the head of passenger service can decide to drop the rubber chicken
and go for Mushy’s new special, prime rib of goat, without that decision affecting
the secretaries. The thing to notice is that we have two layers here, the bosses and
the secretaries. Each layer has its own protocol (subjects of discussion and tech-
nology) that can be changed independently of the other one. It is precisely this
independence that makes layered protocols attractive. Each one can be changed as
technology improves, without the othcr ones being affected.

In the OSI model, there are not two layers, but seven, as we saw in Fig. 2-1.
The collection of protocols used in a particular system is called a protocol suite
or protocol stack. It is important to distinguish a reference model from its actual
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protocols. As we mentioned, the OSI protocols were never popular. In contrast,
protocols developed for the Internet, such as TCP and IP, are mostly used. In the
following sections, we will briefly examine each of the OSI layers in turn, starting
at the bottom. However, instead of giving examples of OSI protocols, where
appropriate, we will point out some of the Internet protecols used in each layer.

2.1.1 Lower-Level Protocols

We start with discussing the three lowest layers of the OSI protocol suite.
Together, these layers implement the basic functions that encompass a computer
network,

Physical Layer

The physical layer is concemed with transmitting the Os and 1s. How many
volts to nse for O and 1, how many bits per second can be sent, and whether
transmission can take place in both directions simultaneously are key issues in the
physical layer. In addition, the size and shape of the network connector (plug), as
well as the number of pins and meaning of each are of concern here.

The physical layer protocol deals with standardizing the electrical, mechani-
cal, and signaling interfaces so that when one machine sends a 0 bit it is actually
received as a 0 bit and not a 1 bit. Many physical layer standards have been
developed (for different media), for example, the RS-232-C standard for serial
communication lines.

Data Link Layer

The physical layer just sends bits. As long as no errors occur, all is well,
However, real communication networks are subject to errors, so some mechanism
is needed 1o detect and correct them. This mechamism is the main task of the data
link layer. What it does is to group the bits into units, sometimes called frames,
and see that each frame is correctly received.

The data link layer does its work by putling a special bit pattern on the start
and end of each frame to mark them, as well as computing a checksum by adding
up all the bytes in the frame in a certain way. The data link layer appends the
checksum to the frame. When the frame arrives, the receiver recomputes the
checksum from the data and compares the result to the checksum following the
frame. If they agree, the frame is considered correct and is accepted. It they
disagree, the receiver asks the sender to retransmit it. Frames are assigned
sequence numbers (in the header), so cveryone can (ell which is which.

In Fig. 2-3 we see a (slightly pathological) example of A trying to send two
messages, § and 1, to B. At time 0, data message O is sent, but when it arrives, at
time 1, noise on the transmission line has damaged so that the checksum is wrong.,
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B notices this, and at time 2 asks for a retransmission using a control message.
Unfortunatety, at the same time, A is sending data message 1. When A gets the
request for retransmission, it resends 0. However, when B gets message 1, instead
of the requested message O, it sends control message 1 to A complaining that it
wants (, not 1. When A sees this, it shrugs its shoulders and sends message 0 for
the third time.

Time A g Event

A sends data message 0

B gets 0, sees bad checksum

A sends dala message 1
B compiains about the checksum

Both messages arrive correctly

A retransmits data message 0
B says: "want Q, not 1"

B finally gets messags 0

Figure 2-3. Discussion between a receiver and a sender in the data link layer.

The point here is not so much whether the protocol of Fig. 2-3 is a great one
(it is not), but rather to illustrate that in each layer there is a need for discussion
between the sender and the receiver. Typical messages are “Please retransmit
message n,” “I already retransmitted it,” “No you did not,” “Yes I did,” “All
right, have it your way, but send it again,” and so forth. This discussion iakes
place in the header field, where various requests and responses are defined, and
parameters (such as frame numbers) can be supplied.

Network Layer

On a LAN, there is usually no need for the sender to locate the receiver. It just
puts the message out on the network and the receiver takes it off. A wide-area net-
work, however, consists of a large number of machines, cach with some number
of lines to other machines, rather like a large-scale map showing major cities and
roads connecting them. For a message to get from the sender to the receiver it
may have to make a number of hops, at each one choosing an outgoing line to use.
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The question ol how io choose the best path is called routing, and is essentially
the primary task of the network layer.

The problem is complicated by the fact that the shortest route is not always
the best route. What really matters is the amount of delay on a given route, which,
in turm, is related to the amount of traffic and the number of messages queued up
for transmission over the various lines. The delay can thus change over the course
of time. Some routing algorithms try to adapt to changing loads, whereas others
are content 10 make decisions based on long-term averages.

At present, perhaps the most widely used network protocol is the connection-
less IP (Internet Protocol), which is part of the Internet protocol suite. An 1P
packet (the techmcal term for a message in the network layer) can be sent without
any setup. Each IP packet is routed to its destination independent of all others. No
internal path is selected and remembered.

A connection-oriented protocol that is now gaining popularity, is the virtual
channel in ATM networks. A virtuat channel in ATM is a unidirectional connec-
tion from a source to a destination, possibly crossing several intermediate ATM
switches. Instead of setting up each virtual channel separately between two hosts,
a collection of virtual channels can be grouped into what is called a virtual path.
A virtual path is comparable to a predefined route between two hosts, along which
all its virtual channels are laid down. Rerouting a path implies that all the associ-
ated channels are automatically rerouted as well. More on ATM can be found in
(Handel et al., 1994).

2.1.2 Transport Protocols

The transport layer forms the last part of what could be called a basic network
protocol stack, in the sense that it implements all those services that are not pro-
vided at the interface of the network layer, but which are reasonably needed to
build network applications. In other words, the transport layer turns the under! ying
network into something that an application developer can use.

The Functiou of the Transport Layer

Packets can be lost on the way from the sender to the receiver. Although some
applications can handle their own error recovery, others prefer a reliable connec-
tion. The job of the transport layer is to provide this service. The idea is that the
application layer should be ahle to deliver a message to the transport layer with
the expectation that it will be delivered without loss,

Upon receiving a message from the application layer, the transport layer
breaks it into pieces small enough for transinission, assigns each one a sequence
number, and then sends them all. The discussion in the transport layer header con-
cerns which packets have been sent, which have been received, how many more
the receiver has room 10 accept. which should be retransmitted, and similar topics.
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Reliable transport connections (which by definition are connection-oriented)
can be built on top of connection-oriented or connectionless network services. In
the former case all the packets will arrive in the correct sequence (if they arrive at
all), but in the latter case it is possible for one packet to take a different route and
arrive earlier than the packet sent before it. It is up to the transport layer software
to put everything back in order to maintain the iflusion that a transport connection
is like a big tube—you put messages into it and they come out undamaged and in
the same order in which they went in. Providing this end-to-end communication
behavior is an important aspect of the transport layer.

The Internet transport protocol is called TCP (Transmission Control Proto-
col) and is described in detail in (Comer, 2000a). The combination TCP/IP is now
used as a de facto standard for network communication. The Internet protocol
suite also supports a connectionless transport protocol called UDP (Universal
Datagram Protocol), which is essentially just IP with some minor additions. User
programs that do not need a connection-oriented protocol normally use UDP.

The official ISO transport protocol has five variants, known as TP through
TP4. The differences relate to error handiing and the ability to send several trans-
port connections over a single lower-level connection (specifically, X.25). The
choice of which one to use depends on the properties of the underlying network
layer. Noune of these were ever used much,

Additional transport protocols are regularly proposed. For example, to support
real-time data transfer, the Real-time Transport Protocol (RTP) has been
defined. RTP is a framework protoco! in the sense that it specifies packet formats
for real-time data without providing the actual mechanisms for gnaranteeing data
delivery. In addition, it specifies a protocol for monitoring and controlling data
transfer of RTP packets {Schulzrinne et al., 1996).

Client-Server TCP

Client-server interaction in distributed systems is often done using the trans-
port protocols of the underlying network. With the increasing popularity of the
Intemet, it is now common to build client-server applications and systems using
TCP. The benefit of TCP compared to UDP is that it works reliably over any net-
work. The obvious drawback is that TCP introduces considerably more overhead,
especially compared to those cases in which the underlying network is highly reli-
able, such as in local-area systems.

When performance and reliability are at stake, an alternative solution has
always been to resort (0 UDP, and combine it with additional error and flow con-
trol that is optimized for the specific application. The drawback of this approach
is that much extra development work needs to be done, but also that a proprietary
solution is introdnced, which affects the openness of the system.

What makes TCP so unattractive in many cases, is that it is not tailored to
support the synchronous request-reply behavior of most client-server interaction.
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Under normal circumsiances, when messages do not get lost, using TCP for
client-server interaction proceeds as shown in Fig. 2-4(a). First, the client ini-
tiates the setup of a connection, which is performed using a three-way handshake
protocol, shown as the first three messages in Fig. 2-4(a). This protocol is needed
for the two sides to reach agreement on sequence numbering for packets that are
to be sent across the connection (see Tanenbaum, 1996 for further details), When
the connection has been set up, the client sends its request (message 4), directly
followed by a packet telling the server to close the connection (message 3).

Client Server Client Server
|
e e
! TTTEYN SYN,request,FIN
e T
—] -2
____. SYNACK(SYN) SYN,ACK(FIN},answer,FIN
 —
T T ACK(ETN) 3
4 YN) T ACK(FIN
5 request ™ (FIN)
RN ™
““—lb|
R .
_ ACK({req+FIN) | '
" 7 !
‘ ___.answer 8 '
“«— " FIN
il
Time 9| —_— Time |
i ACK(FIN) ___ |
| > 'L |
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Figure 2-4. (a) Normal operation of TCP. {b) Transactional TCP.

The server responds by immediately acknowledging that it received the
client’s request, piggybacked with an acknowledgement that the connection will
be closed down (message 6). The server then does the requested work and sends
the answer to the client {message 7), followed by a reguest to release the connec-
tion as well {message 8). The client need only respond with an acknowledgement
to finish ifs communication with the server (message 9).

Clearly, much of the overhead in TCP comes from actually managing the con-
nection. When TCP is used for client-server interaction, it is much cheaper to
combiune setting up a connection with immediately sending the request, and like-
wise to combine sending an answer with closing the connection. The resulting
protocol is called TCP for Transactions, abbreviated to T/TCP, and the essence
of how it operates under normal conditions is shown in Fig. 2-4(b).
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What happens under normal circumstances, is that a client sends a single mes-
sage (shown as message 1) containing three pieces of information: a request to set
up a connection, the actnal service request, and a request telling the server that it
can immediately tear down the connection afterward.

The server responds only after it has serviced the actual request, so that it can
send the answer along with the necessary data for accepting the connection, and
mmmediately requesting its release, shown as message 2 in Fig. 2-4(b). Again, the
client need only acknowledge the final relcase of the connection (message 3).

The protocol has been designed as an enhancement to TCP, meaning that a
T/TCP process wili automatically switch to normal TCP when the other side does
not have a T/TCP implementation. Stevens (1996) discusses TCP/IP at length.

2.1.3 Higher-Level Protocols

Above the transport layer, OSI distinguished three additional layers. In prac-
tice, only the application layer is ever used. In fact, in the Internet protocol suile,
everylhing abovc the transport layer is grouped together. In the face of
middleware systems, we shall see in this scction that neither the QS nor the Inter-
net approach is really appropriate,

Session and Presentation Protocols

The session layer is essentially an enhanced version of the transport layer. It
provides dialog control, 10 keep track of which party is currently talking, and it
provides synchronization facilities. The latter are useful to allow users (o insert
checkpoints into long transfers, so that in the event of a crash. it is necessary (o go
back enly to the last checkpoint, rather than all the way back to the beginning. In
practice, few applications are interested in the scssion layer and it is rarely sup-
ported. 1t is not even present in the Intemet protocol suite.

Unlike the lower layers, which are concerned with getting the bits from the
sender to the receiver reltably and efficiently, the presentation layer is concerned
with the meaning of the bits. Most messages do not consist of random bit strings,
but more structured information such as people’s names, addresses, amounts of
money, and so on. In the presentation layer it is possible to define records contain-
ing {ields like these and then have the sender notify the receiver that a message
contains a particular record in a certain format. This makes it casier for machines
with different internal representations to communicate.

Application Protocols

The OSI application [ayer was originally intended to contain a collection of
standard network applications such as thosc for electronic mail, file iransfer, and
terminal emulation. By now, it has become the container for all applications and
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protocols that in one way or the other do not fit into one of the underlying layers.
From the perspective of the OSI reference model, virtually all distributed systems
are just applications.

What is missing in this model is a clear distinction between applications,
application-specific protocols, and general-purpese protocols. For example, the
Internet File Transfer Protocol (FTP) (Postel and Reynolds, 1985; Horowitz and
Lunt, 1997} defines a protocol for transferring files between a client and server
maclrine. The protocol should not be confused with the fip program, which is an
end-user application for transferring files and which also (not entirely by coin-
cidence) happens to implement the Internet FTP.

Another example of a typical application-specific protocol is the HyperText
Transfer Protocol (HTTP) (Fielding et al., 1999), which is designed to remotely
manage and handle the transfer of Web pages. The protocol is implemented by
applications such as Web browsers and Web servers. However, HTTP is now also
used by systems that are not intrinsically tied to the Web. For example, Java's
RMI uses HTTP to request the invocation of remote objects that are protected by
a firewall (Sun Microsystems, 1998).

There are also many general-purpose protocols that are useful to many appli-
cations, but which cannot he qualified as transport protocols. In many cases, such
protocols fall into the category of middleware protocols, which we discuss next.

Middleware Protocols

Middleware is an application that logically lives in the application layer, but
which contains many general-purpose protocols that warrant their own layers,
independent of other, more specific applications, A distinction can be made
between high-level communication protocols and protocols for establishing vari-
ous middleware services.

There are numerous protocols to support a variety of middleware services. For
example, as we discuss in Chap. 8, there are various ways to establish authentica-
tion, that is, provide proof of a claimed identity. Authentication protocols are not
closely tied to any specific application, but instead, can be integrated into a
middleware system as a general service. Likewise, authorization protocols by
wlich authenticated users and processes are granted access only to those
resources for which they have anthorization, tend to have a general, application-
independent nature.

As another example, we shall consider a uumber of distributed commit proto-
cols in Chap. 7. Commit protocols establish that in a group of processes either all
processes carry out a particular operation, or that the operation is not carried out
at all. This phenomenon is also referred to as atomicity and is widely applied in
trausactions. As we shall see, besides transactions, other applications, like fauit-
tolerant ones, can also take advantage of distributed commit protocols.



68 COMMUNICATION CHAP. 2

As a last examplc, consider a distributed locking protocel by which a resource
can be protected against simultaneous access by a collection of processes that are
distributed across multiple machines. We shall come across a number of such pro-
tocols in Chap. 5. Again, this is an example of a protocol that can be used to
implement a geperal middieware service, but which, at the same time, is highly
independent of any specific application.

Middleware communication protocols support high-level communication ser-
vices. For exampie, in the next two sections we shall discuss protocols that allow
a process to call a procedure or invoke an object on a remoie machine in a highly
transparent way. Likewise, there are high-level communication services for set-
ting and synchronizing streams for transferring real-time data, such as needed for
multimedia applications. As a last example, some middleware systems offer reli-
able multicast services that scale to thousands of receivers spread across a wide-
area nefwork.

Some of the middleware communication protocols could equally well belong
in the transport laycr, but there may be specific reasons to keep them at a higher
level. For example, reliable multicasting services that guarantee scalability can be
implemented only if application requirements are taken into account. Conse-
quently, a middleware system may offer different (tunable) protocols, each in turn
tmplemented using different transport protocols, but perhaps offering a single
interface.

Taking this approach to layering leads 1o a slightly adapted reference model
for communication, as shown in Fig. 2-5. Compared to the OSI model, the ses-
sion and preseatation layer have been replaced by a single middieware layer that
contains application-independent protocols. These prowocols do not belong in the
lower layers we just discussed. The original transport services may also be offered
as a middleware service, without being modified. This approach is analogous 1o
offering UDP at the transport level. Likewise, middleware communication ser-
vices may include message-passing services comparable to those offered by the
transport layer.

In the remainder of this chapter, we concentrate on four high-level
middleware communication services: remote procedure calls, remote object invo-

cation, message queuing services, and support for communication of continuous
media through streams.

2.2 REMOTE PROCEDURE CALL

Many distributed systems have been based on explicit message exchange
between processes. However, the procedures send and receive do not conceal
communication, which is important to achieve access transparency in distributed
systems. This problem has long been known, but little was done about jt until a
paper by Birrell and Nelson (1984) introduced a completely different way of
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Application protocol
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Figure 2-5. An adapted reference model for networked communication.

handling comrmunication. Although the idea is refreshingly simple (once someone
has thought of it), the implications are often subtle, In this section we will exam-
ine the concept, its implementation, its strengths, and its weaknesses,

In a nutshell, what Birrell and Nelson suggested was allowing programs to
call procedures located on other machines. When a process on machine A calls a
procedure on machine B, the calling process ou A is suspended, and execution of
the called procedure takes place on B. Information can be transported from the
caller to the callee in the parameters and can come back in the procedure resuit.
No message passing at all is visible to the programmer. This method is known as
Remote Procedure Call, or often just RPC.

While the basic idea sounds simple and elegant, subtle prohlems exist. To
start with, because the calling and called procedures run on different machines,
they execute in different address spaces, whicli causes complications. Parameters
and results also have to be passed, which can be complicated, especially if the
machines are not identical. Finally, both machines can crash and each of the pos-
sible failures causes different problems. Still, most of these can be dealt with, and
RPC is a widely-used technique that underlies many distributed systems.

2.2.1 Basic RPC Operation

We first start with discussing conventional procedure calls, and then explain
how the call itself can be split into a client and server part that are each executed
on different machines.

Conventional Procedure Call

To understand how RPC works, it is important first to fully understand how a
conventional (i.e., single machine) procedure call works. Consider a call in C like

count = readifd, buf, nbytes);
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where fd is an integer indicating a file, buf is an array of characiers into which
data are read, and nbytes is another integer telling how many bytes to read. If the
call is made from the main program, the stack will be as shown in Fig. 2-6(a)
before the call. To make the call, the caller pushes the parameters onto the stack
in order, last one first, as shown in Fig. 2-6(b). (The reason that C compilers push
the parameters in reverse order has to do with pringf—by doing so, printf can
always locate its first parameter, the format string.) After read has finished run-
ning, it puts the retum value in a register, removes the return address, and
transfers control back to the caller. The caller then removes the parameters from
the stack, returning it to the original state.

Stack pointer

Main program’s —‘ Main program's
focat variables local variables

bytes

but

fd

ratum address
read’s locat
varniables

(a) )

Figure 2-6, (a} Parameter passing in a local procedure call: the stack before the
call to read. (b) The stack while the called procedure is active.

Several things are worth noting. For one, in C, parameters can be call-by-
value or call-by-reference. A value parameter, such as fd or nbytes, is simply
copied to the stack as shown in Fig. 2-6(b) To the called procedure a value par-
ameter is just an initialized local variable. The called procedure may modify it,
but such changes do not affect the original value at the calling side.

A reference parameter in C is a pointer to a variable (i.e., the address of the
variable), rather than the value of the variable. In the call to read, the second par-
ameter is a reference parameter because arrays are always passed by reference in
C. What is actually pushed onto the stack is the address of the character array. If
the called procednre uses this parameter to store something into the character
array, it does modify the array in the calling procedure. The difference between
call-by-value and call-by-reference is quite important for RPC, as we shall see.

One other parameter passing mechanism also exists, althongh it is not used in
C. It 1s called call-by-copy/restore. [t consists of having the variable copied to
the stack by the caller, as in call-by-value, and then copied back after the call,
overwriting the caller’s original value. Under most conditions, this achieves
cxactly the same effect as call-by-reference, but in some situations, such as the

R




SEC. 2.2 REMOTE PROCEDURE CALL 71

same parameter being present multiple times in the parameter list, the semantics
are different. The call-by-copy/restore mechanism is not used in many languages.

The decision of which parameter passing mechanism to use is normally madc
by the language designers and is a fixed property of the language. Sometimes it
depends on the dala type being passed. In C, for example, integers and other
scalar types are always passed by value, whereas arrays are always passed by
reference, as we have seen. Some Ada compilers use copy/restore for in out par-
ameters, but others use call-by-reference. The language definition permits either
choice, which makes the semantics a bit fuzzy.

Client aud Server Stubs

The idea behind RPC is to make a remote procedure call look as much as pos-
sible like a local one. In other words, we want RPC to be transparent—the calling
procedure should not be aware that the called procedure is executing on a dif-
ferent machine or vice versa. Suppose that a program needs to read some data
from a file. The programmer puts a call to read in the code to get the data. In a
traditional (single-processor) system, the read routine is extracted from the library
by the linker and inserted into the object program. It is a short procedure, which is
generally implemented by calling an equivalent read system call. In other words,
the read procedure is a kind of interface between the user code and the local
operating system,

Even though read does a system call, it is called in the usual way, by pushing
the parameters onto the stack, as shown in Fig. 2-6(b). Thus the programmer does
not know that read is actually doing something fishy.

RPC achieves its transparency in an analogous way. When read is actually a
remote procedure (e.g., one that will run on the file server’'s machine), a different
version of read, called a client stub, is put into the library. Like the original one,
it, 100, is called using the calling sequence of Fig. 2-6(b). Also like the original
one, it too, does a call to the local operating system. Only unlike the original one,
it does not ask the operating sysiem o give it data. Instead, it packs the param-
eters into a message and requests that message 1o be sent 1o the server as illus-
trated in Fig. 2-7. Following the call to send, the client stub calls receive, block-
ing itself until the reply comes back.

When the message arrives at the server, the server’s operating system passes
it up to a server stub. A server stub is the server-side equivalent of a client stub:
it is a piece of code that transforms requests coming in over the network into local
procedure calls. Typically the server stub will have called receive and be blocked
waiting for incoming messages. The server stub unpacks the parameters from the
message and then calls the server procedure in the usual way (ie., as in Fig. 2-6).
From the server’s point of view, it is as though it is being called directly by the
client—the parameters and return address are all on the stack where they belong
and nothing seerns unusual. The server performs its work and then returns the



72 COMMUNICATION CHAP. 2
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Figure 2-7. Principle of RPC between a client and server program.

result te the caller in the usual way. For example, in the case of read. the server
will fill the buffer, pointed to by the second parameter, with the data. This buffer
will be intemal to the server stub,

When the server stub gets control back after the cali has completed, it packs
the resuli (the buffer) in a message and calls send to return it to the client. After
that, the server stub usually does a call to receive again, to wait for the next
incoming request.

When the message gets back to the client machine, the client’s operating sys-
tem sees that it is addressed to the client process (or actvally the client stub, but
the operating system cannot see the difference). The message is copied to the
waiting buffer and the client process unblocked. The client stub inspects the mes-
sage, unpacks the resuit, copies it to its caller, and returns in the usual way. When
the caller gets control following the call to read, all it knows js that its data are
available. It has no idea that the work was done remotely instead of by the local
operating system.

This blissful ignorance on the part of the client is the beanty of the whole
scheme. As far as it is concerned, remote services are accessed by making ordi-
nary (i.c., local) procedure calls, not by calling send and receive. All the details
of the message passing are hidden away in the two library procedures, just as the
details of actually making system calls are hidden away in traditional libraries.

To summarize, a remote procedure call occurs in the following steps:

1. The client procedure calls the client stub in the normal way.

The client stub builds a message and calls the local operating system.
The client’s OS sends the message to the remote OS.

The remote OS gives the message to the server stub.

The scrver stub unpacks the parameters and calls the server.

The server does the work and returns the result to the stub.

e R T T

The server stub packs it in a message and calls its Jocal OS.

A
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8. The server’s OS sends the message to the client’s OS.
9. The client’s OS gives the message to the client stub.

10. The stub unpacks the result and returns to the client.

The net effect of all these steps is to convert the local call by the client procedure
to the client stub, to a local call to the server procedure without either client or
server being aware of the intermediate steps.

2.2.2 Parameter Passing

The function of the client stub is to take its parameters, pack them into a mes-
sage, and send them to the server stub. While this sounds straightforward, it is not
quile as simple as it at first appears. In this section we will look at some of the
issues concermned with parameter passing in RPC systems.

Passing Value Parameters

Packing parameters into a message is called parameter marshaling. As a
very simple example, consider a remote procedure, add(i, j), tbat takes two integer
parameters { and j and returns their arithmetic sum as a result. (As a practical
matter, one would not normally make such a simple procedure remote due to the
overhead, but as an example it will do.) The call to add, is shown in the left-hand
portion (in the client process) in Fig. 2-8. The client stub takes its two parameters
and puts them in a message as indicated. It also puts the name or number of the
procedure to be called in the message because the server might support several
different calls, and it has to be told which one is required.

When the message arrives at the server, the stub examines the message to see
which procedure is needed and then makes the appropriate call. If the server also
supports other remote procedures, the server stub might have a switch statement
in it to select the procedure to be called, depending on the first field of the mes-
sage. The actual call from the stub to the server looks much like the original client
call, except that the parameters are variables initialized from the incoming mes-
sage.

When the server has finished, the server stub gains control again. It takes the
result provided by the server and packs it into a message. This message is sent
back to the client stub, which unpacks it and returns the value to the client pro-
cedure.

As long as the client and server machines are identical and all the parameters
and results are scalar types, such as intcgers, characters, and Boolcans, this model
works fine. However, in a large distributed system, it is common that multiple
machine types are present. Each machine often has its own representation for
numbers, characters, and other data items. For example, IBM mainframes use the
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Figure 2-8. The steps involved in a doing a remote computation through RPC.

EBCDIC character code, whereas IBM personal computers use ASCII. As a
consequence, it is not possible to pass a character parameter from an IBM PC
client to an IBM mainframe server using the simple scheme of Fig. 2-8: the server
will interpret the character incorrectly.

Similar problems can occur with the representation of integers (one’s comple-
ment versus two’s complement) and floating-point numbers. In addition, an even
more annoying problem exists because some machines, such as the Intel Pentium,
number their bytes from right to lefi, whereas others, such as the Sun SPARC,
number them the other way. The Intel format is called little endian and the
SPARC format is called big endian, after the politicians in Gulliver's Travels
who went to war over which end of an egg to break (Cohen, 1981). As an exam-
ple, consider a procedure with two parameters, an integer and a four-character
string. Each parameter requires one 32-bit word. Fig. 2-9(a) shows what the par-
ameter portion of a message built by a client stub on an Intel Pentium might look
like. The first word contains the integer parameter, 5 in this case, and the second
contains the string “JILL.”

Since messages are transferred byte for byte {actually, bit for hit) over the net-
work, the first byte sent is the first byte to arrive. In Fig. 2-9(b) we show what the
message of Fig. 2-9(a) would look like if received by a SPARC, which numbers
its bytes with byte 0 at the left (high-order byte) instead of at the right (low-order
byte) as do all the Intel chips. When the server stub reads the parametcrs at

addresses O and 4. respectively, it will find an integer equal 10 83,886,080
(5 x 2**) and a string “JILL.”

One obvious, but unfortunately incorrect, approach is to simply invert the

]_ls)ystcs (:if :ach word a{rcr they are received, leading to Fig. 2-9(c). Now the jn te
and (e siring is “LLIJ." The problem here is that integers are reversed p j;ef
& WV e

e O
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Figure 2-9. (a) The original message on the Pentium. {b) The message after re-
ceipt on the SPARC. (c} The message after being inverted. The little numbers in
boxes indicate the address of each byte.

different byte ordering, but strings are not. Without additional information about
what is a string and what is an integer, there is no way (o repair the damage,

Passing Reference Parameters

We now come to a difficult problem: How are pointers, or in general, refer-
ences passed? The answer is: only with the greatest of difficulty, if at all.
Remember that a pointer is meaning{ul only within the address space of the pro-
cess in which it is being used. Getting back to our read example discussed earlier,
if the second parameter (the address of the buffer) happens to be 1000 on the
client, one cannot just pass the number 1000 to the server and expect it to work.
Address 1000 on the server might be in the middte of the program text.

One solution is just to forbid pointers and reference parameters in general.
However, these are so important that this solution is highly undesirable. In fuct, it
is not necessary either. In the read example, the client stub knows that the second
parameter points {0 an array of characters. Suppose, for the moment, that it also
knows how big the array is. One strategy then becomes apparent: copy the array
into the message and send it to the server. The server stub can then call the server
with a pointer to this array, even though this pointer has a different numerical
value than the second parameter of read has. Changes the server makes using the
pointer (e.g., storing data into it) directly affect the message buffer inside the
server stub. When the server finishes, the original message can be sent back to the
client stub, which then copies it back to the client. In effect, call-by-reference has
been replaced by copy/restore. Although this is not always identical, it frequently
is good enough.

One optimization makes this mechanism twice as efficient, If the stubs know
whether the buffer is an input parameter or an output parameter to the server, one
of the copies can be eliminated. If the array is input to the server (e.g.. in a call to
write) it need not be copied back. If it is output, it need not be sent over in the first
place.

As a final comment, it is worth noting that although we can now handle
pointers 1o simple arrays and structures, we still cannot handle the most general
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case of a pointer to an arbitrary data structure such as a complcx graph. Some sys-
tems attempt to deal with this case by actually passing the pointer to the server
siub and generating special code in the server procedure for using pointers. For
example, a request may be sent back to the client to provide the referenced data.

Parameter Specification and Stub Generation

From what we have explained so far, it is clear that hiding a remote procedure
call requires that the caller and the callee agree on the format of the messages
they exchange, and that they follow the same steps when it comes to, for example,
passing complex data structures. In other words, both sides in an RPC should fol-
low the same protocol.

As a simple example, consider the procedure of Fig. 2-10(a). It has three par-
ameters, a character, a floaling-point number, and an array of five integers.
Assuming a word is four bytes, the RPC protocol might prescribe that we should
transmit a character in the rightmost byte of a word (leaving the next 3 bytes
empty), a float as a whole word, and an array as a group of words equal to the
array length, preceded by a word giving the length, as shown in Fig. 2-10(b).
Thus given these rules, the client stub for foobar knows that it must use the format
of Fig. 2-10(b), and the server stub knows that incoming messages for foobar will
have the format of Fig. 2-10(b). .

foobar's local

3

zZ[0]
1]
foobar( char x; float y; int 23] ) 72]
{ z[3]
} ]

{a) (=]
Figure 2-10. (a) A procedure. (b) The corresponding message.

Defining the message format is one aspect of an RPC protocol, but it is not
sufficient. What we also need is the client and the server to agree on the represen-
tatton of simple data structures, such as integers, characters, Booleans, etc. For
example, the protocol could prescribe that integers are represented in two’s com-
plement, characters in 16-bit Unicode, and floats in the [EEE standard #754 for-
mat, with everydiing storcd in little endian. With this additional information, mes-
sages can he unambiguously interpreted.

With the encoding rules now pinned down to the last bit, the only thing that
remains to be done is that the caller and callee agree on the actual exchange of
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messages. For example, it may be decided to use a connection-oriented transport
service such as TCP/IP. An altemative is to use an unreliable datagram service
and let the client and server implement an error control scheme as part of the RPC
protocol. In practice, several variants exist.

Once the RPC protocol has been completely defined, the client and server
stubs need to be implemented. Fortunately, stubs for the same protocol but dif-
ferent procedures generally differ only in their interface to the applications. An
interface consists of a collection of procedures that can be called hy a client, and
which are implemented by a server. An interface is generally available in the
same programming language as the one in which the client or server is written
(although this is strictly speaking, not necessary). To simplify matters, interfaces
are often specified by means of an Interface Definition Language (IDL). An
interface specified in such an IDL, is then subsequently compiled into a client
stub and a server stub, along with the appropriatc compile-time or run-time inter-
faces.

Practice shows that using an interface definition language considerably sim-
plifies client-server applications based on RPCs. Because it is easy to fully gen-
erate client and server stubs, all RPC-based middleware systems offer an IDL to

support application development. In some cases, using the IDL is even mandatory,
as we shall see in later chapters,

2.2.3 Extended RPC Models

Remote procedure calls have become a de facto standard for communication
in distributed systems. The popularity of the model is due to its apparent simpli-
city. In this section, we take a brief look at two extensions to the original RPC
model that have been designed to solve some of its shortcomings.

Doors

The original RPC model assumes that the caller and callee can commumcate
only by means of passing messages over a network. In general, this assumption is
correct. However, suppose that the client and server reside on the same machine.
Normally, we would make use of the local interprocess communication (IPC)
facilities that the underlying operating system offers to processes running on the
same machine. For example, in UNIX such facilities include shared memory,
pipes, and message queues (see Stevens, 1999 for a detailed discussion on IPC in
UNIX systems).

Local TPC facilities tend to be much more efficient than networking facilities,
even if the latter are used for communication between processes on the same
machine. Consequently, when performance is an issue, different interprocess
communication mechanisms may need to be combined depending on whether or
not the processes we are dealing with are located on the same machine.
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As a compromise, a few operating systems offer an equivalent of RPCs for
processes that are colocated on the same machine, called doors. A door is a gen-
eric name [or a procedure in the address space of a server process that can be
called by processes colocated with the server. Doors were originally designed for
the Spring operaling system (Mitchell et al., 1994), and are described extensively
in (Hamilton and Kougiouris 1993). A similar mechanism, called Lightweight
RPC, was developed by Bershad et al. (1990).

Calling doors requires support from the local operating system, as shown in
Fig. 2-11. In particular, the server process must first register a door before it can
be called. When registering a door, an identifier for that door is returned that can
be used to later give the door a symbolic name. Registration is done by a call to
door create. A registered door can be made available to other processes by sim-
ply associating a name with tbe identifier returned when the door was registered.
For example, in Solaris, each door has a file name, which is associated with the
door’s identifier by a call to fattach. A client calls a door by means of the system
call door_call, to which it passes the idenlification of the door as well as any
necessary parameters. The operating system then does an upcall to the server pro-
cess that registered the door. An upcall results in an invocation of the door by the

server. The results of invoking the door are returned to the client process through
the system call door_return.

Computer
Client process Servar process
server_deor...) (—-—.__.\
{
abor_remm{,,.); —
maini} main()
Ldoz(?gzlrll((ft;?olr_)?ame. s Registerdoor | 44 _ door_greatet...);
Ly ... fattach(fd, door_name, ... },
} ,
L
L Operating system L
Pl .
7 !
Invoke registared door
at other process Retumn to cailing process

Figure 2-11. The principle of using doors as IPC mechanism,

The main benefit of doors is that they allow the use of a stngle mechanism,
namely procedure calls, for communication in a distributed system. Unfortunately
L

T vy e
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application developers still nced to be aware whether a call is done local within
the current process, local to a different process on the same machine, or to a
remote process.

Asynchronous RPC

As in conventional procedure calls, when a client calls a remote procedure,
the client will block until a reply is returned. This strict request-reply behavior is
unnecessary when there is no result to return, and only leads to blocking the client
while it could have proceeded and have done useful work just after requesting the
remote procedure to be called. Examples of where there is often no need to wait
for a reply include: transferring money from one account to another, adding
entries into a database, starting remote services. batch processing, and so on.

To support such situations, RPC systems may provide facilities for what are
called asynchronous RPCs, by which a client immediately continues after issu-
ing the RPC request. With asyncbronous RPCs, the server immediately sends a
reply back to the client the moment the RPC request is received, after which it
calls the requested procedure. The reply acts as an acknowledgement to the client
that the server is going to process the RPC., The client will continue without
further blocking as soon as it has received the server's acknowledgement. Fig. 2-
12(b) shows how client and server interact in the case of asynchronous RPCs. For
comparison, Fig. 2-12(a) shows the normal request-reply behavior.

Client Wait for result Client  Wait for acceptance
T fk A %
Call remote Ratum Call remote Return
procedure from call procedure from call

Accept request

Server Call local procedure  1ime —3» Server Call local precedure  Time —»
and return results

(a) (b)

Figure 2-12. (a) The interaction between client and server in a traditional RPC.,
(b) The interaction using asynchronous RPC,

Asynchronous RPCs can also be useful when a reply will be returned but the
client is not prepared to wait for it and do nothing in the meantime. For example,
a client may want to prefetch the network addresses of a set of hosts that it
expects to contact soou. While a naming service is collecting those addresses, the
client may want to do other things. In such cases, it makes sense to organize the
communication between the client and server through two asynchronous RPCs, as
shown in Fig. 2-13. The client first calls the server to hand over a list of host
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names that should be looked up, and continues when the server has acknowledged
the receipt of that list. The second call is done by the server, who calls the client
to hand over the addresses it found. Cormbining two asynchronous RPCs is some-
times also referred to as a deferred synchronous RPC.

Wait for tnterrupt client
acceptance \
Clien!  ———- .
b4 [
Call ramote rietum ) Returm
rom cal o
procedure results Acknowledge
Accept
Request | request
Server ---------o--o .o
Call local procedure \ Time —»
Call client with
one-way APC

Figure 2-13. A client and server interacting through two asynchronous RPCs.

It should be noted that variants of asynchronous RPCs exist in which the
chient continues immediately after sending the request to the server. In other
words, the client does not wait for an acknowledgement of the server’s acceptance
of the request. We refer to such RPCs as one-way RPCs. The problem with this
approach is that if reliability is not guaranteed, the client cannot know for sure
whether its request will be processed. We return to these matters in Chap. 7.

2.2.4 Example: DCE RPC

Remote procedure calls have been widely adopted as the basis of middleware
and distributed systems in general. In this section, we take a closer look at one
specific RPC system: the Distributed Computing Environment (DCE), which
has been developed by the Open Software Foundation (OSF) now called The
Open Group. DCE RPC is not as popular as some other RPC systems, notably Sun
RPC. However, DCE RPC is highly representative of other RPC systems, and its
specifications have been adopted in Microsoft’s base system for distributed com-
puting. In addition, as we shall see in a later section, DCE RPC is also iilustrative
for understanding the relation between RPC systems and distributed objects, We

start with a brief introduction to DCE., after which we consider the principal work-
ings of DCE RPC.

Intreduction to DCE

DCE is a true middleware system in that it is designed (o execute as a layer of
gbstraction between existing (network) operating systems and distributed applica-
tions, Initially designed for UNIX, it has now been ported to all major operating
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systems including VMS and Windows NT, as well as desktop operating systems.
The idea is that the customer can take a collection of existing machines, add the
DCE software, and then be able to run distributed applications, all without dis-
turbing existing (nondistributed) applications. Although most of the DCE package
Tuns in user space, in some configurations a piece (part of the distributed file sys-
tem) must be added to the kernel. The Open Group itself only sells source code,
which vendors integrate into their systems.

The programming model underlying all of DCE is the client-server model,
which was cextensively discussed in the previous chapter. User processes act as
clients to access remote services provided by server processes. Some of these ser-
vices are part of DCE itself, but others belong to the applications and are written
by the applications programmers. All communication between clients and servers
takes place by means of RPCs.

There are a number of services that form part of DCE itself. The distributed
file service is a worldwide file system that provides a transparent way of access-
ing any file in the system in the same way. It can either be built on top of the
hosts” native file systems or be used instead of them. The directory service is
used (o keep track of the location of all resources in the sysiem. These resources
include machines, printers, servers, data, and much more, and they may be distrib-
uted geographically over the entire world. The directory service allows a process
to ask for a resource and not have to be concemed about where it is, unless the
process cares. The security service allows resources of all kinds to be protected,
s0 access can be restricled to authorized persons. Finally, the distributed time
service is a service that attempts to keep clocks on the different machines globally
synchronized. As we shall see in later chapters, having some notion of global time
makes it much easier to ensure consistency in a distributed system.

Goals of DCE RPC

The goals of the DCE RPC system are relatively traditional. First and
foremost, the RPC system makes it possible for a client to access a remote service
by simply calling a local procedure. This interface makes it possible for client
(i.e., application) programs o be written in a simple way, familiar to most pro-
grammers. It also makes it easy Lo have large volumes of existing code run in a
distributed environment with few, if any, changes.

It is up to the RPC system to hide all the details from the clients, and, to some
extent, from the servers as well. To start with, the RPC system can automatically
locate the correct server, and subsequently set up the communication between
client and server software (generally called binding). It can also handle the mes-
sage transport in both directions, (ragmenting and reassembling them as needed
(e.g., if one of the parameters is a large array). Finally, the RPC system can
automatically handle data type conversions between the client and the server,
even if they run on different architectures and have a different byte ordering.
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As a consequence of the RPC system’s ability to hide the details, clients and
servers are highly independent of one another. A client can be written in Java and
a server in C, or vice versa. A client and server can run on different hardware plat-
forms and use different operating systems. A variety of network protocols and
daia representations are also supported, all without any intervention from the
client or server.

Writing a Client and a Server

The DCE RPC system consists of a number of components, including
languages, libraries, dacmons, and utility programs, among others. Together these
make it possible to write clients and servers. In this section we will describe the
pieces and how they fit together. The entire process of writing and using an RPC
client and server is summarized in Fig. 2-14.

{ uu?gen )

Intertace
definition file
|IDL compiler
""-_\H‘i
Cliant code Client stub Header Server stub Server code
w #include
4 4 X X
[ Ccompiler ] {Cecompiler ) { € compiler | ( € compiler
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Client Client stub Server stub Sarver
object file object fils objact file abject file
Y Runtime Runti V"‘—j
[ ; untime -
Linker library library Linker
h 4

4
Client Server
binary L binary

Figure 2-14. The steps in writing a client and a server ir DCE RPC.

In a client-server system, the glue that holds everything together is the inter-
face definition, as specified in the Interface Definition Language, or IDL. It
permits procedure declarations in a form closely resembling function prototypes
in ANSI C. [DL files can also contain type definitions, constant declarations, and

e e ey b
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other information needed to correctly marshal parameters and nnmarshal results.
Ideally, the interface definition should also contain a formal definition of what the
proccdurcs do, but such a definition is beyond the current state of the art, so the
interface definition just defines the syntax of the calls, not their semantics. At best
the writer can add a few comments describing what the procedures do.

A crucial element in every IDL file is a globally unique identifier for the
specified interface. The client sends this identifier in the first RPC message and
the server verifies that it is correct. In this way. if a client inadvertently tries fo
bind to the wrong server, or even to an older version of the right server, the server
will detect the error and the binding will not take place.

Interface definitions and unique identifiers are closely related in DCE. As
llustrated in Fig, 2-14, the first step in writing a client/server application is usu-
ally calling the uuidgen program, asking it to generate a prototype IDL file con-
taining an interface identifier guaranteed never to be used again in any interface
generated anywhere by uwidgen. Unigueness is ensured by encoding in it the
location and time of creation. It consists of a 128-bit binary number represented in
the IDL file as an ASCII string in hexadecimal.

The next step is editing the IDL file, filliug in the names of the remote pro-
cedures and their parameters. It is worth noting that RPC is not totally
transparent—for example, the client and server cannot share global variables—but
the IDL rules make it impossible to express constructs that are not supported.

When the IDL file is complete, the IDL compiler is called to process it. The
output of the IDL compiler consists of three files:

1. A header file (e.g., interface.h, in C terms).
2. The client stub,
3. The server stub,

The header file contains the unique identifier, type definitions, constant dcfini-
tions, and function prototypes. It should be included (nsing #include) in both the
client and server code. The client stub contains the actual procedures that the
client program will call. These procedures are responsible for collecting and pack-
ing the parameters imto the outgoing message and then calling the runtime sysiem
to send it. The client stub also handles unpacking the reply and returning vatues to
the client. The server stub contaius the procedures called by the runtime system
on the server machine when an incoming message arrives., These, in turn, call the
actual server procedures that do the work.

The next step is for the application writer to write the client and server code.
Both of these are then compiled, as are the two stub procedures. The resulting
client code and client stub object files are ther linked with the runtime library to
produce the executable binary for the client. Similarly, the server code and server
stub are compiled and linked to producc the server’s binary. At runtime, the client
and server are started so that the application is actually executed as well.
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Binding a Client to a Server

To allow a client to call a server, it is necessary that the server be registered
and prepared to accept incoming calls. Registration of a server makes it possible
for a client to actually locate the server and bind to it. Server location is done in
two SKEPSZ

1. Locate the server’s machine.

2. Localc the server (1.e., the correct process) on that machine.

The second step is somewhat subtle. Basically, what it comes down to is that to
communicate with a server, the client needs to know an endpoint, on the server’s
machine 1o which it can send messages. An endpoint (also commonly known as a
port) is used by the server’s operating system to distinguish incoming messages
for different processes. In DCE, a table of {server, endpoint)-pairs is maintained
on each server machine by a process called the DCE daemon. Before it becomes
available for incoming requests, the server must ask the operating system for an
endpoint. It then registers this endpoint with the DCE daemon. The DCE daemon
records this information (including which protocols the server speaks) in the end-
point table for future use.

The server also registers with the directory service by providing it the network
address of the server's machine and a name under which the server can be looked
up. Binding a client 1o a server then proceeds as shown in Fig. 2-135.

Directory machine

‘ Ciractory

Server ) .
3. Look up server WL 2. Register service
Client machine / Server machine

_ 1 &5 Do RPC w  Server || 1- Register endpoint
Client >
\ .
4. Ask for endpoint DCE @q
daemon ™. Endpoint

tabla

Figure 2-15. Clieni-to-server binding in DCE.

Let us assume that the client wants to bind to a video server that is locally
known under the name Aocal/multimediatvidec/movies. Tt passes this name to the
directory server, which returns the network address of the machine running the
video server. The client then goes to the DCE daemon on that machine (which has
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a well-known endpoint), and asks it to look up the endpoint of the video server in
its endpoint table. Armed with this information, the RPC can now take place. On
subsequent RPCs this lookup is nol needed. DCE also gives clients the ability to
do more sophisticated searches for a suitable server when that 1s needed. Secure
RPC is atso an option. ‘

Performing an RPC

The actual RPC is carried out transparently and in the usual way. The client
stub marshals the parameters to the runtime library for transmission using the pro-
tocol chosen at binding time. When a message arrives at the server side, it is
routed to the correct server based on the endpoint contained in the incoming mes-
sage. The runtime library passes the message to the server stub, which unmarshals
the parameters and calls the server. The reply goes back by the reverse route.

DCE provides several semantic options. The default is at-most-once opera-
tion, in which case no call is ever carried out more than once, even in the face of
system crashes. In practice, what this means is that if a server crashes during an
RPC and then recovers quickly, the client does not repeat the nperation, for fear
that it might aiready have been carried out once.

Alternatively, it is possible to mark a remote procedure as idempotent (in the
IDL file), in which case it can be repeated multiple times without harm. For
example, reading a specified block from a file can be tried over and over until it
succeeds. When an idempotent RPC fails due to a server crash, the client can wait
until the server reboots and then try again. Other semantics are also available (but
rarcly used), including broadcasting the RPC to all the machines on the local net-
work. We returmn to RPC semantics in Chap. 7, when discussing RPC in the pres-
ence of failures.

2.3 REMOTE OBJECT INVOCATION

Object-based technology has proven its value for developing nondistributed
applications. One of the most important aspects of an object is that it hides its
internals from the outside world by means of a well-defined interface. This
approach allows objects to be casily replaced or adapted, as long as the interface
remains the same.

As RPC mechanisms gradually became the de facto standard for handling
communication in distributed systems, people started to realize that the principle
of RPCs could be equally well applied to objects. In this section, we expand the
idea of RPCs to invocations on remote objects, and show how the approach can
enhance distribution transparency when compared to RPCs. We concentrate only
on relatively simple remote objects. In Chap. 10, we discuss a number of object-
based distributed systems in detail, including CORBA and DCOM, both of which
provide important and more enhanced object models than the ones discussed here.
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2.3.1 Distributed Objects

The key featurc of an object is that it encapsulates data, called the state, and
the operations on those data, called the methods. Methods are made available
through an interface. It is important to understand that there is no legal way a
process can access or manipulate the state of an object other than by invoking
methods made available to it through an object’s interface. An object may imple-
ment multiple interfaces. Likewise, given an interface definition, there may be
several objects that offer an implementation for it,

This separation between interfacey and the objects implementing these inter-
faces is crucial for distributed systems. A strict separation allows us Lo place an
interface at one machine, while the object itself resides on ancther machine. This
organization, which is shown in Fig. 2-16, is commonly referred to as a distrib-
uted object.

Clisnt machine Server maching

Client Server . r/

A Object

| A State
Sameg ’
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a method v
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Figure 2-16. Common organization of a remote object with clieat-side proxy.

When a client binds to a distributed object, an implementation of the object’s
interface, called a proxy, is loaded into the client's address space. A Proxy is
analogous 10 a client stub in RPC systems. The only thing it docs is marshal
method invocations into messages and unmarshal reply messages to return the
result of the method invocation to the client. The actual object resides at a server
machine, where it offers the same interface as it does on the client machine.
Incoming invocation requests are first passed to a server stub, often referred to as
a skeleton, which unmarshals them to proper method invocations at the object’s
interface at the server. The server stub is also responsible for marshaling replies
and forwarding reply messages Lo the clieni-side proxy.

A characteristic, but somewhat counterintuitive feature of most distributed
objects is that their state is nor distributed: it resides at a single machine. Only the
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interfaces implemented by the object are made available on other machines. Such
objects are also referred to as remote objects. As we shall see in later chapters,
in a general distributed object, the state itself may be physically distributed across
multiple machines, but this distribution is also hidden from clients behind the
object’s interfaces.

Compile-time versus Runtime Objects

Objects in distributed systems appear in many forms. The most obvious form
is the one that is directly related to language-level objects such as those supported
by Java, C++, or other object-oriented languages, which are referred to as
compile-time objects. In this case, an object is defined as the instance of a class.
A class is a description of an abstract type in terms of a module with data ele-
ments and operations on that data (Meyer, 1997).

Using compile-time objects in distributed systems often makes it much easier
to build distributed applications. For cxample, in Java, an object can be fully
defined by means of its class and the interfaces that the class implements. Compil-
ing the class definition results in code that allows it to instantiate Java objects.
The interfaces can be compiled into client-side and server-side stubs, allowing the
Java objects to be invoked from a remote machine. A Java developer can mostly
stay unaware of the distribution of objects: he sees only Java programming code.

The obvious drawback of compile-time objects is the dependency on a partic-
ular programming language. Therefore, an altermative way of constructing distrib-
uted objects is to do this explicitty during runtime. This approach is followed in
many object-based distributed systems, as it is independent of the programing
language in which distributed applications are written. In particular, an applica-
tion may he constructed from objects written in multiple languages.

When dealing with runtime objects, how objects are actually implemented is
basically left open. For examplc. a developer may choosc to write a C library con-
taining a number of functions that can all work on a common data file. The
essence is how o let such an implementation appear to be an object whose
methods can be invoked from a remote machine. A common approach is to use an
object adapter, which acts as a wrapper around the implementation with the sole
purpose to give it the appearance of an object. The term adapter is derived from a
design pattern described in (Gamma et al., 1994), which allows an interface to be
converted into something that a client expects. An example object adapter is one
that dynamically binds to the C library mentioned above and opens an associated
data file represeating an object’s current state.

Object adapters play an important role in object-based distributed systems. To
make wrapping as easy as possible, objects are solely deflined in terms of the
interfaces they implement. An implementation of an interface can then be
registered at an adapter, which can subsequently make that interface available for
{remote) invocations. The adapter will take care that invocation requests are
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carried out, and thus provide an image of remote objects to its clients. W retumn
to the organization of object servers and adapters in the next chapter,

Persistent and Transient Objects

Besides the distinction between language-level objects and runtime objects,
there is also a distinction between persistent and transient objects. A persistent
object is one that continues to exist even if it is cutrently not contained in the
address space of a server process. In other words, a persistent object is not depen-
dent on its current server. In practice, this means that the server that is currently
managing the persistent object, can store the object’s state on secondary storage
and then exit. Later, a newly started server can read the object’s state from storage
into its own address space, and handle invocation requests. In contrast, a tran-
sient object is an object that exists only as long as the server that manages the
object. As soon as that server exits, the object ceases to exist as well. There is
much controversy about having persistent objects; some people believe that tran-
stent objects are enough. Rather than going inio details now, we return to this
question when discussing object-based distributed systems in Chap. 9.

2.3.2 Binding a Client to an Object

An interesting difference between traditional RPC systems and Systems sup-
porting distributed objects, is that the latter generally provides systemwide object
references. Such object references can be freely passed between processes on dif-
ferent machines, for example as paramelers to method invocations. By hiding the
actual implementation of an object reference, that is, making it opaque, and
perhaps even using it as the only way to refercnce objects, distribution trans-
parency is enhanced compared to traditional RPCs.

When a process holds an object reference, it must first bind to the referenced
object before invoking any of its methods. Binding results in a proxy being placed
in the process’s address space, implementing an interface containing the methods
the process can invoke. In many cases, binding is done auntomatically. When the
underlying system is given an object reference. it needs a way to locate the server
that manages the actual object, and place a proxy in the client’s address space.

With implicit binding, the client is offered a simple mechanism that allows it
to directly invoke methods using only a reference to an object. For example, C++
allows overloading the unary member selection operator (*—") permitting us to
introduce object references as if they were ordinary potnters as shown in Fig. 2-
17(a). With implicit binding, the client is transparentty bound to the object at the
moment the reference is resolved 10 the actual object. In contrast, with explicit
binding, the client should first call a special function to bind to the object before
it can actually invoke its methods. Explicit binding generally returns a pointer to a
proxy that is then become locally available, as shown in Fig. 2-17(b).

R i T
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Distr_object” obj_ref; /f Declare a systemwide object reference
obj_ref = ..,; / Initialize the reference to a distrib. obj.
obj_ref—do something( }; i Implicitly bind and invoke a method

{a)
Distr_object obj_ref; // Declare a systemwide object reference
Local _object” abj ptr; /! Declare a pointer to local objects
obj_ref=..; /# Initialize the reference to a distrib. obj.
obj_ptr = bind{obj_ref}; /f Explicitly bind and get ptr to local proxy
obj_ptr—do_something(); # Invoke a method on the local proxy

(b}

Figure 2-17. (a) An example with implicit binding using only global references.
(b) An example with cxplicit binding using globat and local references.

Implementation of Object References

It is clear that an object reference must contain enough information to allow a
client to bind to an object. A simple object reference would include the network
address of the machine where the actual object resides, along with an endpoint
identifying the server that manages the object, plus an indication of which object.
The latter is generally provided by the server, for example, in the form of a 16-bit
number. An endpoint in this case is completely analogous to the one discussed in
the DCE RPC system. In practice, it corresponds to a local port that is dynami-
cally assigned by the server’s local operating system. However, there are a
number of drawbacks to this scheme.

First, if the server’s machine crashes and the server is assigned a different
endpoint after recovery, all object references have become invalid. This problem
can be solved as is done in DCE: have a local daemon per machine listen to a
well-known endpoint and keep track of the server-to-endpoint assignments in an
endpoint table. When binding a client to an object, we first ask the daemon for the
server’s current endpoint. This approach requires that we encode a server ID into
the object reference that can be Gised as an index into the endpoint table. The
server, in turn, is always required to register itself with the local daemon.

However, encoding the network address of the server’'s machine into an object
reference is generally not a good idea. The problem with this approach is that the
server can never move to another machine without invalidating all the references
to the objects it manages. An obvious solution is to expand the idea of a local dae-
mon maintaining an endpoint (able, to a location server that keeps track of the
machine where an object’s server is currently running. An object reference would
then contain the network address of the location server, along with a systemwide
identifier for the server. As we shall see in Chap. 4, this solution also has a
number of serious drawbacks, especially when scalability is an issue,
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Whal we have tacitly assumed so far is that the client and server have
somehow already becn configured to use the same protocol stack. Not only does
this mean that they use the same transport protocol, for example, TCP, but it also
means that they use the same protocel for marshaling and unmarshaling param-
eters. They must also use the same protocol for setting up an initial connecction,
handle errors and flow control the same way, and so on.

We can safely drop this assumption provided we add more information in Lhe
object reference. Such information may include the identification of the protocol
that is used 1o bind to an object and of those that are supported by the object’s
server. For example, a single server may simultaneously support data coming in
over a TCP connection, as well as incoming UDP datagrams. It is then the client’s
responsibility to get a proxy implementation for at least one of the protocols iden-
tified in the object reference,

We can even take this approach one step further, and inciude an implementa-
tion handle in the object reference, which refers to a complete implementation of
a proxy that the client can dynamically load when binding to the object. For
example, an implementation handle could take the form of a URL pointing to an
archive file, such as fip./fip.clientware.org/proxiesfiava/proxy-vi. la.zip. The
binding protocol would then only need to prescribe that such a file should be
dynamically downloaded, unpacked, installed, and subsequently instantiated. The
benefit of this approach is that the client need not worry about whether it has an
impleinentation of a specific protocol available. In addition, it gives the object
developer the freedom to design object-specific proxies. However, as we discuss

in Chap. 8, we do need to take special security measures to ensure the client that it
can trust the downloaded code.

2.3.3 Static versus Dynamic Remote Method Invocations

After a client is bound o an object, it can invoke the object’s methods through
the proxy. Such a remote method invocation or simply RMI, is very similar to
an RPC when it comes to issues such as marshaling and parameter passing. An
essential difference between an RMI and an RPC, is that RMIs generally support
systemwide object references as explained above. Also, it is not necessary 1o have
only general-purpose client-side and server-side stubs available. Instead, we can
more easily accommodate object-specific stubs as we also explained.

The usual way to provide RMI support is to specify the object’s interfaces in
an interface definition language, similar to the approach followed with RPCs.
Alternatively, we can make use of an object-based language such as fava, that
will handle stub generation automatically. This approach of using predefined
interface definitions is gencrally referred to as static invoeation. Static invoca-
tions require that the interfaces of an object are known when the client application
is being developed. 1t also implies that il interfaces change, then the client appli-
cation must be recompiled before it can make use of the new interfaces,
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As an alternative, method invocations can also be done in a more dynamic
fashion. In particular, it is sometimes convenient to be able to compose a method
invocation at runtime, also referred to as a dynamic invocation. The essential
difference with static invocation is that an application selects at runtime which
method it will invoke at a remole object. Dynamic invocation generally takes a
form such as

invoke(object, method, input_parameters, output_parameters);

where object identifies the distributed object, method is a parameter specifying
exactly which method should be invoked, input_parameters is a data structure that
holds the values of that method’s input parameters, and output_parameters refers
to a data structure where output values can be stored.

For example, consider appending an integer int to a file object fobject, for
which the object provides the method append. In this case, a static invocation
would take the form

fobject.append(int}
whereas the dynamic invocation would look something like
invoke(fobject, id{append), int)

where the operation id{append) returns an identifier for the method append.

To illustrate the usefulness of dynamic invocations, consider an object
browser that is used to examine sets of objects. Assume that the browser supports
remote object invocations. Such a browser is capable of binding to a distributed
object and subsequently presenting the object’s interface to its user. The user
could then be asked to choose a method and provide values for its parameters,
after which the browser can do the actual iuvocation. Typically, such an object
browser should be developed to support any possible interface. Such an approach
requires that interfaces can be inspected at runtime, and that method invocations
can be dynamically constructed.

Another application of dynamic invocations is a batch processing service to
wbich invocation requests can be handed along with a time when the invocation
should be done. The service can be implemented by a queue of invocation
requests, ordered by the time that invocations are to be done. The main loop of the
service would simply wait until the next invocation is scheduled, remove the
requesl from the queue, and call invoke as given above.

2.3.4 Parameter Passing

Because most RMI systems support systemwide object references, passing
parameters in method invocations is generally less restricted than in the case of
RPCs. However, there are some subtleties that can make RMIs trickier than one
would initially expect, as we briefly discuss in the following pages.



92 COMMUNICATION CHAP. 2

Let us first consider the situation that there are only distributed objects. In
other words, all objects in the system can be accessed from remote machines. In
that case, we can consistently use object references as parameters in method invo-
cations. References are passed by value, and thus copied from one machine to the
other. When a process is given an object reference as the result of a method invo-
cation, it can simply bind to the object referred to when needed later.

Unfortunatety, using only distributed ohjects can be highly inefficient, espe-
cially when objects are small, such as integers and Booleans. Each invocation by
a client that is not colocated in the same server as the object, generates a request
between different address spaces or, even worse, between different machines.
Therefore, references to remole objects and those to local objects are often treated
differentiy.

When invoking a method with an object reference as parameter, that reference
is copied and passed as a value parameter only when it refers (o a remote object.
In this case, the object is literally passed by reference. However, when the refer-
ence refers to a local object, that is an object in the same address space as the
client, the referred object is copied as a whole and passed along with the invoca-
tion. In other words, the object is passed by value.

These two situations are illustrated in Fig. 2-18, which shows a client program
running on machine A, and a server program on machine C. The client has a refer-
cnce to a local object O 1 that it uses as a parameter when calling the server pro-
gram on machine C. In addition, it holds a reference to a remote object O 2 resid-
ing at machine B, which is also used as a parameter. Wben calling the server, a

copy of O1 is passed to the server on machine C, along with only a copy of the
reference to (2.

Machine A Machine B

Local Loca(I)c1>b|ect Remote ohject
Remote o2

reference L1 reference R1 b
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invocation with " 1
L1 and A1 as Copy of R1 to Q2
parameters ™ Server code
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RMI to server at C
{proxy)

Figure 2-18. The situation when passing an object by reference or by value.

Note t_bat whether we are dealing with a reference to a local object or to a
remote object can be highly transparent, such as in Java. In Java, the distinction is

R L L 4. r———————_— —
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visible only because local objects are essentially of a different data type than
remote objects. Otherwise, both types of references are treated very much the
same (see also Wollrath et al., 1996). On the other hand, when using conventional
programming languages such as C, a reference to a local object can be as simple
as a pointer, which can never be used to refer to a remole object.

The side effect of invoking a method with an object reference as parameter is
that we may be copying an object. Hiding this aspect is unacceptable, so that we
are consequently forced to make an explicit distinction between local and distrib-
uted objects. Clearly, this distinction not only violates distribution transparency,
but also makes it harder to write distributed applications.

2.3.5 Example 1: DCE Remote Objects

DCE is an example of a distributed system that may have been in the right
placc, but somewhat at the wrong time. Being onc of the first distributed systems
constructed as middleware on top of cxisting operating systems, DCE had to go
through a relatively long pericd of acceptance (o prove itself. Unfortunately, the
acceptance phase was paralleled by the introduction of remote objects as the pana-
cea for building distributed systems. Being a traditional RPC-based system, DCE
was given a rough time as it was considered to be already out-of-date before it had
established a reasonable installed base. No objects, no deal, and DCE did not have
objects.

The DCE people long argued with advocates of object technology that they
did support objects. For example, they claimed that RPC systems are inherently
object-based because all implementation and distribution aspects are hidden
behind interfaces. However, their arguments did not sell, so DCE was forced to
adopt object technology more explicitly. In this section, we take a look at how
DCE supports distributed objects. DCE objects are interesting as they form a
direct refinement of the RPC-based client-server model, and thus forming a shift
from remote procedure calls to remole method invocations.

The DCE Distributed-Object Model

Distributed objects have been added to DCE in the form of extensicns to their
Interface Definition Language (IDL), along with C++ language bindings. In other
words, distributed objects in DCE are specified in IDL. and implemented in C4+.
Distributed objects take the form of remote objects, of which the actual imple-
mentation resides at a server. A server is responsible for creating C++ objects
locally and making methods available to remote client machines. There is no other
way to create distributed objccts.

Two types of distributed objects are supported. A distributed dynamic
object is an object that a server creales locally on behalf of a client, and which, in
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principle. is accessible only to that client. To create an object, a client will have to
issue a request at the server. Therefore, each class of dynamic objects has an asso-
ciated create procedure that can be called using a standard RPC. After creating a
dynamic object, the DCE runtime system administrates the new object, and asso-
ciates it with the client on whose behalf it was created.

In contrast to dynamic objects, distributed named objects are not intended to
be associated with only a single client but are created by a server to have it shared
by several clients. Named objects are registered with a directory service so that a
client can look up the object and subsequently bind to it. Registration yields that a
unique identifier for that object is stored, along with information on how to con-
tact the object’s server. The difference between dynamic and named ohjects is
shown in Fig. 2-19.

Server machine Server machine
Dynamic
{private} object
Named (shared)
object
Dynamic Dynarnic - A 3
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Figure 2-19. (a) Distributed dynamic objects in DCE. (b) Distributcd named
objccts.

DCE Remote Object Invocation

As might be expected, each remote object invocation in DCE is done by
means of an RPC. When a client invokes a method of an object, it passes the
object identifier, the identificr of the interface that contains the method, an identi-
fication of the method itself, and parameters 10 the server. The server maintains an
object table from which it can derive which object 1s to be invoked if given the
object identifier and interface identifier. It can then properly dispatch the
requestcd method with its parameters.

o Bccause a server may have thousands of objects to serve, DCE offers the pos-
sibility (o place objects in secondary storage instead of keeping all objects active

TR ey gy
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in main memory. When an invocation request comes in for which no object can be
found in the server’s object table, the runtime system can alternatively invoke a
server-specific lookup function to first retrieve the object from secondary storage
and place it into the server’s address space. After the object is placed into main
memory, the invocation can take place.

Distributed objects in DCE have one problem that is inherent to their strong
RPC background: there is no mechanism for transparent object references. At
best, a client can use a binding handle associated with a named object. A binding
handle contains an identification of an interface of the object, the transport proto-
col used for communicating with the object’s server, and the server’s host address
and endpoint. A binding handle can be turned into a string and as such passed
between different processes.

Lacking a proper systemwide object reference mechanism makes parameter
passing in DCE harder than in many other object-based systems. An application
developer now has to devise a proprietary solution for passing objects in RPCs. In
practice, this means that objects need to be explicitly marshaled to be passed by
value, for which object-specific marshaling routines need to be developed.

As an alternative, a developer can nse delegation by which a special stub is
generated from an object’s interface specification. The stub acts as a wrapper for
the actual object and contains only those methods that need to be called by a
remote process. The stub can then be linked into any other process that wants to
use the object. The benefit of this approach becomes clear when realizing that
DCE does allow remote references to stubs to be passed as parameters in RPCs.
Consequently, it becomes possihle to refer to objects through the entire system by
means of stub references.

Further information on DCE object programming can be found in (Viveney,
1998) and (OSF, 1997).

2.3.6 Example 2: Java RMI

In DCE, distributed objects have essentially been added as a refinement of
remote procedure calls. Instead of identifying a remote procedure in a server, a
client identifies a remote procedure in a server's object. The lack of a proper sys-
temwide object reference mechanism emphasizes that we are indeed dealing with
a mere refinement of RPCs.

Let us now take a look at distributed objects from a completely different per-
spective. In Java, distributed objects have been inlegrated into the language. An
importarnt goal was to keep as much of the semantics of nondistributed objects as
possible. In other words, the Java language developers have aimed for a high
degree of distribution transparency. However, as we shall see, Java’s developers
have also decided to make distribution apparent where a high degree of tran-
sparency was simply too inefficient, difficult, or impossible to realize.
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The Java Distributed-Object Model

Java also adopts remote objects as the only form of distributed objects. Recall
that a remote object is a distributed object whose state always resides on a single
machine, but whose interfaces can be made available 1o remote processes. Inicr-
faces are implemented in the usual way by means of a proxy, which offers exactly
the same interfaces as the remote object. A proxy itself appears as a local object
in the client’s address space.

There are only a few, but subtle and important differences between remote
objects and local objects. First, cloning local or remote objects is different. Clon-
ing a local object O results in a new object of the same type as O, and with
exactly the same state. Cloning thus returns an exact copy of the object that is
cloned. These semantics are hard to apply to a remote object. If we were to make
an exact copy of a remote ohject, we would not only have to clone the actual
object at its scrver, but also the proxy at each client that is currently bound to the
remote object. Cloning a remote object is therefore an operation that can be exe-
cuted only by the server. It results in making an exact copy of the actual object in
the server’s address space. Proxies of the actual object are thus not cloned. If a
client at a remote machine wanis access 10 the cloned object at the server, it will
first have t0 bind to that object again.

A more important difference between local and remote objects in Java is the
semantics of blocking on an object. Java allows each object to be constructed as a
monitor, by declaring a method to be synchronized. If two processes simultane-
ously call a synchronized method, only one of the processes will proceed while
the other will be blocked. In this way, we can ensure that access to an object’s
internal data is completely serialized. As in monitors, a process can also be
blocked inside an object. waiting for some condition to become true, as was also
explained in Chap. 1.

Logically, blocking in a remote object is simple. Suppose that client A calls a
synchronized method of a remote object. To make access to remote objects look
always exactly the same as to local objects, it would be necessary to block A in
the client-side stub (hat implements the object's interface and to which A has
direct access. Likewise, another client on a different machine would need to be
hiocked locally as well before its request can be sent to the server. The conse-
quence is that we need to synchronize different clients at different machines. As
we discuss in Chap. 5, distributed synchronization can be fairly complex.

An alternative approach would be to allow blocking only at the server. In
principle, this works fine, but problems arise when a client crashes while its invo-
cation is being handled by the server. As we shall see in Chap. 7, we may require
relatively sophisticated protocols to handle this situation, and which that may sig-
nificantly aftect the overal! performance of remote method invocations,

Therefore, the designers of Java RMI have chosen to restrict blocking on
remote objects only to the proxies (Wollrath et al., 1996). In practice, this means
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that remote objects cannot be protected against simultaneous access from
processes operating on different proxies by using synchronized methods. Instead,
explicit distributed locking techniques will have to be used.

Java Remote Object Invocation

As the distinction between local and remote objects is hardly visible at the
language level, Java can also hide most of the differences during a remote method
invocation. For example, any primitive or object type can be passed as a param-
eter to an RMI, provided that the type can be marshaled. In Java terminology, this
means that it must be serializable. Although, in principle, most objects can be
serialized, serialization is not always allowed or possible, Typicalty, platform-
dependent objects such as file descriptors and sockets, cannot be serialized.

The only distinction made between local and remote objects during an RMI is
that local objects are passed by value (including large objects such as arrays),
whereas remote objects are passed by reference. In other words, a local object is
first copied after which the copy is used as parameter value. For a remote object, a
reference to the object is passed as parameter instead of a copy of the object, as
was also shown in Fig. 2-18.

In Java RMI, a reference (0 a remote object is essentially implemented as we
explained in Sec. 2.3.2. Such a reference consists of the network address and end-
point of the server, as well as a local identifier for the actual object in the server’s
address space. That local identifier is used only by the server. As we also
explained, a reference to a remote object also needs o encode the protocol stack
that is used by a client and the server to communicate. To understand how such a
stack is encoded in the case of Java RM, it is important to realize that cach object
in Java is an instance of a class. A class, in turn, contains an implementation of
one or more interfaces,

In essence, a remote object is built from two different classes. One class con-
tains an implementation of server-side code, which we cali the server class. This
class contains an implementation of that part of the remote object that will be run-
ning on a server. In other words, it contains the description of the object’s state, as
well as an implementation of the methods that operate on that state. The server-
side stub, that is, the skeleton, is generated from the interface specifications of the
object.

The other class contains an implementation of the client-side code, which we
call the client class. This class contains an implementation of a proxy. Like the
skeleton, this class is also generated from the object’s interface specification. In
its simplest form, the only thing a proxy does is to convert each method call into a
message that is sent to the server-side implementatior of the remote object, and
convert a reply message into the result if a method call. For each call, it sets up a
conncction with the server, which is subsequently torn down when the call is fin-
ished. For this purpose, the proxy needs the server’s network address and endpoint
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as mentioned above, This information, along with the local identifier of the object
at the server, is always stored as part of the state of a proxy.

Conscquently, a proxy has all the information it needs to let a client invoke
methods of the remote object. In Java, proxies are serializable. In other words, it
is possible to marshal a proxy and send it as a series of bytes to another process,
where it can be unimarshaled and used to invoke methods on the remote object. In
other words, a proxy can be used as a reference to a remote object.

This approach is consistent with Java's way of integrating local and distrib-
uted objects. Recall that in an RMI, a local object is passed by making a copy of
it, while a remote object is passed by means of a systemwide object reference. A
proxy is treated as mothing else but a local object. Consequently, it is possible to
pass a serializable proxy as parameter in an RMI. The side effect is that such a
proxy can be used as a reference to the remote ohject.

In principle, when marshaling a proxy, its complete implementation, that is,
all its state and code, is converted to a serics of bytes. Marshaling the code like
this is not very efficient and may lead to very large references. Therefore, when
marshaling a proxy in Java, what actually happens is that an implementation han-
dle is generated, specifying precisely which classes are needed to construct the
proxy. Possibly, some of these classes first need to be downloaded from a remote
sitc. The implementation handle replaces the marshaled code as part of a remote-
object reference. In cffect, references to remote objects in Java are in the order of
a few hundred bytes.

This approach to referencing remote objects is highly flexible and is one of
the distinguishing features of Java RMI (Waldo, 1998). In particular. it allows for
object-specific solutions. For example, consider a remote object whose state
changes only once in a while. We can turn such an object into a truly distributed
object by copying the entire state to a client at binding time. Each time the client
invokes a method, it operates on the local copy. To ensure consislency, each invo-
cation also checks whether the state at the server has changed, in which casc the
local copy is refreshed. Likewise, methods that modify the state arc forwarded to
the server. The developer of the remote object will now have to implement only
the necessary client-side code, and have it dynamically downloaded when the
client binds to the object.

Being able to pass proxies as parameters works only because each process is
executing the same Java virtual machine. In other words, each process is running
in the same execution environment. A marshaled proxy is simply unmarshaled at
the receiving side, after which its code can be executed, In contrast, in DCE for
example, passing stubs is out of the question. as different processes may be run-
ning in execution environments that differ with respect to language, operating sys-
tem, and hardware. Instead. a DCE process first needs to {dynamically) link in a
locally available stub that has been previously compiled specifically for the
process’s execution environment. By passing a reference to a stub as parameler in
an RPC, it is possible to refer to objects across process boundaries,
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2.4 MESSAGE-ORIENTED COMMUNICATION

Remote procedure calls and remote object invocations contribute to hiding
communication in distributed systems, that is, they enhance access transparency.
Unfortunately, neither mechanism is always appropriate. In particular, when it
cannot be assumed that the receiving side is executing at the time a request is
issued, alternative communication services are needed. Likewise, the inherent
synchronous nature of RPCs and RMIs, by which a client is blocked until its
request has been processed, sometimes needs to be replaced by something else.

That something else is messaging. In this section we concentrate on message-
oriented communication in distributed systems by first taking a cioser look at
what exactly synchronous behavior is and what its implications are. Then, we dis-
cuss messaging systems that assume that parties are executing at the time of com-
munication. Finally, we will examine message-queuing systemns that allow
processes 10 exchange information, even if the other party is not executing at the
time communication is initiated.

2.4.1 Persistence and Synchronicity in Communication

To understand the various alternatives in message-oriented communication,
we assume the communication system is organized as a computer network as
shown in Fig. 2-20. Applications are always executed on hosts, where each host
offers an interface to the communication system through which messages can be
submitted for transmission. The hosts are connected through a network of com-
munication servers, which are responsible for passing (and routing) messages
between hosts. Without loss of generality, we may assume that each host is con-
nected to exactly one cornmunication server. In Chap. 1, we assumed that buffers
could be placed only at hosts. In a more general setting, we need to consider that
buffers can also be placed in the communication servers of underlying network.

To give an example, consider an electronic mail system based on this design,
A host runs a user agent: the application by which a user can compose, send.
receive, and read messages. Each host is connected to exactly one maijl server,
corresponding t0 what we have called a communication server. The interface at
the user’s host allows the user agent to send messages to a specific destination.
When the user agent submits a message for transmission at its host, the host gen-
erally forwards the message {irst to its local mail server where it is temporarily
stored in an output buffer.

A mail server removes a message from its output buffer and looks up the des-
tinatton. Looking up the destination returns the (transport-level) address of the
mail server to which the message should be sent. The mail server subsequently
sets up a connection and passes the message to the target mail server. The latter
stores the message in an input buffer for the designated receiver, also called the
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Figure 2-20. General organization of a communication sysiem in which hosts
are connected through a network.

receiver’s mailbox. If the target mail server is (temporarily) unreachable, for
exampie, because it has been shut down, the local mail server will continue to
store the message.

The intertace at the receiving host offers a service to the receiver's user agent
by which the latter can regularly check for incoming mail. The user agent can
either operate directly on the user’s mailbox at the local mail server, but in many
cases copies new messages to a local buffer on its host. Consequently, in this
scheme, messages are generally buffered at communication servers and some-
times at receiving hosts.

An electronic mail system is a typical example in which communication is
persistent. With persistent communication, a message that has been submitted
for transmission is stored by the communication system as long as it takes to
deliver it to the receiver. In terms of Fig. 2-20, a message is stored in a communi-
cation server as long as it takes to successfully deliver it to the next communica-
tion server. It is therefore not necessary for the sending application to continue
execution after submitting thc message. Likewise, the receiving application need
not be executing when Lhe message is submitted.

Persistent communication is comparable to the way the Pony Express postal
system used 1o work as shown in Fig. 2-21. Sending a letier started with deposit-
ing it at the local post office. The post office was responsible for sorting letters for
the next post office on the route to their respective final destinations. It also kept
-those bags, depending on the destination, and until there was a pony and rider
available. At the destination post office, letters were again sorted, where people
could either pick them up, or from where they were delivered by postmen. It was
important that letters were never lost or thrown away. Although the means of
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transportation, as well as the means by which letters are sorted, have changed
over the past hundred years, this principle of sorting, storing, and forwarding post

is still the same.
Pony and rider # Sf?iite >
X ¥ -

Post # Post |

office | ...l oo p | office

e | Post |1y
Mail stored and sorted, to office | ~._
be sent out depending on destination &

and when pony and rider available

Figure 2-21. Persistent communication of letters back in the days of the Pony
Express.

In contrast, with transient communication, a message is stored by the com-
municatton system only as long as the sending and receiving application are cxe-
cuting. More precisely, in terms of Fig. 2-20, we have the situation that if a com-
munication server cannot deliver a message to the next server, or the receiver, the
message will simply be discarded. Typically, all transport-level commuuication
services offer only transient communication. In this case, a communication server
corresponds 1o a traditional store-and-forward router. If a router cannot deliver a
message to the next router, or the destination host, it will simply drop the mes-
sage.

Besides being persistent or transient, communication can also be asynchro-
nous or synchronous. The characteristic feature of asynchronous communica-
tion, is that a sender continues immediately after it has submitted its message for
transmission. This means that the message is stored in a local buffer at the sending
host, or otherwise at the first communication server. With synchronous com-
munication, the sender is blocked until its message is stored in a local buffer at
the receiving host, or actually delivered to the receiver. The strongest form of syn-
chronous communication is when the sender is blocked until the receiver has pro-
cessed the message.,

There are several combinations of these types of communication that occur in
practice. In the case of persistent asynchronous communication, a message is
either persistently stored in a buffer at the local host, or at the first communication
server. Electronic mail systems typically offer this form of communication. With
persistent synchronous communication, messages can be persistently stored only
at the receiving host. A sender is blocked umtil its message is stored in the
receiver's buffer. Note that it is not necessary that the receiving application is
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executing to store thc message at its local host. A weaker form of persistent syn-
chronous communication is when the sender is blocked until its message is stored
al the communication server connected to the rcceiving host,

Transient asynchronous communication is typically offered by transport-level
datagram services such as UDP. When a sending application submits a message
for transmission. the message is temporarily stored in a local buffer at the sending
host, after which the sender immediately continues. In parallel, tbe communica-
tion system routes the message to the destination where it expects it can deliver it
Lo the receiver, possibly by storing it in a local buffer. If the receiver is not execut-
ing at the time the message reaches the receiver’s host, transmission fails. Asyn-
chronous RPCs are another example of transient asynchronous comrunication.

Transient synchronous communication comes in different forms. In the weak-
est form, based on message receipt, the sender is blocked until the message 1§
stored in a local buffer at the receiving host. The sender receives an acknowledge-
ment and continues. In delivery-based transient synchronous communication, the
sender is blocked until the message is delivered to the receiver for further process-
ing. We came across this form of synchronous behavior when discussing asyn-
chronous RPCs. In an asynchronous RPC, the client synchronizes with the server
by waiting until its request has been accepted for further processing. The strongest
form is response-based transient synchronous communication, in which the sender
blocks until it receives a reply message from the other side. as in the request-reply
behavior in client-server interaction. RPCs and RMIs adhere to this scherme.

These different combinations of persistence and synchronicity in communica-
tion are summarized in Fig. 2-22. Another, but similar classification. is discussed
in (Tai and Rouvellou, 2000).

Unul recently, many distributed systems supported only response-based tran-
sient synchronous communication, either through remote procedure calls or
remote object invocations. Recognizing that this form of commnunication is not
always appropriate, facilities for weaker forms of transient synchronous commun-
ication were added, such as asynchronous RPCs or deferred synchronous opera-
tions, as shown in Fig. 2-13.

A fundamentally difierent approach is followed in message-passing systems,
which take transient asynchronous communication as their starting point, and pos-
sibly add facilities for synchronous communication. However, in all cases wherc
message passing was used, communication was still assumed 10 be transient. In
other words, only those communication facilities were provided that were suitable
for simultaneously executing processes. Having only such lacilities is in many
cases not appropriate, especially when taking geographical scalability into
account.

The need for persistent communication services became apparent when
developers of middleware necded to integrate applications in large-scale and
widely dispersed interconnected networks. Such networks are often distrihuted

across different departments and administrative domains, whose parts may not
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Figure 2-22. Six different forms of communication: (a) persistent asynchronous
conumunication, (b) persistent synchronous communication, (c) transient asyn-
chronous communication, {d) receipt-based (ransient synchrenous communica-
tion, (c}delivery-hased (ransienlt synchronous communication at message
delivery, and (f) response-based transient synchronous communication.

always be immediately accessible. For example, access can be restricted due to
network or process failures. To solve such problems, proprictary solutions for per-
sistent communication have been developed, but such solutions are not very safis-
factory in light of interoperability and portability, as can easily be imagined.
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Another drawback of transient communication is that whenever a failure
occurs, that failure has to be immediately masked and a recovery procedure has to
be initiated. It would be unacceptable 0 postpene a repair as this would violate
failure transparency. However, with persistent communication, applications are
developed to handle long delays between sending a request and rcceiving an
answer. Consequently, we can resorl 1o simpler, but perhaps slower solutions for
failure masking and rccovery.

1t should be clear that having only transient or persistent communication is not
sufficient in many cases. Likewise, having only synchronous or asynchronous
communication facilities will not do either. There is simply need for all types,
depending on what the distributed system is being used for. So far, we have
mainly concentrated on ftransient synchronous communication by RPCs and
RMIs. The other forms of communication are generally oftered through message-
oriented communication systems, which are discussed in the following sections.
We make a distinction between transient and persistent communication.

2.4.2 Message-Oriented Transient Communication

Many distributed systems and applications are built directly on top of the sim-
ple message-oriented model offered by the transport layer. To better understand
and appreciate the message-oriented systems as part of middleware solutions, we
first discuss messaging through transport-level sockets.

Berkeley Sockets

Special attention has been paid to standardizing the interface of the transport
layer to allow programmers to make use of its entire suite of (messaging) proto-
cols through a simple set of primitives. Also, standard interfaces make it easier to
port an application to a different machine.

As an example, we bricfly discuss the sockets interface as introduced in
Berkeley UNIX. Another important interface is XTI, which stands for the
X/Open Transport Interface, formerly called the Transport Layer Interface
(TLI), and developed by AT&T. Sockets and XTI are very similar in their model
of network programming, but differ in their set of primitives.

Conceptually, a socket is a communication endpoint to which an application
can write data that are to be sent out over the underlying network, and from which
incoming data can be read. A socket forms an abstraction over the actual com-
munication endpoint that is used by the local operating system for a specific trans-
port protocol. In the following text, we concentrate on the socket primitives for
TCP, which are shown in Fig. 2-23.

Servers generally execute the first four primitives, normally in the order
given. When calling the socket primitive, the caller creates a new communication
endpoint for a specific transport protocol., Internally, creating a communication
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Primitive ) Meaning

| Socket Create a new communication endpoint
Birﬁ Attach a local address to a sockst
Listen Anncunce willingness to accept connections
Accept Block caller untit a connection request arrives
Connect Actively attempt to establish & connection
Send Send some data cver the connection
Receive Receive some data over the connection |
Close Release the connection

Figure 2-23, The socket primitives for TCP/IP,

endpoint means that the local operating system reserves resources to accommo-
date sending and receiving messages for the specified protocol.

The bind primitive associates a local address with the newly created socket.
For example, a server should bind the IP address of its machine together with a
{possibly well-known) port number to a socket. Binding tells the operating system
that the server wants to receive messages only on the specified address and port.

The listen primitive is called only in the case of connection-oriented commun-
ication. It is a nonblocking call that allows the local operating system to reserve
enough buffers for a specified maximum number of connections that the caller is
willing to accept.

A call 10 accept blocks the caller until a connection request arrives. When
such a request arrives. the local operating system creates a new socket with the
same properties as the original one, and returns it to the caller. This approach will
allow the server to, for example, fork off a process that will subsequently handle
the actual communication through the new connection. The server, in the mean-
time, can go back and wait for another connection request on the original socket.

Let us now look at the client side. Here, (0o, a socket must first be created
using the socket primitive, but explicitly hinding the socket to a local address is
not necessary, since the operating system can dynamically altocate a port when
the connection is set up. The connect primitive requires that the caller specifies
the transport-level address to which a connection request is to be sent. The client
is blocked until a connection has been set up successfully, after which both sides
can start exchanging information through the write and read primitives, which
establish the sending and receiving of data, respeetively. Finally, closing a con-
nection is symmetric when using sockets, and is established hy having both the
client and server call the close primitive. The general pattern followed by a client
and server for connection-oriented communication using sogkets is shown in
Fig. 2-24. Many details concerning network programming using sockets and
other interfaces in a UNIX environment can be found in (Stevens, 1998),
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Figure 2-24. Connecticn-oriented communication pattern using sockets.

The Message-Passing Interface (MPI)

Wilh the advent of high-performance multicomputers, developers have been
looking for message-oriented primitives that would allow them to easily write
highly efficient applications. This means that the primitives should be at a con-
venient level of abstraction (to ease application development), and that their
implementation incurs minimal overhead. Sockets were deemed insufficient for
two reasons. First, they were at the wrong level of abstraction by supporting only
simple send and receive primitives. Second, sockets had been designed to com-
municate across networks using general-purpose protocol stacks such as TCP/IP.
They were not considered suitable for the proprietary protocols developed for
high-speed interconnection networks, such as those used in COWs or MPPs
(which we discussed in Sec. 1.3). Those protocols required an interface that could
handie more advanced features, such as different forms of buffering and syn-
chronization.

The resuli was that most interconnection networks and high-performance mul-
ticomputers were shipped with proprietary communication librariecs. These
libraries offered a wealth of high-level and generally efficient communication
primitives. Of course, all libraries were mutually incompatible, so that application
developers now had a portability problem.

The need to be hardware independent eventually led to the definition of a
standard for message passing, simply called the Message-Passing Interface or
MPI. MPI is designed for parallel applications and as such is tailored to transient
communication. It makes use of the underlying network, and as such has no con-
cept such as the communication servers shown in Fig. 2-20. Also, it assumes that
serious failures such as process crashes or network partitions are fatal and do not
require automatic recovery.

MPI assumes communication takes place within a known group of processes.
Each group is assigned an identifier. Each process within a group is also assigned
a (local) identifier. A (groupID, processiD) pair therefore uniquely identifies the
source or destination of a message, and is used instead of a transport-level

address. There may be several, possibly overlapping groups of processes involved
11 a computation and that are all executing at the same time.
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At the core of MP] are messaging primitives to support most of the forms of
transicnt communication shown in Fig. 2-22(c)-(f), and of which the most intui-
tivc ones arc summarized in Fig. 2-25,

Primitive Meaning

_MPi_bsend Append outé?:ring message to a local send buffer
- MPI_;end Send a message and wait until copied 1o local or remote buffer

MPI:s;ﬁ_d__ | Send a message and wait unti receipt starts

MPI_sendrecv Sénd a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MFI. issend Pass reference to outgoing message, and walit until receipt starts |
—MPI_recv Receive a message; block if there is none

MPI_irecy Check if there is an incoming message, but do not block |

Figure 2-25. Some ol the most intuitive message-passing primitives of MPL

In essence, only the synchronous communication shown in Fig. 2-22(d) is not
supported. In other words, MPI does not support having the sender synchronize
with the receiver at the point where a message has been transmitted across the
network.

Transient asynchronous communication |Fig. 2-22(c)] is supported by means
of the MPI_bsend primitive. The sender submits a message for transmission,
which is generally {irst copied to a local huffer in the MPI runtime system. When
the message. has been copied, the sender continues. The local MPI runtime system
will remove the message from its local buffer and take care of transmission as
soon as a recetver has called a recetve primitive.

There is also a blocking send operation, called MPI_send, of which the
semantics are implementation dependent. The primitive MPi_send may either
block the caller until the specified message has been copied to the MPI runtime
system at the sender’s side, or until the receiver has initiated a receive operation.
The first case corresponds to asynchronous communication as shown in Fig. 2-
22(d). whereas the second case is that shown in Fig. 2-22(e).

Synchronous communication by which the sender blocks until its request is
accepled for further processing, as shown in Fig. 2-22(c), is available through the
MPI _ssend primitive.

Finally, the strongest form of synchronous communication, as shown in
Fig. 2-22(f), is also supported. When a sender calls MPI_sendrecy, it sends a
request to the receiver and blocks until the latter returns a reply. Basically, this
primitive corresponds to a normal RPC.

Both MPI_send and MPI._ssend have 4 variant that avoids the need to copy a
message from a user’s huffer to a buffer internal to the local MPI runtime system,
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and which both correspond to a form of asynchronous communication. With
MPI_isend, a sender passes a pointer to the message after which the MPI runtime
system takes care of communication. The sender immediately continues. To
prevent overwriling the message before communication completes, MPI offers
primitives 1o check for completion, or even to block if required. As with
MPI_send, whether the message has actually been transferred to the receiver or
that it has merely been copied by the local MPI runtime system to an internal
buffer is left unspecified.

Likewise, with MPI_issend, a sender also passes only a pointer to the MPI
runtime system. When the runtime system indicates it has processed the message,
the sender is then guaranteed that the receiver has accepted the message and is
now working on it. :

The operation MPI_recv is called to receive a message; it blocks the caller
until a message arrives. There is also an asynchronous variant, called MPI _irecv,
by which a recetver indicates that is prepared to accept a message. The receiver
can check whether or not a message has indeed arrived, or even block until one
does.

The semantics of MPI communication primitives are not always straightfor-
ward, and different primitives can sometimes be interchanged without affecting
the correctness of a program. The official reason why so many different forms of
communication are supported is that it gives implementers of MPI systems
enough possibilities for optimizing performance. Cynics might say the committee
could not make up its collective mind, so it threw in everything. MPI has been
designed for high-performance parallel applications, which makes it easier to
understand its diversity in different communication primitives.

More on MPI can be found in (Gropp et al.. 1998b) The complete reference in
which the over 100 functions in MPI are explained in dctail, can be found in (Snir
et al., 1998) and (Gropp et al., 1998a)

2.4.3 Message-Oriented Persistent Communication

We now come to an important class of message-oriented middleware services,
generally known as message-queuing systems, or just Message-Oriented
Middleware (MOM). Message-queuing systems provide extensive support for
persistent asynchronous communication. The essence of these systems is that they
offer intermediate-term storage capacity for messages, without requiring either the
sender or receiver to be active during message transmission. An important differ-
ence with Berkeley sockets and MPI, is that message-quening systems are typi-
cally targeted to support message transfers that arc allowed to take minutes
instead of seconds or milliseconds. We first explain a general approach to
message-queuing systems, and conclude this section by comparing them to more
traditional systems, notably the Internet e-mail systems.
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Message-Queuing Model

The basic idea behind a message-queuing syslem is that applications com-
municate by inscrting messages in specific queues. These messages are forwarded
over a series of communication servers and are eventually delivered jo the desti-
nation, even if it was down when the message was sent. In practice, most com-
munication servers are directly connected to each other. In other words, a message
is generally transferred directly to a destination server. In principle, each applica-
tion has its own private queue to which other applications can send messages. A
queue can be read only by its associated application, but it is also possible for
multiple applications to share a single queue.

An important aspect of message-quening systems is that a sender is generally
given only the guarantees that its message will eventually be inserted in the
recipient’s queue. No guarantees arc given about when, or even if the message
will actually be read, which is completely determined by the behavior of the reci-
picnt.

These semantics permit loosely-coupled communication. There is thus no
need for the receiver to be executing when a message is being sent to its queue.
Likewise, there is no need for the sender to be executing when its message is
picked up by the recciver. The sender and receiver can execute completely
independently of each other. In fact, once a message has been deposited in a
queue, it will remain there uniil it is removed, irrespeciive of whether its sender or
receiver is executing. This gives us four combinations with respect to the execu-
tion mode of the sender and receiver, as shown in Fig. 2-26.

In Fig. 2-26(a), both the sender and receiver are executing during the entire
transmission of a message. In Fig. 2-26(b), only the sender is executing, while the
receiver Is passive, that is, in a state in which message delivery is not possible.
Nevertheless, the sender can still send messages. The combination of a passive
sender and an executing recciver is shown in Fig. 2-26(c). In this case, the
receiver can read messages that were sent to it, but it is not necessary that their
respective senders are executing as well. Finally, in Fig. 2-26(d), we see the situa-
tion that the system is storing (and possibly transmitting) messages even while
sender and receiver are passive.

Messages can, in principle, contain any data. The only important aspect is that
messages are properly addressed. In practice, addressing is done by providing a
systemwide unique name of the destination queune. In some cases, message size
may be limited, although it 15 also possible that the underlying systemn takes care
of fragmenting and assembling large messages in a way that is completely tran-
sparent to applications. An effect of this approach is that the basic interface
offered to applications can be extremely simple, as shown in Fig. 2-27.

The put primitive is called by a sender to pass a message to the underlying
system that is to be appended to the specified queue. As we explained, this is a
nonblocking call. The get primitive is a blocking call by which an authorized

Cotammes e T
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Figure 2-26. Four combinations for leosely-coupled communications using
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Figure 2-27. Basic interface to a queuc 1 a message-queniny system.

process can remove the longest pending message in the specified queve. The pro-
cess is blocked only if the queue is empty. Variations on this call allow searching
for a specific message in the queue. for example, using a priority, or a matching
pattern. The nonblocking variant is given by the poll primitive. If the queue is
empty, or if a specific message could not be found, the calling process simply
continues.

Finally, most queuing systems also allow a process to install a handler as a
cailback function, which is automatically invoked whenever a message is put into
the gueue. Callbacks can afso be used 1o aulomatically start a process that will
fetch messages from the queue if no process is currently executing. This approach
ts often implemented by means of a daemon on the receiver's side that continu-
ously monitors the queue for incoming messages and handles accordingly.

Rl TP
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General Architecture of a Message-Queuing System

Let us now take a closer look at what a general message-queuing system looks
like. One of the first restrictions that we make, is that messages can be put only
into queues that are local to the sender, that is, queues on the same machine, or ro
worse than on a machine nearby such as on the same LAN. Such a queue is called
the source queue. Likewise, messages can be read only from local queues. How-
ever, a message put into a queue will contain the specification of a destination
queue to which it should be transferred. It is the responsibility of a message-
queuing syslem to provide queues to senders and receivers and take care that mes-
sages are transferred from their source to their destination queue.

It is important to realize that the collection of queues is distributed across
multiple machines. Consequently, for @ message-queuing system to transfer mes-
sages, it should maintain a mapping of queues to network locations. In practice,
this means that it should maintain a (possibly distributed) database of queue
names (o network locations, as shown in Fig. 2-28. Note that such a mapping is
completely analogous to the use of the Domain Natne System (DNS) for e-mail in
the Intermet. For example, when sending mail to the logical mail address
steen@cs.vu.nl, the mailing system will query DNS to find the network address
{i.e., the IP address) of the recipient’s mail server to use for the actual message
trans(er.

Look-up
|- transport-lavel Receiver

/ address of queue
Qusuing Queue-level-—-—’/%l e
layer k. address N layer
Lacal OS ( Address lock-up Local QS ?\

k database )
Transpeont-level

Network addrass

Sendar

Figure 2-28. The relationship between queue-level addressing and network-level addressing.

Quenes are managed by queue managers. Normally, a queue manager
interacts directly with the application that is sending or receiving a message.
However, there are also special queue managers that operate as routers, or relays:
they forward incoming messages to other queue managers. In this way, a
message-queuing system may gradually grow into a complete, application-level,
overlay network, on top of an existing computer network. This approach ts simi-
lar 1o the construction of the carly MBone over the Internet, in which ordinary
user processes were configured as multicast routers. These days, many routcrs
already support multicasting, often rendering overlay multicasting less useful.
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Relays can be convenient for a number of reasons. For example, in many
message-quening systems, there is no general naming service available that can
dynamically maintain queue-to-location mappings. Instead, the topology of the
queuing network is static, and each queue manager needs a copy of the queue-to-
location mapping. It is needless to say that in large-scale queuing systems, this
approach can easily lead to network-management problems.

One solution is to use a few routers that know about the network topology.
When a sender A puts a message for destination B in its local queue, that message
is first transferred to the nearest router, say R/, as shown in Fig. 2-29. At that
point, the router knows what to do with the message and forwards it in the direc-
tion of B. For example, RI may derive from B’s name that the message should be
forwarded to router R2. In this way, only the routers need to be updated when

queues are added or removed, while every other queue manager has to know only
where the nearest router is.

Sender A

Application

Application
Reaceive

fr-
|

Send gqueuve

Application

Receaiver B

Router

Figure 2-29. The general organization of a message-queuing system with routers.

Relays can thus generally help build scalable message-quening systems. How-
ever, as queuing networks grow, it is clear that the manual configuration of net-
works will soon become unmanageable. The only solution is to adopt dynamic
routing schemes as is done for computer networks. In that respect, it is somewhat
surprising that such solutions are not yet integrated into some of the popular
message-gueuing systems,

‘ Another reason why relays are used is that they allow for secondary process-
ing of messages. For example, messages may need to be logged for reasons of

e L
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security or fault lolerance. A special lorm of rclay that we discuss in the next sec-
tion is one that acts as a gateway, transforming messages into a format that can be
understood by the receiver.

Finally, relays can be used for multicasting purposes. In that case, an incom-
ing message is simply put into each send gueue,

Message Brokers

An important application area of message-queuing systems is inlcgrating
existing and new applications into a single, coherent distributed information sys-
tem. Integration requires that applications can understand the messages they
receive. In practice, this requires the sender to have its outgoing messages in the
same format as that of the receiver,

The problem with this approach is that cach time an application is added to
the system that requires a separate message format, each potential receiver will
have to be adjusted in order to produce that format.

An alternative is 1o agree on a common message format, as is done with tradi-
tional network protocols. Unfortunately, this approach will generally not work for
message-queuing systems. The problem is the level of abstraction at which these
systems operate, A cornmon message format makes sense only if the collection of
processes that make use of that format indeed have enough in common. If the col-
lection of applications that make up a distributed information system is highly
diverse (which it often is), then the best common format may well be no more
than a sequence of bytes.

Although a few common message formats for specific application domatns
have been defined, the general approach is to leam to live with different formats,
and try to provide the means to make conversions as simple as possible. In
message-queuing systems, conversions are handled by speciat nodes in a queuing
network, known as message brokers. A message broker acts as an application-
level gateway in a message-queuing system. Its main purpose is to convert incom-
ing messages 10 a format that can be understood by the destination application.
Note that to a inessage-queuing system, a message broker is just another applica-
tion, as shown wn Fig. 2-30. In other words, a message broker is generally not
considered to be an integral part of the queuing system,

A message broker can be as simple as a reformatter for messages. For exam-
ple, assume an incoming message contains a table from a database, in which
records are separated by a special end-of-record delimiter and fields within a
record have a known, fixed length. If the destination application expects a dif-
ferent delimiter between records, and also expects that ficlds have variable
lengths, a message broker can be used to convert messages to the format expected
by the destination.

In a more advanced sctting, a message broker may act as an application-level
gateway. such as one that handles the conversion between X.400 and Internet
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Figure 2-30. The general organization of a message broker in a message-
quecuing system.

e-mail messages. In such cases, frequently it cannot be guaranteed that all infor-
mation contained in the incoming message can actually be transformed into some-
thing appropriate for the outgoing message. In other words, it may be necessary to
accept a certain loss of information during transformation {(see also Houttuin,
1993; and Alvestrand, 1998).

At the heart of a message broker lies a database of rules that specify how a
message in format X is to be converted to a message in format Y. The problem is
defining the rules. Most message broker products come with sophisticated rule
development tools, but the bottom line is still that rules are to be manually entered
into the database. Rules can be formulatcd in a special conversion language, but
many message broker products also allow program conversions using normal pro-

gramming languages. Seling up a message broker is thus generally a highly
laborious task.

A Note on Message-Queuing Systems

Considering what we have said about message-queuing systems, it would
appear that they have long existed in the form of implementations for e-mail ser-
vices. E-mail systems are generally implemented through a coliection of mail
servers that store and forward messages on behalf of the users on hosts directly
connected to the server. Routing is generally lcft out, as e-mail sysicms can make
direct use of the underlying transport services. For example, in the mail protocol
for the Internet, SMTP (Postel, 1982). a message is transfcrred by setting up a
direct TCP connection to the destination mail server.

What makes c-mail systems special compared to message-queuing sysiems is
that they are primarily aimed at providing direct support for end users. This
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explains, for example, why a number of groupware applications are based directly
on an e-mail system (Khoshafian and Buckiewicz 1993). In addition, ¢-mail sys-
tems may have very specific requirements such as automatic message filtering,
support for advanced messaging databases (e.g., to easily retrieve previously
stored messages}, and so on.

General message-queuing systems are not aimed at supporting only end users.
An important issue is that they are set up to enable persistent communication
between processes, regardless of whether a process is running a user application,
handling access to a database, performing computations, and so on. This approach
leads 1o a different set of requirements for inessage-queuing systems than pure e-
matil systems. For example, e-mail systems generally need not provide guaranteed
message delivery, message priorities, logging facilities, efficient multicasting,
load balancing, fault tolerance, and so on,

General-purpose message-queuing systems, therefore, have a wide range of
applications, including e-mail, workflow, groupware, and batch processing. How-
ever, perhaps the most important application area is the integration of a (possibly
widely dispersed) collection of databases, or database applications, into a multida-
tabase (information) system. See also (Oszu and Valduriez 1999) and (Sheth and
Larson, 1990). For example, a query expanding several databases may need to he
split into subqueries thal are forwarded to individual databases. Message-queuing
systems assist by providing the basic means to package cach subquery into a mes-
sage and routing it to the appropriate database. Other communication facilities we
have discussed in this chapter are {ar less appropriate.

2.4.4 Example: IBM MQSeries

To belp understand how message-queuing systems work in practice, let us
take a look at one specific system, namely the MQSeries {rom 1BM (Gilman and
Schreiber, 1996). This system is gaining popularity in the relatively traditional
area of IBM mainframes, which are heing used to access and manipulate large-
scale databases. An important application area for MQSeries is finance.

Overview

The basic architecture of an MQSeries queuing network is quite straightfor-
ward, and is shown in Fig. 2-31. All qucues are managed by queue managers. A
qucue manager is responsible for removing messages from its send queues, and
forwarding those to other quene managers. Likewise, a queue manager is respon-
sible for handling incoming messages by picking them up from the underlying
network and subsequently storing each message in the appropriate input qucuc.

Queuc managers are pairwise connected through message channels, which
are an abstraction of transport-level connections. A message channel is a unidirec-
tional, reliable connection between a sending and a receiving queue manager,
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through which queued messages are transported. For example, an Internet-based
message channel is implemented as a TCP connection. Each of the two ends o_f a
message channel is managed by a message channel agent (MCA). A sending
MCA is basically doing nothing else than checking send queues for a message,
wrapping it into a transpori-level packet. and sending it along the connection to its
associated receiving MCA. Likewise, the basic task of a receiving MCA is listen-
ing for an incoming packet, unwrapping it, and subsequently storing the
unwrapped message inlo the appropriate queue,

Client's receive
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Figure 2-31. General organization of [BM’s MQSerics message-queuing system.

Queue managers can be linked into the same process as the application for
which it manages the queues. In that case, the queues arc hidden from the applica-
tion behind a standard interface, but cffectively can be directly manipulated by the
application. An alternative organization is one in which queuc managers and
applications run on separalc machines. In that case, the application is offered the
same interface as when the queue manager is colocated on the same machine.
However, the interface is implemented as a proxy that communicates with the
queue manager using traditional RPC-based synchronous communication. In this
way, MQSerics basically retains the model that only queues local to an applica-
tion can be accessed.

Channels

An important component of MQSeries is formed by the message channels.
Each message channel has exactly one associated send queue from which it
fetches the messages it should transfer to the other end. Transfer along the chan-
nel can take place only if both its sending and receiving MCA are up and running.
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Apart from starting both MCAs manually, there are several alternative ways to
start a channel, some of which we discuss next.

One alternative is to have an application directly start its end of a channel by
activating the sending or receiving MCA. However, from a transparency point of
view, this is not a very attractive alternative. A better approach to start a sending
MCA is to configure the channel’s send queue to set off a trigger when a message
is first put into the queue. That trigger is associated with a handler to start the
sending MCA so that it can remove messages from the send queue.

Another alternative is to start an MCA over the network. In particular, if one
stde of a channel is already active, it can send a control message requesting the
other MCA to be started. Such a control message is sent to a daemon listening to a
well-known address on the same machine as where the other MCA is to be
started.

Channels are stopped automatically aftcr a specified time has expired in
which no more messages were dropped into the scnd queue.

Each MCA has a set of associaled auributes that deiermine the overall
behavior of a channel. Some of the attributes are listed in Fig. 2-32. Attribute
values of the sending and receiving MCA should be compatible and perhaps nego-
tiated first before a channel can be set up. For example, both MCAs should obvi-
ously support the same transport protocol. An example of a nonnegotiable attri-
bute is whether or not messages are to be delivered in the same order as they are
put into the send queue. If one MCA wants FIFO delivery, the other must comply.
An example of a negotiable attribute value is the maximum message length,
which will simply be chosen as the minimum value specified by either MCA,

Attribute ! ) Description
Transport type Determines the transport protocol to be used
FIFO delivery Indicates that messages are 1o be delivered in the order they are sent

Message length Maximum length of a single message
Setup retry count | Specifies maximum number of retries to start up the remote MCA
Delivery retries Maximum times MCA will try to put received message into queue |

Figure 2-32. Some attributes associated with message channel agents.

Message Transfer

To trausfer a message from one queue manager to another (possibly remote)
queue manager, it is necessary that each message carries its destination address,
for which a transmission header is used. An address in MQSeries consists of two
parts. The first part consists of the name of the queue manager to which the mes-
sage is to be delivered. The second part is the name of the destination queue
resorting under that manager to which the message is to be appended.
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Besides the destination address, it is also necessary to specify the route that a
message should follow. Route specification is done by providing the name of the
local send queue to which a message is to be appended. Thus it is not necessary to
provide the full route in a message. Recall that each message channel has exactly
one send queue. By telling to which send queue 4 message is to be appended, we
effectiveiy specify (o which neighboring quene manager a message is to be for-
warded.

In most cases, routes are explicitly stored inside a queue manager in a routing
table. An entry in a rouling table is a pair (destQM, send(Q), where destQM is the
name of the destination queue manager, and send(J is the name of the local send
queue o which message for that queue manager should be appended. (A routing
table entry 1s called an alias in MQSeries.)

It is possible that a message needs to be wransferred across multiple queue
managers before reaching its destination. Whenever such an intermediate queue
manager receives the message, it simply extracts the name of the destination
queue manager from the message header, and does a routing-table look-up to find
the local send queue to which the message should be appended.

It is important 10 realize that cach gueuc manager has a systemwide unique
name that is effectively used as an identifier for that queue manager. The problem
with using these names is that replacing a queue manager, or changing its name,
will affect all applications that send messages to it. Problems can be alleviated by
using a local alias for queue manager names. An alias defined within a queue
manager M1 is another name for a queue manager M2, but which is available only
to applications interfacing to MI. An alias allows the use of the same (logical)
name for a queue. even if the queue manager of that queue changes. Changing the
name of a queue manager requires that we change its alias in all queue marnagers.
However, applications can be left unaffected.

The principle of using routing tables and aliases is shown in Fig. 2-33. For
example, an application linked to queue manager OMA can refer 10 a remote
queue manager using the local alias LAJ. The queue manager will first look up
the actual destination in the alias lable to find it is queue manager QMC. The
route to QMC is found in the routing table, which states that messages for QMC
should be appended to the outgoing queue SQ/, which is used to transfer mes-
sages to queue manager JMB. The latier will use its routing 1able to forward the
message 10 QMC.

Following this approach of routing and aliasing, leads 10 a relatively simple
programming interface for applications, called the Message Quene Interface
(MQI). The most inportant primitives of MQI are summarized in Fig. 2-34,

To put messages into a queue, an application calls the MQopen primitive,
specifying a destination queuc in a specific queue manager. The queue manager
can be named using the locally available alias. Whether the destination queue is
actually remiote or not is completely transparent to the application. MQopen
should also be called if the application wants to get messages from its local queue.
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Figure 2-33. The general organization of an MQSeries queuing network using
routing tabies and aliases.
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_Primi{ive ! ‘ B Desgcription _
| MQopen | Open a (possibly remote) queue |
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MQput Put a message into an opened que_l.]i
MQget __Get a message from a {local) queue

Figure 2-34. Primitives available in IBM MQSerics MQL

Only local queues can be opened for reading incoming messages. When an appli-
cation is (inished with accessing a qucue, it should close it by calling MQclose.

Messages can be written to, or read from, a queue using MQput and MQget,
respectively. In principle, messages are removed from a queue on a priority basis.
Messages with the same priority are removed on a first-in, first-out basis, that is,
the longest pending message is removed first. It is also possible to request for
specific messages. Finally, MQSeries provides facilities to signal applications
when messages have arrived, thus avoiding that an application will continuously
have to poll a message queue for incoming messages.

2.5 STREAM-ORIENTED COMMUNICATION

Communication as discussed so far has concentrated on exchanging more-or-
less independent and complete units of information. Examples include a request
for invoking a procedure or method, the reply to such a request, and messages
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exchanged hetween applications as in message-queuing systems. The characteris-
tic feature of this type of communication is that it does not matter at what particu-
lar point in titme communication lakes place. Although a system may petform too
slow or too fast, timing has no effect on correctuess.

There are also forms of communication in which timing plays a crucial role,
Cousider, for example, an audio stream built up as a sequence of 16-bit samples,
each representing the amplitude of the sound wave as is done through Pulse Code
Modulation (PCM). Also assume that the audio stream represents CD quality,
meaning that the original sound wave has been sampled at a frequency of 44100
Hz. To reproduce the original sound, it is essential that the samples in the audio
stream are played out in the order they appear in the stream, but also at intervals
of exactly 1/44100 sec. Playing out at a different rate will preduce an incorrect
version of the original sound.

The question that we address in this section is which facilities a distributed
system should offer 1o exchange time-dependent information such as audio and
video streams. Various network protocols that deal with stream-oriented commun-
ication are discussed in (Halsall, 2001}. Steinmetz and Nahrstedt (1995) provide
an overall infroduction to multimedia issues, of which stream-oricnted communi-
cation is past of.

2.5.1 Support for Continuous Media

Support for the exchange of time-dependent information is often tormulated
as support for continuous media. A medium refers to the means by which infor-
mation is conveyed. These means include storage and transmission media, presen-
tation media such as a monitor, and so on. An important type of medium is the
way that information is represented. In other words, how is information encoded
in a computer system? Different representations are used for different types of
information. For example, text is generally encoded as ASCII or Unicode. Images
can be represented in different formats such as GIF or JPEG. Audio streams can
be encoded in a computer system by, for example, taking 16-bit samples using
PCM.

In continuous (representation) media, the temporal relationships between
different data items are fundamental to correctly interpreting what the data actu-
ally means. We already gave an example of reproducing a sound wave by playing
out an audio stream. As another example, consider motion. Motion can be
represcnted by a series of images in which successive images must he displayed at
a uniform spacing T in time, typically 30-40 msee per image. Correct reproduction
requires nout only showing the stills in the correct order, but also at a constant [re-
quency of 1/T images per second.

In contrast to continuons media, discrete (representation) media, is charac-
terized by the fact that temporal relationships between data items are not
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fundamental to correctly interpreting the data. Typical examples of discrete media
include representations of text and still images, but also object code or executable
files.

Data Stream

To capture the exchange of time-dependent information, distributed systems
generally provide support for data streams. A data stream is nothing but a
sequence of data units. Data streams can be applied to discrete as well as continu-
ous media. For example, UNIX pipcs or TCP/IP connections are typical examples
of (byte-oriented) discrete data streams. Playing an audio file typically requires
sefting up a continuous data stream between the file and the audio device.

Timing is crucial to continuous data streams. To capture timing aspects, a dis-
tinction is often made between different transmission modes. In asynchronous
transmission mode the data items in a stream arc transmitted one after the other,
but there are no further timing constraints on when transmission of items should
take place. This is typically the case for discrete data sireams. For example, a file
can be transferred as a data stream, but it is mostly irrelevant exactly when the
transfer of each item completes.

In synchronous transmission mode, there is a maximum end-to-end delay
defined for each unit in a data stream. Whether a data unit is transferred much fas-
ter than the maximum tolerated delay is not important. For example, a sensor may
sample temperature at a certain rate and pass it through a network 1o an operator.
In that case, it may be important that the end-to-end propagation time through the
network 1s guaranteed to be lower than the time interval between taking samples,
but it cannot do any harm if samples are propagated much faster than strictly
necessary.

Finally, in isochronous transmission mode, it is necessary that data units are
transferred on time. This means that data transfcr is subject to a maximum and
minimum end-to-end delay, also referred to as bounded (delay) jitter. Isochronous
transmission mode is particularly interesting for distributed multimedia systems,
as 1t plays a crucial role in representing audio and video. In this chapter, we con-
sider only continuous data streams using isochronous transmission, which we will
refer to simply as streams.

Streams can be simple or complex. A simple stream consists of only a single
sequence of data, whereas a complex stream consists of several relaled simple
streams, called suhstreams. The relation between the substreams in a complex
stream is often also time dependent. For example, stereo audio can be transmitted
by means of a complex stream consisting of two substreams, each used for a sin-
gle audio channel. It is important, however, that those (wo substreams are continu-
ously synchronized. In other words, data units from each stream are to be com-
municated pairwise 10 eusure the effect of stereo. Another example of a complex
stream is one for transmitting a movie. Such a stream could consist of a single
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video stream, along with two streams for transmitting the sound of the movie in
stereo. A fourth stream might contain subtitles for the deaf, or a translation into a
different language than the audio. Again, synchronization of the substreams is
important. If synchronization fails, reproduction of the movie fails. We return to
stream synchronization below,

A siream can often be considered as a virtual connection between a source
and a sink. The source or sink could be a process, bul could also be a device. For
example, when sending data across a network, we may have a sending process
reading an audio file from disk, and sending it, byte for byte, through a network.
The sink may be a process fetching the bytes as they come in, and passing them to
the local audio device. This situation is shown in Fig. 2-35(a). On the other hand,
in multimedia distributed systems, support may be provided for setting up a direct
connection between source and sink. For example, the video stream produced by a

camera may possibly be directly forwarded to a display device, as shown in
Fig. 2-35(b).

Sending process Raceivipg process

|

Stream

J JIOS

(a)

Network

Cameta

Display
0s Stream _J

I y —)

Network

]

Figure 2-35. (1) Setting up a stream between two processes across a network.
{h) Setting up a stream directly between two devices.

Another issue is whether there is just a single source or sink, or if multiparty
communication can be set up. The most common situation in multiparty commun-

icati(_)n is attaching multiple sinks to a stream. In other words, the data stream is
multicast to several receivers, as shown in Fig. 2-36.
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Figore 2-36. An example of multicasting a stream to several receivers.

The main problem with multicast streaming is when the receivers have dif-
ferent requirements with respect to the quality of the stream. Consider, for exam-
ple, a source transmitting a high-quality stereo-sound movie. This may require a
complex stream consisting of a video substream in which images are transmitted
at 50 Hz and two audio substreams each having CD-quality audio. Even when
using advanced compression techniques, the complex stream may require a
bandwidth of more than 30x10° bits/sec (Steinmetz and Nahrstedt, 1995). Not
every receiver may be capable of processing so much data. Therefore, the stream
should be configured with filters (Yeadon et al., 1996) that adjust the quality of
an incoming stream differently for outgoing streams, as also shown in Fig, 2-36.
We return to controlling the quality of a stream below.

2.5.2 Streams and Quality of Service

Timne-dependent (and other nonfunctional) requirements are generally ex-
pressed as Quality of Service (QoS) requirements. These requirements describe
what s needed from the underlying distributed system and network to ensure that,
for example, the temporal relationships in a stream can be preserved. QoS for con-
tinuous data streams mainly concerns timeliness, volume, and reliability. In this
section we take a closer look at QoS and its relation to setting up a strearn.

Specifying QoS

Expressing QoS requirements can be done in several ways. One approach is to
provide a precise flow specification containing bandwidth requirements,
transmisston rates, delays, etc. An example of such a flow specification is given
in Fig. 2-37, developed by Partridge (1992).

In Partridge’s model, the characteristics of the stream are formuiuted in terms
of a token bucket algorithm, which specifies how the stream will shape its net-
work traffic. The principle of a token bucket is shown in Fig. 2-38. The basic idea
is that tokens are generated at a constant rate. A token represents a fixed number
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(_:ba_rac_te_ristics of the tnput Service Required
} Maximum data unit size {(bytes) Loss sensitivity {bytes)
| Token bucket rate (bytes/sec) Loss interval ({tsec)
Token hucket size (bytes} Burst loss sensitivity {data units}

Maximum transmission rate (bytes/sec) | Minimum delay noticed (Lsec)
Maximum delay variation {1sec)
Quality of guarantee ]

Figure 2-37. A flow specification,

of bytes that an application is aliowed to pass to the network. Tokens are buffered
in a bucket, which has a limited capacity. When the hucket is full, tokens will
simply be droppzd. Each time the application wants to pass a data unit of size N o
the network, it will have to remove enough tokens from the bucket that jointly
represent at least N bytes. So, for example, if each token represents k bytes, the
application will have to remove at least N/k tokens from the bucket.

Application

One token is added
to the bucket avery AT
- % e

Irregular stream
of data units

-~ Regular stream

Figure 2-38. The principle of a token bucket algorithm,

The effect of a token bucket algorithm is that data is passed to the network at
a relatively constant rate, determined by the rate of generating tokens, However, it
also allows for some burstiness as an application is allowed 10 provide a complete
bucket worth of tokens to the network in a single operation. To avoid exireme
bursts, the data stream may also limit its rate 10 a specified maximum. In a flow
specification, the application promises that it will offer data units to the communi-
cation system according to the output of the token bucket algorithm.

In addition to specifying the temporal relations between data units, a flow
specification also consists of service requirements. Loss sensitiviry in combination
with a loss interval specify what a maximum acceptable loss rate would be (e.g.,
I bytc per minute). Burst loss sensitivity specifies how many consecutive data
units may be lost,

The minimum delay noticed specifies how long the network can delay the de-
livery of a data unit before the receiver notices the delay. Related to this measure

T r——— e ——— -
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is the maximum delay variation, which specifies the maximurmn tolerated jitter.
Jitter specifications are especially important for video and aundio.

Finally, the quality of guarantee is a number indicating how serious the ser-
vice requirements should be taken. Basically, a low number tells that if the com-
munication system cannot provide the required services, no real harm is done. A
high number, on the other hand, indicates that if no firm guarantees can be given,
then the system should not establish a stream because the client will go for noth-
ing less than that required.

A problem with flow specifications such as these is that an application may
simply not know its own requirements. In particular, forcing a user to specify
quality in terms of token bucket parameters, loss semsitivity, etc., would soon put
a service provider out of business. A different approach is therefore to classify a
stream, and subsequently provide reasonable defaults for detailed flow specifica-
tions. For example, a user may need to specify only whether a stream is for audio
or video. For an audio stream, a choice may be available between high, medium,
or low quality. A similar classification c¢an be offered for video streams.

As also argued in (Partridge, 1994), classification is not very different from
detailed flow specifications. The difference lies merely in the number of param-
eters that need to be specified, and the number of distinct values that each param-
eter can have.

Setting up a Stream

Once a data stream has been described, for example, in the form of a flow
specification, a distributed system is in a position to allocate resources to set up a
stream that satisfies the QoS requirements. Resources in the context of stream
management mainly concern bandwidth, buffers, and processing capacity.
Bandwidth reservation takes place by ensuring that data units are properly
scheduled for transmission, for example, by assigning scheduling prioritics. By
allocating buffers in routers and operating systems, data units can be queued for
further processing. Finally, it is essential that data units are processed in time,
requiring that associated tasks, such as schedulers, encoders and decoders, filters,
and the like, are properly scheduted for CPU time,

One of the problems that needs to be solved is that the parameters in which
the characteristics and QoS requirements of a data stream are specified, need not
directly correspond 1o analogous resource parameters. For example, specifying
that the network should guaraniee that no more than & consecutive data units may
be lost, may have to be translated into statically allocating buffers along a path of
routers from the source to the destination. Such allocations can, in fact, be calcu-
lated by using other stream characteristics, and may result in a firmly or statisti-
cally guaranteed service from the network.

Unfortunately, there is currently no single best model for (1) specifying QoS
parameters, (2) generically describing resources in any communication system,
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and (3) translating QoS paramelers 10 resource usage. The lack of such a model is
the reason why expressing and establishing quality of service is often so difficult,
and why different systems use different and incompatible approaches.

To make matters more concrete, and counsidering that QoS in distributed sys-
tems is mainly dependent on the services the underlying network can offer, let us
take a brief look at a specific QoS protocol for reserving resources for continuous
streams. The Resource reSerVation Protocol (RSVP) is a transport-level control
protocol for enabling resource reservations in network routers (Zhang et al., 1993;
Braden et al, 1997).

Senders in RSVP provide a flow specification characterizing the data stream
in terms of bandwidth, delay, jitter, and so on, very similar to the flow specifica-
tion shown in Fig. 2-37. This specification is handed over to an RSVP process that
is colocated on the same machine as the sender, as shown in Fig. 2-39. The RSVP
process does not interpret the flow specification. In fact, the only thing it does
when receiving a flow specification from a sender is store it locally. RSVP is a
receiver-initiated QoS protocol. In other words, receivers are required to send
reservation requests along the path to the sender. By storing a flow specification,
RSVP can prevent more resources from being reserved than are strictly necessary.

Sender process RSVP-enabled host

: — RSVYP process
Application Policy
control
Application 4 T A
data stream .
RSVP i
program |
1
Local ]
A ocal OS Y Reservalion requests
Data link layer ] Admission trom other RSVP hosts
control
—
Data link layer
data stream >
. .4 » internetwork
]
Local network /’“/

Setup information to \’\_/\_/\»—/“
ather RSVP hasts

Figure 2-39. The basic organization of RSVP for resource reservation in  dis-
tributed system.

A sender in RSVP first sets up a paih to potential receivers and provides the
flow specification of the data stream to each intermediate node. When a receiver
is ready to accept incoming data units, it first places a reservation request along its
upstream path to the sender. The format of such a request is essentially the same

s ey
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as the original flow specification, but parameter values may be set o reflect a
lower QoS than what the sender specified would be necessary for the most
demanding receiver.

When an RSVP process receives a reservation request, it passes the request to
the admission control module to check whether enough resources are available.
The request is also passed to the policy control moduie to check whether the
receiver has permission to make the reservation. If these two tests succeed,
resources can be reserved.

Resource reservation is highly dependent on the data link layer. In fact, to
make RSVP work, the RSVP process will have to translate the QoS parameters of
its flow specifications into things that make sense to the data link layer. A simple
example is franslating a request for lots of bandwidth to assigning the highest
priority to each frame carrying data of the stream. Based on the initial flow specif-
ication (which indicates the maximum data rate the sender will cver generate),
and the available bandwidth at the data link layer, such a translation may be suffi-
cient to meet a receiver’s QoS requirements,

Another approach is needed when the data link layer provides its own set of
parameters for specifying QoS requirements, as in ATM networks. In ATM net-
works, data is transmitted in units called cells, which consist of a 48-byte payload
field and a 5-byte header. ATM will allow an RSVP process to specify the max-
imum cell rate, the long-term average cell rate, the minimum- acceptable cell rate,
and the maximum acceptable jitter between cells. There are other QoS parameters
as well. In this case, it is the task of the RSVP process to translate the stream-
oriented flow specifications into ATM-specific parameter values. The ATM layer
will subsequently take care that the QoS requirements are indeed met.

2.5.3 Stream Synchronization

An important issue in multimedia systems is that different sireams, possibly in
the form of a complex stream, are mutually synchronized. Synchronization of
streams deals with maintaining temporal relations between streams. Two types of
synchronization occur.

The simplest form of synchronization is that between a discrete data stream
and a continuous data stream. Consider, for example, a slide show on the Web
that has been enhanced with audio. Each slide is transferred from the server to the
client in the form of a discrete data stream. At the same time, the clicnt should
play out a specific (part of an) audio stream that matches the current stide that is
also ferched from the server. In this case, the audio stream is to be synchronized
with the presentation of slides.

A more demanding type of syuchronization is thal between continuous data
streams. A daily example is playing a movie in which the vidco stream needs to
be syuchronized with the audio, commonly referred to as lip synchronization.
Another example of synchronization is playing a stereo audio stream consisting of

e | b W breps e 6
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two substreams, one for cach channel. Proper play out requires that the two sub-
streams are tightly synchronized: a difference of more than 20 psec can distort the
stereo effect.

Synchronization takes place at the level of the data units of which a stream is
made up. In other words, we can synchronize two streams only between data
units. The choice of what exactly a data unit is depends very much on the level of
abstraction at which a data stream is viewed. To make things concrete, consider
again a CD-quality (single-channel) audio stream. At the finest granularity, such a
stream appears as a sequence of 16-bit samples. With a sampling frequency of
44100 Hz, synchronization with other audio streams counld, in theory, lake place
approximately every 23 psec. For high-quality siereo effects, it turns out that syn-
chronization at this level is indeed necessary.

However, when we consider synchronization between an audio stream and a
video stream for lip synchronizaiion, a much coarser granularity can be taken. As
we explained, video frames need to be displayed at a rate of 25 Hz or more. Tak-
ing the widely used NTSC standard of 30 Hz, we could group audio sanples into
logical units that last as long as a video frame is displayed (33 msec. With an
audio sarapling frequency of 44,100 Hz, an audio data unit can thus be as large as
1470 samples, or 11,760 bytes (assuming each sample is 16 bits). In practice,
larger units lasting 40 or even 80 msec can be tolerated (Steinmetz, 1996).

Synchronization Mechanisms

We now come to the issue how synchronization is actually achieved. Two
issues need 1o be distinguished: (1) the basic mechanisms for synchromizing two
streams, and (2) the distribution of those mechanisms in a networked environ-
ment.

Synchronization mechanisms can be viewed at different levels of abstraction.
At the lowest level, synchronization is done explicitly by operating on the data
units of simple streams. This principle is shown in Fig. 2-40. In essence, there is
a process that siraply executes read and write operations on several simple
streams, ensuring that thosc operations adhere 1o specific timing and synchroniza-
tion constraints.

For example, consider a movie that is prescnted as two input streams. The
video stream contains uncompressed low-quality images of 320x240 pixels, cach
encoded by a single byte, leading to video data units of 76,800 bytes each.
Assume that images are to be displayed at 30 Hz, or one image every 33 msec.
The audio stream is assumed to contain audio samples grouped into units of 11760
bytes, each corresponding to 33 ms of audio, as cxplained above. If the mput proc-
ess can handie 2.5 MB/sec, we can achieve lip synchronization by simply alternat-
ing between reading an image and reading a block of audio samples every 33 ms.

The drawback of this approach is that the application is made completely
responsible for implementing synchronization while it has only low-level facilitics
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Figure 2-40, The principle of explicit synchronization on the level data units.

available. A better approach is to offer an application an interface that allows it to
more casily control streams and devices. Returning to our example, assume that
the video display has a control interface that allows it 1o specify the rate at which
images should be displayed. In addition, the interface offers the facility to register
a user-defined handler that is called each time k& new images have arrived. An
analogous interface is offered by the audio device. With these control interfaces,
an application developer can write a simple monitor program consisting of 1wo
handlers, one [or each stream, that jointly check if the video and audio stream are
sufficiently synchronized, and if necessary, adjust the rate at which video or audio
units are presented,

This last example is illustrated in Fig. 2-41, and is typical for many mul-
timedia middleware systems. In effect, multimedia middleware offers a collection
of interfaces for controlling audio and video streams, including interfaces for con-
trolling devices such as monitors, cameras, microphones, etc. Each device and
stream has its own high-level interfaces, including interfaces for notifying an
application when some event occurred. The latter are subsequently used to write
handlers for synchronizing streams. Examples of such interfaces arc given in
(Blair and Stefani, 1998).

The distribution of synchronization mechanisms is another issue that needs to
be looked al. First, the receiving side of a complex stream consisting of sub-
streams that require synchronization, nceds to know exactly what to do. In other
words, it must have a complete synchronization specification locally available.
Common practice is to provide this information implicitly by nultiplexing the dif-
ferent strecams into a single stream contaiing all data units, including those for
synchronization.

This latter approach to synchronization is {ollowed for MPEG streams. The
MPEG (Motion Picture Experts Group) standards form a collection of algo-
rithms for compressing video and audio. Several MPEG standards exist. MPEG-2,
for example, was originally designed for compressing broadcast quality video into
4 10 6 Mbps. In MPEG-2, an unlimited number of continttous and discrete streams



130 COMMUNICATION CHAP. 2

Application tells
Heceiver's machine middleware what

to do with incoming
Apphication / streams

i

Multimedia control
i part of middisware

AN

Mrddleware layer —b{

Incoming stream 085

MNatwork ="~

Figure 2-41. The principle of synchrenization as supported by high-level interfaces.

can be merged into a single stream. Each input stream is first turned into a stream
of packets that carry a timestamp based on a 90-kHz system clock. These streams
are subsequently multiplexed into a program stream then consisting of variable-
length packets, but which have in common that they all have the same time base.
The recetving side demultiplexes the streamn, again using the timestamps of each
packet as the basic mechanism for interstream synchronization.

Another important issuc is whether synchronization should take place at the
sending or the receiving side. If the sender handles synchronization, it may be
possible to merge streams into a single stream with a different type of data unit.
Consider again a stereo audio stream consisting of two substreams, one for cach
channel. One possibility is 1o transfer each stream independently to the receiver
and let the falter synchronize the samples pairwise. Obviously, as each substream
may be subject lo differemt delays, synchronization can be extremely difficult. A
better approach is to merge the two substreams at the sender. The resulting stream
consists of data units consisting of pairs of samples, one for each channel. The
recctver now merely has to read in a data unit, and split it into a left and right
sampie. Delays for both channels are now identical.

2.6 SUMMARY

Having powerful and flexible facilities for communication between processcs
1s essential for any distributed system. In traditional network applications, com-
munication is often based on the low-level message-passing primitives offered by
the transport layer. An important issue in middleware systems is to offer a higher
level of abstraction that will make it easier to express commuuication between
processes (han the support offered by the interface to the transport layer.
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One the most widely used abstractions is the Remote Procedure Call (RPC).
The essence of an RPC is that a service is implemented by means of a procedure,
ol which the body is executed at a server. The client is offered only the signature
of the procedure, that is, the procedure’s name along with its parameters. When
the client calls the procedure, the client-side implementation, called a stub, takes
care of wrapping the parameter values into a message and sending that to the
server. The latter calls the actual procedure and returns the results, again in a mes-
sage. The client’s stub extracts the result values from the return message and
passes it back to the calling client application.

RPCs are aimed at achieving access transparency. However, they offer rela-
tively poor support for passing references. In this sense, remote objects offer
hetter transparency. A Remote Method Invocation (RMI) is essentially an RPC,
but now specific for a remote object. The main difference is that RMIs allow sys-
temwide object relerences to be passed as parameters.

RPCs and RMlIs offer synchronous communication facilities, by which a
clicnt is blocked until the server has sent a reply. Although variations of either
mechanism exist by which this strict synchronous model is relaxed, it turns out
that general-purpose, high-level message-oriented models are often more con-
venient.

In message-oriented models, the issues are whether or not communication is
persistent, and whether or not communication is synchronous. The essence of per-
sistest communication 18 that a tuessage that is submitted for transmission, is
stored by the communication system as long as it takes to deliver it. In other
words, ncither the sender nor the receiver needs to be up and running for message
transmission to take place. In transienl communication, no storage facilities are
offered, so that the receiver must be prepared to accept the message when it is
senl,

In asynchronous communication, the sender is allowed to continue immedi-
ately after the message has been submitted for transmission, possibly before it has
even been sent. In synchronous communication, the sender is blocked at least until
a message has been received. Alternatively. the sender may be biocked until mes-
sage delivery has taken place or even until the receiver has responded as with
RPCs.

Message-oriented middieware models generaily offer persistent asynchroncus
communication, and arc used where RPCs and RMIs are not appropriate. They are
primarily used to assist the integration of (widety dispersed) coliections of data-
bases into large-scale information systems. Other applications include e-mail and
work{low.

A completely different form of communication is that of streaming, in which
the issue is whether or not two successive messages have a temporal relationship,
In continnous data sireams, a maximura end-to-end delay is specified for cach
message. In addition, it is also required that messages are scnt subject to a
minimum end-to-end delay. Typical examples of such continuous data streams are
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video and audio streams. Exactly what the temporal relations are, or what is
expected from the underlying communication subsystem in terms of quality of
service is often difficult to specify, and 1o implement. A complicating factor is the
role of jitter. Even if the average performance is accepiable, substantial variations
in delivery time may lead to unacceptable performance.

2

PROBLEMS

. In many layered protocols, cach layer has its own header. Surely it would be more

efficient 1o have a single header at the front of each message with ail the control in it
than all these separate headers. Why is this not done?

. Why are transport-level communication services often inappropriate for building dis-

tributed applications?

. A reliable multicast service allows a sender to reliably pass messages to a collection of

receivers, Does such a service belong to a middleware layer, or should it be part of a
lower-level layer?

Consider a procedure incr with two integer parameters. The procedure adds one 10
each parameter. Now suppose that it is called with the same variable twice, for exam-
ple. as incr(i, 1. 1f [ is initially 0, what value will it have afterward if call-by-reference
is used? How about if copy/restore is used?

. C has a construction called a union, in which a field of a record {called a struct in C)

can hold any one of several alternatives. At run time, there is no sure-fire way 1o tell
which one is in there. Does this feature of C have any implications for remole pro-
cedure call? Explain your answer.

One way to handie parameter conversion in RPC systems is to have each machine
send parameters in its native representation, with the other one doin g the translation, if
need be. The native system could be indicated by 2 code in the first byte. However,

since locating the first hyte in the first word is precisely the problem, can this actually
waork?

Assume a client calls an asynchronous RPC to a server, and suhsequently waits until
the server returns a result using another asynchronous RPC. Is this approach the same

as letting the client execute a normal RPC? What if we replace the asynchronous
RPCs with asynchronous RPCs?

lustead of letting a server register itself with u dacmeon as is done in DCE, we could
also choose to always assign it the same endpoint. That endpoint can then be used in

references to objects in the server’s address space. What is the main drawback of this
scheme?

Give an example implementation of an object reference that allows a client to bind to
a transient remote ohject.
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10.

11.

12,

13.

14
15

16.

17

18

19

20

21.

22

23.
24
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Java and other languages support exceptions, which are raised when an error occurs.
How wonld you implement exceptions in RPCs and RMIs?

Would it be useful to also make a distinction between static and dynamic RPCs?

Some implementations of distributed-object middleware systems are entirely based on
dynamic method invocations. Even static invocations are compiled to dynamic ones.
What is the benefit of this approach?

Describe how connectionless communication between a client and a server proceeds
when using sockets.

Explain the difference between the primitives mpi_bsend and mpi. isend in MPI.

Suppose that you could make use of only transient asynchronous communication
primitives, including only an asynchronous receive primitive. How would you imple-
ment primitives for transient synchronous communication?

Now suppose you could make use of only transient synchronous comntunication prim-
itives. How would you implement primitives for transient asyrchronous communica-
tion?

Daoes it make sense to implement persistent asynchronous communication by means of
RPCs?

In the text we stated that in order to automatically start a process to fetch messages
from an input queue, a daemon is often used that monitors the input queue. Give an
alternative implementation that does not make usc of a daemon.

Routing tables in IBM MQSeries, and in many other message-qucuing systcms, are
conligured manually. Describe a simple way to do this automatically.

How would you incorporate persistent asynchronous communication inte a model of
communication hased on RMIs 10 remote objects?

With persistent communication, a recciver generally has its own local buffer where
messages can be stored when the receiver is not cxecuting. To create such a buffer, we

may need to specify its size. Give an argument why this is preferable, as well as one
against specification of the size.

Explain why transient synchronous communication has inherent scalability problems,
and hew these could be solved.

Give an example where multicasting is also useful for discrete data streams.

How could you guarantee a maximum end-to-end delay when a collection of comput-
ers is organized in a (logical or physical) ring?

How could you guarantee a minimum ¢nd-to-end delay when a collection of comput-
ers is organized in a (logical or pbysicul) ring?

Imagine we have a token bucket specification where the maximum data unit size is
1000 bytes, the token bucket rate is 10 million bytes/sec, the token bucket size is 1

million bytes, and the maximum transmission rate is 50 million bytes/sec. How long
can a burst of maximum speed last?
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27. For this exercise you are to implement a simple client-server system using RPC. The
server offers one procedure, next, which takes an integer as input and retums its suc-
cessor as output. Write a stub procedure called next for use on the client side. Tts job is
to send the parameter to the server using UDP and wait for the responsc. timing out if
the response takes too long, The server procedure should listen on a known port,
accept requests, carry them out, and send back the results.

T mmris b o,




PROCESSES

In the preceding chapter, we concentrated on commumication in distributed
systems. Communication takes place between processes, and in this chapter, we
take a closer look at how the different types of processes play a crucial role in dis-
tributed systems. The concept of a process originates from the {ield of operating
systems where it is generally defined as a program in execution. From an
operating-system perspective, the management and scheduling of processes are
perhaps the most important issues to deal with. However, when it comes to dis-
tributed systems, other issues turn out to be equally or more important.

For example, to efficiently organize client-server systems, it is often con-
venient to make use of multithreading techniques. As we discuss in the first sec-
tion, a main contribution of threads in distributed systems is that they allow clients
and servers to be constructed such that communication and local processing can
overlap, resulting in a high level of performance.

As we argued in Chap. 1, client-server organizations are important in distrib-
uted systems. [n thits chapter, we take a closer look at typical organizations of both
clients and servers. We also pay attention to general design issues for servers. In
addition, we consider general-purpose object servers, which form the basic means
for implementing distributed objects.

An important issue, especially in wide-area distributed systems, is moving
processes between different machines. Process migration or more specifically,
code migration, can help in achieving scalability, but can also help to dynamically
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configure clients and servers. What is actueally meant by code migration and what
its implications are is also discussed in this chapter.

Qur last subject deals with an upcoming phenomenon, namely thal of software
agents. In contrast to the somewhat asymimetric client-server model, multiagent
systems roughly consist of a collection of equally-important agents that collec-
tively atiempt to rreach a common goal. A software agent is yet another type of
process and may come in different forms. Taking a distributed-system perspec-
tive, what an agent. is, and how agents collaborate, is discussed in the last section,

3.1 THREADS

Although processes form a building block in distributed systems, practice
indicates that the granularity of processes as provided by the operating systems on
which distrihuted systems are built, is not sufficient. Instead, it turns out that hav-
ing a finer granularity in the form of multiple threads of control per process makes
it much easier to build distributed applications and to attain better performance. In
this section, we take a closer look at the role of threads in distributed systems and
explain why they are so important. More on threads and how they can be used 1o
build applications, can be found in (Lewis and Berg, 1998) and (Stevens, 1999).

3.1.1 Introduction to Threads

To understand the role of threads in distributed systems, it is important to
understand what a process is, and how processes and threads relate. To execute a
program, an operating system creates a number of virtual processors, each one for
running a differenl program. To keep track of these virtual processors, the operat-
ing system has a process table, containing entries to store CPU register values,
memory maps, open files, accounting information, privileges, etc. A process is
often defined as a program in execution, that is, 2 program that is currently being
executed on one of the operating system’s virtual processors. An important issue
is that the operating system takes great care to ensure that independent processes
cannot maliciously or inadvertently affect the correctness of cach other's
behavior. Tn other words, the fact that multiple processes may be concurrently
sharing the same CPU and other hardware resources is made transparent. Usually,
the operating system requires hardware support to enforce this separation.

This concurrency transparency comes at a relatively high price. For example,
cach time a process is created, the operaling system must create a complete
independent address space. Allocation can mean initializing memory segments by,
for example. zeroing a data segment, copying the associated program into a text
segment, and sctting wp a stack for temporary data. Likewise, switching the CPU
between two processes may be relatively expensive as well. Apart from saving the
CPU context (which consists of register values, program counter, stack pointer,
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etc.). the operating system will also have to modify registers of the memory
management unit {MMU) and invalidate address translation caches such as in the
translation lookaside buffer (TLB). In addition, if the operating system supports
more processes than it can simultaneously hold in main memory, it may have to
swap processes betwcen main memory and disk before the actual switch can take
place.

A thread is very similar to a process in the sense that it can also be seen as the
execution of a (part of a) program on a virtnal processor. However, in contrast to
processes, no atiempt is made to achieve a high degree of concurrency tran-
sparency if this would result in performance degradation. Therefore, a thrcad sys-
tem gencrally maintains only the minimum information to allow a CPU (o be
shared by several threads. In particular, a thread context often consists of nothing
more than the CPU context, along with some other information for thread
management. For example, a thread system may keep track of the fact that a
thread is currently blocked on a mutex variable, so as not to select it for execution.
Information that is not strictly neccssary to0 manage multiple threads is generally
ignored. For this reason, protecting data against inappropriate access by threads
within a single process is left entirely Lo application developers.

There are two important implications of this approach. First, the perforimance
of a multithreaded application need hardly ever be worse than that of its single-
threaded counterpart. In fact, in many cases, multithreading leads to a perfor-
mance gain. Second, because threads arc not automatically protected against each
other the way processes are, development of multithreaded applications requircs
some additional intellectual effort. Proper design and keeping things stmple, as
usual, help a lot, Unfortunately, current practice does not demonstrale that this
principle is equally well understood.

Thread Usage in Nondistributed Systems

Before discussing the role of threads in distributed systems, let us first con-
sider their usage in traditional, nondistributed systems. There are several benefits
to multithreaded processes that have increased the popularity of using thread sys-
tems.

The most important benefit comes from the fact that in a single-threaded proc-
ess, whenever a blocking system call is executed, the process as a whole is
blocked. To illustrate, consider an application such as spreadsheet program, and
assume that a user continuously and interactively wants to change values. An
important propetty of a spreadsheet program is that it maintains the functional
dependencies between different cells, often from differemt spreadsheets. There-
fore, whenever a cell is modified, all dependent cells are automatically updated.
When a user changes the value in a single cell, such a modification can trigger a
large series of computations. If there is only a single thread of control, computa-
tion cannot proceed while the program is waiting for input. Likewise, if is pot €asy
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to provide input while dependencies are being calculated. The easy solution is to
have at least two threads of control: one for handling interaction with the user and
one for updating the spreadsheet.

Another advantage of multithreading is that it becomes possible to exploit
parallelism when executing the program ou a multiprocessor system. In that case.
cach thread is assigned to a different CPU while shared data are stored in shared
matn memory. When properly designed, such parallelism can be transparent: the
process will run equally well ou a uniprocessor system, albeil siower. Mul-
tithreading for parallelism is becoming increasingly important with the availabil-
ity of relatively cheap multiprocessor workstations. Such computer systems are
typically used for running servers in client-server applications.

Muitithreading is also useful in the context of large applications. Such appli-
cations are often developed as a collection of cooperating programs, each to be
execuled by a separate process. This approach is typical for a UNIX environment.
Cooperation between programs is implemented by means of interprocess com-
munication (IPC) mechanisms. For UNIX systems, these mechanisms typically
include (named) pipes, message queues, and shared memory segments (see also
Stevens, 1992). The major drawback of all IPC mechanisms is that communica-

tion often requires extensive context switching, shown at three different points in
Fig. 3-1.

Process A Procass B

51: Switch from user space

to kernel space
P \| I‘// [ S3: Switch from kernal
] space 1o user space
L.______]

Operating system \

82: Swilch context from
process A to process B

Figure 3-1. Context switching as the result of 1PC.

Because IPC requires kernel intervention, a process will generally first have
to switch from user mode to kemnel mode, shown as S 1 in Fig. 3-1. This requires
changing the memory map in the MMU, as well as flushing the TLB. Within the
kemnel, a process context swilch takes place (S2 in the figure), after which the
other party can be activated by switching from kernel mode to user mode agdin
(53 in Fig. 3-1). The latter switch again requires changing the MMU map and
flushing the TLB.

Instcad of using processcs, an application can also be constructed such that
different parts are exccuted by separate threads. Communication between those
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parts is entirely dealt with by using shared data. Thread switching can sometimes
be done entirely in user space, although in other implementations, the kernel is
aware of threads and schedules them. The effect can be a dramatic improvement
in performance.

Finally, there is also a pure software engineering reason to use threads: many
applications are simply easier to structure as a collection of cooperating threads.
Think of applications that need to perform several (more or less independent)
tasks. For example, in the case of a word processor, separate threads can be used
for handling user input, spelling and grammar checking, document layout, index
generation, etc.

Thread Implementation

Thrcads are generally provided in the form of a thread package. Such a pack-
age contains operations to create and destroy threads as well as operations on syn-
chronization variables such as muiexes and condition variables. There are basi-
cally two approaches to implement a thread package. The first approach is to con-
struct a thread library that is executed entirely in user mode. The second approach
is to have the kernel be aware of threads and schedule them.

A user-level thread library has a number of advantages. First, it is cheap to
create and destroy threads. Because all thread administration is kept in the user’s
address space, the price of creating a thread is primarily determined by the cost
for allocating memory to set up a thread stack. Analogously, destroying a thread
mainly involves freeing memory for the stack, which is no longer used. Both
operations are cheap.

A second advantage of user-level threads, is that switching thread context can
often be done in just a few instructions. Basically, only the values of the CPU
registers need to be stored and subsequently reloaded with the previously stored
values of the thread to which it is being switched. There is no need to change
memory maps, flush the TLB, do CPU accounting, and so on. Switching thread
context is done when two threads need to synchronize, for example, when enter-
ing a section of shared data.

However, a major drawback of user-level threads is that invocation of a
blocking system call will immediately block the entire process to which the thread
belongs, and thus also all the other threads in that process. As we explained,
threads are particularly useful to structure large applications into parts that could
he logically executed at the same time. In that case, hlocking on 1/0 should not
prevent other parts to he executed in tbe meantime. For such applications, user-
level threads are of no help.

These problems can be mostly circumvented by implementing threads in the
opcrating system’s kernel. Unfortunately, there is a high price to pay: every thread
operation (creation, deletion, synchronization, etc.), will have to be carried out by



140 PROCESSES CHAP. 3

the kernel, requiring a system call. Switching thread contexts may now become as
expensive as switching process contexts. As a result, most of the benefits of using
threads instead of processes then disappears.

A solution lies in a hybrid form of user-level and kernel-level threads, gen-
erally referred to as lightweight processes (LWP). An LWP runs in the context
of a single (heavy-weight) process, and there can be several LWPs per process. In
addition to having LWPs, a system also offers a user-level thread package, offer-
ing applications the usual operations for creating and destroying threads, In addi-
tion, the package provides facilities {or thread synchronization, such as mutexes
and condition variables (see also Sec. 1.4). The important issue is that the thread
package is implemented entirely in user space. In other words, all operations on
threads are carried out without intervention of the kernel.

Thread state

User space

Lightwaight process

Kernel space

WP executing a thread

Figure 3-2. Combining kernel-leve] lightweight processes and user-level threads.

The thread package can be shared by muitiple LWPs, as shown in Fig. 3-2.
This means that each LWP can be running its own (user-level) thread. Mul-
tithreaded applications are constructed by creating threads, and subsequently
assigning each thread to an LWP. Assigning a thread to an LWP is normally
implicit and hidden from the programmer.

The combination of (user-level) threads and LWPs works as follows. The
thread package has a single routine to schedule the next thread. When creating an
LWP (which is done by means of a system call}, the LWP is given its own stack,
and is instructed to execute the scheduling routine in search of a thread to execute.
If there are several LWPs, then each of them executes the scheduler. The thread
table, which is used to keep track of the current set of threads, is thus shared by
the LWPs. Protecting this table 10 guarantee mutually exclusive access, is done by
means of mutexes that are implemented entircly in user space. In other words,
synchronization between LWPs does not require any kernel support.

When an LWP finds a runnable thread, it switches context to that thread.
Meanwhile, other LWPs may be looking for other runnable threads as well. Ifa
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thread needs to block on a mutex or condition vanable, it does the necessary
administration and eventually calls the scheduling routine. When another runnabie
thread has been found, a context switch is made to that thread. The beauty of all
this is that the LWP execuling the thread need not be informed: the context switch
is implemented completely in user space and appears to the LWP as normal pro-
gram code.

Now let us see what happens when a thread does a blocking system call. In
that case, execution changes from user mode to kernel mode, but still continues in
the context of the current LWP. At the point where the current LWP can no longer
continue, the operating system may decide to switch context to another LWP,
which also implies that 2 context switch is made hack to user mode. The selected
LWP will simply continue where it had previously left off.

There are several advantages to using LWPs in combination with a user-level
thread package. First, creating, destroying, and synchronizing threads is relatively
cheap and involves no kemel intervention at all. Second, provided that a process
has enough LWPs, a blocking system call will not suspend the entire process.
Third, there is no need for an application to know about the LWPs. All it sees are
user-level threads. Fourth, LWPs can be casily used in multiprocessing environ-
ments, by executing different LWPs on different CPUs. This multiprocessing can
be hidden entirely fromn the application. The only drawback of lightweight
© processes in combination with user-level threads is that we still need to create and
destroy LWPs, which is just as expensive as with kernel-leve] (hreads. However,
creating and destroying LWPs needs to be done only occasionally, and is often
fully controlled by the operating system.

An alternative, but similar approach to lightweight processes, is 1o make use
of scheduler activations (Anderson et al., 1991). The essential difference
between scheduler activations and LWPs, is that when a thread blocks on a sys-
tem call, the kernel does an upcall to the thread package, effectively calling the
scheduler routine to select the next runnable thread. The same procedure is
repeated when a thread is unblocked. The advantage of this approach is that it
saves managemeut of LWPs by the kemnel. However, the use of upcalls is con-
sidered less elegant, as it violates the structure of layered systems, in which calls
only to the nexl lower-level layer are permitted.

3.1.2 Threads in Distributed Systems

An imporiant property of threads is that they can provide a convenient means
of allowing blocking system calls without blocking the entire process in which the
thread is running. This property makes threads particularly attractive to use in dis-
tributed systems as it makes it much easier to express communication in the form
of maintaining multiple logical connections at the same time. We illustrate this
point by taking a closer look at multithreaded clients and servers, respectively.
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Multithreaded Clients

To establish a high degree of distribution transparency, distributed sysiems
that operate in wide-arca networks may need to conceal long interprocess mes-
sage propagation times. The round-trip delay in a wide-area network can casily be
it the order of hundreds of milliseconds, or sometimes even seconds.

The usual way to hide communication latencies, is to initiale communication
and immediately proceed with something else. A typical example where this hap-
pens is in Web browsers. In many cases, a Web document consists of an HTML
file containing plain text along with a collection of images, icons, etc. To fetch
each element of a Web document, the browser has to set up a TCP/IP connection,
read the incoming data, and pass it to a display component. Setting up a connec-
tion as well as reading incoming data are inherently blocking operations. When
dealing with long-haul communication. we also have the disadvantage that the
time for each operation to complete may be relatively {ong.

A Web browser often starts with fetching the HTML page and subsequently
displays it. To hide communication latencies as much as possible, some browsers
start displaying data while it is still coming in, While the text is made available to
the user, including the facilities for scrolling and such, the browser continues with
fetching other files that make up the page, such as the images. The latier are
displayed as they are brought in. The user need thus not wait until all the com-
ponents of the entirc page are fetched before the page is made available.

In effect, it is seen that the Web browser is doing a number of tasks simul-
taneously. As it turns out, developing the browser as a multithreaded client simpli-
fies matters considerably. As soon as the main HTML file has been fetched,
separate threads can he activated to take care of fetching the other parts. Each
thread sets up a separale connection to the server and pulls in the data. Setting up
a connection and reading data from the server can be programmed using the stan-
dard (blocking) system calls, assuming that a blocking call does not suspend the
entire process, As is also illustrated in (Stevens, 1998), the code for each thread is
the same and, above all, simple. Meanwhile, the user notices only delays in the
display of images and such, but can otherwise browse through the document.

There 1s another important benefit to using multithreaded Web browsers in
which several connections can be opened simultaneously. In the previous exam-
ple, several connections were set up to the same server. If that server is heavily
loaded, or just plain stow, no real performance improvements will be noticed
compared to pulling in the files that make up the page strictly one after the other.

However, in many cases, Web servers have been replicated across rmuhiple
machines, where each server provides exactly the same sct of Web documents.
The replicated servers are located at the same site, and are known under the same
name. When a request for a Web page comes in, the request is forwarded to one
of the servers, often using a round-robin strategy or some other load-balancing
technique (Katz et al.,, 1994). When using a multithreaded client, connections
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may be set up to different replicas, allowing data to be transferred in parallel,
effectively establishing that the entire Web document is fully displayed in a much
shorter time than with a nonreplicated server. This approach is possible only if the
client can handie truly parallel streams of incoming data. Threads are ideal for this

purpose.
Multithreaded Servers

Although there are imporiant benefits to multithreaded clients, as we have
seen, the main use of muliithreading in distributed systems is found at the server
side. Practice shows that multithreading not only simplifies server code consider-
ably, but also makes it much easier to develop servers that exploit parallelism to
attain high performance, even on uniprocessor systems. However, now that mul-
tiprocessor computers are widely available as general-purpose workstations, mul-
tithreading for parallelism is even more useful.

To understand the benefits of threads for writing server code, consider the
organization of a file server that occasionally has to block waiting for the disk.
The file server normally waits for an incoming request for a file operation, subse-
quently carries out the request, and then sends back the reply. One possible, and
particularly popular organization is shown in Fig. 3-3. Here one thread, the
dispatcher, reads incoming requests for a file operation. The requests are sent hy
clients to a well-known endpoint for this server. After examining the request, the
server chooses an idie {i.e., blocked) worker thread and hands it the request.

Request dispatched

Oispatcher thread to a worker thread Server
3 i
- Warker thread
A
Request coming in
from the network »
Operating system

Figure 3-3. A multithreaded server organized in a dispatcher/worker model.

The worker proceeds by performing a blocking read on the local file system,
which may cause the thread to be suspended until the data are fetched from disk.
If the thread is suspended, another thread is selected to be executed. For example,
the dispatcher may be selected to acquire more work. Altematively, another
worker thread can be selected that is now ready to run.
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Now consider how the file server could be written in the absence of threads,
One possibility is to have it operate as a single thread. The main loop of the file
server gets a request, examines it, and carries it out to completion before getting
the next one. While waiting for the disk, the server is idle and does not process
any other requests. Consequently, requests from other clients cannot be handled.
In addition, if the file server is running on a dedicated machine, as is commonly
the case, the CPU is simply idle while the file server is wailing for the disk. The
net result is that many fewer requests/sec can be processed. Thus threads gain
considerable performance, but each thread is programmed sequentially, in the
usual way.

So far we have seen two possible designs: a multithreaded file server and a
single-threaded file server. Suppose that threads are not available but the system
designers find the performance loss due to single threading unacceptable. A third
possibility is to run the server as a big finite-state machine. When a request comes
in, the one and only thread examines it. If it can be satisfied from the cache, fine,
but if not, a message must be sent to the disk.

However, instead of blocking, it records the state of the current request in a
table and then goes and gets the next message. The next message may either be a
request for new work or a reply from the disk about a previous operation. If it is
new work, that work is started. If it is a reply from the disk, the relevant informa-
tion is fetched from the table and the reply processed and subsequently sent to the
client. In this scheme, the server will have to make use of nonblocking calls 10
send and receive,

In this design, the “sequential process” model that we had in the first two
cases s lost. The state of the computation must be explicitly saved and restored in
the table for every message sent and received. In effect, we are simulating the
threads and their stacks the hard way. The process is being operated as a finite-
state machine that gets an event and then reacts to it, depending on what is in it.

Model Characteristics
Threads Parallelism, biocking system cails |
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblaocking system calls

Figure 3-4. Threc ways to construct a server.

It should now be clear what threads offer. They make it possible to retain the
idea of sequential processes that make blocking system calls (e.g., an RPC totalk
to the disk} and still achieve parallelism. Biocking system calls make program-
ming easier and parallelism improves performance. The single-threaded server re-
tains the ease of blocking system calls, but gives up performance. The finite-state
machine approach achieves high performance through parallelism, but uses non-
blocking calls, thus is hard to program. These models are summarized in Fig. 3-4.
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3.2 CLIENTS

In the previous chapters we discussed the client-server model, the roles of
clients and servers, and the ways they interact. Let us now take a closer look at the
anatomy of clients and servers, respectively. We start in this section with a discus-
ston of clients. Servers are discussed in the next section,

3.2.1 User Interfaces

A major task of most clients is to interact with a human user and a remote
server. Supporting the interface to the user is a key feature of most clients. In
many cases, the interface between a user and a remote server is relatively simple
and integrated with the client hardware. For example, celtular phones have a sim-
ple display combined with a traditional set of keys for dialing numbers. More
sophisticated ones that also offer e-mail facilities, may be equipped with a com-
plete keyboard, an electronic pad, or a uit for speech recognition.

An important class is formed by graphical user interfaces. In the following
pages, we first wake a closer look at the X window system as an example of a more
trathtional graphical user interface. We then consider modern interfaces that sup-
port direct communication between applications.

The X Window System

The X Window System, generally referred to simply as X, is used to control
bit-mapped terminals, which include a monitor, keyboard, and a pointing device
such as a mouse. In a sense, X can be viewed as that part of an operating system
that controls the terminal. The heart of the system is formed by what we shall call
the X Kernel. It contains all the terminal-specific device drivers, and as such, is
generally highly hardware dependent.

The X keretl offers a relatively low-level interface for controlling the screen,
but also for capturing events from the keyboard and mouse. This interface is made
available to applications as a library called X/ib. This general organization is
shown in Fig. 3-5. (In X terminology, the X kernel is referred to as the X server,
whereas programs that make use of its features, are called X clients. To avoid
confusion with standard client-server terminology, we refrain from using the
notions of X server and X client.)

X distinguishes between two types of application programs: normal applica-
tions and window managers. Normal applications generally request (through Xlib)
the creation of a window on the screen, which they subsequently use for input and
output processing. In addition, X will ensure that whenever an application’s win-
dow is active, that is, when the mouse is pointing inside that window, that all
events (rom the keyboard and the mouse are passed to the application.
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Server machine Client machine

Application Xlib interface

X protocol

Terminal {includes display X kernel
keyboard, mouse, etc.) — Device diivers

Figure 3-3. The basic organization of the X Window System.

A window manager is an application that is given special permission to
manipulate the entire screen. Normal applications have to obey the restrictions on
screen manipulation as implemented by the window manager. For example, the
window manager may decide that windows may never overlap, or that windows
should always be displayed in the same color. Consequently, the window manager
determines the *“look and feel” of the window system as a whole.

The interesting aspect of X, is that the X kemel and the X applications need
not necessarily reside on the same machine. In particular, X provides the X proto-
col, which is a network-oriented communication protocol by which an instance of
Xlib can exchange data and events with the X kernel. This leads to very different
types of client-server organizations by which the level of sophistication of the
client can vary considerably. In its simplest form, the client runs only the X ker-
nel, whereas all application code is on a remote machine. Terminals that are con-
figured like this, are often called X terminals. In its most sophisticated form, the
client machine contains numerous applications, including a window manager, and
hardly any network communication is necessary.

It is important to realize that user-inierface systems such as X essentially pro-
vide no more than 2 graphical interface (o applications. The only information that
applications can expect from such systems are events identifying basic user
actions that are directly related to the devices attached to the terminal. Examples

of such events are those regarding keystrokes, mouse position, button operations,
elc.

Compound Documents

As we also mentioned in Chap. 1, modern user interfaces do a lot more than
systems such as X. In particular, they allow applications to share a single graphi-
cal window, and 10 use that window to exchange data through user actions. Addi-

tional actions that can be performed by the user include what are generaily called
drag-and-drop operations, and in-place editing, respectively,
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A typical example of drag-and-drop functionality is moving an icon represent-
ing a file. A to an icon representing a trash can, resulting in the file being deleted.
In this case, the uscr interface will need to do more than just arrange icons on the
display: it will have to pass the name of the file A Lo the application associated
with the trash can as soon as A’s icon has been moved above that of the trash can
application. Other examples easily come to mind.

In-place editing can best be illustrated by means of a document containing
text and graphics, Imagine that the document is being displayed within a standard
word processor. As soon as the user places the mouse above an image, the user
interface passes that information to a drawing application to allow the user to
modify the image. For cxample, the user may have rotated the image, which may
effect the placement of the image in the document. The user interface therefore
finds out what the new height and width of the image are, and passes this informa-
tion to the word processor. The latter, in turn, can then automaticaily update the
page layout of the decumemnt,

The key idea behind these user interfaces is the notion of a compound docu-
ment, which can be defined as a collection of documents, possibly of very dif-
ferent kinds (like text, images, spreadsheets, etc.), which are seamlessly integrated
at the user-imterface level. A user interface that can handle compound documents
hides the fact that different applications operate on different parts of the docu-
ment. To the user, all parts are integrated in a seamless way. When changing one
part affects other parts, the user interface can take appropnate measures, for
example, by notitying the relevant applications.

Analogous to the situation described for the X Window System, the applica-
uons associated with a compound document do not have to execule on the client’s
machinc. However, it should be clear that user interfaces that support compound
documents may have to do a lot more processing than those that do not.

3.2.2 Client-Side Software for Distribution Transparency

As we also mentioned in Sec, 1.5, client software comprises more than just
user interfaces. In many cases, parts of the processing and data level in a client-
server application are executed on the client side as well. A special class is
formed by embedded client software, such as for automatic teller machines
(ATMs), cash registers, barcode readers, TV set-top boxes, etc. In these cases, the
user interface is a relatively small part of the client software, in contrast to the
local processing and communication facilities.

Besides the user interface and other application-related softwarc, client
software comprises components for achieving distribution transparency. Ideally, a
client should not be aware that it is communicating with remote processes. In con-
trast, distribution is often less transparent to servers for reasons of performance
and correctness. For example, in Chap. 6 we will show that replicated servers
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sometimes need to communicate in order to establish that operations are per-
formed in a specific order at each replica.

Access transparency is generally handied through the generation of a client
stub from an interface definition of what the server has to offer. The stub provides
the same interface as available at the server, but hides the possible differences in
tuachine architectures, as well as the actual communication.

There are different ways to handle location, migration, and relocation tran-
sparency. Using a convenient naming system is crucial, as we shall also see in the
next chapter. In many cases, cooperation with client-side software is also impor-
tant. For example, when a client is already bound to a server, the client can be
directly informed when the server changes location. In this case, the client's
middleware can hide the server’s current location from tbe user, and also tran-
sparently rebind to the server if necessary. At worst, the client’s application may
notice a temporary loss of performance.

In a similar way, many distributed systems implement replication tran-
sparency by means of client-side solutions. For example, imagine a distributed
system with remote objects. Replication of a remote object can be achieved by
forwarding an invocation request to each replica, as shown in Fig. 3-6. The

client’s proxy can transparently collect all responses and pass a single return value
to the client application.

Proxy replicatas

invocation request
\ Replica 1
Replica 2
All replicas see Replica 3

the same invocation

Figure 3-6, A possible approach to wransparent replication of a remote abject
using a client-side solution.

Finally, consider failure transparency. Masking communication failures with a
server is typically dome through client middleware. For example, client
middleware can be configured to repeatedly attempt to connect to a server, or
perhaps try another server after several attempts. There are even situations in
which the client middleware returns data it had cached during a previous session,
as is sometimes done by Web browsers that fail to connect to a server.,

Concurrency transparency can be handled through special intermediate ser-
vers, notably transaction monitors, and requires less support from client software.
Likewise, persistence transparency is often completely handled at the server.

TSRS S m S ket s e ———b——— e
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3.3 SERVERS

Let us now take a closer look at the organization of servers. In the following
pages, we first concentrate on a number of general design issues for servers, to be
followed by a discussion of object servers. Object servers are important because
ihey form the building block for implementing distributed objects

3.3.1 General Design Issues

A server is a process implementing a specific service on behalf of a collection
of clients. In essence, each server is organized in the same way: it waits for an
incoming request from a client and subsequently ensures that the request is taken
care of, after which it waits for the next incoming request.

There are several ways to organize servers. In the case of an iterative server,
the server itself handies the request and, if necessary, returns a response to the
requesting client. A concurrent server does not handle the request itself, but
passes it to a separate thread or another process, after which it immediately waits
for the next incoming request. A multithreaded server is an example of a con-
current server. An alternative implementation of a concurrent server is to fork a
new process for each new incoming request. This approach is followed in many
UNIX systems. The thread or process that handles the request is responsible for
returning a response to the requesting client.

Another issue is where clients contact a server. In all cases, clients send
requests to an endpoint, also called a port, at the machine where the server is
running. Each server listens to a specific endpoint. How do clients know the end-
point of a service? One approach is to globally assign endpoints for well-known
services. For example, servers that handle Internet FTP requests always listen to
TCP port 21. Likewise, an HTTP server for the World Wide Web will always
listen to TCP port 80. These endpoints have been assigned by the Internet
Assigned Numbers Authority (IANA), and are documented in (Reynolds and Pos-
1iel, 1994). With assigned endpoints, the client only needs to find the network
address of the machine where the server is running. As we explain in the next
chapter, name services can be used for that purpose.

There are many services that do not require a preassigned endpoint. For exam-
ple, a time-of-day server may use an endpoint that is dynamically assigned to it by
its local operating system. In that case, a client will first have to look up the end-
point. One solution, as we saw in DCE, is to have a special daemon running on
each machine that runs servers. The daemon keeps track of the current endpoint of
each service implemented by a colocated server. The daemon itself listens to a
well-known endpoint. A client will first contact the daemon, request the endpoint,
and then contact the specific server, as shown in Fig. 3-7(a).

It is common to associate an endpoint with a specific service. However, actu-
ally implementing each service by means of a separate server may be a waste of
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Figure 3-7. (a} Client-to-scrver binding using a dacmon as in DCE.
(b} Client-to-server binding using a superserver as in UNTX.

resources. For example, in a typical UNIX system, it is common to have lots of
servers running simultaneously, with most of them passively waiting until a client
request comes in. Instead of having to keep track of so many passive processes, it
is often more efficient to have a single superserver listening to each endpoint
associated with a specific service, as shown in Fig. 3-7(b). This is the approach
taken, for example, with the inetrd daemon in UNIX. Inerd listens to a number of
well-known ports for Internet services. When a request comes in, it forks a proc-
ess to take further care of the request. That process will exit after it is finished.

Another 1ssue that needs to be taken into account when designing a server, is
whether and how a server can be interrupted. For example, consider a user who
has just decided to upload a huge file to an FTP server. Then, suddenly realizing
that it is the wrong file, he wants to interrupt the server to cancel further data
transmission. There are several ways to do this. One approach that works only too
well in the current Internet (and is sometimes the only alternative), is for the user
to abruptly exit the client application (which will automatically break the connec-
tion to the server), immediately restart it, and pretend nothing happened. The
server will eventally tear down the old connection, thinking the client had
crashed.

A much better approach for handling communication interrupts, is to develop
the client and server such that it is possible to send out-of-band data, which is
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data that is to be processed by the server before any other data from that client.
One solution is to let the server listen to a separate control endpoint to which the
client sends out-of-band data, while at the same time listening (with & lower prior-
ity) to the endpoint through which the normal data passes. Another solution is to
send out-of-band data across the same connection through which the client is
sending the original request. In TCP, for example, it is possible to transmit urgent
data. When urgent data are received at the server, the latter is interrupted (e.g.,
through a signal in UNIX systems), after which it can inspect the data and handle
them accordingly.

A final, important design issue, is whether or not the server is stateless. A
stateless server does not keep information on the state of its clients, and can
change its own state without having to inform any client (Birman, 1996). A Web
server, for example, is stateless. [t merely responds to incoming HTTP requests,
which can be either for uploading a file to the server or (most often) for fetching a
file. When the request has been processed, the Web server forgets the client com-
pletely. Likewise, the collection of filcs that a Web server manages (possibly in
cooperation with a file server), can be changed without clients having to be
informed.

In contrast, a stateful server does maintain information on its clients. A typi-
cal example is a file server that allows a client to keep a local copy of a file, even
for performing update operations. Such a server would maintain a table containing
(client, file} entries. Such a table allows the server to keep track of which client
currenily has the update permissions on which file, and thus possibly also the
most recent version of that file. This approach can improve the performance of
read and write operations as perceived by the client. Performance improvement
over stateless servers is often an important benefit of stateful designs. However,
the example also illustrates the major drawback of stateful servers. If the server
crashes, it has to recover its table of (client, file) entries, or otherwise it cannot
guarantee that it has processed the most recent updates on a file. In general, a
stateful server needs o recover its entire state as it was just before the crash. As
we discuss in Chap. 7, enabling recovery can introduce considerable complexity.
In a stateless design, no special measures need to be taken at all for a crashed
server to recover. It simply starts running again, and waits for client requests to
come in.

When designing a server, the choice for a stateless or stateful design should
not affect the services provided by tbe server. For example, if files have to be
opened belore they can be read from, or written to, then a stateless server should
one way or the other mimic this behavior. A common solution, which we discuss
in more detail in Chap. 10, is that the server responds to a read or write request by
first openiug the referred file, then does the actual read or write operation, and
immediately closes the file again.

Iu other cases, a server may want to keep a record on a client’s behavior so
that 1t can more effectively respond to its requests. For example, Web servers
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sometimes offer the possibility to immediately direct a client to his favorite pages.
This approach is possibie only if the server has history information on that chient.
A common solution is to let the client send along additional information on its
previous accesses. This informtation is often transparently stored by the client’s
browser in what is called a cookie, which is a small piece of data containing
client-specific information that is of interest to the server. Cookies are never exe-
cuted by a browser; they are merely stored.

The first time a client accesses a server, the latter sends a cookie along with
the requested Web pages back to the browser, after wbich the browser safely
tucks the cookie away. Each subsequent time the client accesses the server, its
cookie for that server is sent along with the request. Although in principle, this
approach works fine, the fact that cookies are sent back for safe keeping by the
browser 1s often hidden entirely from users. So much for privacy. Unlike most of
grandma’s cookies, these cookies should geuerally stay where they are baked.

3.3.2 Object Servers

After having taken a look at some general design issues, we now consider a
special kind of server that is becoming increasingly important. An object server
is a server tailored to support distributed objects. The important difference
between a general object server and other (more traditional) servers, is that an
object server by itself does not really provide a specific service. Specific services
are implemented by the objects that reside in the server. Essentially, the server
provides only the means to invoke local objects, based on requests from remote
clients. As a comsequence, it is relatively easy to change services hy simply
adding and removiug objects.

An object server thus acts as a place where objects live. An object consists of
two parts: data representing its state and code forming the implementation of its
methods. Whether or not these parts are separated, or whether method implemen-
tations are shared by multiple objects, depends on the object server. Also, there
are differences in the way an object server invokes its objects. For example, in a
multithreaded server, each object may be assigned a separate thread, or a separate

thread may be used for each invocation request. These and other issues are dis-
cussed next.

Alternatives for Invoking Objects

For an object to be iuvoked, the object server needs to know which code to
execute, on which data it should operate, whether it should start a separate thread
to take carc of the invocation, and so on. A simple approach is to assume that all
objects look alike and that there is only one way to invoke an object. In essence,
this is what DCE does. Unfortunately, such an approach is generally inflexible
and often unnecessarily constrains developers of distributed objects.
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A much better approach is for a server to support different policies. Consider,
for example, transient objects. Recall that a transient object is an object that exists
only as long as its server exists, but possibly for a shorter time. An in-memory,
read-only copy of a file could typically be implemented as a transient object.
Likewise, a calculator (possibly running on a high-performance server), could also
be implemented as a transient object. A reasonable policy is to create a transient
object at the first invocation request, and to destroy it as soon as no clients are
bound to it anymore. The advantage of this approach is that a transient object will
need a server’s resources only as long as the object is really needed. The draw-
back is that an invocation may take some time to complete, because the object
needs to be created first. Therefore, an alternative policy is sometimes to create
all transient objects at the time the server is initialized, at the cost of consuming
resources even when no client is making use of the object.

In a similar fashion, a server could follow the policy that each of its objects is
placed in a memory segment of its own. In other words, objects share neither code
nor data. Snch a policy may be necessary when an object implementation does not
separate code and data, or when objects need to be separated for security reasons.
In the latter case, the server will need to provide special measures, or require sup-
port from the underlying operating system, to ensure that segment boundaries are
not violated. The altemative approach is to let objects at least share their code.
For example, a database containing objects that belong to the same class can be
efficiently implemented by loading the class implementation only once into the
server. When a request for an object invocation comes in, the server need only
fewch that object’s state from the database and execute the requested method.

Likewise, there are many different policies with respect to threading. The
simplest approach is to implement the server with only a single thread of control.
Alternatively, the server may have several threads, one for each of its objects.
Whenever an invocation request comes in for an object, the server passes the
request to the thread responsible for that object. If the thread is currently busy, the
request is temporarily queved. The advantage of this approach is that objects are
automatically protected against concurrent access: all invocations are serialized
through the single thread associated with the object. Of course, it is also possible
to use a separate thread for each invocation request, requiring that objects should
have already been protected against concurrent access. Independent of using a
thread per object or thread per method is the choice of whether threads are created

on demand or the server maintains a pool of threads. Generally there is no single
best policy.

Object Adapter

Decisions on how to invoke an object are commonly referred to as activation
policies, to emphasize that in many cases the object itself must first be brought
into the server’s address space (i.e., activated) before it can actually be invoked.
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What is needed then, is a mechanism to group objects per policy. Such a mechan-
ism is sometimes called an object adapter, or object wrapper, but is often just
hidden away in a set of tools for building object servers. We adopt the term c.abjecl
adapter. An object adapter can best be thought of as software implementing a
specific activation policy. The main issue, however, is that object adapters come
as generic components to assist developers of distributed objects, and which need
enly to be configured for a specific policy.

An object adapter has one or more objects under its control. Because a server
should be capable of simultaneously supporting objects that require different
activation policies, several object adapters may reside in the same server at the
same time. When an invocation request is delivered to the server, that request is
first dispatched to the appropriate object adapter, as shown in Fig. 3-8.

Server with three objects
hY
ik |
Objsct's stub
{sketaton)

Server machine

kY

Obiect adapter

Object adapter

Request
demuttiplexer
y | |

Local OS

Figure 3-8, Organization of an object server supporting different activation policies.

An important observation is that object adapters are unaware of the specific
interfaces of the objects they control. Otherwise, they could never be generic. The
only issue that is important to an object adapter is that it can extract an object
reference from an invocation request, and subsequently dispatch the request to the
referenced object, but now following a specific activation policy. As is also
shown in Fig. 3-8, rather than passing the request directly to the object, an adapter
hands an invocation request to the server-side stub of that object. The stub, also
called a skeleton, is normally generated from the interface definitions of the
object, unmarshals the request and invokes the appropriate method.

As an example, consider an object adapter that manages a numbcer of objects.
The adapter implements the policy that it has a single thread of control for each of
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its objects. To interact with the object-specific skeletons that marshal and
unmarshal requests, it expects that each skeleton implements the operation

invoke{unsigned in_size, char in_args[],unsigned* out_size,char” out_args(])

in which in_args is an array of bytes that needs to be nnmarshaled by the stub.
The array contains an identification of the method, along with values for all its
parameters. The exact format of the array is known only to the stub, which is also
responsible for the actual invocation. The parameter in_size specifies the length of
in_args. In a similar fashion, all output is marshaled by the stub into an array
out_args which is dynamically created by the stub. The length of the array is
specified by the output parameter out_size. {Note that invoke is similar to the ver-
sion discussed in the previous chapter, which was used for dynamic invocation.)

/* Definitions needed by caller of adapter and adapter */
#define TRUE 1

#define MAX_DATA 65536

f* Definition of general message format. */
struct message {

long s0Urce; /" sender’s identity *f
long object_id; #* identifier for the requested object *f
long method_id,; f* identifier for the requested method *
unsigned size; /* total bytes in list of parameters *
char *data, f* parameters as sequence of bytes *
2
f* General definition of operation to be called at skeleton of object )

typedef void (*METHOD _CALL)(unsigned, char*, unsigned*, char*);

longregister_object{METHOD _CALL call); /* register an object i
void unregister_object(long chject_id); /* unregister an object *
void inveke _adapter(message *request) /* call the adapter *f

Figure 39, The header.h file used by the adapter and any program that calls an adapter.

Fig. 3-9 shows the header file of the adapter. The most important part is the
definition of the messages the adapter exchanges with remote clients. Each client
is expected to marshal an invocation request into a message having five fields.
Likewise, the adapter will return a response in a message having the same struc-
ture. The field source identifies the sender of the message. The ohbject_id and
method_id fields uniquely identify the object and the method, respectively, which
are to be invoked. The input data that are to be passed to the stub, are contained in
the array data of which the exact size is given by the field size. The results of the
invocation are similarly later put into the data field of a new message.
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The header file atso contains the definition of what the adapter expects it can
call at the server-side stub of an object by means of the METHOD_CALL type
definition.

Finally, the adapter provides two procedures that can be called by a server 1o
register and unregister objects at the adapter. Registration takes place by passing a
pointer to the object-specific implementation of the invoke procedure, as imple-
mented in the object’s stub, Registration returns a number that can be effectively
used as an object identifier relative to the adapter. To unregister an object, the
server merely passes this number when calling unregister _object. The actual call
to the adapter is done through the procedure invoke_adapter, which requires an
identifier for the object and an invocation request. The results will later be put into
a separate buffer, as we explain next.

typedef struct thread THREAD; #* Hidden definition of a thread. *
THREAD *create _thread(void (*body){long tid}, long thread _id);

/* Create a thread by giving a pointer to a function that defines the actual !
/* behavior of the thread, along with an integer that is used to *

f* uniquely identify the thread. */

void get_msg(unsigned *size, char **data); )
void put_msg(THREAD *recsiver, unsigned size, char *data);
* Calling get_msg blocks the thread until a message has been putinto its ~ */
{* associated buffer, Putting a message in a thread’s buffer is a nonblocking */
/" operation, o)

Figure 3-10. The thread.h file used by the adapter for using threads.

To implement the adapter, we assume there is a thread package available that
provides the necessary facilities for creating (and deleting) threads and for letting
threads communicate. Communication between threads takes place hy means of
buffers. In particular, each thread has its own associated buffer from which it can.
remove a message by means of the blocking operation get_msg. Messages are
appended to a buffer through the nonblocking operation put_msg. The main part
of the header file of the thread package is shown in Fig. 3-10.

We now come to the actual implementation of the adapter, which is shown in
Fig. 3-11. Each object has its own associated thread specified by the procedure
thread_per_object. A thread starts by blocking until an invocation request has
been put into its associated buffer. The request is immediately passed to the
object’s stub by calling invoke{object _id} with the appropriate parameter values.
The results of the object invocation are returned in the variable results, and will
then have to be copied to a response message. That response message is con-
structed by first setting the fields object_id and method_id, and subsequently
copying the results to the data field of the message. At that point, the response can
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#include <header.h>
#include <thread.h>
#define MAX_OBJECTS 100

#detine NULL o
#define ANY -1
METHOD_CALL invoke[MAX_OBJECTS];  /* array of pointers to stubs %/
THREAD *root; /* demultiplexer thread *f
THREAD "thread[MAX_OBJECTS]; /* one thread per object i
void thread_per_object(long object_id) (
message *req, *res; /" request/response message */
unsigned size; /" size of messages *f
char *results; /* array with all results *f

while(TRUE}) {
get_msg(&size, (char*) &req); /* block for invocation request */

/* Pass request to the appropriate stub. The stub is assumad to *f
/* allocate memory for storing the results. *f
(invoke[object _id]}{req—slze, req—data, &size, &results);

res = malloc(sizeof(message)+size); /* create response message */

res—object_id = object_id; * identify cbject Vi
res—method_id = req.method_id;  /* identity method “t
res—size = size; 7 set size of invocation results*/
memcpy(res—data, results, size);  / copy results into response  */
put_msg(root, sizeof{res), res); /* append response to butfer */
free(req); /* free memory of requesl */
free{results); /* free memory of results *f

}

void invoke_adapter(long oid, message *request) {
put_msg(thread(oid], sizeof(request), request);
}

Figure 3-11, The main part of an adapter that implements a thread-per-cbhject
policy.
be handed over to the demultiplexer, as shown in Fig. 3-8. In our example, the
demultiplexer is implemented by a separate thread referred to by the variable root.
The implementation of invoke _adapter is now simple. The calling thread (i.e.,
the demultiplexer in our example) appends its invocation request to the buffer of
the thread associated with the object that is required to be invoked. Later, the
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demultiplexer can fetch the resuits from its own buffer, after which they can be
returned to the client that originally requested the invocation.

It is important to note that the implementation of the adapter is independent of
the objects for which it handles invocations. In fact, no object-specific code has
been included in the example implementation. Consequently, it becomes possible
to construct generic object adapters and conceptually place these adapters in the
middieware layer. Developers of object servers need then concentrate only on the
development of objects, and simply specify which adapter should control the
invocation of those objects.

As a final remark, although we have shown a separate demultiplexing com-
ponent in Fig. 3-8 that takes care of dispatching incoming invocation requests 1o
the appropriate object adapter, such a demultiplexer is actually not necessary.
Instead, we could equally well use an object adapter for that purpose. As we dis-
cuss in Chap. 9, this latter approach is followed in CORBA.

3.4 CODE MIGRATION

So far, we have been mainly concerned with distributed systems in which
communication is limited to passing data. However, there are situations in which
passing programs, sometimes even while they are being executed, simplifies the
design of a distributed system. In this section, we take a detailed look at what
code migration actually is. We start by considering different approaches to code
migration, followed by a discussion on how to deal with the local resources that a
migrating program uses. A particularly hard problem is migrating code in hetero-
geneous systems, which is also discussed. To make matters concrete, we discuss
the D’ Agents system for mobile agents at the end of this section. Note that secu-
rity issues concerning code migration are deferred to Chap. 8.

34.1 Approaches to Code Migration

Before taking a look at the different forms of code migration, let us first con-
sider why it may be useful to migrate code.

Reasons for Migrating Code

Traditionally, code migration in distributed systems took place in the form of
process migration in which an entire process was moved from one machine to
another. Moving a running process to a different machine is a costly and intricate
task, and there had better be a good reason for doing so. That reason has always
been performance. The basic idea is that overall system performance can be
improved if processes are moved from heavily-loaded to lightly-loaded machines.
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Load is often expressed in terms of the CPU queue length or CPU utilization, but
other performance indicators are used as well.

Load distribution algorithms by which decisions are made conceming the
allocation and redistribution of tasks with respect to a set of processors, play an
important role in compute-intensive systems. However, in many modern distrib-
uted systems, optimizing computing capacity is less an issue than, for example,
trying torminimize communication. Moreover, due to the heterogeneity of the
underlying platforms and computer networks, performance improvement through
code umgration is often based on qualitative reasoning instead of mathematical
models.

Consider, for example, a client-server system in which the server manages a
huge database. If a client application needs to do many database operations
involving large quantities of data, it may be better to ship part of the client appli-
cation to the server and send only the results across the network. Otherwise, the
network may be swamped with the transfer of data from the server to the client. In
this case, code migration is based on the assumption that it generally makes sense
to process data close to where those data reside.

This same reason can be used for migrating parts of the server to the client.
For example, in many interactive database applications, clients need to fill in
forms that are subsequently translated into a series of database operations. Proc-
essing the form at the client side, and sending only the completed form to the
server, can sometimes avoid that a relatively large numher of small messages
need to cross the network. The result is that the client perceives better perfor-
mance, while at the same time the server spends less time on form processing and
communication.

Support for code migration can also help improve performance by exploiting
parallelism, but without the usual intricacies related to parallel programming. A
typical example is searching for information in the Web. It is relatively simple to
implement a search query in the form of a small mobile program that moves from
site to site. By making several copies of such a program, and sending each off to
different sites, we may be able to achieve a linear speed-up compared to using just
a single programni instance.

Besides improving performance, there are other reasons for supporting code
migration as well. The most important one is that of flexibility. The traditional
approach to building distributed applications is to partition the application into
different parts, and deciding in advance where each part should be executed. This
approach, for example, has led to the different multitiered client-server applica-
tions thscussed in Chap. 1.

However, if code can move between thiferent machines, it becomes possible
to dynamically configure distributed systems. For example, suppose a server
implements a standardized interface to a file system. To allow remote clients to
access the file system, the server makes use of a proprietary protocol. Normally,
the client-side implementation of the file system interface, which is hased on that
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protocol, would need to be linked with the client application. This approach
requires that the software be readily available to the client at the time the client
apptication is being developed. :

An alternative is to let the server provide the client’s implementation no
sooner than is strictly necessary, that is, when the client binds to the server. At
that point, the client dynamically downloads the implementation, goes through the
necessary initialization steps, and subsequently invokes the server. This principle
is shown in Fig. 3-12. This mode! of dynamically moving code from a remote site
does require that the protocol for downloading and initializing code is standard-
ized. Also, it is necessary that the downloaded code can be executed on the
client’s machine. Different solutions are discussed below and in later chapters.

2. Client and servar

communicate

Ctliant Server

]

1. Client fetches code

1

L1
7

Service-speciic
client-side code

Code repository

Figure 3-12. The principle of dynamically configuring a client to communicate

to a server. The client first fetches the necessary software, and then invokes the
SCIVEL

The important advantage of this model of dynamically downloading client-
side software, is that clients need not have all the software preinstalled to talk to
servers. Instead, the sofiware can be moved in as necessary, and likewise, dis-
carded when no longer needed. Another advantage is that as long as interfaces are
standardized, we can change the client-server protocol and iis implementation as
often as we like. Changes will not affect existing client applications that rely on
the server. There are, of course, also disadvantages. The most serious one, whicli
we discuss in Chap. 8, has to do with security. Blindly trusting that the down-
loaded code implements only the advertised interface while accessing your unpro-

tected hard disk and does not send the juiciest parts t© heaven-knows-who may
not always be such a good idea.

Models for Code Migration

Although code migration suggests that we move only code between machines,
the term actually covers a much richer area. Traditionally, communication in dis-
tributed systems is concemed with exchanging data between processes. Code
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migration in the broadest sense deals with moving programs between machines,
with the intentich to have those programs be executed at the target. In some cases,
as in process migration, the execution status of a program, pending signals, and
other parts of the environment must be moved as well.

To get a better understanding of the different models for code migration, we
use a framework described in (Fugetta et al., 1998). In this framework, a process
consists of three segments. The code segment is the part that contains the set of
instructions that make up the program that is being executed. The resource seg-
ment contains references to external resources needed by the process, such as
files, printers, devices, other processes, and so on. Finally, an execution segment
is used to store the current execution state of a process, consisting of private data,
the stack, and the program counter.

The bare minimum for code migration is to provide only weak mobility. In
this modcl, it is possible to transfer only the code segment, along with perhaps
some initialization data. A characteristic feature of weak mobility is that a
transferred program is always started from its initial state. This is what happens,
for example, with Java applets. The benefit of this approach is its simplicity.
Weak mobility requires only that the target machine can execute that code, which
essentially boils down to making the code portable. We return to these matters
when discussing migration in heterogeneous systems.

In contrast to weak mobility, in systems that support strong mobility the exe-
cution segment can be transferred as well. The characteristic feature of strong
mobility is that a running process can be stopped, subsequently moved to another
machine, and then resume execution where it left off. Clearly, strong mobility is
much more powerful than weak mobility, but also much harder to implement, An
example of a system that supports strong mobility is D’ Agents, which we discuss
later in this section.

Irrespective of whether mobility is weak or strong, a further distinction can be
made between sender-initiated and receiver-initiated migration. In sender-
initiated migration, migration is initiated at the machine where the code currently
resides or is being executed. Typically, sender-initiated migration is done when
uploading programs to a compute server. Another example is sending a search
program across the Intemet to a Web database server to perform the queries at
that server. In receiver-initiated migration, the initiative for code migration is
taken by the target machine. Java applets are an example of this approach.

Receiver-initiated migration is often simpler to implement than sender-
initiated migration. In many cases, code migration occurs between a chient and a
server, where the client takes the initiative for migration. Securely uploading code
to a server, as is done in sender-initiated migration, often requires that the client
has previously been registered and authenticated at that server. In other words, the
server is required to know all its clients, the reason being is that the client will
presumably want access to the server’s resources such as its disk. Protecting such
resources is essential. In contrast, downloading code as in the receiver-initiated
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case¢, can often he done anonymously. Moreover, the server is generally not
interested in the client’s resources. Instead, code migration to the client is done
only for improving client-side performance. To that end, only a limited number of
resources need to be protecled, such as memory and network connections. We
return to secure code migration extensively in Chap. 8.

In the case of weak mobility, it also makes a difference if the migrated code is
executed by the targel process, or whether a separate process is started. For exam-
ple, Java applets are simply downloaded by a Web browser and are executed in
the browser’s address space. The benefit of this approach is that there is no need
to start a separate process, thereby avoiding communication at the target machine.
The main drawback is that the target process needs to be protected against mali-
ctous or inadvertent code executions. A simple solution is to let the operating sys-
tem take care of that by creating a separate process to execute the migrated code,
Note that this solution does not solve the resource-access problems just men-
tioned.

Instead of moving a running process, also referred to as process migration,
strong mobility can also be supported by remote cloning. In contrast to process
migration, cloning yields an exact copy of the original process, but now running
on a different machine. The cloned process is executed in parallel to the original
process. In UNIX systems, remote cloning takes place by forking off a child proc-
ess and letting that child continue on a remote machine. The benefit of cloning is
that the model closely resembles the one that is already used in many applications.
The only difference is that the cloned process is executed on a different machine.
In this sense, migration by cloning is a simple way to improve distribution tran-
sparency.

The various alternatives for code migration are summarized in Fi g.3-13.

Execute at
Sender-initiated " target pracass
mobility ™~ Exscute in

Weak maobility Separate process

Execute at
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Migrate process
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Figure 3-13. Alternatives for code migration,
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3.4.2 Migration and Local Resources

So far, only the migration of the code and exccution segment has been taken
into account., The resource segment requires some special attention. What often
makes code migration so difficult, is that the resource segmeni cannot always be
simply iransferred along with the other segments without being changed. For
example, suppose a process holds a reference to a specific TCP port through
which it was communicating with other (remote) processes. Such a reference is
held in its resource segment. When the process moves to another location, it will
have to give up the port and request a new one at the destination, In other cases,
(ransferring a reference need not be a problem. For example, a reference to a file
by means of an absolute URL will remain valid irrespective of the machine where
the process that helds the URL resides.

To understand the implications that code migration has on the resource seg-
ment, Fuggetta et al. distinguish three types of process-to-resource bindings. The
strongesl binding is when a process refers to a resource by its identifier. In that
case, the process requires precisely the referenced resource, and nothing else. An
example of such a binding by identifier is when a process uses a URL to refer to
a specific Web site or when it refers to an FTP server by means of that server’s
Internet address. In the same line of reasoning, references to local communication
endpoints also lead 1o a binding by identifier.

A weaker form of process-to-resource binding is when only the value of a
resource is needed. In that case, the execution of the process would not be
affected if another resource would provide that same value. A typical example of
binding by value is when a program relies on standard libraries, such as those for
programming in C or Java. Such libraries should always be locally available, but
their exact location in the local file system may differ between sites. Not the
specific files, but their content is important for the proper execution of the proc-
ess.

Finally, the weakest form of binding is when a process indicates it needs only
a resource of a specific type. This binding by type is exemplified by references to
local devices, such as monitors, printers, and so on.

When migrating code, we often need to change the references to resources,
hut cannot affect the kind of process-to-resource binding. If, and exactly how a
reference should be changed, depends on whether that resource can be moved
along with the code (o the target machine. More specifically, we need to consider
the resource-to-machine bindings, and distinguish the following cases. Unat-
tached resources can be easily moved between different machines, and are typi-
cally (data) files associated only with the program that is to be migrated. In con-
trast, moving or copying a fastened resource may be possible, but only at rela-
tively high costs. Typical examples of fastened resources are local databases and
complete Web sites. Although such resources are, in theory, not dependent on
their current machine, it is often infeasible to move them to another environment.
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Finally, fixed resources are intimately bound to a specific machine or environ-
ment and cannot be moved. Fixed resources are often local devices, Another
example of a fixed resource is a local communication endpoint.

Combining three types of process-to-resource bindings, and three types of
resource-to-machine bindings, leads to nine combinations that we need to con-
sider when migrating code. These nine combinations are shown in Fig. 3-14.

Resource-to-machine binding

Unattached Fastenad Fixed
Process- | By identifier MV {or GR) GR {or MV} GR
to-resource | By value CP {or MV ,GR} GR (or CP) GR
binding | By type RB (or MV,CP} | RB {or GR,CP) | RB {or GR)

GR  Establish a global systemwide reference
MV Move the resource

CP  Copy the value of the resource

RB  Rebind process to locally available resource

Figure 3-14. Actions to be taken with respect to the references to local
resources when migrating code to another machine.

Let us first consider the possibilitics when a process is bound to a resource by
identifier. When the resource is unattached, it is generally best to move it along
with the migrating code. However, when the resource is shared by other
processes, an alternative is to establish a global reference, that is, a reference that
can cross machine boundaries. An example of such a reference is a URL. When
the resource is fastened or fixed, the best solution is also to establish a giobal
reference.

It is important to realize that establishing a global reference may be more than
Just making use of URLs, and that the use of such a reference is sometimes prohi-
bitively expensive. Consider, for example, a program that generates high-quality
images for a dedicated multimedia workstation. Fabricating high-quality images
in real time is a compute-intensive task, for which reason the program may be
moved to a high-performance compute server. Establishing a global reference to
the multimedia workstation means setting up a communication path between the
compute server and the workstation. In addition, there is significant processing
involved at both the server and the workstation to meet the bandwidth require-
ments of transferring the images. The net result may be that moving the program
to the compute server is not such a good idea, only because the cost of the global
reference is too high.

Another example of where establishing a global reference is not always that
casy, is when migrating a process that is making use of a local communication
endpoint. In that case, we are dealing with a fixed resource to which the process is
bound by (he ideutifier. There are basically two solutions. One solution is to let
the process set up a connection to the source machine after it has migrated and

T T e g n B e -
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install a separate process at the source machine that simply forwards all incoming
messages. The main drawback of this approach is that whenever the source
machine malfunctions, communication with the migrated process may fail. The
alternative solution is to have all processes that communicated with the migrating
process, change their global reference, and send messages to the new communica-
tion endpoint at the target machine.

The situation is different when dealing with bindings by value. Consider first
a fixed resource. The combination of a fixed resource and binding by value
occurs, for example, when a process assumes that memory can be shared betweeu
processes. Establishing a global reference in this case would mean that we need to
implement distributed shared memory mechanisms as discussed in Chap. 1. Obvi-
ausly, this is not really a viable solution.

Fastened resources that are referred to by their value, are typically runtime
libraries. Normally, copies of such resources are readily available on the target
machine, or should otherwise be copied before code migration takes place. Estab-
lishing a global reference is a better alternative when huge amounts of data are to
be copied, as may be the case with dictionaries and thesauruses in text processing
systems.

The easiest case is when dealing with unattached resources. The best solution
is to copy (or move) the resource to the new destination, unless it is shared by a
number of processes. In the latter case, establishing a global reference is the only
option.

The last case deals with bindings by type. Irrespective of the resource-to-
machine binding, the obvious solution is to rebind the process to a locally avail-
able resource of the same type. Only wheu such a resource is not available, will

we need to copy or move the original one to the new destination, or establish a
global reference.

3.4.3 Migration in Heterogeneous Systems

So far, we have tacitly assumed that the migrated code can be easily executed
at the target machine. This assumption is in order when dealing with homogene-
ous systems. In generai, however, distributed systems are constructed on a hetero-
geneous collection of platforms, each having their own operating system and
machine architecture. Migration in such systems requires that each platform is
supported, that is. that the code segment can be executed on each platform,
perhaps after recompiling the original source. Also, we nced to ensurc that the
execution segment can be properly represented at each platform.

Problems can be somewhat alleviated when dealing only with weak mobility.
In that case, there is basicailly no runtime information that needs to be transferred
between machines, so that it suffices to compile the source code, but generate dif-
ferent code segments, one for each potential target platform.
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In the case of strong mobility, the major problem that needs to be solved is the
transfer of the execution segment. The problem is that this segment is highly
dependemt on the platform on which the process is being executzed. In fact, only
when the target machine has the same architecture and is mnning exactly the
same operating system, is it possible to migrate the execution segment without
having to alter it.

The execution segment contains data that is private to the process, its current
stack, and the program counter. The stack will partly consist of temporary data,
such as values of local variables, but may also contain platform-dependent infor-
mation such as register values. The important observation is that if we can avoid
having execution depend on platform-specific data, it would be much easier to
transfer the segment 1o a different machine, and resume execution there.

A solution that works for procedural languages such as C and Java is shown in
Fig. 3-15 and works as follows. Code migration is restricted to specific points in
the execution of a program. In particular, migration can take place only when a
next subroutine is called. A subroutine is a function in C, a method in Java, and so
on. The runtime system maintains its own copy of the program stack, but in a
machine-independent way. We refer to this copy as the migration stack. The
migration stack is updated when a subroutine is called, or when execution returns
from a subroutine.

When a subroutine is called, the runtime system marshals the data that have
been pushed onto the stack since the last call. These data represent values of local
variables, along with parameter values for the newly called subroutine. The
marshaled data are then pushed onto the migration stack, along with an identifier
for the called subroutine. In addition, the address where execution should continue
when the caller returns from the subroutine is pushed in the form of a jump label
onto the migration stack as well.

If code migration takes place at the point where a subroutine is called, the
runtime system first marshals all global program-specific data forming part of the
execution segment, Machine-specific data are ignored, as well as the current
stack. The marshaled data are transferred to the destination, along with the migra-
tion stack. In addition, the destination loads the appropriate code segment contain-
ing the binaries fit for its machine architecture and operating system. The
marshaled data belonging to the execution segment are unmarshaled, and a new
runtime stack is constructed by unmarshaling the migration stack. Execution can
then be resumed by simply entering the subroutine that was called at the original
site.

It is clear that this approach works only if the compiler generates code to
update the migration stack whencver a subroutine is entered or exited. The com-
piler also generates labels in the caller’s code allowing a return from a subroutine
ic be implemented as a (machine-independent) jump. In addition, we also need a
suitahle runtime system. Nevertheless, there are a number of systems that have
successfully exploited these techniques. For example, Dimitrov and Rego (1998)
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Local stack precedurs call onto
operations B migration stack
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Figure 3-15. The principle of maintaining a migration stack to support migra-

tion of an execution segment in a heterogeneous environment.
show how migration of C/C++ programs in heterogeneous systems can be sup-
ported by slightly modifying the language, and using only a preprocessor to insert
the necessary code to maintain the migration stack,

The problems coming from heterogeneity are in many respects the same as
those of portability. Not surprisingly, solutions are also very similar. For example,
at the end of the 1970s, a simple solution to alleviate many of the problems of
porting Pascal to different machines was to generate machine-independent inter-
mediate code for an abstract virtnal machine {(Barron, 1981). That machine, of
course, would need to be implemented on many platforms, but it would then allow
Pascal programs to be run anywhere. Although this simple idea was widely used
for some years, it never really caught on as the general solution to portability
problems for other languages, notably C.

About 20 years later, code migration in heterogeneous systems is being
attacked by scripting languages and highly portable languages such as Java. Al
such solutions have in common that they rely on a virtual machine that either
directly interprets source code {as in the case of scripting languages), or otherwise
interprets intermediate code generated by a compiler (as in Java). Being in the
right place at the right time is also important for language developers.
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The only serious drawback of the virtual-machine approach is that we are
generally stuck with a specific language, and it is often not one that has been used
before. For this reason, it is important that languages for mobility provide inter-
faces to existing languages.

3.4.4 Example: D’Agents

To illustrate code migration, let us now take a look at a middleware platform
that supports various forms of code migration. D’ Agents formery called Agent
Tel, is a system that is built around the conceplt of an agent. An agent in D’ Agents
is a program that can migrate between machines in a heterogeneous system. Here,
we concentrate only on the migration capabilities of D’Agenis, and return to a
more general discussion on software agents in the next section. Also, we ignore
the security of the system and defer further discussion to Chap. 8. More informa-
tion on D”Agents can be found in (Gray, 1996b; Kotz ct al., 1997).

Overview of Code Migration in D’Agents

An agent in D’Agents is a program thal can migrate between different
machines. In principle, programs can be written in any language, as long as the
target machine can execute the migrated code. Iu practice, this means that pro-
grams in D’Agents are written in an interpretable language, notably, the Tool
Command Language, that is, Tcl (Ousterhout, 1994), Java, or Scheme (Rees and
Clinger, 1986). Using only interpretable languages makes it much easier to sup-
port heterogeneous systems.

A program, or agent, is executed by a process running the interpreter for the
language in which the program is written. Mobility is supported in three different
ways: sender-initiated weak mobility, strong mobility by process migration, and
strong mobility by process cloning.

Weak mobility is implemented by means of the agent_submit command. An
identifier of the target machine is given as a parameter, as well as a script that is
to be executed at that machine. A script is nothing but a sequence of instructions.
The script is transferred to the target machine along with any procedure defini-
tions and copies of variables that the target machine needs to execute the script,
At the target machine, a process running the appropriate interpreter is subse-
quently started to execute the script. In terms of the alternatives for code migra-
tion mentioned in Fig. 3-13, D’Agents thus provides support for sender-initiated
weak mobility, where the migrated code is executed in a separate process.

To give an example of weak mobility in D’ Agents, Fig. 3-16 shows part of a
simple Tcl agent that submits a script to a remote machine. In the agent, the pro-
cedure factorial takes a single parameter and recursively evaluates the expression
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that calculates the factorial of its parameter value. The variables number and
machine are assumed to be properly initialized (e.g., by asking the user for
vatues), after which the agent calls agent_submit. The script

factorial $number

is sent to the target machine veferred to by the variable machine, along with the
description of the procedure factorial and the initial value of the variable number.
D’ Agents auntomatically arranges that resulis are sent back to the agent. The call
10 agent_recsive establishes that the submitting agent is blocked until the results
of the calculation have been received.

proc factarial n {
if{$n<1}{ratum1;} #fac(1) =1
expr $n * | factoriat [ expr $n — 1] ] # fac{n) = n * fac(n—1)

}

sat number ... # tells which factorial to compute
set machine ... # identify the target machine

agent_submit $rachine —procs factorial ~vars number -seript { factorial $number }

agent_receive ... # receive the results (left unspecified for simplicity)

Figure 3-16. A simple example of a Tcl agent in D’ Agents submitting a script
10 a remote machine {adapted from Gray, 1995).

Sender-initiated strong mobility is also supported, both in the form of process
migration and process cloning. To migrate a running agemt, the agent calls
agent_jump specifying the target machine to which it should migrate. When
agent_jump is called, execution of the agent on the source machine is suspended
and its resource segment, code segment, and execution segment are marshaled
into a message that is subsequently sent to the target machine. Upon arrival of that
message, a new process running the appropriate interpreter is started. That process
unmarshals the message and continues at the instruction following the previous
call to agent_jump. The process that was running the agent at the source
machine, exits.

An example of agent migration is given in Fig. 3-17, which shows a simpli-
fied version of an agent that finds out which users are currently logged in by exe-
cuting the UNIX command who on each host. The behavior of the agent is given
by the procedure afl _users. It maintains a list of users that is initially enzpty. The
set of hosis that it should visit is given by the parameter machines. The agent
jumps to each host, puts the results of executing who in the variable users, and
appends that o its list In the main program, the agent is created on the current

i T
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proc all_usets machines {

set list " # Create an initially ampty list
foreach m $machines {  # Consider all hosts in the set of given machines
agent_jump $m # Jump to each host

set users [exec who] # Execute the who command
append list users  # Append the resuits to the list

}

retum $list # Return the complete list when done
}
sot machines ... # Initialize the set of machines to jump to
set this_machine ... # Set to the host that starts the agent

# Create a migrating agent by submitting the script to this machine, from whera
# it will jump to all the others in $machines.
agent_subimit $this_machine —procs ali_users —vars machines \

-script { all_users $machines }

agent_receive ... # receive the results (left unspecified for simplicity)

Figure 3-17. An example of a Tcl agent in D"Agents migrating to different
machines where it executes the UNIX who command (adapted from Gray, 1995).

machine by submission, that is, using the previously discussed mechanisms for
weak mobility. [n this case, agent_submit is requested to execute the script

all_users $machines

and 1s given the procedure and set of hosts as additional parameters,

Finally, process cloning is supported by means of the agent_fork command.
This command behaves almost the same as agent_jump, except that the process
running the agent at the source machine simply continues with the instruction fol-
lowing its call to agent_fork. Like the fork operation in UNIX, agent_fork retums
a value by which the caller can check whether it is the cloned version
(corresponding to the “child” in UNIX), or the original caller (i.e., the “parent”’).

Implementation Issues

To explain some of the internal implementation details, consider agents that
have been written in Tcl. Internally, the D’ Agents systems consists of five layers,
as shown in Fig. 3-18. The lowest layer is comparable to Berkeley sockets in the
sense that it implements a common interface to the communication facilities of
the underlying network. In D’Agents, it is assumed that the underlying system
provides facilities for handling TCP messages and e-mail.
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Figure 3-18. The architecture of the D’ Agents system.

The next layer consists of a server that runs at each machine where D’ Agents
agents are executing. The server is responsible for agent management, authentica-
tion, and management of communication between agents. For the latter, the server
assigns a location-unigue identifier to each agent. Using the network address of
the server, each agent can then be referred to by an (address, locai-id)-pair. This
low-level name is used to set up communication between two agents.

The third layer is at the heart of the D’Agents system, and consists of a
language-independent core that supports the basic model of agents. For example,
this layer contains implementations to start and end an agent, implementations of
the various migration operations, and facilities for interagent communication.
Clearly, the core operates closely with the server, but, in contrast to the server, is
not responsible for managing a collection of agents running on the same machine.

The fourth layer consists of interpreters, one for each language supported by
D’Agents. Each interpreter consists of a component for language interpretation, a
security module, an interface to the core layer, and a separate module to capture
the state of a running agent. This last module is essential for supporting strong
mobility, and is discussed in more detail below.

The highest-level layer consists of agents written im one of the supported
languages. Each agent in D’ Agents is executed by a separate process. For exam-
ple, when an agent migrates to machine A, the server there forks a process that
will execute the appropriate interpreter for the migrating agent. The new process
is then handed the state of the migrating agent, after which it continues where the
agent had previously left off. The server keeps track of the processes it created
using a local pipe, so that it can pass incoming calls to the appropriate process.

The more difficult part in the implementation of D’Agents, is capturing the
state of a running agent and shipping that state to another machine. In the case of
Tel, the state of an agent consists of the parts shown in Fig. 3-19. Essentially,
there are four tables containing global definitions of variables and scripts, and two
stacks for keeping track of the execution status.

There is a table for storing global variables needed by the interpreter. For
example, there may be an event handler telling the interpreter which procedure to
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State o Description
Global interpreter variables | Variables needed by the interpreter of an agent
Global system variables Return codes, error codes, error strings, eic.
Global program variables User-defined global vanables in a program ]
Procedure definitions Definitions of scripts to be executed by an agent
Stack of commands Stack of commands currently being executed
Stack of call frames Stack of activation recards, one for each running command ;

Figure 3-19. The parts comprising the state of an agent in [’ Agents.

call when a message from a specific agent arrives. Such an (event, handler)-pair is
stored in the interpreter table. Another table contains global system variables for
storing error codes, error strings, result codes, result strings, etc. There is also a
separate table containing all user-defined global program variables. Finaily, a
separate table contains the definitions of the procedures associated with an agent.
These procedure definitions need to migrate along with the agent in order to allow
interpretation at the target machine.

The more interesting parts related to agent migration are the two stacks by
which an accurate account is kept of the actual execution status of an agent. Basi-
caily, an agent is considered as a series of Tcl commands, possibly embedded in
constructions such as loops, case statements, and so on. In addition, commands
may be grouped into procedures. As is normal for any interpreted language, an
agent js executed command by command.

First consider what happens when a basic Tcl command is executed, that is, a
command that is not a call to a user-defined procedure. The interpreter parses the
command and builds a record that is to be pushed onto what is called the com-
mand stack. Such a record contains all the necessary fields to actually execute
the command, such as its parameter values, a pointer to a procedure implemeniing
the command, and so on. This record is then pushed onto the stack, after which it
can be handed over to the component responsible for actnally ¢xecuting the com-
mand. In other words, the command stack gives a precise account of the current
execution status of an agent.

Tcl also supports user-defined procedures. In addition to the command stack,
the runtime environment of D’Agents keeps track of a stack of activation records,
also called call frames. A call frame in D’Agents contains a table of variables
local to the procedure, along with the names and values of the parameters by
which the procedure was called. A call frame is created only as the result of a pro-
cedure call, and as such is related to a procedure-call command as pusbed onto the
command stack. The call frame keeps a reference to its associated command.

Now consider what happens, for example, when an agent calls agent_jump,
by which the agent migrates to another machine. At that point, the complete state
of the agent as just described is marshaled into a series of bytes. In other words,
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all four tables and the two stacks are put together into a single array of bytes and
shipped to the target machine. The D’ Agents server on the target machine subse-
quently creates a new process running the Tcl interpreter. That process is handed
the marshaled data, which it then unmarshals into the state the agent was in when
it called agent_jump. By simply popping the command from the top of the com-
mand stack, ¢xecution continues exactly where it had left off.

3.5 SOFTWARE AGENTS

So far, we have been looking at processes from very different angles. First,
we concentrated on one of the essential issnes, namely the thread(s) of control
within a process. From the perspective of communication, we took a closer look at
the general organization of clients as well as servers. Finally, we considered
mobility of programs and processes. These more or less independent views on
processes come together in what are commonly referred to as software agents:
autonomous units capable of performing a task in collaboration with other, possi-
bly remote, agents.

Agents are playing an increasingly important role in distributed systems.
However, very similar to the fact that there was only an intuitive notion of what
exactly a process was (see, for example, Organick, 1972), software agents bave
yet to be precisely defined. In this section, we take a closer look at what agents
are and their role in distributed systems.

3.5.1 Software Agents in Distributed Systems

There is much controversy conceming what exactly an agent is. Staying in
line with the description given in (Jennings and Woolridge, 1998), we define a
software agent as an autonomous process capable of reacting to, and initiating
changes in, its environment, possibly in collaboration with users and other agents.
The feature that makes an agent more than just a process is its capability to act on
its own, and, in particular, to take initiative where appropriate.

Our definition of a software agent is rather broad, and many different types of
processes can easily be called an agent. Instead of trying to come to a better defin-
ition, it makes more sense to look at different types of agents. Again, several
atiempts in the literature have been made to develop a taxonomy of softwure
agents, but it scems hard for researchers to reach agreement on a single taxonomy.

Besides being autonomous, an important aspect of agents is that they should
also be able (o cooperate with other agents, The cowmbination of autonomy and
cooperation leads to the class of collaborative agents (Nwana, 1996). A colla-
borative agent is an agent that forms part of a multiagent system, in which agents
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seek to achicve some common goal through collaboration. A typical application
where collaborative agents could be used is arranging a meeting. Each attendee is
represented by an agent that has access to that user’s personal agenda. Given all
the individual constraints with respect to time, travel, place, and so on, the
separate agents would collaborate in setting up a meeting. From the perspective of
distributed systems development, exactly which information is exchanged, and
how that is processed is of less concern. Important is how communication takes
place. We return to interagent communication below.

Many researchers also separate mobile agents from other agent types. A
mobile agent is simply an agent having the capability to move between different
machines. In terms of the discussion on code migration in the previous section,
mobile agents often require support for sirong mobility, although this is not
strictly necessary. The requirement for strong mohility comes from the fact that
agents are autonomous and actively interact with their environment. Moving an
agent to another machine can hardly be done without considering its execution
state. However, as demonstrated by the D’Agents system, the combination of
agents and weak mobility is also useful. Note that mobility is a feature of agents
in general and does not lead to an exclusive class of its own, For example, it
makes sense to talk about mobile collaborative agents. A good example of practi-
cal use of mobile agents is given in (Brewington et al., 1999), in which the authors
describe how mobile agents are used to retrieve information distributed across 2a
large heterogeneous network such as the Internet.

The ability to collaborate with other agents or to move between different
machines are system properties of agents. They tell us nothing about what the
agent can do. When taking a look at an agent’s functionality, other classes can be
distinguished as well.

A generally recognized class is formed by interface agents, which are agents
that assist an end user in the use of one or more applicatious. A generally accepted
distinguishing property of an interface agent, is that it has learning capabilities
(Maes, 1994; Nwana, 1996). The more often it interacts with the user, the better
its assistance becomes. In the context of distributed systems, an example of
interesting interface agents are those that seek interaction with agents for users in
the same community. For example, special interface agents exist that actively
seek to bring buyers and sellers together. By getting an increasingly better under-
standing of what its owner is looking for, or has to offer, such an interface agent
should improve on selecting a proper group of peers.

Closely related to interface agents are information agents. The main func-
tion of these agents is to manage information from many different sources,
Managing information includes ordering, filtering, collating, and so on. What
makes information agents important in distributed systems, is that they operate on
information from physically different sources. Stationary information agents typi-
cally operate on incoming data streams. For example, an e-mail agent may he
capable of filtering unwanted mail from its owner’s mailbox, or automatically
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distributing incoming mail into appropriate subject-specific mailboxes. In con-
trast, mobile information agents generally roam the network on behalf of their
owner to collect required information.

In snmmary, agents can ofien be characterized by a number of properties, as
shown in Fig, 3-20 (see also Franklin and Graesser, 1996). Further distinctions
between agents are made by taking a look at how they actnally operate from the
perspective of artificial intelligence. For a brief overview, see (Hayes, 1999; Jen-
nings and Woolridge, 1998; Woolridge, 1998).

Property Commaon to Description
all agents?

Autonomous Yes Can act on its own
Reactive Yos Hesponds timely to changes in its environment
Proactive Yes initiates actions that affect its environment
Communicative Yeos Can exchange information with users and other agents
Continuous No Has a relatively long life span
Mobile No Can migrate from one site to ancther
Adaptive No Capable of leaming

Figure 3-20. Some important properties by which different types of agents can
be distinguished.

3.5.2 Agent Technology

Having only the notion of what agents are is not really helpfnl if there is no
support available for actually developing agent systems. An important issue is
then if we can isolate generally-used components of agents in distributed systems,
and incorporate these components into, for example, middleware. As a starting
point, the Foundation for Intelligent Physical Agents (FIPA) is developing a
general model for software agents. In this model, agents are registered at, and
operate under the regime of an agent platform as shown in Fig. 3-21. An agent
platform provides the basic services needed for any multiagent system. These
facilities inclnde those for creating and deleting agents, facilities to locate agents,
and facilities for interagent communication.

An agent management component keeps track of the agents for the associated
platform. It provides the facilities for creating and deleting agents, but also for
looking up the current endpoint for a specific agent. In this sense, it provides a
naming service by which a globally unique identifier is mapped to a local com-
munication endpoint. Name services are discussed in detail in the next chapter.

There is also a separate local directory service by which agents can look up
what other agents ou the platform have to offer. The directory service in the FIPA
model is based on the use of attribntes. What this means is that an agent provides



176 PROCESSES CHAP. 3

Agent program | 4" Agent

ent platform
| Agent's Agentp
/ endpolnt J Interplatform
communication
Management Directory ACC / o
component ;! service =
1 |
7
Intra-piatiorm
cammunication

Figure 3-21. The general model of an agent platform (adapted from FIPA,
1998b).

descriplions of its services in terms of atiribute names, along with the value
specific to that agent. This is very similar to the way that “yellow pages™ operate.
The directory service can be accessed by remote agents, that is, agents that reside
on a different agent platform.

An important component of an agent platform is formed by the agent com-
munication channel, or ACC for short. In most models for muitiagent systems,
agents communicate by exchanging nessages. The FIPA model is uo exception,
and lets an ACC take care of all communication between different agent plat-
forms. In particular, the ACC is responsible for reliable and ordered peint-to-point
communication with other platforms. An ACC can simply be implemented as a
server listening to a specific port for incoming messages that are to be forwarded
to other servers or agents that are part of the agent platform. To warrant interoper-
ability between platforms, communication between ACCs on different platforms
follows what is called the Intemet Inter-ORB Protocol (IIOP), which we discuss

in Chap. 9. An example of an ACC is the server in the D’ Ageuts system architec-
ture.

Agent Communication Languages

So far, there is hardly anything specific o agent platforms. Differences with
other approaches to distributed systems become apparent when taking a look at
the kind of information that agents actually communicate. Communication
between agents takes place by means of an application-level communication pro-
tocol, whiclt is referred to as an agent communication language (ACL). In an
ACL, a strict separation is made between the purpose of a message, and its con-
tent. A message can have only a limited number of purposes. For example, the
purpose of a message can be to request the receiver to provide a specific service.

R
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Likewise, a message can have the purpose to respond to a previously sent request
message. As another example, some messages can be sent to inform the recipient
of an event, or to proposc¢ something in the act of negotiation. Several purposes of
messages in an ACL developed by FIPA are listed in Fig. 3-22.

Message purpose —[ Description Message content
INFORM inform that a given proposition is true Proposition
QUERY-IF Query whether a given proposition is true | Proposition
QUERY-REF Query far a given object Expression
CFP - Ask for a proposal Proposal specifics
PROPOSE Provide a proposal Proposal
ACCEPT-PROPOSAL | Tell that a given proposal is accepted Proposal 1D
REJECT-PROPOSAL | Tell that a given proposal is rejected Proposal ID
REQUEST Request that an aclion be performed Action specification
SUBSCRIBE Subscribe to an information source Reference to source

Figure 3-22. Examples of different message types in the FIPA ACL (FIPA,
1998a), giving the purpose of a message, along with the description of the actual
message content.

The essence of an ACL is, of course, that the sending and receiving agent
both have at least the same understanding of the purpose of a message. Moreover,
the purpose of a message often determines the reaction of the receiver. For exam-
ple, when being asked for a proposal by means of a message having CFP in its
header, the receiver is expected to actually respond with a proposal, that is a mes-
sage with purpose PROPOSE. In this sense, an ACL actually defines a high-level
communication protocol between a collection of agents.

Like most communication protocols, ACL messages consist of a header and
the actual content. The header contains a field that identifies the purpose of the
message, along with fields for identifying the sender and receiver. Also like many
communication protocols, the message content is separated from, and independent
of the rest. In other words, the message content is assumed to be specific to the
communicating agents. An ACL does not prescribe the format or language in
which the message content is expressed.

What is necessary then, is that enough information be provided to allow the
receiving agent to properly interpret the content. To that end, an ACL message
header can also contain a field to identify the language or encoding scheme for the
content. This approach works fine as long as the sender and receiver have a com-
mon understanding how to interpret the data, or more precisely, the symbols in a
message. When there is no such common understanding, an additional field is
sometimes used to identify a standardized mapping of symbols to their meaning,
Such a mapping is commenly referred to as an ontology.

T o ki P T
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Fleld Value
Purpose INFORM
I Sender max @ hitp://fanclub-beatrix.royalty-spotters.nl:7239
Receiver . selke @iiop:/royalty-watcher.uk:5623
Language Prolog
Ontology  genealogy
Content female(beatrix) parent(beatrix,juliana,bermhard)

Figure 3-23. A simple example of a FIPA ACL message sent between two
agents using Prolog to express genealogy information,

To give a simple example, Fig. 3-23 shows a message expressed in FIPA
ACL, used to inform an agent about Dutch royalty relationships. To identify the
sending and receiving agent, each agent has a name that consists of several com-
ponents. For example, max@http://fanclub-beatrix.royalty-spotters.nl:7239 may
be used to refer to an agent called max residing on an agent platform with the
DNS name fanclub-beatrix.royalty-spotiers.nl. To communicate with the agent,
the platform name will first have to be resolved by DNS to an IP address. Further-
more, the name specifies that communication should proceed by sending HTTP
messages to a server on that host that is listening to port number 7239. In our
example, agent max sends an informational message to an agent called elke, resid-
ing at a platform named royaity-warcher.uk. Messages should be sent using the
ITOP protocol (which we discuss in Chap. 9), and sent to port number 5623.

The other fields in the message are related to its content. The language field
specifies that the message content is expressed as a series of Prolog statements,
whereas the ontology field identifies that those Prolog statements are (o be
semantically interpreted as genealogy information. Consequently, the receiving
agent should now know that the statement

female(beatrix}
means that beatrix is the name of a woman, whereas
parent(beatrix,juliana,bernhard)

means that the mother of beatrix is named juliana, and that the father is named
bernhard.

3.6 SUMMARY

Processes play a fundamental role in distributed systems as they form a basis
for communication between different machines. An important issue is how

processes are internally organized and, in particular, whether or not they support
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multiple threads of control. Threads in distributed systems are particularly useful
to continue using the CPU when a blocking 1/0 operation is performed. In this
way, it becomes possible to build highly efficient servers that run multiple threads
in parallel, of which several may be blocking to wait until disk IO or network
communication completes.

Organizing a distributed application in terms of clients and servers has proven
10 be wseful. Client processes generally implement user interfaces, which may
range from very simple displays to advanced interfaces that can handle compound
documents. Client software is furthermore aimed at achieving distribution tran-
sparency by hiding details concerning the communication with servers, where
those servers arc currently located, and whether or not servers are replicated. In
addition, client softwarc is partly responsible for hiding failures and recovery
from failures.

Servers are often more intricate than clients, but are nevertheless subject to
only a relatively few design issues. For example, servers can cither be iterative or
concurrent, implement one or more services, and can be stateless or stateful.
Other design issues deal with addressing services and mechanisms to interrupt a
server after a service request has been issued and is possibly already being pro-
cessed.

Object servers fonn a special class. In essence, an object server is a process
that has several objects placed in its address space, and for which it is willing to
accept invocation requests. What makes an object server somewhat special is that
there are many ways in which it can invoke objects. For example, a server can
start a separate thread for each invocation request. Alternatively, it can use a
thread per object, or even just a single thread for all its objects. Different invoca-
tion policies can be handled by the same server by making use of an object
adapter. In essence, an object adapter is a component that implements exactly one
invocation policy. There can be several object adapters per server.

An important topic for distributed systems is the migration of code between
different machines. Two important reasons to suppert code migration are increas-
ing performance and flexibility. When communication is expensive, we can some-
times reduce communication by shipping computations from the server to the
client, and let the clicnt do as much local processing as possible. Flexibility is
increased if a client can dynamically download software needed to communicate
with a specific server. The downloaded software can be specifically targeted to
that server, without forcing the client to have it preinstalled.

Code migration brings along problems related to usage of local resources for
which it is required that either resources are migrated as well, new bindings to
local resources ar the target machine are established, or for which systemwide net-
work references are used. Another problem is that code migration requires that we
take heterogeneity into account. Current practice indicates that perhaps the best
solution (o handle heterogeneity is to use virtual machines, by which hetero-
geneity 1s effectively hidden away through interpretative code.
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A software agent, finally, is a special kind of process, which operates as an
autonomous unit, but is capable of cooperation with other agents. From a distrib-
uted systems perspeclive, what separates agents from normal processes is their
interaction by means of an application-level communication protocol cailed an
agent communication language (ACL). In an ACL, a sirict distinction is made
between the purpose of a message and its content. An ACL defines a high-level
comimunication protocol: a sent message generally prescribes a specific reaction
from the receiver based only on the purpose of the message.

PROBLEMS

1. In this problem you are to compare reading a file using a single-threaded file server
and a multithreaded server. It takes 15 msec to get a request for work, dispatch it, and
do the rest of the necessary processing, assuming that the data needed are in a cache in
main memery. If a disk operation is needed, as is the case one-third of the time, an
additional 75 msec is required, during which time the thread sleeps. How many
requests/sec can the server handle if it is single threaded? If it is multithreaded?

2. Would it make sense to limit the number of threads in a server process?

3. In the text, we described a multithreaded file server, showing why it is better than a
single-threaded server and a finite-state machine server. Are there any circurustances
in which a single-threaded server might be better? Give an example.

4. Statically associating only a single thread with a lightweight process is not such a
good idea. Why not?

5. Having only a single lightweight process per process is also not such a good idea,
Why not?

6. Describe a simple scheme in which there are as many lightweight processes as there
are runnable threads.

7. Proxies can suppart replication transparency by invoking each replica, as explained in
the text. Can (the server side of) an object be subject to a replicated invocation?

8. Constructing a concurrent server by spawning a process has some advantages and
disadvantages compared to multithreaded servers. Mention a few.

9. Sketch the design of a multithreaded server that supports multiple protocols using
sockets as its transport-level interface to the underlying operating system.

10. How can we prevent an application from circumventing a window manager and thus
being able to comnpletely mess up a screen?

11. Explain what an object adapter is.
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12.

13.

14.
15.

16.
17.

18.

19

20.

21.

22

24,

Mention some design issues for an object adapter that is used to support persistent
objects.

Change the procedure thread_per_object in the example of the object adapters, so that
all objects under control of the adapter are handled by a single thread.

Is a server that maintains a TCP/IP connection to a client stateful or stateless?

Imagine a Web server that maintains a table in which client IP addresses are mapped
to the most recently accessed Web pages. When a client connects to the server, the
server looks up the client in its table, and if found, returns the registered page. Is this
server stateful or stateless?

To what extent does Java RMI rely on code migration?

Strong mobility in 1INIX systems could be supported by allowing a process to fork a
child on a remote machine. Explain how this wonld work.

In Fig. 3-13 it is suggesied that strong mobility cannot be combined with executing
migrated code in a target process. Give a counterexample,

Consider a process P that requires access to file F that is locally available on the
machine where P is currently running. When P moves to another machine, it still
requires access to F. If the file-to-machine binding is fixed, how could the system-
wide reference to F be implemented?

Each agent in D’ Agents is implemented by a separate process. Agents can communi-
catc primarily through shared files and by means of message passing. Files cannot be
transferred across machine boundaries. In terms of the mobility framework given in

Sec. 3.4, which parts of an agent’s state, as given in Fig. 3-19, comprise the resource
segment?

Compare the architecture of D’Agents with that of an agent platform in the FIPA
model.

Where do agent communication languages (ACLs) fit into the OS] model?

Where does an agent communication language fit into the OSI model, when it is

implemented on top of a system for handling e-mail, such as in D' Agents? What is the
benefit of such an approach?

Why is it often necessary to specify the ontology in an ACL message?
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NAMING

Names play an important role in all computer systems. They are used to share
resources, to uniquely identify entities, to refer to locations, and so on. An impor-
tant issue with naming is that a name can be resolved to the entity it refers to.
Name resolution thus allows a process to access the named entity. To resolve
names, it is neccssary to implement a naming system. The diffcrence between
naming in distributed systems and nondistributed systems lies in the way naming
systems are implemented.

In a distributed system, the implementation of a naming system is itself often
distributed across multiple machines. How this distribution is done plays a key
role in the efficiency and scalability of the naming system. In this chapter, we
concentrate on three different, important ways that names are used in distributed
systems.

First, after discussing some general issues with respect to naming, we take a
closer look at the orgamization and implementation of human-friendly names.
Typical examples of such names include those for file systems and the World
Wide Web. Building worldwide, scalable naming systems is a primary concern
for these types of names.

Second, names are used to locate mobile entitics. As it tums out, naming sys-
tems for human-friendly names are not particularly suited for supporting large
numbers of mobile entities, which may additionally be dispersed across a large-
scale network. Alternative organizations are needed, such as those being used for
mobile telephony where names are location-independent identifiers.

183



184 NAMING CHAP. 4

Our third and last topic deals with the organization of names. In particular,
names that are no longer referenced, and thus can no longer be located and
accessed, should be antomatically removed. This subject is also known as gar-
bage collection, and has its roots in programming languages. However, with the
introduction of large-scale distributed object-based systems, automatically collect-
ing unreferenced objects is becoming increasingly important.

4.1 NAMING ENTITIES

In this section, we first concentrate on different kinds of names, and how.
names are organized into name spaces. We then continue with a discussion of the
important issue of how to resolve a name such that the entity it refers to can be
accessed. Also, we explain various options for distributing and implementing
large name spaces across multiple machines. The Internet Domain Name System
and OSI’s X.500 will be discussed as examples of large-scale naming services.

4.1.1 Names, Identifiers, and Addresses

A name in a distributed system is a string of bits or characters that is uscd to
refer to an entity. An entity in a distributed system can be practically anything.
Typical examples include resources such as hosts, printers, disks, and files. Other
well-known examples of entities that are often explicilly named are processes,
users, mailboxes, newsgroups, Web pages, graphical windows, messages, network
connections, and so on.

Entities can be operated on. For example, a resource such as a printer offers
an interface containing operations for printing a document, requesting the status of
a print job, and the like. Furthermore, an entity such as a network connection may
provide operations for sending and receiving data, sefting quality-of-service
parameters, requesting the status, and so forth.

To operate on an entity, it is uecessary to access it, for which we need an
access point. An access point is yet another, but special, kind of entity in a dis-
tributed system. The name of an access point is called an address. The address of
an access point of an entity is also simply called an address of that entity.

An enfity can offer more than one access point. As a comparison, a telephone
can be viewed as an access point of a person, whereas the telephone number
corresponds to an address. Indeed, many people nowadays have several telephone
numbers, each number corresponding to a point where they can be reached. In a
distributed system, a typical example of an access point is a host running a
specific server, with its address formed by the combination of, for example, an TP
address and port number (j.¢., the server’s transport-leve! address).

An entity may change its access points in the course of time. For example,
wben a mobile computer moves to another location, it is often assigned a different
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IP address than the one it had before. Likewise, when a person moves to another
city or country, it is often necessary to change telephone numbers as well. In a
similar fashion, changing jobs or Internet Service Provider, means changing your
e-mail address.

An address is thus just a special kind of name: it refers (o an access point of
an entity. Because an access point is tightly associated with an entity, it would
seem convenient to use the address of an access point as a regular name for the
associated entity. Nevertheless, this is hardly ever done.

There are many benefits to treating addresses as a special lype of name. For
example, it is not uncommon to regularly reorganize a distributed system, so that
a specific server, such as the one handling FTP requests, is now running on a dif-
ferent host than previously. The old machine on which the server used to be run-
ning may be reassigned to a completely different server, such as a back-up server
for the local file system. In other words, an entity may easily change an access
point, or an access point may be reassigned to a different entity.

If an address is used to refer to an entity, we will have an invalid reference the
iustant the access point changes or is reassigned to another entity. For example,
imagine that an organization’s FTP service would be known only by the address
of the host running the FTP server. As soon as that server is moved to another
host, the whole FTP service would become inaccessible until the new address is
known to all its users. In this case, it would have been much better to let the FTP
service be known by a separate name, independent of the address of the associated
FTP server.

Likewise, if an entity offers more than one access point, it is not clear which
address to use as a reference. For instance, as we discussed in Chap. 1, many
organizations distribute their Web service across several servers. If we would use
the addresses of those servers as a reference [or the Web service, it is not obvious
which address should be chosen as the best one. A much better solution would he
to have a single name for the Web service, independent from the addresses of the
different Web servers.

These examples illustrate that a name for an entity that is independent from its
addresses, is often much easier and more flexible to use. Such a name is called
location independent.

In addition to addresses, there are other types of names that deserve special
treatment, such as names that are used to uniquely identify an entity. A true iden-
tifier is a name that has the following properties (Wieringa and de Jonge, 1995):

1. An identifier refers to at most one entity.
2. Each entity is referred to by at most one identifier.
3. An identifier always refers to (he same entity (i.¢., it is never reused).

By using identifiers, it becomes much easier to unambiguously refer to an entity.
For example, assume two processes each refer to an entity by means of an
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identifier. To check if the processes are referring (o the same entity, it is sufficient
to test if the two identifiers are equal. Such a test would not be sufficient if the
two processes were using regular, nonidentifying names. For example, the uame
“John Smith™ cannot be taken as a unique reference to just a single person.

Likewise, if an address can be reassigned to a different entity, we cannot use
an address as an identifier. Consider the use of telephone numbers, which are rea-
sonably stable in the sense that a number generally refers to the same person or
organization. However, using a telephone number as an identifier will not work,
as it can be reassigned in the course of time. Consequently, Bob’s new bakery
may be receiving phone calls for Alice’s old hardware store for a long time. In
this case, it would have been better to use a true identifier for Alice instead of her
phone number.

Addresses and identifiers are two important types of names that are each used
for very different purposes. In many computer systems, addresses and identifiers
are represented in machine-readable form only, that is, in the form of bit strings.
For example, an Ethernet address is essentially a random siring of 48 bits. Like-
wise, memory addresses are typically represented as 32-bit or 64-bit strings.

Another important type of name is that which is tailored to be used by
humans, also referred to as human-friendly names, In contrast to addresses and
identifiers, a human-friendly name is generally represented as a character string.
These names appear in many different forms. For example, files in UNIX systems
have character-string names that can be as long as 255 characters, and which are
defined entirely by the user. Similarly, DNS names are represented as relatively
simple case-insensitive character strings.

Name Spacces

Names in a distributed system are organized into what is corumonly referred
to as a mame space. A name space can be represented as a labeled, directed graph
with two types of nodes. A leaf node represents a named entity and has the pro-
perty that it has no outgoing edges. A leaf node generally stores information on
the entity it is representing—for example, its address—so that a client can access
it. Alternatively, it can store the state of that entity, such as in the case of file $ys-
tems in which a Jeaf node actually contains the complete file it is representing.
We retum to the contents of nodes below.

In contrast to a leaf node, a directory node has a number of outgoing edges,
cach labeled with a name, as shown in Fig. 4-1. Each node in a naming graph is
considered as yct another entity in a distributed system, and, in particnlar, has an
associated identifier. A directory node stores a table in which an outgoing edge is
represented as a pair (edge label, node identifier). Such a table is called a direc-
tory table.

The naming graph shown in Fig. 4-1 has one node, namely n0, which has only
outgoing and no incoming edges. Such a node is called the root (node) of the
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Data stored in n1

"hays"
"Mhome/stesn/keys"

Figure 4-1. A general naming graph with a single root node.

naming graph. Although it is possible for a naming graph to have several root
nodes, for simplicity, many naming systems have only one. Each path in a naming

graph can be referred to by the sequence of labels comresponding 1o the edges in
that path, such as

N:<label-1, label-2, ..., label-n>

where N refers to the first node in the path. Such a sequence is called a path
name. If the first node in a path name is the root of the naming graph, it is called
an absolute path name. Otherwise, it is called a relative path name.

It is important to rcalize that names are always organized in a name space. As
a consequence, a name is ailways defined relative only to a directory node. In this
sense, the term absolute name is sommewhat misleading. Likewise, the difference
between global and local names can sometimes be confusing. A glohal name is a
name that denotes the same entity, no matter where that name is used in a system.
In other words, a global name is always interpreted with respect to the same direc-
tory node. In contrast, a local name is a name whose interpretation depends on
where that name is being used. Put differently, a local name is essentially a rela-
tive name whose directory in which it is contained is (implicitly) known. We
return to these issues when discussing name resolution.

This description of a naming graph comes close to what is implemented in
many file systems. However, instead of writing the sequence of edge labels to
represent a path name, path names in file systems are generally represented as a
single string in wbich the labels are separated by a special separator character,
such as a slash (*/”’). This character is also used to indicate whether or not a path
name is absolute. For example, in Fig. 4-1, instead of using the path name
n0:<home, steen, mbox> it i3 common practice to use its string representation
/home/steen/mbox. Note also that when there are several paths that lead to the
same node, that node can be represented by different path names. For example,
node n5 in Fig. 4-1, can be referred to by /home/steentkeys as well as /keys. The
string representation of path names can be equally well applied to naming graphs
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other than those used for only file systems. In Plan 9 (Pike et al., 1995), all
resources, such as processes, hosts, /O devices, and network interfaces, are
named in the same fashion as traditional files. This approach is analogous to
implementing a single naming graph for all resources in a distributed system.

There are many different ways to organize a name space. As we mentioned,
most name spaces have only a single root node. In many cases, a name space is
also strictly hierarchical in the sense that the naming graph is organized as a tree.
This means that each node except the root has exactly one incoming edge; the root
has no incoming edges. As a consequence, each node also has exactly one associ-
ated (absolute) path name.

The naming graph shown in Fig. 4-1 is an example of directed acyclic graph.
In such an organization, a node can have more than one incoming edge, but the
graph is not permitted to have a cycle. There are alsoc name spaces that do not
have this restriction.

To make matters more concrete, consider the way that files in a traditional
UNIX file system are named. In a naming graph for UNIX, a directory node
represents a file directory, whereas a leaf node represents a file. There is a single
root directory, represented in the naming graph by the root node. The implementa-
tion of the naming graph is an integral part of the complete implementation of the
file system. That implementation consists of a contiguous series of blocks from a
logical disk, generally divided into a boot hlock, a superblock, a series of index
nodes (called inedes), and file data blocks. See also (Crowley, 1997; Nutt, 2000;
Tanenbaum and Woodhull, 1997). This organization is shown in Fig. 4-2.

Superbiock

Fite data blocks
& /_—_—‘-—‘___-_/\-____~_q_\‘
e T i
fo— h
Boot block Index nodes Disk block

Figure 4-2. The general organization of the UNIX file system impiementation
on a logical disk of contiguous disk blocks.

The boot block is a special block of data and instructions that are automati-
cally loaded into main memory when the system is booted. The boot block is used
to load the operating system into main memory.

The superblock contains information on the entire file system, such as its size,
which blocks on disk are not yet allocated, which inodes are not yet used, and so
on. Inodes are referred to by an index number, starting at number zero, which is
reserved for the inode representing the root directory.

Each inode contains exact information on where the data of its associated file
can be found on disk. In addition, an inode contains information on its owner,



SEC. 4.1 NAMING ENTITIES 189

time of creation and last modification, protection, and the like. Consequently,
when given the index number of an inode, it is possible to access ils associated
file. Each directory is implemented as a file as well. This is also the case for the
root directory, which contains a mapping between file names and index numbers
of inodes. It is thus seen that the index number of an inode corresponds to a nede
identifier in the naming graph.

4.1.2 Name Resolution

Name spaces offer a convenient mechanism for storing and reurieving infor-
mation about entities by means of names. More generally, given a path name, it
should be possible to look up any information stored in the node referred to by
that name. The process of looking up a name is called name resolution.

To explain how name resolution works, consider a path name such as
N:<label-1, label-2, ..., label-n>. Resolution of this name starts at node N of the
naming graph, where the name label-I is looked up in the directory table, and
which returns the identifier of the node 1o which label-1 refers. Resolution then
continues at the identified node by looking up the name label-2 in its directory
table, and so on. Assuming that the named patb actually exists, resolution stops at
the last node referred to by label-n, by returning the content of that node.

A name lookup returns the identifier of a node from where the name resolu-
tion process continues. In particular, it is necessary to access the directory table of
the identified node. Consider again a naming graph for a UNIX file system. As
mentioned, a node identifier is implemented as the index number of an inode.
Accessing a directory table means that first the inode has to be read to find out
where the actual data are stored on disk, and then subsequently to read the data
blocks containing the directory table.

Closure Mechanism

Name resolution can take place only if we know how and where to start. In
our example, the starting node was given, and we assumed we had access to its
directory table. Knowing how and where to start name resolution is generally
referred to as a closure mechanism. Essentially, a closure mechanism deals with
selecting the initial node in a name space from which name resolution is to start
(Radia. 1989). What makes closure mechanisms sometimes hard to understand is
that they are necessarily partly implicit and may be very different when compar-
ing them to each other.

For example, name resolution in the naming graph for a UNIX file system
makes use of the fact that the inode of the root directory is the first inode in the
logical disk representing the file system. Its actual byte offset is calculated from
the values in other fields of the superblock, together with hard-coded information
in the operating system itself on the internal organization of the superblock.
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To make this point clear, consider the string representation of a file name such
as fhome/steen/mbox. To resolve this name, it is necessary to already have access
to the directory table of the root node of the appropriate naming graph. Being a
root node, the node itself cannot have been looked up unless it is implemented as
a different node in a another naming graph, say G. But in that case, it would have
been necessary to alrcady have access to the root node of G. Consequently,
resolving a file name requires that some mechanism has already heen imple-
mented by which the resolution process can start.

A compietely different example is the use of the string “0031204430784."
Many people will not know what (o do with these numbers, unless they are told
that the sequence is a telephone number. That information is enough to start the
resolution process, in particular, by dialing the number. The telephone sysiem
subsequently does the rest.

As a last example, consider the use of global and local names in distributed
systems. A typical example of a local name is an environment variable. For exam-
ple, in UNIX syslems, the variable named HOME is used to refer to the home
directory of a user. Each user has its own copy of this variable, which is initialized
to the global, systemwide name corresponding to the user’s home directory. The
closure mechanism associated with environment variables ensures that the name
of the variable is properly resolved by looking it up in a user-specific table.

Linking and Mounting

Strongly related 1o name resolution is the use of aliases. An alias is another
name for the same entity. An environment variable is an example of an alias. In
terms of naming graphs, there are basically two different ways to implement an
alias. The first approach is to simply allow multiple absolute paths names to refer
to the same node in a naming graph. This approach is illustrated in Fig. 4-1, in
which node n5 can be referred (o by two different path names. In UNIX terminol-
ogy, both path names /keys and /home/steen/keys in Fig. 4-1 are called hard links
to node n5.

The second approach is to represent an entity by a leaf node, say N, but
instead of storing the address or state of that entity, the node stores an absolute
path name. When [irst resolving an absolute path name that leads 1o ¥, name reso-
lution will return the path name stored in &, at which point it can continue with
tesolving that new path name. This principle corresponds to the use of symbolic
links in UNIX file systems, and is illustrated in Fig. 4-3. In this case, the path
name /home/steen/keys, which refers to a node containing the absolute path name
/keys, is a symbolic [ink to node n3.

Name resolution as described so far lakes place completely within a single
name space. However, name resolution can also be used to merge different name
spaces in a transparent way. Let us first consider a mounted file system. In terms
of our naming model, a mounted file system corresponds to letting a directory
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Data stored in a1

n2: “elke"
n3: "max"
n4; "steen”

olke

Leaf node Cu Data stored in n6

Directory node rl

Figure 4-3. The concepl of a symbolic link explained in a namng graph.

node store the identifier of a directory node from a different name space, which
we refer (o as a foreign name space. The directory node storing the node identifier
is called a mount point. Accordingly, the directory node in the foreign name
space is called a mounting point. Normally, the mounting point is the root of a
name space. During name resolution, the mounting point is looked up and resolu-
tion proceeds by accessing its directory table.

The principle of mounting can be generalized to other name spaces as well. In
particular, what is needed is that a directory node that acts as a mount point stores
all the necessary information for identifying and accessing the mounting point in
the foreign name space. This approach has been followed in the Jade naming sys-
tem (Rao and Peterson, 1993), and is actually also followed in many distributed
file systems.

Consider a collection of name spaces that is distributed across different
machines. In particular, each name space is implemented by a different server,
each possibly running on a separate tuachine. Consequently, if we want to mount
a foreign name space NS2 into a name space NS/, it may be necessary to com-
municate over a network with the server of NS2, as that server may be running on
a different machine than the server for NS7. To mount a foreign name space in a
distributed system requires at least the following information:

1. The name of an access protocol.
2. The name of the server.
3. The name of the mounting point in the foreign name space.

Note that cach of these names needs to be resolved. The name of an access proto-
col needs to be resolved to the implementation of a protocol by which communi-
cation with the server of the foreign name space can take place. The name of the
server needs to be resolved to an address where that server can be reached. As the
last part in name resolution, the name of the mounting point needs to be resolved
to a node identifier in the foreign name space.

TTECenE oA L p w



192 NAMING CHAP. 4

In nondistributed systems, none of the three points may actually be needed.
For example, in UNIX, there is no access protocol and no server. Also, the name
of the mounting point is not necessary, as it is simply the root directory of the
foreign name space.

The name of the mounting point is to be reselved by the server of the foreign
name space. However, we also need name spaces and implementations for the
access protocol and the server name. One possibility is to represent the three
names listed above as a URL.

To make matters concrete, consider a situation in which a user with a laptop
computer wants to access files that are stored on a remote file server. The client
machine and the file server are both configured with Sun’s Network File System
(NFS), which we will discuss in detail in Chap. 10. NES is a distributed file sys-
tem that comes with a protocol that describes precisely how a client can access a
file stored on a (remote) NFS file server. In particular, to aliow NFS to work
across the Internet, a client can specify exactly which file it wants to access by
means of an NFS URL, for example, nfs:#flits.cs.vu.nl/fhomessteen. This URL
names a file (which happens to be a directory) calied /home/steen on an NFS file
server flits.cs.vu.nl, which can be accessed by a client by means of the NFS proto-
col (Caltaghan, 2000).

The name nfs is a well-known name in the sense that worldwide agreement
exists on how to interpret that name. In other words, given that we are dealing
with a URL, the name nfs will be resolved to an implementation of the NFS proto-
col. The server name is resolved to its address using the Domain Name System,
which is discussed in a later section. As we said, /home/steen is resolved by the
server of the foreign name space.

The organization of a file system on the client machine is partly shown in
Fig. 4-4. The root directory has a number of user-defined entries, including a sub-
directory called /remote. This subdirectory is intended to include mount points
for foreign name spaces such as the user’s home directory at the Vrije Universi-
teit. To this end, a directory node named /remote/vu is used to store the URL
nfs:/flits.cs.vunl/fhome/steen,

Now consider the name /remote/vu/mbox. This name is resolved by starting
in the root directory on the client’s machine and continues until the node
/remote/vu is reached. Name resolution then continues by returning the URL
nfs://flits.cs.vu.nl//home/steen, in tumn leading the client machine to contact the
file server flits.cs.vu.nl by means of the NFS protocol, and to subsequently access
directory /home/steen. Name resolution can then be continued by reading the file
named mbox in that directory.

Distributed systems that allow mounting a remote file system as just described
allow a client machine to, for example, execute the following commands:

cd /remote/vu
s

T D - R B M-~ =
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Name server Name server for foreign name space
\  Machine A Machine B

remote homea

YH (nfs:/ffiits.cs yunlhome/steen” | steen

Reference to foraign name space

Figure 4-4. Mounting remote name spaces through a specific access protocol.

which subsequently list the files in the directory /home/steen on the remote file
server. The beauty of this all is that the user is spared the details of the actual
access to the remote server. Ideally, only some loss in performance is noticed
compared to accessing locally available files. In effect, to the client it appears that
the name space rooted on the local machine, and the one rooted at /home/steen on
the remote machine, form a single name space.

Mounting is one way to merge different name spaces. Another approach,
which was followed in DEC’s Global Name Service (GNS), is to add a new root
node and to make the existing root nodes its children (Lampson, 1986). This prin-
ciple is shown in Fig. 4-5 and is explained below.

A problem with this approach is that existing names need to be changed. For
iustance, the absolute path name /home/steen in name space NS7 in Fig. 4-5 has
now changed into a relative path name that is to be resolved starting in node n0,
and corresponds to the absolute path name /vuhome/steen. To solve these prob-
lems and to allow other name spaces to be added in the fnture, names in GNS
always (implicitly) include the identifier of the node from where resolution should
normally start. So, for example, in name space NS! in Fig. 4-5, the namne
‘home/steen/keys is always expanded to include the node identifier n0, leading to
n0:/home/steen/keys. Expansion is generally hidden from users. It is assumed that
a node identifter is universally unique. Consequently, even nodes from different
name spaces are assumed to always have different node identifiers.
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m( —»home
np —evu

Figure 4-5. Organization of the DEC Global Name Service.

Merging two name spaces NSJ and NS2 but without having to change existing
names. now proceeds as follows. When adding a new rooet node, that node stores a
table mapping the identifier of the root node of NS7 to the name under which that
roof is known in the new name space, as shown in Fig. 4-5. The same is done for
the root node of NS2. By always starting name resolution in the root of the new
name space, a name such as n0:/home/steen is first transformed to the npame
Au/home/steen, by looking up the node identifier #0 in the table of the root node.

A potential problem with GNS is that the root node of the merged name space
is required to maintain a mapping of identifiers of old root nodes to their new
respective names. If thousands of name spaces are merged, this approach will
eventually lead to performance problems.

4.1.3 The Implementation of a Name Space

A name space forms the heart of a naming service, that is, a service that
allows users and processes to add, remove, and look up names. A naming service
is implemented by name servers. If a distribuled system is restricted to a local-
area network, it is often feasible to implement a naming service by means of only
a single name scrver. However, in large-scale distributed systems with many enti-
ties, possibly spread across a large geographical area, it is necessary to distribute
the implementation of a name space over multiple name servers,

Name Space Distribution

Name spaces for a large-scale, possibly worldwide distributed system, are
usually organized hierarchically. As before, assume such a name space has only a
single root node. To effectively implement such a name space, it is convenient to
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partition it into logical layers. Cheriton and Mann (1989) distinguish the following
three lavers.

The global layer is formed by higbest-level nodes, that is, the root node and
other directory nodes logically close to the root, that is, its children. Nodes in the
global layer are often characterized by their stahility, in the sense that directory
tables are rarely changed. Such nodes may represent organizations, or groups of
organizations, for which names are stored in the name space.

The administrational layer is formed by directory nodes that together are
managed within a single organization. A characteristic feature of the directory
nodes in the administrational Jayer is that they represent groups of entities that
belong to the same organization or administrational unit. For example, there may
be a directory node for each department in an organization, or a directory node
from which all hosts can be found. Another direclory node may be used as the
starting point for naming all users, and so forth. The nodes in the adminisirational
layer are relatively stable, although changes generally occur more frequently than
to nodes in the global layer.

Finally, the managerial layer consists of nodes that may typically change
regularly. For example, nodes representing hosts in the local network belong to
this layer. For the same reason, the layer includes nodes representing shared files
such as those for libraries or binaries. Another important class of nodes includes
those that represent user-defined directories and files. In contrast to the global and
administrational layer, the nodes in the managerial layer are maintained not only
by system administrators, but also by individual end users of a distributed system.

To make matters more concrete, Fig. 4-6 shows an exampie of the partitioning
of part of the DNS name space, including the names of files within an organijza-
tion that can be accessed through the Internet, for example, Web pages and
transferable files. The name space is divided into nonoverlapping parts, called
zones in DNS (Mockapetris, 1987). A zone is a part of the name space that is
implemented by a separate name server. Some of these zones are illusirated in
Fig. 4-6.

If we take a look at availability and performance, name servers in each layer
have 1o meet different requirements. High availability is especiaily critical for
name servers in the global layer. If a name server fails, a large part of the name
space will be uareachable because name resolution cannot proceed beyond the
failing server.

Performance is somewhat subtle. Due to the low rate of change of nodes in
the global layer, the results of lookup operations generally remain valid for a long
time. Consequently, those results can be effectively cached (i.e., stored locally) by
the clients. The next time the same lookup operation is performed, the results can
be retrieved from the client’s cache instead of letting the name server return the
results. As a result, vame servers in the global layer do not have to respond
quickly to a single lookup request. On the other hand, throughput may be impor-
tant, especially in large-scale systems with millions of users.

TR rry—— A s
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Global
layer

Adminis-
trational
layer

Mana-
gerial
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Figure 4-6. An example partitioning of the DNS name space, including
Internet-accessible files, into three layers.

The availability and performance requirements for name servers in the global
layer can be met by replicating servers, in combination with client-side caching.
As we discuss in Chap. 6, updates in this layer generally do not have to come into
effect immediately, making it much easier to keep replicas consistent.

Availability for a name server in the administrational layer is primarily impor-
tant for clients in the same organization as the name server. If the name server
fails, many resources within the organization become unreachable because they
cannot be looked up. On the other hand, it may be less important that resources in
an organization are temporarily unreachable for users outside that organization.

With respect to performance, name servers in the administrational layer have
sirnilar characterisiics as those in the global layer. Because changes to nodes do
not occur very often, caching lookup results can be highly effective, making per-
formance less cntical. However, in contrast to the global layer, the admimistra-
tional layer should take care that lookup results are returned within a few mil-
liseconds, either directly from the server or from the client’s local cache. Like-
wise, updates should generally be processed quicker than those of the global layer.
For example, it is unacceptable that an account for a new user takes hours to
become effective.

These requirements can generally be met by using high-performance
machines 1o run uame servers. In addition, client-side caching should be applied,
combined with replication for increased overall availability.
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Availability requirements for name servers at the managerial level are gen-
erally less demanding. In particular, it often suffices to use a single {dedicated)
machine to run name servers at the risk of temporary unavailability. However,
performance is crucial. Users expecl operations to take place immediately.
Bcecause updates occur regularly, client-side caching is often less effective, unless
special measures are taken, which we discuss in Chap. 6.

Hem | Global | Administrational Managerial
Geographical scale of network | Worldwide | Organization Department
Total number of nodes Few Many Vast numbers
Responsiveness to lockups Seconds Milliseconds Immadiate
Update propagation Lazy Immediate Immediate
Number of replicas Many None or few None
{s clieni-side caching applied? | Yes Yes | Sometimes

Figure 4-7. A comparison between name servers for implementing nodes from
a large-scale name space partitioned into a global layer, an administrational
layer, and a managerial layer.

A comparison between name servers at different layers is shown in Fig. 4-7.
In distributed systems, name servers in the global and adminisirational layer are
the most difficult to implement. Difficulties are caused by replication and cach-
ing, which are needed for availability and performance, but which also introduce
consistency problems. Some of the problems are aggravated by the fact that
caches and replicas are spread across a wide-area network, which introduces long
communication delays thereby making synchronization even harder. Replication
and caching are discussed extensively in Chap. 6.

Implementation of Name Resolution

The distribution of a name space across multiple name servers affects the
implementation of name resolution. To explain the implementation of name reso-
lution in large-scale name services, we assume that name servers are not repli-
cated and that no client-side caches are used. Each client has access to a local
name resolver, which is responsible for ensuring that the name resolution process
is carried out. Referring to Fig. 4-6, assume the (absolute) path name

root:<nl, vu, cs, fip, pub, globe, index.txt>

is to be resolved. Using a URL notation, this path name would correspond to
Jip:Hfip.cs.vunlipub/globe/index.1xi. There are now two ways to implement name
resolution.

In iterative name resolution, a name resolver hands over the complete name
to the root name server. It is assumed that the address where the root server can be
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contacted, is well known. The root server will resolve the path name as far as it
can, and return the result to the client. In our example, the root server can resolve
only the label al, for which it will return the address of the associated name
server.

At that point, the client passes the remaining path name (ie., ni:<vy, cs, fip,
pub, globe, index.txt>) to that name server. This server can resolve only the label
vu, and returns the address of the associated name server, along with the remain-
ing path name vi:<cs, fip, pub, globe, index.txt>.

The client’s name resolver will then contact this next name server, which
responds by resolving the label cs, and subsequently also ftp, returning the address
of the FTP server along with the path name fip:-<pub, globe, index.txt>. The
client then contacts the FTP server, requesting it to resolve the last part of the ori-
ginal path name. The FTP server will subsequently resolve the labels pub, globe,
and index.fxt, and transfer the requested file (in this case using FTP). This process
of iterative name resolution is shown in Fig. 4-8. (The notation #<cs> is used to
indicate the address of the server responsible for handling the node referred to by
<Cs>.)

1. <nlvu,cs,fip=

— : = Raot
& b, ~vussips nama server
43' <VULCS fp> » Name server
-
Client's 4. #avu, <cs,ftp> nl node
name e
resolver | 5- <cs,fip> »| Name server
il
vu node
6. #acs>, <fip>
— 7. <tp> » Name server
8. E<fip> ¢s node

<nl,vu,cs, fp= T L#cnl,vu.cs‘ftw Nodas are /’

managed by
the same server

Figure 4.8, The principle of iteraiive namse resclution.

In practice, the last step, namely contacting the FTP server and requesting it
to transfer the file with path name fip:<pub, globe, index.txt>, is carried out
separately by the client process. In other words, the client would normally hand
only the path name root:<nl, vu, ¢s, fip> to the name resolver, from which it
would expect the address where it can contact the FTP server, as is also shown in
Fig. 4-8. :

An alternative to iterative name resolution is to use recursion during name
resolution. Instead of returning each intermediate result back io the client’s name
resolver, with recursive name resolution, a name server passes the result to the
next name server it finds. So, for example, when the root name server finds the
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address of the name server implementing the node named n/, it requests that name
server to resolve the path name nl <vu, cs, fip, pub, globe, index.txt>. Using
recursive name resolution as well, this next server will resolve the complete path
and eventuaily return the file index.txt to the root server, which, in turn, will pass
that file to the client’s name resolver.

Recursive name resolution is presented in Fig. 4-9. As in iterative name reso-
lution, the last resolution step, namely contacting the FTP server and asking it to

transfer the indicated file, is generally carried out as a separate process by the
client.

1, <ni,vu,cs ftp=

o > Root
8. #<nlvu,cs fip> name server )2. <vu,C5,ftp>
7. #avu,c8fip> Name sarver
nl node . o>
Client's 3. <cs/fip
nhame
resolver 6. #<cs fip> Name server
vu node 4. <ftp>
5, #<ftps Name server
*

R |
<nlvu,cs,ftp> T +#<ni.vu,cs,ftp>

Figure 4-9. The principle of recursive name resolution.

The main drawback of recursive name resolution is that it puts a higher per-
formance demand on each name server. Basically, a name server is required to
handle the complete resolution of a path name, although it may do so in coopera-
tion with other name servers. This additional burden is generally so high that
name servers in the glebal layer of a name space support only iterative name reso-
lution.

There are two important advantages to recursive name resolution. The first
advantage is that caching results is more effective compared to iterative name
resolution. The sccond advantage is that communication costs may be reduced. To
explain these advantages, assume that a client’s name resolver will accept path
names referring only to nodes in the global or administrational layer of the name
space. To resolve that part of a path name that corresponds to noedes in the
managerial layer, a client will separately contact the name server returned by its
name resolver, as we discussed above.

Recursive name resolution allows cach name server to gradually learn the
address of each name server responsible for implementing lower-level nodes. As a
result, caching can be effectively used to enhance performance. For example,
when the root server is requested to resolve the path name root:<nl, vu. cs, fip=, it
will eventually get the address of the name server implementing the node referred
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to by that path name. To come 1o that point, the name server for the nf node has to
look up the address of the name server for the v node, whereas the latter has to
look up the address of the name server handling the ¢s node.

Because changes to nodes in the global and administrational layer do not
occur often, the root name server can effectively cache the returned address.
Moreover, because the address is also returned, by recursion, to the name server
responsible for implementing the va node and to the one implementing the nl
node, it might as well be cached at those servers as well,

Likewise, the resuits of intermediate name lookups can also be returned and
cached. For example, the server for the n/ node will have to look up the address of
the vi node server. That address can be returned to the root server when the n/
server returns the result of the original name lookup. A complete overview of the
resolution process, and the results that can be cached by each name server, is
shown in Fig, 4-10.

Server Should Looks upI Passesto | Receives Returns
for node resalve \ child and caches | to reguester
cs <fip> #<fltp> — — #<ftp>
vu <cs,ftp> #<08> <ftp= #<fp> ; #<cs> !
N ! #<cs, fip> -
nl <vu,cs,fip> #avus <cs,ftp> #ecs> : #evu>
#<cs,ftp> | #avucss |
[ . #<vu,cs ftp>
root <ni,vu,cs fip> | #<nl> <vu,cs fip> | #<vus #<ti> i
#<vu,cs> #anb vy
#avihCs fip> | #<nlvu,cs>
#<nivu,cs fip> |

Figure 4-10. Recussive name resolution of <ni, v, cs, fip>. Name servers
cache intermediate results for subsequent lookups.

The benefit of this approach is that, eventually, lookup operations can be han-
dled extremely efficientty. For example, suppose that another client later requests
resolution of the path name root:<nl, vu, cs, flits>. This name is passed to the
root, which can immediately forward it to the name server for the cs node, and
request it (o resolve the remaining path name c¢s: <flifs>.

With iterative name resolution, caching is necessarily restricted to the client’s
name resolver. Consequently, if a cliemt A requests the resolution of a name, and
another client B later requests that same name to be resolved, name resolution will
have to pass through the same name servers as was done for client A. As a
compromise, many organizations use a local, intermediate name server that is
shared by all clients. This local name server handles all naming requests and
caches results. Such an intermediate server is also convenient from a management

-
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point of view. For example, only that server needs to know where the root name
server is located; other machines do not require this informatiorn.

The second advantage of recursive name resolution is that it is often cheaper
with respect to communication. Again, consider the resolution of the path name
root:<nl, vu, cs, fip> and assume the client is located in San Francisco. Assuming
that the client knows the address of the server for the n! node, with recursive name
resolution, communication follows the route from the client’s host in San Fran-
cisco to the nl server in The Netherlands, shown as R 1 in Fig. 4-11. From there
on, communication is subsequently needed between the nf server and the name
server of the Vrije Universiteit on the university campus in Amsterdam, The
Netherlands. This communication is shown as R2. Finally, communication is
needed between the vie server and the name server in the Computer Science
Department, shown as R 3. The route for the reply is the same, but in the opposite
direction. Clearly, communication costs are dictated by the message exchange
between the client’s host and the ni server.

In contrast, with iterative name resolution, the client’s host has to communi-
cate separately with the nl server, the vu server, and the cs server, of which the
total costs may be roughly three times that of recursive name resolution. The

arrows in Fig. 4-11 labeled 71, I2, and I3 show the communication path for itera-
tive name resolution.

Recursive name resolution

Name server

nl node
R2
Name server
VU Node
|3

Name server
cs node

Herativa name resolution T *‘|

Long-distance communication

ol
-

T
s

Figure 4-11. The comparison between recursive and iterative name resolution
with respect to communication costs.

4.1.4 Example: The Domain Name System

One of the largest distributed naming services in use today, is the Iniernet
Domain Name System (DNS). DNS is primarily used for looking up host
addresses and mail servers. In the following pages, we concentrate on the organi-
zation of the DNS name space, and the information stored in its nodes, Also, we
take a closer look at the actual implementation of DNS. More information can be
found in (Mockapetris, 1987; Albitz and Liu, 1998).
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The DNS Name Space

The DNS name space is hierarchically organized as a rooted tree. A label is a
case-insensitive string made up of alphanumeric characters. A label has a max-
imum length of 63 characters; the length of a complete path name is restricted to
255 characters. The string representation of a path name consists of listing its
lahels, starting with the rightmost one, and separating the labels by a dot (*.”).
The root is represented by a dot. So, for example, the path name root:<al, vu, cs,
flits>, is represented by the string flits.cs.vu.nl., which includes the rightmost dot
to indicate the root node. We generally omit this dot for readability.

Because each node in the DNS name space has exactly one incoming edge
(with the exception of the root node, which has no incoming edges), the label at-
tached to a node’s incoming edge is also used as the name for that node. A subtree
15 called a domain; a path name (o its root node is called a domain name. Note
that, just like a path name, a domain name can be either absolute or relative,

The contents of a node is formed by a collection of resource records. There

are different types of resource records, of which the most important ones are
shown in Fig, 4-12.

Type of | Associated Description -

record entity ]
S0A Zone . Holds information on the represented zone _ ]
A Host . Contains an IP address of the host this node represents |
MX Domain | Refers to a mail server to handle mail addressed to this node i
SRV Domain Refers to a server handling a specific service

NS Zone Refers i¢ a name server that implements the represented zone
CNAME | Node Symbolic link with the primary name of the represented node
PTR Host Contains the canonical name of a host o
HINFO Host | Holds information on the host this node represents |
TXT Any kind | Contains any entity-specific information considered useful

Figure 4-12, The most important types of resource records forming the contents
of nodes in the DNS name space.

A node in the DNS name space often will represent several entities at the
same time. For example, a domain name such as vu.n! is used to represent a
domain and a zone. In this case, the domain is implemented by several zones.

An SOA (start of authority) resource record contains information such as an
e-mail address of the system administrator responsible for the represented zone,
the name of the host where data on the zone can be feiched, and so on.

An A (address) record, represents a particular host in the Internet. The A
record contains an IP address for that host to allow communication. If a host has
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several IP addresses, as is the case with multi-homed machines, the node will con-
tain an A record for each address.

An important type of resource record is the MX (mail exchange) record, which
is essentially a symbolic link to a node representing a mail server. For example,
the node representing the domain cs.vie.rl has an MX record containing the name
zephyr.cs.vu.nl, which refers to a mail server. That server will handle all incoming
mail addressed to users in the cs.vu.n! domain. There may be several MX records
stored in a node.

Related to MX records are SRV records, which contain the name of a server
for a specific service. SRV records are defined in (Vixie, 1996). The service
itself is identified by means of a name along with the name of a protocol. For
example, the Web server in the cs.vi.n! domain could be named by means of an
SRV record such as http.rcp.cs.vuni. This record would then refer to the actual
name of the server (which is seling.cs.vinl).

Nodes that represent a zone, contain one or more NS (name server) records.
Like MX records, an NS record contains the name of a name server that imple-
ments the zone represented by the node. In principle, each node in the name space
can store an NS record referring to the name server that implements it. However,
as we discuss below, the implementation of the DNS name space is such that onty
nodes representing zones need to store NS records.

DNS distinguishes aliases from what are called canonical names. Each host
Is assumed to have a canonical, or primary name. An alias is implemented by
means of node storing a CNAME record containing the canonical name of a host.
The name of the node storing such a record is thus the same as a symbolic link, as
was shown in Fig. 4-3.

DNS maintains an inverse mapping of IP addresses to host names by means of
PTR (pointer) records. To accommodate the lookups of host names when given
only an IP address, DNS maintains a domain named in-addr.arpa, which contains
nodes that represent Internet hosts and which are named by the IP address of the
represented host. For example, host www.cs.vinl has IP address 130.37.24.11.
DNS creates a node named 11.24.37.130.in-addr.arpa, which is used (o store the
canonical name of that host (which happens to be soling.cs.vu.nl) in a PTR record.

The last two record types are HINFO records and TXT records. An HINFO
(host info) record is used to store additional information on a host such as its
machine type and operating system. In a similar fashion, TXT records are used for

any other kind of data that a user finds useful to store about the entity represented
hy the node.

DNS Implementation
The implementation of DNS is very similar to what has been described in the

previous section. In essence, the DNS name space can be divided into a global
layer and an administrational layer as shown in Fig. 4-6. The managertal layer,
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which is generally formed by local file systems, is formally not part of DNS and is
therefore also not managed by it.

Each zone is implemented by a name server, which is virtually always repli-
cated for availability. Updates for a zone are normaily handled by the primary
name server. Updates take place by medifying the DNS database local 1o the pri-
mary server. Secondary name servers do not access the database directly, but,
instead, request the primary server to transfer its content. The latter is called a
zone transfer in DNS terminology.

A DNS database is implemented as a (small) collection of files, of which the
most important one contains all the resource records for alf the nodes in a particu-
lar zone. This appreach allows nodes to be simply identified by means of their
domain name, by which the notion of a node identifier reduces to an (implicit)
index into a file.

To better nnderstand these implementation issues, Fig. 4-13 shows part of the
file that contains most of the information for the cs.vu.n! domain. (It should be
noted that the file has been edited for presentational purposes.) The file shows the
contents of eight different nodes that are part of the c¢s.vi.n! domain, where each
node is identified by means of its domain name.

The node cs.vi.n! represents the domain as well as the zone, Its SOA resonrce
record contains specific information on the validity of this file, which will not
concern us further. There are three name servers for this zone, referred to by their
canomcal host names in the NS records. The TXT record is used to give some
additional information on this zone, but cannot be automatically processed by any
name server. Furthermore, there are three mail servers that can handle incoming
mail addressed to uscrs in this domain. The number preceding the name of a mail
server specifies a selection priority. A sending mail server should always first
attempt to contact the mail server with the lowest number, in this example,
zephyr.cs.vunl,

The host star.cs.vi.nl operates as a name server for this zone, Name servers
are critical {0 any naming service. What can be seen about this name server, is
that additional robustness has been created by giving two separate network inter-
faces, each represented by a separate A resource record. In this way, the effects of
a broken network link can be somewhat circumvented.

The next four lines give the necessary information about the mail server.
Note that this mail server is also backed up by another mail server, whose path is
tornado.cs.vu.nl.

The next six lines show a typical configuration in which the department’s
Web server, as well as the FTP server are implemented by a single machine, cal-
led soling.cs.vu.nl. By executing both servers on the same machine (and essen-
tially using that machine only for Internet services), system management becomes
easier. For example, both servers will have the same view of the file system, and
for efficiency, part of the file sysiem way be implemented on sofing.cs.vu.ni.
This approach is often applied in the case of WWW and FTP services.
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Name Record type Record value
es.va.n SOA star (1989121502,7200,3600,2419200,86400)
cs.vu.ni NS star.cs.vu.nl
es.vu.nl NS top.cs.vu.nl
es.vu.n! NS solo.cs.vu.nl
cs.vu.nd TXT "Vrije Universiteit - Math, & Comp. Sc."
cs.vu.nl MX 1 zephyr.cs.vu.nl
cs.vu.nl MX 2 tornado.cs.vu.nl
cs.vu.nl MX 3 star.cs.vu.nl
star.cs.vu.nl HINFO Sun Unix
star.cs.vu.ni MX 1 star.cs.vu.nl
star.cs.vu.nl MX 10 zephyr.cs.vu.nl
star.cs.vu_nk A 130.37.24.6
star.cs.vu.nl A 192.31.231.42
zephyr.cs.vu.nl HINFO Sun Unix
zephyr.cs.vu.nt MX 1 zephyr.cs.vu.nl
zephyr.cs.vu.nl MX 2 tornado.cs.vu.nl

| zephyr.cs.vu.ni A 192.31.231.66
www.cs.vu.nl CNAME soling.cs.vu.nl
ftp.cs.vu.nl CNAME soling.cs.vu.nl
soling.cs.vunl HINFO Sun Unix
soling.cs.vu.nl MX 1 soling.cs.vu.ri
soling.cs.vu.nl MX 10 zephiyr.cs.vu.ni
soling.cs.vu.nl A 130.37.24.11
laser.cs.vu.n HINFO PC MS-DOS
laser.cs.vu.nl A 130.37.30.32
vucs-das.cs.vu.nl - PTR 0.26.37.130.in-addr.arpa
vucs-das.cs.veni A 130.37.26.0

Figure 4-13. An excerpt from the DNS database for the zone cs.vu.xl,

The following two lines show information on one of the laser printers con-
nected to the local network. The last two lines illustrate the inverse mapping from
addresses to canonical names. In this case, the name of the department’s super-
computer can be looked up by its address in the in-addr.arpa domain.

Because the ¢s.vu.nl domain is implemented as a single zone, Fig. 4-13 does
not include references to other zones. The way to refer to nodes in a subdomain
that are implemented in a different zone is shown in Fig. 4-14. What needs to be
done is 10 specify a name server for the subdomain, by simply giving its domain
name and IP address. When resolving a name for a node that lies in the cs.vu.nl
domain, name resolution will continue at a certain point by reading the DNS data-
base stored by the name server for the cs.vu.nl domain,
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Name Record type Record value
¢s.vu.ni NS solo.cs.vu.nl
solo.cs.vu.nl A 130.37.24.1

Figure 4-14. Part of the description for the va.n/ domain which contains the
cs.vieni domain.

4.1.5 Example: X.500

DNS is an example of a traditional naming service: when given a (possibly
hierarchically structurcd) name, DNS resolves the name to a node in the naming
graph and returns the content of that node in the form of a resource record. In this
sense, DNS is comparable to a telephone book for looking up phone numbers.

A different approach is taken by what are called directory services. A direc-
tory service is a special kind of naming service in which a client can look for an
entity based on a description of properties instead of a full name. This approach is
very similar to the way people use the yeliow pages when they need, for example,
a person to repair a broken window. In that case, a user may look under the head-
ing “Window repair’” to obtain a list of (names of) firms that replace windows.

In this section, we take a brief look at the OSI X.500 directory service.
Although this directory service has been available for over a decade, it is only
recently gaining more popularity as lightweight versions are being implemented
as Internet services. Detailed information on X.500 can be found in (Chadwick,
1994; Radicati, 1994). Practical information on various directory services, includ-
ing X.500, can be found in (Sheresh and Sheresh, 2000).

The X.500 Name Space

Conceptually, an X.500 directory service consists of a number of records, usu-
ally referred to as directory entries. A directory entry in X.500 is comparable 1o a
resource record in DNS. Each record is made up of a collection of
{attribute, value) pairs, where each attribute has an associated type. A distinction
is made between single-valued attributes and multiple-valued atiributes. The latter
typically represent arrays and lists. As an example, a simple directory entry identi-
fying the network addresses of some general servers from Fig. 4-13 is shown in
Fig. 4-15.

In our example, we have used a naming convention described in the X.500
standards, which applies to the first five attributes. The attributes Organization
and OrganizationUnit describe, respectively, the organization and the department
assoctated with tbe data that are stored in the record. Likewise, the attributes
Locality and Country provide additional information on where the entry is stored,
The CommonName attribute is often used as an (ambignous) name to identify an
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Attribute Abbr. Value

Country C NL ]
—LSE;TEy L Amsterdam ]
Organization O | Vrije Universiteit

OrganizationalUnit ou Math, & Comp. Sc.

CommonName CN Main server

Mail . Servers — | 130.37.24.6, 192.31.231.42, 192.31.231.66
FTP _Server — 130.37.24.11

‘WWW_Server — | 13037.24.11

Figure 4-15. A simple example of a X.500 directory entry using X.500 naming
conventions.

entry within a limited part of the directory. For example, the name “Main
servers” may be enough to find our example entry given the specific values for
the other four attributes Country, Locality, Organization, and OrganizationalUnit.
In our example, only attribute Mail_Servers has multiple values associated with it.
All other attributes have only a single value.

The collection of all directory entries in an X.500 directory service is called a
Directory Information Base (DIB). An important aspect of a DIB is that each
record is uniquely named so that it can be looked up. Such a globally unique name
appears as a sequence of naming attributes in each record. Each naming attribute
is called a Relative Distingnished Name, or RDN for short. In our example in
Fig. 4-15, the first five attributes are all naming attributes. Using the conventional
abbreviations for representing naming attributes in X.500 as shown in Fig. 4-15,
the attributes Country, Organization, and OrganizationalUnit could be used 1o
form the globally unique name

/C=NL/O=Vrije UniversiteitOU=Math, & Comp. Sc.

analogous to the DNS name nl.vu.cs.

As in DNS, the use of globally unique names by listing RDNs in sequence,
leads to a hierarchy of the collection of directory entrics, which is referred to as a
Directory Information Tree (DIT). A DIT essentially forms the naming graph
of an X.500 directory service in which cach node represents a directory entry. In
addition, a node may also act as a directory in the traditional sense, in that there
may be several children for which the node acts as parent. To explain, consider
the naming graph as partly shown in Fig. 4-16(a).

Node N corresponds to the directory entry shown in Fig. 4-15. At the same
time, this node acts as a parent to a number of other directory entries that have an
additional naming attribute Host_Name that is used as an RDN. For example, such
entries may be used to represent hosts as shown in Fig. 4-16(b).
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0 = Vrije Universitail

QU= Math. & Comp. Sc.
CN = Main server

Host_Name = star, Host_Nama = zephyr

(@)

Aftribute Value Attribute Value
Country NL Country NL B
Locality Amsterdam Locality Amsterdam
Organization Vrije Universiteit Crganization Vrije Universiteit
OrganizationailUnit| Math, & Comp. Sc. OrganizationalUnit| Math. & Comp. Sc.'
CommonName Main server CommonName Main server N
Host_Name star Host_Name zrephyr
Host_Address 192.31.231.42 Host._Address 192.31.231.66

&)

Figure 4-16. {a) Part of a directory information tree. (b) Two directory entries
having Host_Name as RDN.

A node in an X.500 naming graph can thus simultaneously represent a direc-
tory in the traditional sense as we discussed previously, as well as an X.500
record. This distinction is supported by two different lookup operations. The read
operation is used to read a single record given its path name in the DIT. In con-
trast, the list operation is used to list the names of all outgoing edges of a given
node in the DIT. Each name corresponds to a child node of the given node. Note
that the list operation does not return any records; it merely returns names. In
other words, calling read with as input the name

fC=NL/O=Vrije Universiteit’OU=Math. & Comp. Sc./CN=Main server

will remurn the record shown in Fig. 4-15, whereas calling list will retumn the
names star and zephyr from the entries shown in Fig. 4-16(b) as well as the names
of other hosts that have been registered in a similar way.
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X.500 Implementation

Implementing an X.500 directory service proceeds in much the same way as
implementing a naming service such as DNS, except that X.500 supports more
lookup operations as we will discuss shortly. When dealing with a large-scale
directory, the DIT is usually partitioned and distributed across several servers,
known as Directory Service Agents (DSA) in X.500 terminology. Each part of a
partitioned DIT thus corresponds to a zone in DNS. Likewise, each DSA behaves
very much the same as a normal name server, except that it implements a number
of typical directory services, such as advanced search operations.

Clicnts are represented by what are called Directory User Agents, or simply
DUAs. A DUA is similar to a name reselver in traditional naming services. A
DUA exchanges information with a DSA according to a standardized access pro-
tocol. :
What makes an X.500 implementation different from a DNS implementation
are the facilities for searching through a DIB. In particular, facilities are provided
to search for a directory entry given a set of criteria that attributes of the searched
entries should meet. For example, suppose that we want a list of all main servers
at the Vrije Universiteit. Using the notation defined in (Howes, 1997), such a list
can be returned using a search operation such as

answer = search("&(C=NL)(O=Vrije Universiteit)(OU="}(CN=Main server)")

In this example, we have specified that the place to look for main servers is the
orgamzation named Vrije Universiteit in country NL, but that we are not
interested in a particular organizational unit. However, each returned result should
have the CN attribute equal to Main server.

An important observation is that scarching in a directory service is generally
an expensive operation. For example, to find all main servers at the Vrije Univer-
siteit requires searching all entries at each department and combining the results
in a single answer. In other words, we will generally need to access several leaf
nodes of a DIT in order to get an answer. In practice, this also means that several
DSAs need to be accessed. In contrast, naming services can often be implemented
in such a way that a lookup operation requires accessing only a single leaf node.

Staying in line with many other OSI protocols, accessing an X.500 directory
according (o the official rules is not trivial. To accommodate X.500 directory ser-
vices in the Internet, a simplified protocol has been devised, known as the Light-
weight Directory Access Protocol (LDAP).

LDAP is an application-level protocol that is implemented directly on top of
TCP (Yeong et al., 1995; Wahl et al., 1997), which alone contributes to its stmpli-
city compared to the official OSI access protocol. In addition, parameters of
lookup and update operations can simply be passed as strings, instead of using a
separate encoding as required by OSI's protocal. LDAP is gradually becoming a
de facto standard for Intemnet-based directory services. It is being integrated into
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many distributed systems, including, for example, Windows 2000, which we dis-
cuss in Chap, 9. Practical information on LDAP can be found in (Johner et al.,
1998).

4.2 LOCATING MOBILE ENTITIES

The naming services discussed so far, are primarily used for naming entities
that have a fixed location. By their nature, traditional naming systems arc not well
suited for supporting name-to-address mappings that change regularly, as is the
case with mobile entities. These issues are discussed in this section, along with
solutions to locating mobile entities.

4.2.1 Naming versus Locating Entities

As we explained in the previous section, entities are named so that they can
be looked up and subsequently accessed. Three types of names were dis-
tinguished: human-friendly names, identifiers, and addresses. Because distributed
systems are built to be used by humans and because it is necessary to have an
entity’s address to access it, virtuaily all naming systems maintain a mapping of
human-friendly names to addresses.

As we also explained, to cffectively implement 4 large-scale name space such
as in DNS, it is useful to partition the name space into three layers. The global
layer and the administrational layer are characterized by the fact that names do
not change often. More precisely, the content of nodes in those parts of the name
space is relatively stable. As a consequence, an efficient implementation can be
achieved through replication and caching.

The contents of nodes in the managerial layer change often. Therefore, perfor-
mance of updates and lookups becomes important. In practice, performance
demands can be met by implementing nodes on a local, bigh-performance name
server.

Let us take a closer look at which assumptions are actually made, and why
this approach toward implementing large-scale naming systems works. First again
consider looking np the address of the (remoie) host fip.cs.vu.nl. By assuming
that the content of nodes in the global and administrational iayer are stable, it is
probable that the client can find the address of the name server for the cs.vu.n!
domain in its local cache. Consequently, only a single request needs to be sent 1o
that name server 1o find the address of fip.cs.vinl.

Next, consider updating the address of fip.cs.vi.nl, for instance. because the
FTP server is t0 be moved to a different machine. As long as the server is moved
to 2 machine within the cs.vu.n! domain, the update can be done efficiently. In
that case, only the DNS database of the name server for cs.vunl will have to be
changed. Lookups will be as efficient as they were before.

—————————— e — =
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Consequently, by assuming that nodes in the global and administrational layer
do not change often, and also by assuming that updates are generally restricted to
a single name server, naming systems such as DNS can be made highly efficient.

Now consider what happens if fip.cs.vu.nl were to move t¢ a machine named
ftp.cs.unisa.edu.au, which lies in a completely different domain. The first observa-
tion to make, is that the name ftp.cs.vinl should preferably not change, as it can
be expected that many applications and users will have symbolic links to it, In
other words, the name 1s presumably used as an identifier. Changing it will cause
all links to it to become invalid.

There are now basically two solutions. One solution is to record the address of
the new machine in the DNS database for cs.vu.nl/. An aiternative solution is to
record the name of the new machine, instead of its address, effectively turning
Jip.cs.vu.nl into a symbolic link. Both solutions have serious drawbacks.

Let us first consider recording the address of the new machine. Clearly,
lookup operations are not affected by this approach. However, whenever
fip.cs.vu.nl moves once again to another machine, its entry in the DNS database in
¢s.vienl will have to be updated as well. It is important to note that this update is
no longer a local operation but may actually take hundreds of milliseconds to
complete. In other words, this approach violates the assumption that operations on
nodes in the managerial layer are efficicnt.

The main drawback of using a symbolic link is that lookup operations become
less efficient. In effect, each lookup is split into two steps:

1. Find the name of the new machine.

2. Look up the address associated with that name,

However, if fip.cs.vu.nl is to move again, say to fip.cs.berkeley.edu, we can per-
form a local update operation by turning the name fip.cs.unisa.edu.au into a sym-
bolic link to fip.cs.berkeley.edu, and leave the entry in the DNS database for
cs.vinl as it was. The drawback is that we have added another step to the lookup
operations.

For highly mobile entities, matters become only worse. Each time an entity
moves, either a nonlocal update operation needs to be performed or another step is
added to lookup operations.

Another serious problem with the approaches mentioned so far, is that the
name fip.cs.vu.nl is not allowed to change. Consequently, it becomes extremely
important to choose names that can be expected not to change for the lifetime of
the entity they represent. Moreover, that name cannot be used for any other entity.
In practice, choosing such names, especially for very long-lived entities, is diffi-
cult, as 18 demonstrated by naming in the World Wide Web. In particular, many
entities are known under different names, and all these names should remain
valid. that is, always refer to the same entity, even in the face of mobility,

T — g p————
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For these reasons, traditional naming services such as DNS cannot cope well
with mobile entities, and different solutions are needed. In essence, problems arise
because traditional naming services maintain a direct mapping between human-
friendly names and the addresses of entities. Each time a name or an address
changes, the mapping needs to change as well, as shown in Fig. 4-17(a).

1Name | { Name| | Namel | Namel Name | | Name | | Name | | Name
Naming
A . servioe

------------ Entity ID |-------------

Location
sarvice

X
|Address [ | Addressl {Address ‘

l Address

(@) (b)

Address Addrass

Figure 4-17. (a) Direct, single-level mapping between names and addresses.
{b) Two-level mapping using identifiers.

A better solulion is to separale naming from locating entities by introducing
identifiers, as shown in Fig. 4-17(b). Recall that an identifier never changes, that
each entity has exactly one identifier, and that an identifier is never assigned to a
different entity (Wieringa and de Jonge, 1995). In general, an identifier is not
intended to have a human-friendly representation. In other words, it is optimized
for machine processing only.

When looking up an entity by means of a naming service, that service returns
an identifier. The identifier can be stored locally for as long as needed because it
is known never to refer to a different entity, nor will it ever change. Under which
name it is stored locally, is not important. Consequently, when that identifier is
needed the next time, it can simply be retrieved locally without having to look it
up by means of the naming service.

Locating an entity is handled by means of a separate location service. A
location service essentially accepts an identifier as input, and returns the current
address of the identified entity. If multiple copies exist, then multiple addresses
may be returned. In this section, we concentrate solely on the problem of imple-
menting efficient location services.

4.2.2 Simple Solutions

We first consider two simple solutions for locating an entity. Both solutions
are applicable only to local-area networks. Nevertheless, in that environment,
they often do the job well, making their simplicity particularly attractive,
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Broadcasting and Multicasting

Consider a distributed system buill on a computer network that offers efficient
broadcasting facilities. Typically, such facilities are offered by local-area net-
works iu which all machines are connected to a single cable. Also, local-area
wireless networks fall into this category.

Locating an entity in such an environment is simple: a message containing the
identifier of the entity is broadcast to each machine and each machine is requested
to check whether it has that entity. Only the machines that can offer an access
point for the entity send a reply message containing the address of that access
point.

This principle is used in the Internet Address Resolution Protocol (ARP) to
find the data-link address of a machine when given only an IP address (Plummer,
1982). In essence, a machine broadcasts a packet on the local network asking
who the owner is of a given IP address. When the message arrives at a machine,
the receiver checks whether it listeus to the requested TP address. If so, it sends a
reply packet containing, for example, its Ethemnet address.

Broadcasting becomes inefficient when the network grows. Not only is net-
work bandwidth wasted by request messages, but, more seriously, too many hosts
may be interrupted by requests they cannot answer. One possible solution is to
switch to multicasting, by which only a restricted group of hosts receives the
request. For example, Ethemnet networks support data-link level multicasting
directly in hardware.

Multicasting can also be used to locate entities in point-to-point networks. For
example, the Intemet supports network-level multicasting by allowing hosts to
join a specific multicast group. Such groups are identified by a multicast address.
When a host sends a message to a multicast address, the network layer provides a
best-effort service to deliver that message to all group members. Efficient imple-
mentations for multicasting in the Internet are discussed in (Deering and Cheriton,
1990; Deering et al., 1996).

A muliicast address can be used as a general location service for multiple
entities, For example, consider an organization where cach employee has his or
her own mobile computer, When such a computer connects to the locally avail-
able network, it is dynamically assigned an IP address. In addition, it joins a
specific multicast group. When a process wants to locate computer A, it sends a
“where is A?” request to the multicast group. If A is connected, it responds with
its current IP address.

Another way to use a multicast address is to associate it with a replicated
entity, and to use multicasting to locate the nearest replica. When sending a
request to the multicast address, each replica responds with its current (normal) IP
address. A crude way to select the nearest replica is to choose the one whose reply
comes in first. More accurate approaches are described in (Guyton and Schwartz,
1995). As it turns out, selecting a nearest replica is generally not that easy.
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Forwarding Pointers

Another popular approach to locating mobile entities is to make use of for-
warding pointers (Fowler, 1985). The principle is simple: when an entity moves
from A 1o B, it leaves behind a reference to its new location at B. The main
advantage of this approach is its simplicity: as soon as an entity has been located,
for example by using a traditional naming service, a client can look up the current
address by following the chain of forwarding pointers.

There are also a number of important drawbacks. First, if no special measures
are taken, a chain can become so long that locating an entity is prohibitively
expensive. Second, all intermediate locations in a chain will have to maintain their
part of the chain of forwarding pointers as long as needed. A third, and related
drawback, is the vulnerability to broken links. As soon as a forwarding pointer is
lost for whatever reason, the entity can no longer be reached. An important issue
is, therefore, to keep chains relatively sbort, and to ensure that forwarding pointers
are robust,

To better understand how forwarding pointers work, consider their use with
respect to distributed objects. Following the approach in SSP ¢hains (Shapiro et
al., 1992), each forwarding pointer is implemented as a (proxy, skeleton) pair as
shown in Fig. 4-18 [in SSP, a proxy is called a stub and a skeleton a scion, leading
to (stub, scion) pairs, which explains the abbreviation SSP]. A skeleton (i.e., the
server-side stub) contains either a local reference to the actual object or a local
reference to a proxy (i.e., the client-side stub) for that object. To emphasize that

skeletons act as entry items for remote references, and proxies as exit ifems, we
use the notation as shown in Fig. 4-18.

Process P2 Proxy p” refers to
Proxy p’ same skeiston as

proxXy p
\D Process P3

P,

|- identical proxy

Process P1_*  Skelston ]

Proxy p | Process P4 Object

\D/ Local .d/

invocation

Interprocess
communication  identical '

skeleton

Figure 4-18. The principle of forwarding pointers using {proxy, skeleton) pairs.

Whenever an object moves from address space 4 to B, it leaves behind a
Proxy in its place in A and installs a skeleton that refers to it in B. An interesting
aspect of this approach is that migration is completely transparent to a client. The
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only thing the client sees of an object, is a proxy. How, and to which location that
proxy forwards its invocation is hidden from the client. Also note that this use of
forwarding potniers is not the same as looking up an address. Instead, a client’s
request is forwarded along the chain to the actmal object.

To short-cut a chain of (proxy, skeleton) pairs, an invocation carries the iden-
tification of the proxy from where that invocation was initiated. A proxy identifi-
cation consists of the client’s transport-level address, combined with a locally
generated number to identify the proxy. When the invocation reaches the object at
its current location, a response is sent back to the proxy where the invocation was
initiated. The current location is piggybacked with this response, and the proxy
adjusts its companion skeleton to the one in the object’s current location. This
principle is shown in Fig. 4-19.

. Skelaton is no
Invocation longer referenced
request is

by any proxy ™
sent to object m Y ‘E_D\

““““ AT T

Skeleton at object's Cli?‘nt protxy sets
current process returns & shartcy
the current location

(@ (b)

Figure 4-19. Redirecting a forwarding pointer by storing a shortcut in a proxy.

There is a trade-off between sending the response directly to the initiating
proxy, or along the reverse path of forwarding pointers. In the former case, com-
munication is faster because fewer processes may need to be passed. On the other
hand, only the initiating proxy can be adjusted, whereas sending the response
along the reverse path allows adjustment of all intermediate proxies.

When a skeleton is uo longer referred to by any proxy, it can be removed.
How this can be done automatically, is discussed in Sec. 4.3,

As we explamed in Chap. 2, object references in distributed-ohject systems
can be implemented as proxies that are passed as parameters in method invoca-
tions. This scheme still works with forwarding pointers. Suppose that process P,
in Fig. 4-18 passes its reference to object O to process P,. Reference passing is
done by installing a copy p’ of proxy p in the address space of process P;. Proxy
p’ refers to the same skeleton as p, so that the forwarding invocation mechanism
works the satue as before.

Problems arise when a process in a chain of (proxy, skeleton) pairs crashes or
becomes otherwise unreachable. Several solutions are possible. One possibility, as
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followed in Emerald (Jul et al., 1988) and in the LII system (Bilack and Artsy,
1990}, is to let the machine where an object was created (called the abject’s home
location), always keep a reference 1o its current location. That reference is stored
and maintained in a fault-tolerant way. When a chain is broken, the object’s home
location is asked where the object is nrow. To allow an object’s home location to
change, a traditional naming service can be used to record the current home loca-
tion. Such home-based approaches are discussed next.

4.2.3 Home-Based Approaches

The use of broadcasting and forwarding pointers imposes scalability prob-
lems. Broadcasting or multicasting is difficult to implement efficiently in large-
scale networks whereas long chains of forwarding pointers introduce performance
problems and are susceptibie to broken links.

A popular approach to supporting mobile entities in large-scale networks, is to
introduce a home location, which keeps track of the current location of an entity.
Special techniques may be applied to safeguard againsi network or process
failures. In practice, the home location is often chosen to be the place where an -
entity was created.

. The home-based approach is used as a fall-back mechanism for location ser-
vices based on forwarding pointers, as discussed above. Another example where
the home-based approach is followed, is in Mobile IP (Perkins, 1997). Each
mobile host uses a fixed IP address. All communication to that IP address is ini-
tially directed to the mobile host’s home agent. This home agent is located on
the local-area network corresponding to the network address contained in the
mobile host’s IP address. Whenever the mobile host moves to another network, it
requests a temporary address that it can use for communication. This care-of
address is registered at the home agent.

When the home agent receives a packet for the mobile host, it looks up the
host’s current location. If the host is on the current local network, the packet is
simply forwarded. Otherwise, it is tunneled to the host's current location, that is,
wrapped as data in an IP packet and sent to the care-of address. At the same time,
the sender of the packet is informed of the host’s current location. This principle
is shown in Fig. 4-20. Note that the IP address is effectively used as an identifier
for the mobile host.

Fig. 4-20 also illustrates another drawback of home-based approaches in
large-scale networks. To communicate with 2 mobile entity, a client first has to
contact the home, which may be at a completely different location than the entity
itself. The result is an increase in communication latency.

A solution applied to mobile telephony is to use a two-tiered scheme {Mchan
and Jain, 1994). When setting up a conmection to a mobile entity, a client first
checks a local registry 10 see whether the mobile entity is available locally. If not,
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Figure 4-20. The principle of Mobile IP.

the entity’s home location is contacted to find the current location. Below, we dis-
cuss an extension to this scheme that expands across multiple hierarchical layers,

Another important drawback of the home-based approach is the use of a fixed
bome location. For one thing, it must be ensured that the home location always
exists. Otherwise, contacting the entity will become impossible. Problems are
aggravated when a long-lived entity decides to move permanently to a comgletely
different part of the network than where its home is located. In that case, it would
have been better to let the home move along with the host.

A solution to this problem is to register the home at a traditional naming ser-
vice and to let a client first look up the location of the home. Because the home
location can be assumed to be relatively stable, that location can be effectively
cached after it has been looked up.

4.2.4 Hierarchical Approaches

The two-tiered home-based approach to locating entities can be generalized to
multiple layers. In this section, we first discuss a general approach to a hierarchi-
cal location scheme, after which a number of optimizations are presented. The
approach we present is based on the Globe location service, described in (van
Steen et al., 1998b). This is a general-purpose location service that is representa-
tive of many hierarchical location services proposed for what are called Personal
Communication Systems (Pitoura and Samaras, 2001; Wang, 1993).
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General Mechanism

In a hierarchical scheme, a network is divided into a collection of domains,
very similar to the hierarchical organization of DNS. There is a single top-level
domain that spans the entire network. Each domain can be subdivided into multi-
ple, smaller subdomains. A lowest-level domain, called a leaf domain, typically
corresponds to a local-area network in a computer network or a cell in a mobile
telephone network,

Also analogous to DNS and other hierarchical naming systems, each domain
D has an associated directory node dir{D) that keeps track of the entities in that
domain. This leads to a tree of directory nodes. The directory node of the top-
level domain, called the root (directory) node, knows ahout all entities. This
general organization of a network into domains and directory nodes is illustrated
in Fig. 4-21.

The root directory

node dir(T) Top-level

domainT

Directory node
dir{S) of domain S

A subdomain S
.~ of top-tevel domain T
v {Sis containedin T)

[

1S
LS
\
"
.\

A teaf domain, contained in S

Figure 4-21. Hierarchical organization of a location service into domains, each
having an associated directoty node.

To keep track of the whereabouts of an entity, each entity currently located in
a domain D, is represented by a location record in the directory node dinfDj. A
location record for entity E in the directory node N for a leaf domain I contains
the entity’s current address in that domain. In contrast, the directory node N for
the next higher-level doniain D that contains D, will have a location record for E
containing only a pointer to N. Likewise, the parent node of N’ will store a loca-
tion record for E containing only a pointer to N, Consequently, the root node will
have a location record for each entity, where each location record storcs a pointer
to the directory node of the next lower-level subdomain where that record’s asso-
ciated entity is currently located.

An entity may have multiple addresses, for example if it is replicated. If an
entity has an address in leaf domain D7 and D2 respectively, then the directory
node of the smallest domain containing both D! and D2, will have two pointers,

T N R e e -
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one for each subdomain containing an address. This leads to the general organiza-
tion of the tree as shown in Fig. 4-22.

Field with no data
Field for domain . ...
dom{N) with o
pointer to N —I,‘—P

Location record
k" for E at node M
]

Fah T, M

Location record
with only one field,
containing an address

Domains D1

Domain D2

Figure 4-22. An example of storing information of an entity having two ad-
dresses in different leaf domains.

Let us now consider how a lookup operation proceeds in such a hierarchical
location service. As is shown in Fig. 4-23, a client wishing to locate an entity £,
issues a lookup request to the directory node of the leaf domain D in which the
client resides. If the directory node does not store a location record for-the entity,
then the entity is currently not located in D. Consequently, the node forwards the
request to its parent. Note that the parent node represents a larger domain than its
child. If the parent also has no location record for E, the lookup request is for-
warded to a next level higher, and so on.

Node knows

about E, s¢ request
MNode has no is forwarded to child
record for E, so
that request is
forwardedta . .77
parent

Look-up
request

Domain D

Figure 4-23. Looking up a tocation in a hierarchically organized location service.

As soon as the request reaches a directory node M that stores a location record
for entity E, we know that E is somewhere in the domain dom(M) represented by
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node M. In Fig. 4-23, M is shown to store a location record containing a pointer
to one of its subdomains. The lookup request is then forwarded to the directory
node of that subdomain, which in turn forwards it further down the trec, until the
request finally reaches a leaf node. The location record stored in the leaf node will
contain the address of E in that leaf domain. This address can then be returned to
the client that initially requested the lookup to take place.

An important observation with respect to hierarchical location services, 15 that
the lookup operation exploits locality. In principle, the entity is searched in a gra-
dually increasing ring centered arouud the requesting client. The search area is
expanded each time the lookup request is forwarded to a next higher-level direc-
tory node. In the worst case, the search continues until the request reaches the root
node. Because the root node has a location record for each entity, the request can
then simply be forwarded along a downward path of pointers to one of the leaf
nodes.

Update operations exploit locality in a similar fashion, as shown in Fig. 4-24,
Consider an entity E that has created a replica in leaf domain D for which it needs
to insert its address. The insertion is initiated at the leaf node dir(fD} of D, which
immediately forwards the insert request to its parent. The parent will forward the
insert request as well, until it reaches a directory node M that already stores a
location record for E.

Node M will then store a pointer in the location record for E, referring to the
child node from where the insert request was forwarded. At that point, the child
node creates a location record for E, containing a pointer to the next lower-level
node from where the request came. This process continues until we reach the leaf
node from which the insert was initiated. The leaf node, finally, creates a record
with the entity’s address in the associated leaf domain.

Node knows
Node has no about €, so raquest
record for E, is no longer forwarded
50 request is Node creates Tecord
farwarded and stores pointer

to parent

Noda creates
record and
stores address

S S
! Insert
' request

Domain D

(&) ()

Figure 4-24 {a) An insert request is forwarded to the first node that knows
about entity E. (b) A chain of forwarding pointers to the leaf node is created.
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Inserting an address as just described, leads to installing the chain of pointers
in a top-down fashion starting at the lowest-level directory node that has a loca-
tion record for entity E. An allernative is Lo create a location record before pass-
ing the insert request to the parent node. In other words, the chain of pointers is
constructed from the bottom up. The advantage of the latter is that an address
becomes available for lookups as soon as possible. Consequently, if a parent node
is temporarily unreachable, the address can still be looked up within the domain
represented by the current node.

A delete operation is analogous to an insert operation. When an address for
entity £ in leaf domain ¥ needs to be removed, directory node dir{D) is requested
to remove that address from its location record for E. If that location record
becomes empty, that is, it contains no other addresses for £ in D, the record can
be removed. In that case, the parent node of dir{D} wants to remove its pointer to
dir(D). If the location record for E at the parent now also becomes emply, that
record should be removed as well and the next higher-level directory node should
be informed. Again, this process continues until a pointer is removed from a loca-
tion record that remains nonempty afterward or until the root is reached.

Pointer Caches

A hierarchical location service is aimed at supporting mobile entities, that is,
entities of which the current location changes regularly. In traditional naming ser-
vices, the mapping between a name and an address is assumed to be stable, at
least for nodes in the global and administrational layer. Consequendy, storing
lookup results from those nodes in local caches can be highly effective.

Caching addresses locally in the case of a location service will generally not
be very effective. The next time the address of a mobile entity is looked up, it may
very well have moved on to another location. Consequently, we are forced to fol-
low the entire lookup operation as described above. This approach makes a
hierarchical location service unavoidably more expensive than most naming ser-
vices.

Caching is effective only if the cached data rarely change. Consider a mobile
entity E that moves regularly within a domain D. Moving within that domain
means that E will regularly change its curmrent address. However, the path of
pointers for entity £ from the root node to dir(D) does not have to change. In other
words, the location where information concerning the most recent whereabouts of
E is stored, remains the same, in this case the directory node dirfD). Therefore, it
is effective to cache a reference to the directory node.

In general, if D is the smallest domain in which a mobile entity moves regu-
larly, then it makes scnse to start a lookup operation for the current location of E
at dir(D), instead of any other node. This approach is essentially followed in the
location service described in (Jain, 1996) and the Globe location service (van
Steen et al., 1998b; Baggio et al., 2000), and is referred to as pointer caching. A
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reference 10 dir(D), can, in principle, be cached at every node along the path from
the leaf node where the lookup was initiated as shown in Fig. 4-25.

Domain O

Cached pointers E movas regularly betwean
to node dir(D) the two subdomains

Figure 4-25. Caching a reference to a directory node of the lowest-level domain
in which an entity will reside most of the time.

Further improvements can be made by not letting dir(D) store a pointer to the
subdomain where E currently resides, but instead letting it directly store the actual
address of £. Combined with pointer caching, a lookup operation can possibly be
realized in only two steps. The first step requires inspecting the local pointer
cache, leading directly to the appropriate directory node. The second siep involves
requesting that node to return the current address of E.

Although the principle of pointer caching in hierarchical location services
works, there are a number of open questions that need further attention, One ques-
tion is how to find the best directory node to store the current address of a mobile
entity. luagine a user with a mobile computer regularty moving within, and
between, two different cities, say San Francisco and Los Angeles.

When the user is San Francisco, it can be expected that he will change loca-
tion regularly within that city. Consequently, it would make sense o store its
current location in the directory node representing the San Francisco domain. A
sitnilar behavior pattern occurs when our busy beaver is in Los Angeles.

However, what also happens is that the user flies between San Francisco and
Los Angeles all the time. Given that fact, it may be more effective 1o store its
current location in a higher-level directory node such as the one for the state of
California, irrespective of whether that location is in San Francisco or Los
Angeles.

Another open question is when to invalidate a cache entry. Suppose, in our
example, that the user gets so many requesis from New York that he decides it
tuakes sense to open an office in Manhattan and let one of his friends handle all
incoming requests from the New York district. In terms of the location service,
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what happens is that a permanent address is availahle in the leaf node for the
Manhattan domain. Any lookup request from New York should return that new
address, and not follow a cached pointer to the California directory node, as
shown in Fig. 4-26.

Cached pointer
to node dir(D) which
should be invalidated

Original address
{is stil valid)

New addrass

Figure 4-26. A cache entry that needs to be invalidated because it returns a
nonlocal address, while such an address 1s available.

Scalability Issues

One of the main problems with hierarchical location services is that the root
node is required to store a location record for each entity and to process requests
for each entity. Storage, itself, is not a major problem. Each location record can be
relatively small, as it consists only of an identifier for an entity, with one or more
pointers to lower-level directory nodes. If the size of each location record is
approximately 1 KB, the required storage capacity for, say, a billion entities, is
only one terabyte. That capacity can be provided by ten 100 GB disks.

The real problem is that without any special measures, the root may be
required to handle so many lookup and update requests that it will become a
bottleneck. The solution to this problem is to partition the root node and other
high-leve! directory nodes into subnodes. Each subnode is responsible for han-
dling the requests related to a specific subset of all the entities that are to be sup-
ported by the location service.

Unfortunately, simply partitioning the high-level nodes is not enough. To
understand the scalability problem at hand, consider the partitioning of only the
root node into, say, 100 suhnodes. The question is where to physically place each
subnode in the network that is covered by the location service.

One possibility for placing the subnodes is to follow a centralized approach by
which the subnodes are kept close to cach other, for example, in a cluster. Effec-
tively, the root node is then implemented by means of a parallel compulter, such as
a COW or MPP (which we hriefly discussed in Chap. 1). However, although the
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processing capacity may now be enough, the network connections to and from the
root node may not have enough capacity to handle all requests.

A much better alternative is therefore to spread the subnodes uniformly across
the network. However, if not done properly, this approach may also introduce sca-
lability problems. Consider again the mobile user moving primarily between San
Francisco and Los Angeles. The root node has been partitioned mto subnodes, and
the question that needs to be addressed is which subnode should be made respon-
sible for this user.
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Figure 4-27. The scalability issues refated to uniformly placing subnodes of a
partitioned root node across the network covered by a location service.

Assume a subnode has been placed in Finland, and is chosen to always store a
location record for this user. Ignoring pointer caches, this means that lookup
requests from, for example, Brazil, will pass the root node in Finland before being
forwarded to the California directory node. However, as shown in Fig. 4-27, it
would have been more efficient if such a request had been passed through a sub-
node located in, for example, California. Deciding which subnodes should handie
which entities in very large-scale location services is still an open question.

A possible solution is to take the location where an entity E is created into
account. In particular, the subnode of the root that is close to the location where E
is created becomes responsible for handling root-level requests for E. This solu-
tion works for entities that tend to stay close to where they were created. How-
ever, if an entity moves to a faraway location, the problem remains. Details con-
cerning this approach can be found in (Ballintijn et al., 1999a),
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4.3 REMOVING UNREFERENCED ENTITIES

Naming and location services provide a global referencing service for entities.
As long as an eniity is referred to by such a service, it can be accessed and used.
As soon as an entity can no longer be accessed, it should be removed.

In many systems, removing an entity is done explicitly. For example, if a pro-
cess P knows it is the last process left to use a file, and that no other process will
ever want to use that file in the future, £ may just as well remove the file when it
1s finished. Unfortunately, managing the removal of entities in a distributed sys-
tem is often difficult. In particular, it is often unknown whether a reference 1o an
entity is stored somewhere in the system, with the intention of accessing the entity
through that reference later on. If that is indeed the case, removing the entity will
lead to an error when subsequent access is attempted.

On the other hand, it is also unacceptable to never remove an entity just
because it is not known for certain whether a reference to that entity exists. If no
reference exists, we have the situation that there is an entity which most likely
consumes resources but which is never to be used again in the future. Clearly,
such entities are garbage and should be removed.

To alleviate the problems related to removing umreferenced entities, distrib-
uted systems may offer facilities to automatically remove an entity when it is no
longer needed. These facilities are also collectively known as distributed gar-
bage collectors. In this section, we take a closer look at the relation between
naming and referencing entities, and automatically collecting those entities that
are no longer referenced.

4.3.1 The Problem of Unreferenced Objects

To explain how garbage collection works, we concentrate on garbage collect-
ing distributed objects, in particular, remote objects. Recall that a remote object is
implemented by having its entire state located at an object server, whercas clients
have only a proxy. As we explained in Sec. 2.3, a reference to a remote object is
generally implemented as what we can now refer to as a (proxy, skeleton) pair.
The client-side proxy contains all the information to contact the object by means
of its associated skeleton as implemented by the server. In our examples, the
skeleton will take part in doing the administration necessary for garbage collec-
tion, together with the proxies. In other words, all that is needed to do garbage
collection is hidden from the clients and the actual objects. Note that an object
itself can hold a remote reference to another object, for example, by means of a
local pointer to the proxy in that remote reference. Likewise, a remote reference
can be passed to another process by copying its associated proxy to that other pro-
cess.

In what follows, we assume that an object can be accessed only if there is a
remote reference to it. An obiect for which no remote reference exists should be
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removed from the systemn. On the other hand, having a remote reference to an
object does not mean that the object will ever be accessed. For various reasons, it
is possible thal there are two objects, each storing a reference to the other, but are
otherwise not referenced at all. This situation is easily generalized to a cycle of
objects referring only to each other. Such objects should also be detected and
removed.

In general, this model can be represented by a graph in which each node
represents an object. An edge from node M to node N represents the fact that
object M contains a reference to object N. There is a distingnished subset of
objects called the root set, which need not be referenced themselves. An object in
the root set typically represents a systemwide service, a user, and so on.

Fig. 4-28 shows an example of such a reference graph. All the white nodes

represent objects that are not directly or indirectly referenced by objects in the
root set. Such objects should be removed.

Entities forming
an unreachable cycle

Root set

Reachable entity
from the root sat

Unreachable entity
from the root set

Figure 4-28. An example of a graph representing objecis containing references
to each other.

In a single-processor system, detecting and removing unreferenced objects is
relatively simple compared to the situation in a distributed system (for an over-
view of garbage collection in uniprocessor systems, see Wilsor, 1994). Because
the objects are distributed across multiple machines, distributed garbage collec-
tion requires network communication. As it turns out, this communication signifi-
cantly determines the efficiency and scalability of solutions. In addition, commun-
ication as well as machines and processes are subject to failures, which makes
problems even worse.

In this section, we consider a number of well-known solutions to distributed
garbage collection. In most cases, these solutions only partly solve the problem.
Our approach follows the one taken in (Plainfosse and Shapiro, 1995), which
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provides a further overview of distributed garbage collection. More information
can also be found in (Abdullahi and Ringwood, 1998).

4.3.2 Reference Counting

A method that is popular in uniprocessor systems to check whether an object
can be deleted is to simply count the references to that object. Each time a refer-
ence to an object is created, a reference counter for that object is incremented.
Likewise, when a reference is removed, the reference counter is decremented. As
soon as the counter reaches zero, the object can be removed.

Simple Reference Counting

Simple reference counting in distributed systems leads to a number of prob-
lems, which are partly caused hy the fact that communication is not reliable.
Without loss of generality, we can assume that an object stores its own reference
counter in its associated skeleton as maintained by the object server that is respon-
sible for the object. This situation is shown in Fig. 4-29.

"[+]

Skeleton {maintains reference counterj
Object O

Procaess P

4 Proxy p is now counted twice

Figure 4-29. The problem of maintaining a proper reference count in the pres-
ence of unreliable communication.

When a process P creates a reference to a remote object O, it installs a proxy
p for O in its address space, as also shown in Fig. 4-29. To increment the refer-
ence counter, the proxy sends a message m to tbe object’s skeleton, and expects it
to return an acknowledgement. However, if the acknowledgement is lost, the
proxy will retransmit m. If no special measures are taken to detect duplicate mes-
sages, the skeleton miay falsely increment its reference counter again. In practice,
detecting duplicate messages is relatively easy.

Likewise, problems may also be caused when a remote reference is 1o be
removed. In that case, a proxy will send a message to decrement the reference
counter. If the acknowledgement is lost again, then a retransmission of that mes-
sage may lead to another, incorrect decrement of the counter. Consequently, in

distributed reference counting, it is essential to detect duplicate messages and to
subsequently discard them as they come in.
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Another problem that needs to be resolved occurs when copying a remote
reference to another process. If process P, passes a reference to process P, the
object, or more precisely, its skeleton, will be unaware that a new reference has
been created. Consequently, if process P; decides to remove its own reference,
the reference counter may drop to zero and O may be deleted before P, ever con-
tacts it. This problem is illustrated in Fig. 4-30(a).

P1 sends P1 daletes its P1 telts O that it wil P1 deletes its
reference to P2 refarance 1o O pass a refarance to P2 reference to O

P1 / P1 ‘
\}/ \/ O has been \< K
-1 removed
O \ A | O

5

-t
ACK
Time -—w
P2 7

P2 informs O it P1 sends O acks it knows
has a reference reference to P2 about P2's reference

(a) (b)

Figure 4-30. (a) Copying a reference to another process and incrementing the
counter too late. {b) A solution.

A solution is to let P inform the object’s skeleton that it is going to pass a
reference to process P,. In addition, a process is never allowed to remove a refer-
ence before the skeleton has acknowledged that it knows about the existence of
that reference. This solution is shown in Fig. 4-30(b). The acknowledgement sent
by O to P, confirming to P, that O has registered the reference, will later permit
P, to delete its reference to O. As long as P, is not sure that O knows about its
reference, P; is not allowed to request O to decrement the reference counter.

Note that, in addition to reliable communication, passing a reference now

requires three messages. Obviously, this can easily lead to performance problems
in large-scale distributed systems.

Advanced Reference Counting

Simple distributed reference counting imposes a race condition between
incrementing and decrementing the reference counter as just explained. Such race
conditions can be avoided if only decrement operations can take place. This solu-
tion is adopted in weighted reference counting, in which each object has a fixed,
total weight. When the object is created, the total weight is stored in its associated
skeleton (which we refer to as 5), along with a partial weight, which is initialized
to the total weight, as shown in Fig. 4-31(a).

When a new remote reference (p,s) is created, half of the partial weight stored
in the object’s skeleton is assigned to the new proxy p, as shown in Fig. 4-31(b).
The remaining half is kept at skeleton 5. When a remote reference is duplicated,

Rl TP
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Figure 4-31. (a} The initial assignment of weights in weighted reference count-
ing. (b) Weight assignment when creating a new reference. {c) Weight assign-
ment when copying a reference.

for example, when passing it from process Py to P, half of the partial weight of
the proxy in P, is assigned to the copied proxy for P,, while the other half
remains in the proxy at Py, as shown in Fig. 4-31(c).

When a reference is destroyed, a decrement message is sent to the object’s
skeleton, which subsequently subtracts the partial weight of the removed refer-
ence from the total weight. As soon as the total weight reaches zero, no more
remote references exist, so that the object can be safely removed. Note that, also
in this case, messages are assumed not to be lost nor delivered more than once.

The main problem with weighted reference counting is that only a limited
number of references can be created. As soon as the partial weight of the object’s
skeleton, as well as those of remote references, drops to zero, no more references
can be created or duplicated. The solution to this problem is to make use of
indirection. Assume process P; wants {0 pass a reference to P5, but the partial
weight of its own proxy has reached 1, as shown in Fig. 4-32. In that case, P
creates a skeleton 57 in its address space with an appropriate total weight, and a
partial weight set equal to the total weight. This is completely analogous to the
skeleton s crealed in the address space where the object resides. A proxy is then
sent to P;, with half of the partial weight of skeleton s assigned to it. The other
half of the weight is kept at s for distribution to other proxies.

— R T T —
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Figure 4-32. Creating an indirection when the partial weight of a reference has
reached [.

Note that if the total weight of skeleton s’ is set to 1, this approach is the same
as creating a forwarding pointer from process P, to P;. If, in turn, P, wants to
pass on its reference, it will have to create another forwarding pointer. The most
serions problem with using forwarding pointers is that long chains seriously
degrade performance. Also, chains are more susceptible to failures.

An alternative to using indirection is provided by gemeration reference
counting. Again, assume that each remote reference is constructed as a
(proxy, skeleton) pair, where the (only) skeleton s is located in the same address
space as the obiect. Each proxy stores a counter for the number of times it has
been copied, in addition to a generation number. When a new reference (p,s) is
created, the generation nnmber of the corresponding proxy p is set to zero.
Because no copies have yet been made from p, its copy counter is also set (o zero.

Copying a remote reference (p,s) to another process is done in the usual way
by sending a copy p’ of p. In this case, the copy counter of p is incremented,
whereas that of p’ is set to zero. However, because p” is copied from p, it is said to
belong to a next generation, for which reason the generation number of p’ is set
one higher than that of p, as shown in Fig. 4-33.

Process P2

F1 passes
reference to P2 N

‘
Process P1 /ﬁ\

Copy counter

Generation

Figure 4-33. Creating and copying a remote reference in generation reference
counting.

The skeleton maintains a table G, in which G [i] denotes the number of out-
standing copies for generation i. If a proxy p is removed, a delete message is sent
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to the skeleton containing the proxy’s generation number, say, k, and the number
of copies that have been made from p, say n. The skeleton adjusts G by first
decrementing G [k ] by one, indicating that a reference belonging to the k-th gen-
eration has been removed. Second, it increments G {k+1] by », to register that the
removed reference had created n siblings, or, in other words, that it had been
copied to n next-generation references. (Note that the skeleton may first need to
create entry G [k +11 as generation k+1 was as vet unknown to it.} As soon as each
entry G[i] is zero, it is known that the object is no longer referenced so that it can
be removed.

Generation reference counting still requires reliable communication, but can
handle the duplication of references without the need to contact the skeleton when
making a copy.

4.3.3 Reference Listing

A different approach to managing references, is to let a skeleton keep track of
the proxies that have a reference to it. In other words, instead of counting refer-
ences, a skeleton maintains an explicit list of all proxies that point to it. Such a
reference list has the following important property. Adding a proxy to a reference
list has no effect when that proxy was already listed. Likewise, removing a proxy
from a list in which it did not occur, also has no effect. Adding or removing prox-
ies are thus idempotent operations.

Idempotent operations are characterized by the fact that they can be repeated
without affecting the end result. In particular, when creating a new reference to an
object, the creating process can repeatedly send a message to the object’s skele-
ton, requesting it to add its proxy to the reference list. It stops sending such a mes-
sage as soon as delivery has been acknowledged. Similarly, removing a reference
can be reported by (possibly repeatedly) sending a message asking the skeleton to
remove the proxy from its list. Increment and decrement operations are clearly not
idempotent.

Consequently, reference listing does not require communication to be reliable,
nor is it necessary that duplicate messages can be detected and discarded. (How-
ever, it is necessary that the insertion or deletion of a reference is acknowledged.)
This is an important advantage over reference counting,

Reference listing is used in Java RMI, based on a method described in (Birrell
et al., 1993). In this method, when a process P creates a remote reference to an
object, it sends its identification to the object’s skeleton, which adds P to the
reference list. When an acknowledgement is returned, the process creates a proxy
for the object in its own address space.

Passing a reference to another process, that is, sending a copy of a proxy, is
handled similarty,. Whenever process P; sends a copy of its proxy for object O to
process £, P, first requests the object’s skeleton 1o add P, to its reference list.
When that has been done, process P, installs the proxy in its address space.
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Problems may occur when process P removes its own proxy before P; has
requested to be inserted in the object’s reference list. In that case, if the remove
request that P, sends to the object’s skeleton ts handled belore the insert request
from P, the reference list may become empty so that the skeleton falsely con-
cludes it can let the object be removed. This race condition is completely analo-
gous to the one with reference counting, as shown in Fig. 4-30(a), and can be
solved in a similar way.

Another important advantage of reference listing, is that it is easier to keep the
reference list consistent in the face of process failures. The object’s skeleton regu-
larly checks whether each listed process is still up and running by sending it a
ping message, asking it whether it is still alive and holding a reference to the
object. The process is expected to promptly respond te this message. If no
response is received, possibly even after several attempis have been made, the
skeleton removes the process {rom its list.

The main drawback of reference listing, is that it may scale badly if the skele-
ton needs (o keep track of many references. One solution for keeping the list
down, is to let the skeleton promise it will register a reference for only a limited
time. Il a proxy has not renewed its registration at the skeleton beforc that time
expires, the reference is simply dropped from the list. This approach is also
referred to as handing out a lease. We return to leases in Chap. 6.

4.3.4 Identifying Unreachable Entities

As was also shown in Fig. 4-28, the collection of entities in a distributed sys-
lem may consist of entities that store references to each other, but none of these
entities can be reached from an entity in the root set, and as such, they should also
be removed. Unfortunately, the garbage collection techniques described above fail
to locate these entities,

What is nceded is a method by which @il entities in a distributed system are
traced. In general, this is done by checking which entities can be reached from the
root set and subsequently removing all others. Such methods are generally called
tracing-based garbage collection. In contrast to distributed referencing dis-
cussed so far, tracing-based garbage collection has inherent scalability problems,
as it needs to trace all entitics in a distributed system.

Naive Tracing in Distributed Systems

To understand distributed tracing-based garbage collection, it is helpful to
consider how tracing in uniprocessor system works. The most simple approach to
uniprocessor tracing, is followed by mark-and-sweep collectors. Such collectors
distinguish two phases.

During the mark phase, entities are traced by following chains of references
originating from entities in the root set. Each entity that can be reached in this
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way is marked. for cxample by recording the entity in a separate table. The sweep
phase consists of exhaustively examining memory to locate entities that have not
been marked. Such entities are considered garbage that is to be removed.

Another way to look at mark-and-sweep collectors is to apply a three-color
marking to entitics. Initially, each entity that needs to be inspected is colored
white. By the end of the mark phase, all entities that have been colored black are
reachable from the root, while those that are unreachable are still white. The color
gray is used to keep track of the progress that is being made in the mark phase. An
entity is marked gray when it is found to be reachable but the references stored hy
that entity need yet to be inspected. When all its references have been marked
gray, the entity is colored black.

A distributed version of mark-and-sweep was implemented in the Emerald
system, described in (Jul et al., 1998). In Emerald, a local garbage collector is
started at each process, with all the collectors runuing in parallel. Collectors color
proxies, skeletons, and the actual objects. Initially, all of them are marked white.
When an object residing in the address space of process P is reachable from a root
that is also in P, the object is marked gray. When marking an object gray, all
proxies contained in that object are marked gray as well. Marking a proxy gray
means that the tocal garbage collector records that the referenced remote object
still needs to be checked by its associated local garbage collector.

When a proxy is marked gray, 2 message is sent to the proxy’s associated
skeleton 10 mark itself gray as well. The object associated with a skeleton is
marked gray as soon as the skeleton becomes gray. By recursion, this means that
all proxies in that object are marked gray as well. At that point, the skeleton and
its associated object is marked black, and a message is sent hack io all its associ-
ated proxies. Note that although in this approach, a skeleton knows which proxies
are connected to it, this does uot imply that a proxy is considered reachable from
that skeleton. Logically, a (proxy, skeleton) pair is a strict unidirectional refercnce
from the proxy to the skeleton.

When a proxy receives a message that its associated skeleton is now black,
the proxy is marked black as well. In other words, the local garbage collector now
knows that the remote object referenced hy means of the proxy has been recorded
as being reachable.

When all local collectors have finished their mark phase, they can each
separately collect all white objects as garbage. A mark phase ends when all
objects, skeletons, and proxies have been marked either white or black. Removing
a white object also means removing its associated skeleton as well as all proxies
contained in that object.

The main drawback of the mark-and-sweep algorithm is that it requires the
reachability graph to remain the same during both phases. In other words, the exe-
cution of the program for which the process was originally created needs to be
temporarily stopped and execution is switched to collecting garbage. In distrib-
uted mark-and-sweep, this means that all processes in the system first need to be
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synchronized, then each of them switches to collecting garbage, after which they
can all continue with their original work.

This scenario, also called “stop-the-world” synchronization, is often not
acceptable for distributed garbage collectors. Improvements can be made with
incremental garbage collectors, which allow program execution to be interleaved
with garbage collection. Unfortunately, such collectors do not scale well in dis-
tributed systems. Because they run concwrently with programns that modify the
reachability graph, objects are often necessarily marked gray, leading to the pro-
pagation of gray marks to remote processes. The result is high message traffic,
possibly degrading overall system performance.

Tracing in Groups

To account for the inherent scalability problems of many tracing-based gar-
bage collectors, Lang et al. devised a method by which the processes {which con-
tain the objects) in a large distributed system are hierarchically organized into
groups {Lang et al., 1992). Garbage collection takes place within groups through
a combination of mark-and-sweep and reference counting. Let us concentrate on
the basic algorithm for collecting garbage in a group of processes.

A group is simply a collection of processes. The only reason why groups are
used 1s for scalability. The basic idea is first to collect all garbage within a group,
including any cycles of references that lic entirely inside a group. A next step is to
consider a larger group that encompasses a number of subgroups but which have
each just been cleaned up by the garbage collector.

To accommodate tracing in groups, it is assumed that remote references are
again implemented as (proxy, skeleton) pairs. For each object, there is only one
skeleton in the address space where the object resides, but multiple proxies for
that object can communicate with that skeleton. The skeleton maintains a refer-
ence counter as described in Sec. 4.3.2, which counts the number of associated
proxies. A process can have at most one proxy for each distributed object.

Once a group of processes has been formed, the basic algorithm to collect gar-

bage within a group consists of the following five steps, which are discussed in
detail below;

1. Initial marking, in which only skelctons are marked.

Intraprocess propagation of marks from skeletons to proxies.

2
3. Interprocess propagation of marks from proxies to skeletons.
4. Stabilization by repetition of the previous two steps.
5. Garbage reclamation.
Before we stant explaining each of these steps in some detail, it is important to
understand what marking an entity stands for. The algorithm essentially deals with

T g ey -
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marking only proxies and skeletons. It is important to note that neither a proxy or
skeleton can ever belong to the root set.

A skeleton can be marked either saff or hard whereas a proxy can be marked
none, soft, or hard. When a skeleton is marked hard, this means that it is either
reachablie from a proxy in a process outside the group, or reachable from a root
object inside the group, that is, an object contained in the root set of a process
belonging to the group. A skeleton that is marked soff, is considered to be reach-
able only from proxies inside the group. The marking of a skeleton is allowed to
change only from soft to hard.

A proxy that is marked hard, is reachable from an object in the root set. When
marked soft, the proxy is reachable from a skeleton that has been marked soff as
well. Such proxies potentially lie on a cycle that is not reachable from an object in
the root set. A proxy that is marked none is neither reachable from a skeleton, nor
an object in the root set. Only proxies that have been marked none can be changed
to hard. As will be seen, once a proxy has been marked soft, it stays that way.

The first step consists of marking only the skeletons. A skeleton is marked
either soft or hard, depending on whether it can be reached from a proxy ontside
the group. This reachability can be easily checked by inspecting the skeleton’s
reference counter. The value of this counter indicates how many proxies in other
processes refer to it. Some of these processes are inside the group, while others
are outside the group. If there is a proxy in a process outside the group, the skele-
ton should be marked hard. By simply connting how many proxies associated
with the skeleton lie inside the group and suhtracting that number from the refer-
ence counter, it can be decided if there are also associated proxies outside the
group. This lcads to the following algorithm:

1. For each proxy inside the group, decrement the reference counter of
the associated skeleton, only if that skeleton is also inside the group.

2. A skeleton inside the group whose reference counter has now
dropped to zero is marked soft. Otherwise, it is reachable from a
proxy outside the group, and is marked hard.

This first step is illustrated in Fig. 4-34(a), in which all but one skeleton have been
marked soft. The only skeleton that is marked kard, is seen 1o be reachable from
a proxy outside the group.

The second step consists of letting each process run its own local garbage col-
lector. How that collector works is independent of the global garbage collection.
The only requirement is that a local garbage collector propagates marks from
skeletons to proxies within the process it is running. More specifically, suppose
that within a single process a proxy is rcachable from a skeleton. (Note that the
proxy and the skeleton betong to different objects.) The result of local propagation
of marks is that the proxy will be marked at least as hard as the skeleton. More-
over, if a proxy is reachable from an object in the root set, it will be marked hard.
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Figure 4-34. (a) Initial marking of skeletons.
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Local propagation within process P can be done as follows. Initialty, all prox-
ies in P are marked none. The local colicctor starts tracing from the set consisting
of the skelctons (hat have previously been marked hard, as well as {from the
objects in the root set. Hard marks are propagated to ali objects (that is, local
objects and proxies) that are reachable from this set. A second trace is done from
skeletons that had been marked soft. lf a proxy is now reached that is marked
none, its mark is changed to soft. If the proxy was marked hard, it remains
marked as such. Consequently. after local propagation, each proxy in a process
will be marked either none, soft, or hard. Fig. 4-34(b) shows the marking after
locally propagating the marks from Fig. 4-34(a).

The third step consists of propagating marks from proxies to their associated
skeletons. In other words, marks are propagated between different processes. In
particular, if a proxy has been marked fhard, a message should be sent to its asso-
ciated skeleton to mark it hard as well, if it had not already been marked as such.
A message is sent only if the skeleton lies inside the group. Soft marks do not
have to be propagated: the initial marking phase already established that each
skeleton inside the group is marked either saoft or hard.

The fourth step results from the global propagation of hard marks in the previ-
ous step. A skeleton in, say, process F may now have had its mark changed from
soft to hard. This change comes from the fact that the skeleton turned oul to be
reachable from an object contained in the root set of a remote process. Conse-
quently, this hard mark first needs to be locally propagated to proxies in P, and
subsequently, globally propagated to neighboring processes. In other words, steps
2 and 3 are to be repeated as long as marks can be either locally or globally pro-
pagated. As soon as stabilization has been reached, that is, no more changes with
respect to marking happen to processes inside the group, the algorithm proceeds
with the next step. In our example, the cffect of repeating step 2 and 3 leads to the
final marking as shown in Fig. 4-34{c).

The fifth and last step consists of removing unreachable objects. including
unreachable proxies, as well as those proxies and skeletons that have been marked
soft. It is important to note that the latter are not reachable from outside the
group, nor are they reachable from objects in a root set. In other words, the soft-
marked proxies and skeletons refer only to each other, and should thus be
removed.

(arbage reclamation can actually be done as a side effect of local propaga-
tion. Instead of explicitly removing entities in the last step, a skeleton marked sof
is changed 1o refer to nil. Consequently, it can be reclaimed later when the local
garbage collection is run again. In addition, if the object associated with that
skeleton now becomes unreachable, it will be reclaimed as well. If the proxies
locally referred to by that object are also no longer reachable, they will be marked
none and remain marked that way. It is therefore safe to let the local garbage col-
lector reclaim a none-marked proxy, after sending a decrement message to the
proxy’s associated skeleton in one of remote processes.
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By hierarchically organizing processes into groups, a more scalable solution
to distributed garbage collection can be achieved. The basic idea is to let low-
level groups collect garbage, and leave the analysis of intergroup references to the
next higher-ievel group. By letting lower-level groups reduce the number of
objects that need to be traced, a higher-level group essentially operates on a simi-
lar number of objects as each of its subgroups, but wbich are spread across a
larger network. We omit the details, which can be found in (Lang et al., 1992).

4.4 SUMMARY

Names are used to refer to entities. Essentially, there are three types of names.
An address is the name of an access point associated with an entity, also simply
called the address of an entity. An identifier is another type of name. It has three
properties: each entity is referred to by exactly one identifier, an identifier refers
to only one entity, and is never assigned to another entity. Finally, human-friendly
names are targeted to be used by bumans and as sucb are represented as character
strings.

Names are organized in a name space. A name space can be represented by a
naming graph in which a node represents a named entity and the label on an edge
represents the name under which that entity is known. A node having muitiple
outgoing edges represents a collection of entities and is also known as a context
node or directory. Large-scale naming graphs are often organized as rooted acy-
clic directed graphs.

Naming graphs are convenient to organize human-friendly names in a struc-
tured way. An entity can he referred to by a path name. Name resolution is the
process of traversing the naming graph by looking up the components of a path
hame, one at a time. A large-scale naming graph is implemented by distributing
its nodes across multiple name servers. When resolving a path name by traversing
the naming graph, name resolution continues at a next name server as soon as a
node is reached implemented by that server.

Naming systems for human-friendly names are not suited for highly mobile
entities. Locating mobile entities can be done more efficiently using location-
independent identifiers. There are basically four approaches to locating a mobile
entity.

The first approach is to use broadcasting or multicasting. The identifier of the
entity is broadcast to every process in the distributed system. The process offering
an access point for the entity responds by providing an address for that access
point. Obviously, this approach bas limited scalability.

The sccond approach is to use forwarding pointers. Each time an entity moves’
t0 a next location, it leaves behind a pointer telling where it will be next. Locating
the entity requires traversing the path of forwarding pointers. To avoid large
chatns of pointers, it is important to reduce chains after a while.

e
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The third approach is to allocate a home to an entity. Each time an entity
moves to another location, it informs its home where it is. Locating an entity
proceeds by first asking its home for the current location.

The fourth approach is to build a hierarchical search tree. The network is
divided into nonoverlapping domains. Domains ¢an be grouped into higher-level
(nonoverlapping) domains, and so on. There is a single top-level domain that cov-
ers the entire network. Each domain at every level has an associated directory
node. If an entity is located in a domain D, the directory node of the next higher-
Ievel domain will have a pointer to D). A lowest-level directory node stores the
address of the entity. The top-level directory node knows about all entities.

Entities that can no longer be located should be removed. An important use of
names in distributed systems is to organize references to entities in such a way
that unreferenced entities are automatically removed. This garbage collection
requires the support of reference counting or tracing.

With reference counting, an entity simply counts the number of outstanding
references to it. When the counter drops to zero, the entity can be removed.
Instead of counting references, it is also possible to maintain a list of processes
referring to an entity. Reference listing is more robust than reference counting, but
has scalability probiems.

With tracing-based methods, all entities that are directly or indirectly refer-
enced from a given set of root entitics, are marked as reachable. Entities that are
unreachable are 10 be removed. Distributed tracing is difficult as it requires that
all entities in a system are to be inspected. Solutions vary, but are generally based
on traditional garbage collectors used in uniprocessor systems.

PROBLEMS

1. Give an example of where an address of an entity E needs to be further resolved into
another address to actuaily access E.

2. Would you consider a URL such as h#tp:/Avww.acme.org/index.hutmi 1o be location
independent? What about htrp.//www.acme.nlfindex. html?

3. Give some examples of true identifiers.
4. How is a mounting point locked up in most UNIX systems?

3. Jade is a distributed file system that uses per-user name spaces (Rao and Peterson,
1993). In other words, each user has his own, private name space. Can names from
such name spaces be used to share resources between two different users?

6. Consider DNS. To refer to a node N in a subdomain implemented as a different zone
than the current domain, a name server for that zone needs to be specified. Is it always

necessary (o include a resource record for that server’s address, or is it sometimes suf-
ficient to provide only its domain name?
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7.
8.
10.
11.

12

13

14

v

15

16.

17

18.

19,

20.

21
22

Is an identifier aillowed to contain information on the entity it refers to?
Outline an cfficicnt implementation of globally unique identifiers.

Give an example of how the closure mechanism for a URL counld work.
Explain the difference between a hard link and & soft link in UNIX systemns.

High-level name servers in DNS, that is, name servers implementing nodes in the
DNS name space that are close to the root, generally do not support recursive name
resolution. Can we expect much performance improvement if they did?

Explain how DNS can be used to implement a home-based approach to locating
mobile hosts.

A special form of locating an entity is called anycasting, by which a service is identi-
fied by means of an IP address (see, for example, Partridge et al., 1993), Sending a
request to an anycast address returns a response from a server implementing the ser-
vice identified by that anycast address. Outline the implementation of an anycast ser-
vice based on the hierarchical location service described in Sec. 4.2.4.

Considering that a two-tiered home-based approach is a specialization of a hierarchi-
cal [ocation service, where is the root?

Suppose that it is known that a specific mobile entity will almost never move outside
domain P, and if it does, it can be expected to return scon. How can this information
be used to speed up the lookup operation in a hierarchical location service?

In a hierarchical location service with a depth of k, how many location records need to
be updated at most when a mobile entity changes its location?

Consider an entity moving from location A to B, while passing several intermediatc
locations where it will reside for only a relatively short time. When arriving at B, it
settles down for a while. Changing an address in a hierarchical location service may
still take a relatively long time to complete, and should thercfore be avoided when

visiting an intermediate location. How can the entity be located at an intermediate
location?

When passing a remote reference from process P, to P, in distributed reference
counting, would it help to let £, increment the counter, instead of P 7

Make clear that weighted reference counting is morc cfficient than simple reference
counting. Assurne comumunication is reliable.

Is it possible in generation reference counting that an object is collected as garbage

while there are still references, but which belong to a generation the object does not
know of?

Is it possible in generation reference counting that an entry G [i] becomes less than 07

In reference listing, if no response is received after sending a ping message to process

P, the process is removed from the object’s reference list. Is it always correct (0
remove the process?

Describe a very simple way to decide that the stabilization step in the tracing-based
garbage collector of Lang et al. has been reached.

i T



SYNCHRONIZATION

In the previous chapters, we have looked at processes and communication
between processes. While communication is important, it is not the entire story.
Closely related is how processes cooperate and synchronize with one another,
Cooperation is partly supported by means of naming, which allows processes to at
least share resources, or entities in general.

In this chapter, we mainly concentrate on how processes can synchronize. For
example, it is important that multiple processes do not simultaneously access a
shared resource, such as printer, but instead cooperate in granting each other tem-
porary exclusive access. Another exarmple is that multiple processes may some-
times need to agree on the ordering of events, such as whether message mi from
process P was sent before or after message m2 from process .

As it turns out, synchronization in distributed systems is often much more dif-
ficult compared to synchronization in uniprocessor or multiprocessor systems.
The problems and solutions that are discussed in this chapter are, by their nature,
rather general, and occur in many different situations in distributed systems.

We start with a discussion of the issue of synchronization based on actual
time, followed by synchronization in which only relative ordering matters rather
than ordering in absolute time. We also discuss the notion of a distributed global
state, and how, by synchronizing processes, such a state can be recorded.

In many cases, it 1s important that a group of processes can appoint one pro-
cess as a coordinator, which can be done by means of election algorithms. We dis-
cuss various election algorithms in a separate section.

241
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Two related topics regarding synchronization are mutual exclusion in distrib-
uted systems and distributed transactions. Distributed mutual exclusion allows
shared resources to be protected against simultaneous access by multiple
processes. Distributed transactions do something similar, but optimize access
through advanced concurrency control mechanisms. Mutual exciusion and tran-
sactions are discussed in separate sections,

Distributed algorithms come in all sorts and flavors and have becn devcloped
for very different types of distributed systems. Many examples (and further refer-
ences} can be found in {Andrews, 2000; Singhal and Shivaratri, 1994; Wu, 1998).
A more formal approach to a wealth of algorithms is found in (Lynch, 1996).

3.1 CLOCK SYNCHRONIZATION

In a centralized system, time is unambiguous. When a process wants to know
the time, it makes a system call and the kernel tells it. If process A asks for the
time, and then a little later process B asks for the time, the value that B gets will
be higher than (or possibly equal to) the value A got. It will certainly not be lower.
In a distributed system, achieving agreement on time is not trivial.

Just think, for a moment, about the implicatious of the lack of global time on
the UNIX make program, as a single example. Normally, in UNIX, large programs
are split up into multiple source files, so that a change to one source file only
requires one file to be recompiled, not all the files. If a program consists of 100
files, not having to recompile everything because one file has been changed
greatly increases the speed at which programmers can work.

The way make normally works is simple. When the programmer has finished
changing all the source files, he starts make, which examines the times at wbich
all the source and object files were last modified. If the source file input.c has
time 2151 and the correspouding object file input.o has time 2150, make knows
that input.c has been changed since input.o was created, and thus input.c must be
recompiled. On the other hand, if outpur.c has time 2144 apd output.o has time
2145, no compilation is needed here. Thus make goes through all the source files
to find out which ones need to be recompiled and calls the compiler to recompile
them.

Now imagine what could happen in a distributed system in which there were
no global agreement on time. Suppose that outpur.o has time 2144 as above, and
shortly thereafter output.c is modified but is assigned time 2143 because the clock
on its machine is slightly behind, as shown in Fig. 5-1. Make will not call the
compiler. The resulting executable binary program will then contain a mixture of
object files from the old sources and the new sources. It will probably crash and
the programmer will go crazy trying to understand what is wron g with the code.

Since time is so basic to the way people think and the effect of not having all
the clocks synchronized can be so dramatic, as we have just seen, it is fitting that
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Computer on 2144 2145 2146 2147  4— Time according
which compiler ¢‘\ t t ¥ to local clock
runs output.o created
Computar on 2142 2143 2144 2145 «— Time according
which editor 1 + } ' to local clock
mnns

output.c created

Figure 5-1. When each machine has its own clock, an event that occurred after
another event may nevertheless be assigned an earlier time.

we begin our study of synchronization with the simple question: Is it possible to
synchronize all the clocks in a distributed system?

5.1.1 Physical Clocks

Nearly all compuiers have a circuit for keeping track of time. Despite the
widespread use of the word “clock™ to refer to these devices, they are not actually
clocks in the usual sense. Timer is perhaps a better word. A computer timer is
usually a precisely machined quartz crystal. When kept under tension, quartz crys-
tals oscillate at a well-defined frequency that depends on the kind of crystal, how
it is cut, and the amount of tension. Associated with each crystal are two registers,
a counter and a holding register. Each oscillation of the crystal decrements the
counter by one. When the counter gets to zero, an interrupt is generated and the
counter is reloaded from the holding register. In this way, it is possible to program
a timer to generate an interrupt 60 times a second, or at any other desired fre-
quency. Each interrupt is called oue clock tick.

When the system is booted initially, it usually asks the user to enter the date
and time, which is then converted to the number of ticks afier some known start-
ing date and stored in memory. Many computers have a special battery-backed up
CMOS RAM so that the date and time need not be entered on subsequent boots,
At every clock tick, the interrupt service procedure adds one to the time stored in
memory. In this way, the (software) clock is kept up to date.

With a single computer aud a single clock, it does not matter much if this
clock is off by 2 small amount. Since all processes on the machine use the same
clock, they will still be internally consistent. For example, if the file input.c has
time 2151 and file input.o has time 2150, make will recompile the source file,
even if the clock is off by 2 and the true times are 2153 and 2152, respectively.
All that really matters are the relative times.

As soon as multiple CPUs are introduced, each with its own clock, the situa-
tion changes. Although the frequency at which a crystal oscillator runs is usually
fairly stable, it is impossible to guarantee that the crystals in different computers
all run at exactly the same frequency. In practice, when a system has n computers,
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all n crystals will run at slightly different rates, causing the (software) clocks gra-
dually to get out of synch and give differemt values when read out. This difference
in time values is called clock skew. As a consequence of this clock skew, pro-
grams that expect the time associated with a file, object, process, or message to be
correct and independent of the machine on which it was generated (l.e., which
clock it used) can fail, as we saw in the make example above,

In some systems (e.g., real-time systcms), the actual clock time is important.
For these systems external physical clocks are required. For reasons of efficiency
and redundancy, multiple physical clocks are generally considered desirable,
which yields two problems: (1) How do we synchronize them with real-world
clocks, and (2) How do we synchronize the clocks with each other?

Before answering these questions, let us digress slightly to sec how time is
actually measured. It is not nearly as simple as one might think, especially when
high accuracy is required. Since the invention of mechanical clocks in the 17th
century, ime has been measured astronomically. Every day, the sun appears to
nise on the eastern horizon, climbs to a maximum height in the sky, and sinks in
the west. The event of the sun’s reaching its highest apparent point in the sky is
called the tramsit of the sun. This event occurs at about noon each day. The
interval between two consecutive transits of the sun is called the solar day. Since
there are 24 hours in a day, each containing 3600 seconds, the solar second is

defined as cxactly 1/86400th of a solar day. The geometry of the mean solar day
calculation is shown in Fig. 5-2.

Earth's orbit

A transit of the sun
occllrs when the
sun reaches the
highest point of

the day

At the transit of the sun

n days later, the earth

has rotated lewer
than 360°

Earth on day 0 at the

P ‘
transit of the sun 7K / To distant galaxy
X

To distant galaxy
Earth on day n at the
transit of the sun

Figure 5.2. Computation of the mean solar day.

In the 1940s, it was established that the period of the earth’s rotation is not
constant. The carth is slowing down due to tidal friction and atmospheric drag.
Based on studies of growth patterns in ancient coral, geologists now believe that



SEC. 5.1 CLOCK SYNCHRONIZATION 245

300 million ycars ago there were about 400 days per year. The length of the year
(the time for one trip around the sun) is not thought to have changed; the day has
simply become longer. In addition to this long-term trend, short-term variations in
the length of the day also occur, probably caused by turbulence deep in the earth’s
core of molten iron. These revelations led astronomers io compute the length of
the day by measuring a large number of days and taking the average before divid-
ing by 86,400. The resulting quantity was called the mean solar second.

With the invention of the atomic clock in 1948, it became possible to measure
time much more accurately, and independent of the wiggling and wobbling of the
earth, by counting transitions of the cesium 133 atom. The physicists took over
the job of timekeeping from the astronomers and defined the second to be the time
it takes the cesium 133 atom to make exactly 9,192,631,770 transitions. The
choice of 9,192,631,770 was made to make the alomic second equal to the mean
solar second in the year of its introduction. Currently, about 50 laboratories
arcund the world have cesium 133 clocks. Periodically, each laboratory fells the
Bureau International de I'Heure (BIH) in Paris how many times its ¢lock has
ticked. The BIH averages these to produce International Atomic Time, which is
abbreviated TAI. Thus TAI is just the mean number of ticks of the cesium 133
clocks since midnight on Jan. 1, 1958 (the beginning of time} divided by
9,192,631,770.

Although TAI is highly stable and available to anyone who wants to go to the
trouble of buying a cesium clock, there is a serious problem with it; 86,400 TAI
seconds is now about 3 msec less than a mean solar day (because the mean solar
day is getting longer all the time). Using TAI for keeping time would mean that
over the course of the years, noon would get earlier and earlier, until it wounid
eventually occur in the wee hours of the moming. People might notice this and
we could have the same kind of situation as occurred in 1582 when Pope Gregory
XIII decreed that 10 days be omitted from the calendar. This event caused riots in
the streets because landlords demanded a full month’s rent and bankers a full
month’s interest, while employers refused to pay workers for the 10 days they did
not work, to mention only a few of the conflicts. The Protestant countries, as a
matter of principle, refused to have anything to do with papal decrees and did not
accept the Gregorian calendar for 170 years.

BIH solves the problem by introducing leap seconds whenever the
discrepancy between TAI and solar time grows to 800 msec. The use of leap
seconds is illustrated in Fig. 5-3. This correction gives rise to a time system based
on constant TAI seconds but which stays in phase with the apparent molion of the
sun. It is called Universal Coordinated Time. but is abbreviaicd as UTC. UTC
is the basis of all modern civil timekeeping. It has essentially replaced the old
standard, Greenwich Mean Time, which is astronomical timec.

Most electric power companies base the timing of their 60-Hz or 50-Hz
clocks on UTC, so when BIH announces a leap second, the power companies
raise their frequency to 61 Hz or 51 Hz for 60 or 50 sec, to advance all the clocks
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Figure 5-3. TAI seconds are of constant length, uplike solar seconds, Leap
seconds are introduced when necessary to keep in phase with the sun.

in their distribution area. Since 1 sec is a noticeable interval for a computer, an
operating system that needs to keep accurate time over a period of years must -
have special software to account for leap seconds as they are announced {unless
they use the power line for time, which is usually too crude). The total number of
leap seconds introduced into UTC so far is about 30.

To provide UTC to people who need precise time, the National Institute of
Standard Time (NIST) operates a shoriwave radio station with call letters WWV
from Fort Collins, Colorado. WWYV broadcasts a short pulse at the start of each
UTC second. The aceuracy of WWYV itself is about 1 msec, but due to random
atmospheric fluctuations that can affect the length of the signal path, in practice
the accuracy is no better than +10 msec. In England, the station MSF, operating
from Rugby, Warwickshire, provides a similar service, as do stations in several
ather countries.

Several earth satellites alse offer a UTC service. The Geostationary Environ-
ment Operational Satellite can provide UTC accurately to (.5 msec, and some
other satellites do even better.

Using either shortwave radio or satellite services requires an accurate
knowledge of the relative position of the sender and receiver, in order to compen-

sate for the signal propagation delay. Radio receivers for WWV, GEOS, and the
other UTC sources are commercially available.

5.1.2 Clock Synchronization Algorithms

If one machine has a WWYV receiver, the goal becomes keeping ali the other
machines synchronized to it. If no machines have WWV receivers, each machine
keeps track of its own time, and the goal is to keep all the machines together as
well as possible. Many algorithms have been proposed for doing this synchroni-
zation (e.g., Cristian, 1989; Drummond and Babaoglu, 1989; and Kopetz and
Ochsenreiter, 1987). A survey is given in (Ramanathan et al., 1990).

All the algorithms have the same underlying model of the system, which we
will now describe. Each machine is assumed to have a timer that causes an inter-
rupt H times a second. When this timer goes off, the mterrupt handler adds 1 to a
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software clock that keeps track of the number of ticks (interrupts) since some
agreed-upon time in the past. Let us call the value of this clock C. More specifi-
cally, when the UTC time is #, the value of the clock on machine p is C,(¢). Ina
perfect world, we would have C,(t) =t for all p and all 7. In other words, 4C/dt
ideally should be 1.

Real timers do not interrupt exactly H times a second. Theoretically, a timer
with A = 60 should generate 216,000 ticks per hour. [n practice, the relative error
obtainable with modemn timer chips is about 107>, meaning that a particular
machine can get a value in the range 215,998 to 216,002 ticks per hour. More pre-
cisely, if there exists some constant p such that

dC
1—ps—<1+
p ar p
the timer can be said to be working within its specification. The constant p is

specified by the manufacturer and is known as the maximum drift rate. Slow,
perfect, and fast clocks are shown in Fig. 5-4.

Ciock time, C

utC, ¢

Figure 5-4. The relation between clock time and UTC when clocks tick at dif-
ferent rates.

If two clocks are drifting from UTC in the opposite direction, at a time Ar
after they were synchronized, they may be as much as 2p At apart. If the operating
system designers want to guaraniee that no two clocks ever differ by more than §,
clocks must be resynchronized (in software) at least every 5/2p seconds. The
vartous algorithms differ in precisely how this resynchronization is done.

Cristian’s Algorithm

Let us start with an algorithm that is well suited to systems in which one
machine has a WWV receiver and the goal is to have all the other machines stay
synchronized with it. Let us call the machine with the WWYV receiver a time
server, Our algorithm is based on the work of Cristian ( 1989) and prior work.
Periodically, certainly no more than every 8/2p seconds, each machine sends a
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message to the time server asking for the current time. That machine responds as
fast as it can with a message containing its current time, Cyre, as shown in
Fig. 5-5.

Both Tg and T; are measured with the same clock

Client ms———— - e m e

Time sarver —-----—-——--—-~ e - e

L, interrupt handling time
Figure 5-5. Getting the current time from a time server.

As a first approximation, when the sender gets the reply, it can just set its
clock to Cyrc. However, this algorithm has two problems, one major and one
minor. The major problem is that time must never run backward. If the sender’s
clock is fast, Cyre will be smaller than the sender’s current value of C. Just taking
over Cyre could cause serious problems such as an object file compiled just after
the clock change having a time earlier than the source which was modified just
before the clock change.

Such a change must be introduced gradually. One way is as follows. Suppose
that the timer is set to generate 100 interrupts per second. Normally, each interrupt
would add 10 msec to the time. When slowing down, the interrupt routine adds
only 9 msec each time until the correction has been made. Similarly, the clock can
be advanced gradually by adding 11 msec at cach interrupt instead of jumping it
forward all at once.

The minor problem is that it takes a nonzero amount of time for the time
server's reply 10 get back to the sender. Worse yet, this delay may be large and
vary with the network load. Cristian’s way of dealing with it is (o attempt to
measure it. It is simple enough for the sender to record accurately the interval
between sending the request to the time server and the arrival of the reply. Both
the startiug time, 7y, and the ending time, T, are measured using the same clock,
so the interval will be relatively accurate even if the sender’s clock is off from
UTC by a substantial amount.

In the absence of any other information, the best estimate of the message pro-
pagation time is (T, — Ty)/2. When the reply comes in, the value in the message
can be increased by this amount to give an estimate of the server’s current time. If
the theoretical minimum propagation time is known, other properties of the time
estimate can be calculated.

This estimate can be improved if it is known approximately how long it takes
the time server to handle the interrupt and process the incoming message. Let us

e i
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call the interrupt handling time f. Then the amount of the interval from T, to 7
that was devoted to message propagation is Ty — Ty — 1, so the best estimate of the
one-way propagation time is half this. Systems do exist in which messages from A
to B systematically take a different route than messages from B to A, and thus
have a different propagation time, but we will not consider such systems here.

To improve the accuracy, Cristian suggested making not one measurement but
a series of them. Any measurements in which T — Ty exceeds some threshold
value are discarded as being victims of network congestion and thus are unreli-
able. The estimates derived from the remaining probes can then be averaged to get
a better value. Alternatively, the message that came back fastest can be taken to
be the most accurate since it presumably encountered the least traffic underway
and therefore is the most representative of the pure propagation time.

The Berkeley Algorithm

In Cristian’s algorithm, the time server is passive. Other machines periodi-
cally ask it for the time. All it does is respond to their queries. In Berkeley UNIX,
exactly the opposite approach is taken (Gusella and Zatti, 1989). Here the time
server (actually, a time daemon) is active, polling every machine from time to
time to ask what time it is there. Based on the answers, it computes an average
time and tells all the other machines to advance their clocks to the new time or
slow their clocks down until some specified reduction has been achieved. This
methed is suitable for a system in which no machine has a WWYV receiver. The
time dacmon’s time must be set manually by the operator periodically. The
methed is illustrated in Fig. 5-6.

Time dasmon
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% @ 13:00
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Figure 3-6. (a) The timc daemon asks all the other machines for their clock

valoes. (b} The machines answer. (c) The time daemon telis everyone how to
adjust their ctock.

In Fig. 5-6(a), at 3:00, the time daemon tells the other machines its time and
asks for theirs. In Fig. 5-6(b), they respond with how far ahead or behind the time
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daemon they are. Armed with these numbers, the time daemon computes the aver-
age and tells each machine how to adjust its clock [see Fig. 5-6(c)].

Averaging Algorithins

Both of the methods described above are highly centralized with the usual
disadvantages. Decentralized algorithms are also known. One class of decentral-
ized clock synchronization algorithms works by dividing time into fixed-length
resynchronization intervals. The ith interval starts at T, -+ iR and runs until
Ty + (i +1)R, where T} is an agreed-upon moment in the past, and R is a system
parameter. At the beginning of each interval, every machine broadcasts the
current ttme according to its clock. Because the clocks on different machines do
not run at exactly the same speed, these broadcasts will not happen precisely
simultaneously.

After a machine broadcasts its time, it starts a local timer to collect all other
broadcasts that arrive during some interval S. When all the broadcasts arrive, an
algorithm is run to compute a new time from them. The simplest algorithm is just
to average the values from all the other machines. A slight variation on this theme
is first to discard the m highest and m lowest values, and average the rest. Dis-
carding the extreme values can be regarded as self defense against up to m faulty
clocks sending out nonsense.

Another variation is to try to correct each message by adding to it an estimate
of the propagation time from the source. This estimatc can be made from the
known topology of the network, or by timing how long it takes for probe messages
to be echoed.

Additional clock synchronization algorithms are discussed in the literature
{e.g., Lundelius-Welch and Lynch, 1998; Ramanathan et al., 1989; and Srikanth
and Toueg, 1987). One of the most widely used algorithms in the Internet is the
Network Time Protocol (NTP), described in (Mills, 1992), NTP is known to
achieve (worldwide) accuracy in the range of 1-50 msec. It achieves this accuracy

through the use of advanced clock synchronization algorithms; further improve-
ments arc described in (Mills, 1995).

Multiple External Time Sources

For systems in which extremely accurate synchronization with UTC is
required, it is possible to equip the system with multiple receivers for WWV,
GEOS, or other UTC sources. However, due to inherent inaccuracy in the time
source itself as well as fluctuations in the signal path, the best the operating sys-
tem can do is to establish a range (time interval) in which UTC falls. In general,
the various time sources will produce different ranges, which thus requires that
the machines attached to them come to a general agreement.

T R ) i p i arara—— e
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To reach this agreement, each processor with a UTC source can broadcast its
range periodically, for instance, at the precise start of cach UTC minute. None of
the processors will get the time packets instantaneously. Worse yet, the delay
between transmission and reception depends on the cable distance and number of
routers that the packets have to traverse, which is different for each (UTC source,
processor) pair. Other factors can also play a role, such as delays due to collisions
when multiple machines try 1o transmit on an Ethernet at the same instant. Furth-
ermore, if a processor is busy handling a previous packet, it may not even look at
the time packet for a considerable number of milliseconds, introducing additional
uncertainty into the time.

5.1.3 Use of Synchronized Clocks

In the past few years, the necessary hardware and software for synchronizing
clocks on a wide scale (e.g., over the entire Internet) has become easily available.
With this new technology, it is possible to keep millions of clocks synchronized to
within a few milliseconds of UTC. New algorithms that uiilize synchronized
clocks are just starting t0 appear. One example, discussed in (Liskov, 1993}, con-
cerns how 10 enforce at-most-once message delivery to a server, even in the face
of crashes. The traditional approach is for each message to bear a unique message
nember, and have each server store all the numbers of the messages it has seen so
that it can detect new messages from retransmissions. The problem with this algo-
rithm is that if & server crashes and reboots, it loses its table of message numbers.
Also, for how long should message numbers be saved?

Using time, the algorithm can be modified as follows. Now, every message
carries a connection identifier (chosen by the sender) and a timestamp. For each
connection, the server records in a table the most recent umestamp it has seen, If
any incoming message for a connection is lower than the timestamp stored for that
connection, the message is rejected as a duplicate.

To make it possible to remove old timestamps, each server continuously
maintains a global variable

G = CurrentTime — MaxLifetime — MaxClockSkew

where MaxLifetime is the maximuri time a message can live and MaxClockSkew
is how far from UTC the clock might be at worst. Any timestamp older than G
can safely be removed from the 1able because all messages diat old have already
died out. If an incoming message has an unknown connection identifier, it is
accepted If its timestamp is more recent than G and rejected if its timestamp is
older than G because anything that old surely is a duplicate. In effect, G is a sum-
mary of the message numbers of all old messages. Every AT, the current time is
written to disk.

When a server crashes and then reboots, it reloads G from the time stored on
disk and increments it by the update period, AT. Any incoming message with a
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timestamp older than G is rejected as a duplicate. As a consequence, every mes-
sage that might have been accepted before the crash is rejected, Some new mes-
sages may be incorrectly rejected, but under all conditions the algorithm main-
tains at-most-cnce semantics.

In addition to this algorithm, Liskov (1993) also describes how synchronized
clocks can be used to achieve cache consistency, how to use time-out tickets in
distributed sysiem authentication, and how to handle commitment in atemic tran-
sactions. We will discuss some of these algorithms in later sections. As timer syn-
chronization improves, no doubt new applications for it will be found.

5.2 LOGICAL CLOCKS

For many purposes, it is sufficient that all machines agree on the same time. It
is mot essential that this time also agrees with the real time as announced on the
radio every hour. For running make, for example, it is adequate that all machines
agree that it is 10:00, even if it is really 10:02. Thus for a certain class of algo-
rithms, it is the internal consistency of the clocks that matters, not whether they
are particularly close to the real time. For these algorithms, it is conventional o
speak of the clocks as logical clocks.

In a classic paper, Lamport (1978) showed that although clock synchroniza-
tion is possible, it need uot be absolute. If two processes do not interact, it is not
necessary that their clocks be synchronized because the lack of synchronization
would not be observable and thus could not cause problems. Furthermore, he
pointed out that what usually matters is not that ali processes agree on exactly
what time it is, but rather thal they agree on the order in which events occur. In
the make cxample given in the previous section, what counts is whether input.c is
older or newer than input.o, not their absolute creation times.

In this section we will discuss Lampor(C’s algorithm, which synchronizes logi-
cal clocks. Also, we discuss an extension to Lamport’s approach, called vector
timestamps. Lamport extended his own work in (Lamport, 1990)

5.2.1 Lamport timestamps

To synchronize logical clocks, Lamport defined a relation called happens-
before. The expression @ > b is read “a happens before b and means that all
processes agree that first event a occurs, then afterward, event » occurs. The
happens-before relation can be observed directly in two situations:

1. If @ and b are events in the same process, and a occurs hefore b, then
a — b is true,

2. If ais the event of a message being sent by one process, and 4 is the
event of the message being received by another process, then a — b
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is also true. A message cannot be received before it is sent, or even at
the same time it is sent, since it takes a finite, nonzero amount of
time to arrive.

Happens-before is a transitive relation, soif a - band b — ¢, thena - c. If
two events, x and y, happen in different processes that do not exchange messages
(not even indirectly via third parties), then x — y is not true, but neither is y - x.
These events are said to be concurrent, which simply means that nothing can be
said (or need be said) about when the events happened or which event happened
first.

What we need is a way of measuring time such that for every event, a, we can
assign it a time value C(@) on which all processes agree. These time values must
have the property that if @ = b, then C(a) < C(b). To rephrase the conditions we
stated earlier, if a and & are two events within the same process and @ occurs
before b, then C{a) < C(b). Similarly, if @ is the sending of a message by one
process and & is the reception of that message by another process, then C(a) and
C(b) must be assigned in such a way that everyone agrees on the values of C(a)
and C(b) with C(a) < C(b). In addition, the clock time, C, must always go for-
ward (increasing), never backward (decreasing). Cotrections to time can be made
by adding a positive value, never by subtracting one.

Now let us look at the algorithm Lamport proposed for assigning times to
events. Consider the three processes depicted in Fig. 5-7(a). The processes run on
different machines, each with its own clack, ruaning at its own speed. As can be
seen from the figure, when the clock has ticked 6 times in process 0, it has ticked
8 times in process 1 and 10 times in process 2. Each clock runs at a constant rate,
but the rates are different due to differences in the crystals.

At time 6, process 0 sends message A to process 1. How long this message
takes to arrive depends on whose clock you believe. In any event, the clock in
process 1 reads 16 when it arrives. If the message carries the starting time, 6, in
it, process 1 will conciude that it took 10 ticks to make the joumey. This value is
certainly possible. According to this reasoning, message B from 1 to 2 takes 16
ticks, again a plausibie value.

Now comes the fun part. Message C from 2 to 1 leaves at 60 and arrives at 56.
Similarly, message D from 1 to O leaves at 64 and arrives at 54. These values are
clearly impossible. 1t is this situation that must be prevented.

Lamport’s solution follows directly from the happens-before relation. Since €
left at 60, it must arrive at 61 or later. Therefore, each message carries the sending
time according to the sender’s clock. When a message arrives and the receiver's
clock shows a value prior to the time the message was sent, the receiver fast for-
wards its clock to be one more than the sending time. In Fig. 5-7(b) we see that C
now arrives at 61. Similarly, D arrives at 70.

With one small addition, this algorithm meets our requirements for glabal
time. The addition is that between every two events, the clock must tick at least
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Figure 5-7. (a) Three processes, each with its own clock. The clocks run at dif-
ferent rates. {b) Lamport’s algorithm corrects the clocks.

once. If a process sends or receives two messages in quick succession, it must
advance its clock by (at least) one tick in between them,

In some siwations, an additional requirement is desirable: no two events ever
occur at exactly the same time. To achieve this goal, we can attach the number of
the process in which the event occurs to the low-order end of the time, separated

by a decimal point. Thus if events happen in processes 1 and 2, both with time 40,
the former becomes 40.1 and the latter becomes 40.2.

Using this method, we now have a way to assign time to all events in a dis-
tributed system subject to the following conditions:

1. If @ happens before b in the same process, C(a) < C(b).

2. If g and b represent the sending and receiving of a message, respec-

tively, C{a) < C(b).
3. For all distinctive events ¢ and b, C(a) # C(b).

This algorithm gives us a way to provide a total ordering of all events in the sys-
tem. Many other distributed algorithms need such an ordering o avoid ambigui-
ties, so the algorithm is widely cited in the literature.

Example: Totally-Ordered Multicasting

As an application of Lamport timestamps, consider the situation in which a
database has been replicated across several sites. For example, to improve query
performance, a bank may place copies of an account database in two different
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cities, say New York and San Francisco. A query is always forwarded to the
nearest copy. The price for a fast response to a query is partly paid in higher
update costs, because each update operation must be carried out at each replica.

In fact, there is a more stringent requirement with respect to updates. Assume
a customer in San Francisco wants to add $100 to his account, which currently
contains $1,000. At the same time, a bank employee in New York initiates an
update by which the customer's account is to be increased with 1 percent interest.
Both updates should be carried out at both copies of the database. However, due
to communicaticn delays in the underlying network, the updates may arrive in the
order as shown in Fig. 5-8.

Update 2 i

1\ //7 :_
licat
Update 1 is Replicated database Update 2 is
performad before performed before
update 2 update 1

Figure 5-8. Updating a replicated database and leaving it in an inconsistent
state.

The customer’s update operation is performed in San Francisco before the
interest update. In contrast, the copy of the account in the New York replica is
first updated with the 1 percent interest, and after that with the $100 deposit. Con-
sequently, the San Francisco database will record a total amount of $1,111,
whereas the New York database records $1,11Q.

The problem that we are faced with is that the two update operations should
have been performed in the same order at each copy. Although it makes a differ-
ence whether the deposit is processed before the interest update or the other way
around, which order is followed is not important from a consistency point of view.
The important issue is that both copies should he exactly the same. In general,
situations such as these require a totally-ordered multicast, that is, a multicast
operation by which all messages are delivered in the same order to each receiver.
Lamport. timestamps can be used to implement totally-ordered multicasts in a
completely distributed fashion.

Consider a group of processes multicasting messages to each other. Each mes-
sage is always timestamped with the current (logical) time of its sender. When a
message is multicast, it is conceptually also sent to the sender. In addition, we
assume that messages from the same sender are received in the order they were
sent, and that no messages are lost.

When a process receives a message, it is put into a local queue, ordered
according to its timestamp. The receiver multicasts an acknowledgement to the
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other processes. Note that if we follow Lamport’s algorithm for adjusting local
clocks, the timestamp of the received message is lower than the timestamp of the
acknowledgement.

The interesting aspect of this approach, is that all processes will eventually
have the same copy of the local queue. Each message is multicast to alt processes,
including acknowledgements, and is assumed to be received by all processes.
Recall also that we assume that messages are delivered in the order that they are
sent. Each process puts a received message in its local queue according to the
timestamp in that message. Lamport’s clocks ensure that no two messages have
the same timestamp, but also that the timestamps reflect a consistent global order-
ing of events,

A process can deliver a queued message to the application it is running only
when that message is at the head of the queue and has been acknowledged by each
other process. At that point, the message is removed from the queue and handed
over to the application; the associated acknowledgements can simply be removed.
Because each process has the same copy of the queue, all messages are delivered

in the same order everywhere. In other words, we have established totally-ordered
multicasting.

3.2.2 Vector timestamps

Lamport timestamps lead to a situation where all events in a distributed sys-
tem are totally ordered with the property that if event @ happened before event 4,
then a will also be positioned in that ordering before b, that is, C(a) < C(b).

However, with Lamport timestamps, nothing can be said about the relation-
ship between two events ¢ and b by merely comparing their time valnes C{a) and
C(b), respectively. In other words, if C(a) < C(b), then this does not necessarily
imply that @ indeed happened before b. Something more is needed for that.

To understand what is going on, consider a messaging system in which
processes post articles and react to posted articles. One of the most popular exam-
ples of such a messaging system is the Internet’s electronic bulletin board service,
network news (see, for example, Comer, 2000h). Users, and hence processes,
Join specific discussion groups. Postings within such a group, whether they are
articles or reactions, are multicast to all group members. To ensure thal reactions
are delivered after their associated postings, we may decide to use a totaily-
ordered multicasting scheme as described above. However, such a scheme does
not imply that if message B is delivered after message A, that B is a reaction to
what is posted by means of message A. In fact, the two may be completely
independent. Totally-ordered multicasting is too strong in this case.

The problem is that Lamport timestamps do not capture causality. In our
¢xample, the receipt of an article always causally precedes the posting of a reac-
tion. Conscquently, if causal relationships are to be maintained within a group of
processes, then the receipt of the reaction to an article should always follow the
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receipt of that article. No more, no less. If two articles or reactions are indepen-
dent, their order of delivery should not matter at all.

Causality can be captured by means of vector timestamps. A vector time-
stamp V7T {a) assigned to an event a has the property that if VT (a) < VT () for
some event &, then evenl @ is known to causally precede event . Vector time-
stamps are constructed by letting each process P; maintain a vector V; with the fol-
lowing two properties:

1. Vi[i] is the number of events that have occurred so far at P;

2. If Vi[j] =k then P, knows that k events have occurred at P;

The first property is maintained by incrementing Vili] at the occurrence of each
new event that happens at process P;. The second property is maintained by piggy-
backing vecfors along with messages that are sent. In particular, when P, sends
message m, it sends along its current vector as a timestamp vi.

In this way, a receiver is informed about the number of events that have
occurred at F;. More important, however, is thal the teceiver is told how many
events at other processes have taken place before P sent message m. In other
words, timestamp vi of m tells the receiver how many events in other processes
have preceded m, and on which m may causally depend. When process P, receives
m, it adjusts its own vector by setling each entry Vilk] to max{V;[k],vt[k]1}. The
vector now reflects the number of messages that P; must receive to have at least
seen the same messages that preceded the sending of m. Hereafter, entry Vilijis
incremented by 1 representing the event of receiving message m as the next mes-
sage from F; (Raynal and Singhal, 1996).

Veclor timestamps can he used to deliver messages only when no causality
constraints are violated. Consider again the example of an clectronic bulletin
board. When a process P; posts an article, it multicasts that article as a message a
with timestamp vt (a) set equal to V;. When another process P, receives a, it will
have adjusted its own vector such that Vili | > ve(a)ii ]

Now suppose F; posls 4 reaction to the article. It does this by multicasting a
message r with a timestamp v#{r) set equal to V;. Note that vt (r)[i] > vt{a):].
Assuming communication is reliable, both the message a conlaining the article,
and the message r containing the reaction will eventually arrive at another process
P;. As we have made no assumptions concerning the ordering of messages, mes-
sage r may arrive at P, before message . When receiving r, P, inspects time-
stamp vf (r) and will decide to postpone delivery until all messages that causally
precede r have been received as well. In particular, message r is delivered only if
the following conditions are met;

Lovt(nf] =V [j]+]
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The first condition states that r is the next message that P, was expecting from
process P;. The second condition states that £; has not seen any messages that
were not seen by P; when it sent message 7. In particular, this means that P, has
already seen message a.

A Note on Ordered Message Delivery

Some middleware systems, notably ISIS and its successor Horus (Birman and
van Renesse, 1994), provide support for totally-ordered and causally-ordered (refi-
able) multicasting. There has been some controversy whether such support should
be provided as part of the message-communication layer, or whether applicatious
should handle ordering (see, e.g., Cheriton and Skeen, 1993; and Birman, 1994).

There are two main problems with letting the communication layer deal with
message ordering. First, because the communication layer cannot tell what a mes-
sage actually contains, only potential causality is captured. For example, two mes-
sages from the same sender that are completely independent will always be
marked as causally related by the communication layer. This approach is overly
restrictive and may lead to efficiency problems.

A second problem is that not all causality may be captured. Consider again
the news system. Suppose Alice posts an article. If she then phones Bob telling
about what she just wrote, Bob may post another article as a reaction witbout hav-
ing seen Alice’s posting on the news. In other words, there is a causality between
Bob’s posting and that of Alice due to external communication. This causality is
not captured by the network news system.

In essence, ordering issues. like many other application-specific communica-
tion issues, can be adequately solved by looking at the application for which com-
munication is iaking place. This is also known as the end-to-end argument in
systems design (Saltzer et al.,, 1984). A drawback of having only application-
level solutions, is that a developer is forced to concentrate on issues that do not
immediately relate to the core functionality of the application. For exampie, ord-
ering may not be the most important problem when developing a messaging SYs-
tem such as network news. In that case, having an underlying communication
layer handle ordering may turn out to be convenient. We will come across the

end-to-end argument a number of times, notably when dealing with security in
distributed systems.

5.3 GLOBAL STATE

On many occasions, it is useful to know the global state in which a distributed
system is currently residing. The global state of a distributed system consists of
the local statc of each process, together with the messages that are currently in
transit, that is, that have been sent but not delivered. What exactly the local state
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of a process is depends on what we are interested in (Helary, 1989). In the case of
a distributed database system, it may consist of only those records that form part
of the database and cxclude temporary records used for computations. In our
example of tracing-based garbage collection as discussed in the previous chapter,
the local state may consist of variables representing markings for those proxies,
skeletons, and objects that are contained in the address space of a process.

Knowing the global state of a distributed system may be useful for many rea-
sons. For example, when it is known that local computations have stopped and
that ihere are no more messages in transit, the system has obviously entered a
state in which no more progress can be made. By analyzing such a global state, it
may be concluded that we are either dealing with a deadlock (see, for example,
Bracha and Toueg, 1987), or that a distributed computation has correctly ter-
minated. An example of how such an analysis can actuaily be done is discussed
below.

A simple, straightforward way for recording the global state of a distributed
system was proposed by Chandy and Lamport (1985) who introduced the notion
of a distributed snapshot. A distributed snapshot reflects a state in which the
distributed system might have been. An important property is that such a snapshot
reflects a consistent global state, In particular, this means that if we have recorded
that a process P has received a message from another process (0, then we should
also have recorded that process @ had actually sent that message. Otherwise, a
snapshot will contain the recording of messages that have been received but never
sent, which is obviously not what we want. The reverse condition (Q has sent a
message that P has not yet received) is allowed, however.

The notion of a global state can be graphically represented by what is called a
cut, as shown in Fig. 5-9. In Fig. 5-%(a), a consistent cut is shown by means of
the dashed line crossing the time axis of the three processes Py, Py, and P;. The
cut represents the last event that has been recorded for each process. In this case,
it can be readily verified that all recorded message receipts have a corresponding
recorded send event. In contrast, Fig.5-9(b) shows an inconsistent cut. The
receipt of mcssage m2 by process P3 has been recorded, but the snapshot contains
no corresponding send event,

To simplify the explanation of the algorithm for taking a distributed snapshot,
we assume that the distributed sysiem can be represented as a collection of
processes connected to each other through unidirectional point-to-point communi-
cation channels. For example, processes may first set up TCP connections before
any further communication takes place.

Any process may initiate the algorithm. The initiating process, say P, starts by
recording its own local state. Then, it sends a marker along each of its outgoing
channels, indicating that the receiver should participate in recording the global
state.,

When a process Q receives a marker through an incoming channel C, its
action depends on whether or not it has already saved its local state. If it has not
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Consistent cut Inconsistent cut
P \ P1 Timeg —
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Fignre 5-9, (a) A consistent cut. (b) An inconsistent cut.

already done so, it first records its local state and also sends a marker along each
of its own outgoing channels. If Q had already recorded its state, the marker on
channel € is an indicator that Q0 should record the state of the channel. This state
is formed by the seqnence of messages that have been received by Q since the last
time @ recorded its own local state, and before it received the marker. Recording
this state is shown in Fig. 5-10.

Incoming Qutgoing
massage Process  State message

&,

— >

Local

LTTRY filesystem
{a)

Marker

— T o [ OO0 a [H

H H H
=3
L apm ) ampE
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state
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Figure 5-10, {(a) Organization of a process and chamnels for a distributed
snapshot. {b) Process (F receives a marker for the first time and records its Jocal
state. (c) @ records all incoming messages. (d) Q receives a marker for its in-
coming channel and finishes recording the state of the incoming channel.
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A process is said to have finished its part of the algorithm when it has
received a marker along each of its incoming channels, and processed each one.
At that point, its recorded local state, as well as the state it recorded for each
incoming channel, can be collected and sent, for example, to the process that ini-
tiated the smapshot. The latter can then subsequently analyze the current state.
Note that, meanwhile, the distributed system as a whele can continue to run nor-
mally.

It should be noted that because any process can initiate the algorithm, the con-
struction of several snapshots may be in progress at the same time. For this rea-
son, a marker is tagged with the identifier (and possibly also a version number), of
the process that initiated the snapshot. Only after a process has received that
marker through each of its incoming channels, can it finish its part in the construc-
tion of the marker’s associated snapshot.

Example: Termination Petection

As an application of taking a snapshot, consider detecting the termination of a
distributed computation. If a process @ receives the marker requesting a snapshot
for the first time, it considers the process that sent that marker as its predecessor,
When Q completes its part of the snapshot, it sends its predecessor a DONE mes-
sage. By recursion, when the initiator of the distributed snapshot has received a
DONE message from all its successors, il knows that the snapshot has been com-
pletely taken.

However, a snapshot may show a global state in which messages are still in
transit. In particular, suppose a process records that it had received messages
along one of its incoming channels between the point where it had recorded its
local state, and the point where it received the marker through that channel. Then,
clearly, we cannot conclude that the distributed computation is completed, for
those messages may have generated other messages that are not part of the
snapshot.

What is needed is a snapshot in which all channels are empty. The following
is a simple modification to the algorithm described above. When a process @ fin-
ishes its part of the snapshot, it either retums a DONE message to its predecessor,

or a CONTINUE message. A DONE message is returned only when the following
two conditions are met;

1. All of (s successors have retumed a DONE message.

2. @ has not received any message between the point it recorded its

state, and the point it had received the marker along each of its
incoming channels.

In all other cases O sends a CONTINUE message 1o its predecessor.
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Eventually, the original initiator of the snapshot, say process P, will either
receive a CONTINUE message, or only DONE messages from its successors.
When only DONE messages are received, it is known that no regular messages
are in transit, and thus the computation has terminated. Otherwise, process P ini-
tiates another snapshot, and continues io do so until only DONE messages are
eventually retumed.

Numerous other solutions to termination detection as discussed in this section
have been developed. See (Andrews, 2000; and Singhal and Shivaratri, 1994) for
further examples and references. An overview and comparison of different solu-
tions can also be found in (Mattem, 1987; and Raynal, 1988).

5.4 ELECTION ALGORITHMS

Many distributed algorithms require one process to act as coordinator, initia-
tor, or otherwise perform some special role. In general, it does not matter which
process takes on ithis special responsibility, but one of them has to do it. In this
section we will look at algorithms for electing a coordinator (using this as a geu-
eric name for the special process).

If all processes are exactly the same, with no distinguishing characteristics,
there is no way to select one of them to be special. Consequently, we will assume
that each process has a unique number, for example, its network address (for sim-
plicity, we will assume one process per machine). Iu general, election algorithms
attempt to locate the process with the highest process number and designate it as
coordinator. The algorithms differ in the way they do the location.

Furthermore, we also assume that cvery process knows the process number of
every other process. What the processes do not know is which ones are currently
up and which ones are currently down. The goal of an election algorithm is to
ensure that when an election starts, it concludes with all processes agreeing on
who the new coordinator is to be. Various algorithms are known, for example,
(Fredrickson and Lynch, 1987; Garcia-Molina, 1982; and Singh and Kurose,
1594).

5.4.1 The Bully Algorithm

As a first example, consider the bully algorithm devised by Garcia-Molina
(1982) When any process notices that the coordinator is no longer responding to
requesis, it initiates an election. A process, P, holds an election as follows:

1. P sends an ELECTION message to all processes with higher numbers.
2. If no one responds, P wins the election and becomes coordinator.

3. If one of the higher-ups answers, it takes over. P’s job is done.
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At any moment, a process can get an ELECTION message from one of its
lower-numbered colleagues. When such a message arrives, the receiver sends an
OK message back to the sender to indicate that he is alive and will take over, The
receiver then holds an election, unless it is already holding one. Eventually, all
processes give up but one, and that one is the new coordinator. It announces its
victory by sending all processes a message telling them that starting immediately
it is the new coordinator.

If a process that was previously down comes back up, it hoids an election. If it
happens to be the highest-numbered process currently running, it will win the
election and take aver the coordinator’s job. Thus the biggest guy in town always
wins, hence the name “bully algorithm.™

In Fig. 5-11 we see an example of how the bully algorithm works. The group
consists of eight processes, numbered from 0 to 7. Previously process 7 was the
coordinator, but it has just crashed. Process 4 is the first one to notice this, so it
sends ELECTION messages to all the processes higher than it, namely S, 6, and 7,
as shown in Fig. 5-11(a). Processes 5 and 6 both respond with OK, as shown n
Fig. 5-11(b). Upon getting the first of these responses, 4 knows that its job is
over. It knows that one of these bigwigs will take over and become coordinator. It
just sits back and waits to see who the winner will be (although at this point it can
make a pretty good guess).

In Fig. 5-11{(c), both 5 and 6 hold clections, each one only sending messages
to those processes higher than itself. In Fig. 5-11(d) process 6 tells 5 that it will
take aver. At this point 6 knows that 7 is dead and that it (6) is the winner. I there
is state information to be collected from disk or elsewhere to pick up where the
old coordinator left off, & must now do what is nceded. When it is ready to take
over, 6 announces this by sending a COORDINATOR message io all running
processes. When 4 gets this message, il can now continue with the operation it
was trying to do when it discovered that 7 was dead, but using 6 as the coordinator
this time. In this way the failure of 7 is handled and the work can continue.

If process 7 is ever restarted, it will just send all the others a COORDINATOR
message and bully them into submission.

5.4.2 A Ring Algorithm

Another election algorithm is based on the use of a ring. Unlike some ring
algorithms, this one does not use a token. We assume that the processes are physi-
cally or logically ordered, so that each process knows who its successor is. When
any process notices that the ceordinator is not functioning, it builds an ELEC-
TION message containing its own process number and sends tbe message to its
successor. If the successor is down, the sender skips over the successor and goes
to the next member along the ring, or the one afier that, until a running process is
located. Al cach step, the sender adds its own process number to the list in the
message effectively making itself a candidate to be elected as coordinator.
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Figure 5-11. The bully election algorithm. (a) Process 4 holds an election. (b)
Processes 5 and 6 respond, telling 4 to stop. (c) Now 3 and 6 each hold an elec-
tion. (d) Process 6 tells 5 to stop. (e) Process 6 wins and tells everyone.

Eventually, the message gets back to the process that started it all. That pro-
cess recognizes this event when it receives an incoming message containing its
own process number. At that point, the message type is changed to COORDINA-
TOR and circuiated once again, this time to inform everyone else who the coordi-
nator is (the list member with the highest number) and who the members of the
new ring are. When this message has circulated once, it is removed and everyone
goes back to work.,

In Fig. 5-12 we see what happens if two processes, 2 and 5, discover simul-
taneously that the previous coordinator, process 7, has crashed. Each of these
builds an ELECTION message and and each of them starts circulating its mes-
sage, independent of the other one. Eventually, both messages will go all the way
around, and both 2 and 5 will convert them into COORDINATOR messages, with
exactly the same members and in the same order. When both have gone around
again, both will be removed. It does no harm to have exira messages circulating;
at worst it consumes a little bandwidth, but this not considered wasteful.
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Figure 5-12. Election algorithm using a ring.

5.5 MUTUAL EXCLUSION

Systems involving multiple processes are often most easily programmed using
critical regions. When a process has to read or update certain shared data struc-
tures, it first enters a critical region to achieve mutual exclusion and ensure that
no other process will use the shared data structures at the same time. In single-
processor systems, critical regions are protected using semaphores, monitors, and
sitnilar constructs. We will now look at a few examples of how critical regions
and mutual exclusion can be implemented in distributed systems. For a taxonomy
and bibliography of other methods, see (Raynal, 1991; and Singhal, 1993).

5.5.1 A Centralized Algorithm

The most straightforward way to achieve mutual exclusion in a distributed
system is to simulate how it is done in a one-processor system. One process is
elected as the coordinator (e.g., the one running on the machine with the highest
network address). Whenever a process wants to enter a critical region, it sends a
request message to the coordinator stating which critical region it wants to enter
and asking for permission. If no other process is currently in that critical region,
the coordinator sends back a reply granting permission, as shown in Fig. 5-13(a).
When the reply arrives, the requesting process enters the critical region.

Now suppose that another process, 2 in Fig. 5-13(b), asks for permission to
enter the same critical region. The coordinator knows that a different process is
already in the critical region, so it cannot grant permission. The exact method
used to deny permission is system dependent. In Fig. 5-13(b), the coordinator just
refrains from replying, thus blocking process 2, which is waiting for a reply.
Alternatively, it could send a reply saying “permission denied.”” Either way, it
queues the request from 2 for the time being and waits for more messages.
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Figure 5-13. (a) Process ! asks the coordinator for permission to enier a critical
region. Permussion is granted. (b) Process 2 then asks permission 1o enter the
same critical region. The coordinator does not reply. {c} When process 1 exits
the critical region, it teils the coordinator, which then replies to 2.

When process 1 exits the critical region, it sends a message to the coordinator
releasing its exclusive access, as shown in Fig. 5-13(c). The coordinator takes the
first item off the queue of deferred requests and sends that process a grant mes-
sage. If the process was still blocked (i.e., this is the first message to if), it
unblocks and enters the critical region. If an explicit message has already been
sent denying permission, the process will have to poll for incoming traffic or
block later. Either way, when it sees the grant, it can enter the critical region.

It is easy to see that the algorithm guarantees mutual exclusion: the coordina-
tor only lets one process at a time into each critical region. It is also fair, since
requests are granted in the order in which they are received. No process ever waits
forever (no starvation). The scheme is easy to implement, too, and requires only
three messages per use of a critical region (request, grant, release). It can also be
used for more general resource allocation rather than just managing critical
regions.

The centralized approach also has shortcomings. The coordinator is a single
point of failure, so if it crashes, the entire system may go down. If processes nor-
mally block after making a request, they cannot distinguish a dead coordinator
from “permission denied” since in both cases no message comes back. In addi-
tion, in a large system, a single coordinator can become a performance bottleneck.

5.5.2 A Distributed Algorithm

Having a single point of failure is frequently unacceptable, so researchers
have looked for distributed mutual exclusion algorithms. Lamport’s 1978 paper on
clock synchronization presented the first one. Ricart and Agrawala (1981) made it
more efficient. In this section we will describe their method.

Ricart and Agrawala’s algorithm requires that there be a total ordering of all
events in the system. That is, for any pair of events, such as messages, it must be
unambiguous which one actually happened first. Lamport’s algorithm presented in-
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Sec. 5.2.1 is one way to achieve this ordering and can be used to provide time-
stamps for distributed mutual exclusion.

The algorithm works as follows. When a process wants to enter a critical
region, it builds a message containing the name of the critical region it wants (o
enler, its process number, and the current time. It then sends the message to all
other processes, conceptually including itself. The sending ol messages is
assumed to be reliable; that is, every message is acknowledged. Reliable group
communication if available, can be used instead of individual messages.

When a process receives a request message from another process, the action it

takes depends on its state with respect to the critical region named in the message.
Three cases have to be distinguished:

1. If the receiver is not in the critical region and does not want to enter
it, it sends back an OK message to the sender.

2. If the receiver is already in the critical region, it does not reply.
Instead. it queues the request.

3. If the receiver wants to enter the critical region but has not yet done
$0, it compares the timestamp in the incoming message with the one
contained in the message that it has sent everyone. The lowest one
wins. If the incoming message is lower, the receiver sends back an
OK message. If its own message has a lower timestamp, the receiver
queues the incoming request and sends nothing.

After sending out requests asking permission to enter a critical region, a pro-
cess sits back and waits until everyone ¢lse has given permission. As soon as all
the permissions are in, it may enter the critical region. When it exits the critical
region, it sends OK messages to all processes on its queue and deletes them all
from the queue.

Let us try to understand why the algorithm works. If there is no conflict, it
clearly works. However, suppose that two processes try (o enter the same critical
region simultaneously, as shown in Fig. 5-14(a).

Process O sends everyone a request with timestamp 8, while at the same time,
process 2 sends everyone a request with timestamp 12. Process 1 is not interesied
in entering the critical region, so it sends OK to both senders. Processes 0 and 2
both see the conflict and compare timestamps. Process 2 sees that it has lost, so it
grants permission to 0 by sending OK. Process 0 now queues the request from 2
for later processing and enters the critical region, as shown in Fig. 5-14(b). When
it is finished, it removes the request from 2 from its queue and sends an OK mes-
sage to process 2, allowing the latter to enter its critical region, as shown in
Fig. 5-14(c). The algorithm works because in the case of a conflict, the lowest
timestamp wins and everyone agrees on the ordering of the timestamps.

Note that the situation in Fig. 5-14 would have been essentially different if
process 2 had sent its message earlier in time so that process 0 had gotten it and
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Figure 514. (a) Two proccsscs want {0 enter the same critical region at the
same moment. (b Process 0 has the lowest timestamp, so it wins. (¢) When
process {1 is done, it sends an OX alsc, so 2 can now enter the critical region.

granted permission before making its own request. In this case, 2 would have
noticed that it itself was in a critical region at the time of the request, and queued
it instead of sending a reply.

As with the centralized algorithm discussed above, mutual exclusion is
guaranteed without deadlock or starvation. The number of messages required per
entry is now 2(n — 1), where the total number of processes in the system is n,
Best of all, no single point of failure exists.

Unfortunately, the single point of failure has been replaced by n points of
failure, If any process crashes, it will fail to respond to requests. This silence will
be interpreted (incorrectly) as denial of permission, thus blocking all subsequent
attempts by all processes to enter all critical regions. Since the probability of one
of the n processes failing is at least » times 2s large as a single coordinator failing,
we have managed to replace a poor algorithm with one that is more than » times
worse and requires much more network traffic 1o boot,

The algorithm can be patched up by the same trick that we proposed earlier.
When a request comes in, the receiver always sends a reply, either granting or
denying permissiou. Whenever either a request or a reply is lost, the sender times
out and keeps trying until either a reply comes back or the sender concludes that
the destmation is dead. After a request is denied, the sender should block waiting
for a subsequent OK message.

Another problem with this algorithm is that either a group communication
primitive must be used, or each process must maintain the group membership list
itsell, including processes entering the group, leaving the group, and crashing.
The method works best with small groups of processes that never change their
group memberships.

Finally, recall that one of the problems with the centralized algorithm is that
making it handle all requests can lead to a bottleneck. In the distributed algorithm,
all processes are involved in all decisions concerning entry into critical regions. If

T AL e o
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one process is unable to handle the load, it is unlikely that {orcing everyone to do
exactly the same thing in paraliel is going to help much.

Various minor improvements are possible to this algorithm. For example, get-
ting permission from everyone to enter a critical region is really overkill. All that
is needed is a method to prevent two processes from entering the critical region at
the same time. The algorithm can be modified to allow a process to enter a critical
region when it has collected permission from a simple majority of the other
processes, rather than from all of them. Of course, in this variation, after a process
has granted permission to one process to enfer a critical region, it cannot grant the
same permission to another process until the first one has relcased that permis-
sion. Other improvements arc also possible, such as proposed by Mackawa
(1985), but these easily become more intricate.

Nevertheless, this algorithm is slower, more complicated, more expensive,
and less robust that the original centralized one. Why bother studying it under
these conditions? For one thing, it shows that a distributed algorithm is at least
possible, something that was not obvious when we started. Also, by pointing out
the shortcomings, we may stimulate future theoreticians to try to produce algo-
rithms that are actually useful. Finally, like eating spinach and learning Latin in
high school, some things are said to be good for you in some abstract way.

5.53 A Token Ring Algorithm

A completely different approach to achieving mutual exclusion in a distrib-
uted system is illustrated in Fig. 5-15. Here we have a bus network, as shown in
Fig. 5-15(a), (e.g., Ethemet), with no inherent ordering of the processes. In
software, a logical ring is constructed in which each process is assigned a position
in the ring, as shown in Fig. 5-15(b). The ring positions may be allocated in
numerical order of network addresses or some other means. It does not matter
what the ordering is. All that matters is that each process knows who is nexi in
line after itself,

When the ring is initialized, process O is given a token. The token circulates
around the ring. It is passed from process k to process k+1 (modulo the ring size)
in point-to-point messages. When a process acquires the token from its neighbor,
it checks to see if it is attempting to enter a critical region. If so, the process enters
the region, does all the work it needs to, and leaves the region. After it has exited,
it passes the token along the ring. It is not permitted to enter a second critical
region using the same token.

If a process is handed the token by its neighbor and is not interested in enter-
ing a critical region, it just passes it along. As a consequence, when no processes
want to enter any critical regions, the token just circulates at high speed around
the ring.

The correctness of this algorithm is easy to see. Only one process has the
token at any instant, so only one process can actually be in a critical region. Since
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Figure 5-15, (a) An unordered group of processes on a network. (h) A ngical
ring constructed in software.

the token circulates among the processes in a well-defined order, starvation can-
not occur. Once a process decides it wants to enter a critical region, at worst it
will have to wait for every other process to enter and leave one critical region.

As usual, this algorithm has problems too. If the token is ever lost, it must be
regenerated. In fact, detecting that it is lost is difficult, since the amount of time
between successive appearances of the token on the uetwork is unbounded. The
fact that the token has not been spotted for an hour does not mean that it has been
lost; somebody may still be using it.

The algorithm also runs into trouble if a process crashes, but recovery is
casier than in the other cases. If we require a process receiving the token to
acknowledge receipt, a dead process will be detected when its neighbor tries to
give it the token and fails. At that point the dead process can be removed from the
gronp, and the token holder can throw the token over the head of the dead process
to the next member down the line, or the one after that, if necessary. Of course,
doing so requires that everyone maintains the current ring configuration,

5.5.4 A Comparison of the Three Algorithms

A bricf comparison of the three mutual exclusion algorithms we have looked
at is instructive. In Fig. 5-16 we have listed the algorithms and three key proper-
tes: the number of messages required for a process to enter and exit a critical
region, the delay before entry can occur (assuming messages are passed sequen-
tially over a network), and some problems associated with each al gorithm.

The centralized algorithm is simplest and also most efficient, It requires only
three messages to enter and leave a critical region: a request, a grant to enter, and
a release to exit. The distributed algorithm requires .~ 1 request messages, one to
each of the other processes, and an additional n — 1 grant messages, for a total of
2(n — 1). (We assume that only point-to-point communication channels are used.)
With the token ring algorithm, the number is variable. If every process constantly
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,] Messages per | Delay before entry
Algorithm entrylexit {In message times) Problems
Centralized 3 2 Coordinator crash
Distributed 2(n-1) 2(n-1}) Crash of any process
Taoken ring 110 o0 Dton-1 Lost token, process crash

Figure 5-16. A comparison of three mulual exclusion algorithms.

wants to enter a critical region, then each token pass will result in one entry and
exit, for an average of one message per critical region entered. At the other
extreme, the token may sometimes circulate for hours without anyone being
interested in it. In this case, the number of messages per entry into a critical
region is unbounded.

The delay from the moment a process needs to enter a critical region until its
actual entry also varies for the three algorithms. When critical regions are short
and rarely used, the dominant factor in the delay is the actual mechanism for
entering a critical region. When they are long and frequently used, the dominant
factor is waiting for everyone else to take their turn. In Fig. 5-16 we show the
former casc. It takes only two message times to enter a critical region in the cen-
tralized case, but 2(n — 1) message times in the distributed case, assuming that
messages are sent one after the other. For the token ring, the time varies from 0
(token just arrived) to n — 1 (token just departed).

Finally, all three algorithms suffer badly in the event of crashes. Special
measures and additional complexity must be introduced to avoid having a crash
bring down the entire system. It is ironic that the distrihuted algorithms are even
more sensitive to crashes than the centralized one. In a fault-tolerant system, none
of these would be suitable, but if crashes are very infrequent, they might do.

5.6 DISTRIBUTED TRANSACTIONS

A concept that is strongly related to mutual exclusion is that of a transaction.
Mutual exclusion algorithms ensure that a shared resource such as a file, printer,
and so on, is accessed by at most one process at a time. Transactions have in com-
mon that they also protect a shared resource against simultaneous access by
several concurrent processes. In particular, transactions are used to protect shared
data. However, transactions can do much more. In particular, they allow a process
to access and modify multiple data items as a single atomic operation. If the pro-
cess backs out halfway during the transaction, everything is restored to the point
Just before the transaction started. In this section we take a closer look at the con-
cept of a transaction, and in particular concentrate on a transaction’s capabilitics
for synchronizing multiple processes to protect shared data.
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5.6.1 The Transaction Model

The original model of the transaction comes from the world of business. Sup-
pose that the International Dingbat Corporation needs a batch of widgets. They
approach a potential supplier, U.S. Widget, known far and wide for the quality of
its widgets, for a quote on 100,000 10-cm purple widgets for June delivery. U.S.
Widget makes a bid on 100,000 4-inch mauve widgets 1o be delivered in
December. International Dingbat agrees to the price, but dislikes mauve, wants
them by July, and insists on 10 cm for its international customers. U.S. Widget
replies by offering 3 15/16 inch lavender widgets in October. After much further
negotiation, they finally agree on 3 959/1024 inch violet widgets for delivery on
August 15.

Up until this point, both parties are free to terminate the discussion, in which
case the world returns to the state it was in before they started talking. However,
once both companies have signed a contract, they are both legally bound to com-
plete the sale, come what may. Thus until both parties have signed on the dotted
line, either one can back out and it is as if nothing ever happened, but at the
moment they both sign, they pass the point of no return and the transaction must
be carried out,

The computer model is similar. One process announces that it wants to begin
a transaction with one or more other processes. They can negotiate various
options, create and delete entities, and perform operations for a while. Then the
initiator announces that it wants all the others to commit themselves to the work
done so far. If all of them agree, the results are made permanent. I one or more
processes refuse (or crash before agreetuent), the sitiation reverts to exactly the
state it was in before the transaction began, with all side effects on files, data-
bases, and so on, magically wiped out. This all-or-nothing property eases the
programmer’s job.

The use of transactions in computer systems goes back to the 1960s. Before
there were disks and online databases, all files were kept on magnetic tape. Ima-
gine a supermarket with an automated inventory system. Every day after closing,
a computer run was made with two input tapes. The first one contained the com-
plete inventory as of opening time that moming. The second one contained a list
of the day’s updates: products sold to customers and products delivered by sup-
pliers. The computer read both input tapes and produced a new master inventory
tape, as shown in Fig. 5-17.

The great beauty of this scheme (although the people who actually had to live
with it probably did not realize it at the time) is that if a run failed for any reason,
all the tapes could be rewound and the job restarted with no harm done. Primitive
as it was, the old magnetic tape system had the all-or-nothing property of a tran-
saction.

Now look at a modern banking application that updates an online database in
place. The customer calls up the bank using a PC with a modem with the intention
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Figure 5-17. Updating a master tape is fault tolerant.

of withdrawing money from one account and depositing it in another. The opera-
tion is performed in two steps:

1. Withdraw an amount a from account 1.

2. Deposit amount g to account 2.

If the telephone connection is broken after the first step but before the second one,
the first account will have been debited but the second one will not have been
credited. The money vanishes into thin air,

Being able to group these two operatious in a trausaction would solve the
problem. Either both would be completed, or neither would be completed, A key
issue is therefore rolling back to the initial state if the transaction fails to com-
plete. What we really want is a way to rewind the database as we were able to do
with the magnetic tapes. This ability is what a transaction has to offer.

Programming using transactions requires special primitives that must either be
supplied by the underlying distributed system or by the language runtime system.
Typical examples of transaction primitives are shown in Fig. 5-18. The exact list
of primitives depends on what kinds of objects are being used in the transaction.
In a mail system, there might be primitives to send, receive, and forward mail. In
an accounting system, they might be quite different. READ and WRITE are typi-
cal examples, however. Ordinary statements, procedure calls, and so on, are also
allowed inside a transaction.

BEGIN_TRANSACTION and END_TRANSACTION are used to delimii the
scope of a transaction. The operations between them form the body of the transac-
tion. Either all of these operations are executed or none are executed. These may
be system calls, library procedures, or bracketing statements in a language,
depending on the implementation.

Consider, as an example, the process of reserving a seat from White Plains,
New York, to Malindi, Kenya, in an airline reservation system. One possible route
'is White Plains to JFK, JFK to Nairobi, and Nairobi to Malindi. In Fig. 5-19(a) we
see reservations for these three flights being made as three different operations.
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| Prin{ igve Description
BEGIN TRANSACTION Mark the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT _TRANSACTION | Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Figure 5-18. Example primitives for transactions.

. Now suppose that the first two flights have been reserved but the third one is
booked solid. The transaction is aborted and the resulis of the first two bookings
are undone—the airline database is resiored to the value it had before the transac-
tion started [see Fig. 5-19(b)]. It is as though nothing happened.

BEGIN_TRANSACTION BEGIN_TRANSACTION
reserve WP - JFK; reserve WP — JFK;
resarve JFK — Nairobi; reserve JFK — Nairobi;
rasarve Nairobi — Malindi; Nairobi — Malindi fuill =

END_TRANSACTION ABORT _TRANSACTION

{a) {b)

Figure 5-19, (a) Transaction to reserve three flights commits. {b) Transaction
aborts when third flight is unavailable.

The all-or-nothing property of transactions is one of the lour characteristic
properties that transactions have. More specifically, transactions are:

1. Atomic: To the outside world, the transaction happens indivisibly.
2. Consistent: The transaction does not violate system invariants.
3. Isolated: Concurrent transactions do not interfere with each other.

4. Durable: Once a transaction commits, the changes are permanent,

These properties are often referred to by their initial letters, ACID.

The first key property exhibited by all transactions is that they are atomic.
This property ensures that each transaction either happens completely, or not at
all, and if it happens, it happens in a single indivisible, instantancous action.
While a transaction is in progress, other processes (whether or not they are them-
selves involved in transactions) cannot see any of the intermediate states.

Suppose, for example, that some file is 10 bytes long when a transaction starts
to append to it. If other processes read the file while the transaction is in progress,
they see only the original 10 bytes, no matter how many bytes the transaction has
appended. If the transaction commits successfully, the file grows instantaneously
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to its new size at the moment of commitment, with no intermediate states, no
matter how many operations it took to get it there.

The second property says that they are consistent. What this mecans is that if
the system has certain invariants that must always hold, if they held before the
transaction, they will hold afterward too. For example, in a banking system, a key
invariant is the law of conservation of money. After any internal transfer, the
amount of money in the bank must be the same as it was before the transfer, but
for a brief moment during the transaction, this invariant may be violated. The vio-
lation is not visible outside the transaction, however.

The third property says that transactions are isolated or serializable. What it
means is that if two or more transactions are running at the same time, to each of
them and to other processes, the final result looks as though all transactions ran
sequentially in some (system dependent) order, We return to serializahility below.

The fourth property says that transactions are durable. It refers to the fact
that once a transaction commits, no matter what happens, the transaction goes for-
ward and the results become permanent. No failure after the commit can undo the
results or cause them to be lost. Durability is discussed extensively in Chap. 7.

5.6.2 Classification of Transactions

So far, we have basically considered a transaction as a series of operations
that satisfy the ACID properties. This type of transaction is also called a flat tran-
saction. Flat transactions are the simplest type of transaction, and are most often
used. However, flat transactions have a number of limitations that have led to
altemative models. Below we discuss two important classes: nested transactions

and distributed transactions. Other classcs arc discussed extensively in (Gray and
Reuter, 1993).

Some Limitations of Flat Transactions

The main limitation of flat transactions is that they do not allow partial results
(o be committed or aborted. In other words, the strength of the atomicity property
of a flat transaction also is partly its weakness.

Consider again booking a flight from New York to Kenya, as shown in
Fig. 5-19. Suppose that the entire trip was being sold as a relatively cheap single
package deal, for which reason the three parts were grouped into a single transac-
tion. At the time we discover that only the last part cannot be booked, it may be
decided to still confirm the reservations of the first two parts. For example, we
may have also found out that it was already hard enough to reserve the flight from
JFK te Nairobi. Aborting the entire transaction would mean that we would have to
make a second attempt to reserve a seat on that flight, which by then may fail.
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Consequently, what we need in this case is to only partially commit the transac-
tion. Flat transactions do not allow this.

As another example, consider a Web site in which a hyperlink is implemented
as a bidirectional reference. In other words, if a Web page W, contains a URL to
a page Wy, then W, knows that W, refers to it (see, e.g., Kappe, 1999). Now sup-
pose a page W is moved to another location or replaced by another page. In that
case, all hyperlinks to0 W should be updated, and preferably in a single atomic
operation, or otherwise there will (temporarily) be dangling references to W. In
theory, a flat transaction can be used here. The transaction consists of updating W
and a series of operations, where each operation updates a single Web page con-
taining a hyperlink to W,

The problem, however, is that such a transaction may take hours to complecte.
Not only may pages referring to W be scattered across the Intemet, there may also
be thousands of them that need to be updated. Doing each update as a separate
transaction is no good, for in that case some Web pages may have correct links,
while others will not. A possible solution in this case is to commit updates, but
also to keep the old W for those pages whose link has not yet been updated.

Nested Transactions

Some of the limitations mentioned above can be solved by making use of
nested transactions. A nested transaction is construcied from a number of sub-
transactions. The top-level transaction may fork off children that run in paraliel
with one another, on different machines, to gain performance or simplify pro-
gramming. Each of these children may also execute one or more subtransactions,
or fork off its own children.

Subtransactions give rise to a subtle, but important, problem. Imagine that a
transaction starts several subtransactions in parallel, and one of these commits,
making its resuits visible to the parent transaction. After further computation, the
parent aborts, restoring the entire system to the state it had before the top-level
transaction started. Consequently, the results of the subtransaction that committed
must nevertheless be undone. Thus the permanence referred to above applies only
to top-level transactions.

Since transactions can be nested arbitrarily deeply, considerable administra-
tion is needed to get everything right. The semantics are clear, however. When
any transaction or subtransaction starts, it is conceptually given a private copy of
all data in the entire system for it to manipulate as it wishcs. If it aborts, its private
universe just vanishes, as if it had never existed. If it commits, its private universe
replaces the parent’s universe. Thus if a subtransaction commits and then later a
new subiransaction is started, the second one sees the results produced by the first

one. Likewise, if an enclosing (higher-level) transaction aborts, all its underlying
subtransactions have to be aborted as well.
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Distributed Transactions

Nested transactions are important in distributed systems, for they provide a
natural way of distributing a transaction across muliiple machines. However,
nested transactions generally follow a logical division of the work of the original
trausaction. For example, the transaction by which three different flights needed
to be reserved as shown in Fig. 5-19, can be logically split up into three subtran-
sactions. Each of these subtransactions can be managed separately and iudepen-
dent of the other two.

However, a logical division of a nested transaction into subtransactions does
not necessarily imply that all distribution is taken care of. For example, the sub-
transaction handling the seat reservation from New York to Nairobi, may siill
have to access two databases, one in each city. In this case, the subtransaction can
no longer be subdivided into smaller subtransactions, because, logically, there are
none; a reservation itself is an indivisible operation.

In this case, the situation that we are faced with is that of a (flal) subtransac-
tion that operates on data that are distributed across multiple machines. Such tran-
sactions are known as distributed trausactions. The difference between nested
and distributed transactions is subtle, but important. A nested transaction is a tran-
saction that is logically decomposed into a hierarchy of subtransactions. In con-
trast, a distributed transaction is logically a flat, indivisibie transaction that
operates on distributed data, This difference is illustrated in Fig. 5-20.

. Nested transaction | . Distributed transaction

I 1 J
I 1

ISubtransactionj ISubtransaction .

. Subtransaction ) Subtransaction )

Airline databasa Hotel database
/ Distributed database

Two different {independent) Two physically separated
databases parts of the same database

{a) (b}

Fignre 5-20. (a) A nested transaction. (b) A distributed transaction,

The main problem with distributed transactions is that scparate distributed
algorithms are needed to handle the locking of data and commiting the entire tran-
saction. Distributed locking is discussed below. A detailed presentation of distrib-
uted commit protocols is deferred until Chap. 7, where we discuss fault tolerance
and recovery mechanisms, to which commit protocols belong.
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5.6.3 Implementation

Transactions sound like a great idea, but how are they implemented? That is
the question we will tackle in this section. To simplify matters, we consider tran-
sactions on a file system. It should be clear by now that if each process executing
a transaction just updates the file it uses in place, transactions will not be atomic
and changes will not vanish magically if the transaction aborts. Clearly, some
other implementation method is required. Two methods are commonly used,
which are discussed in turn below.

Private Workspace

Conceptually, when a process starts a transaction, it is given a private
workspace containing all the files to which it has access. Until the transaction
either commits or aborts, all of its reads and writes go to the private workspace,
rather than directly to the file system. This observation leads directly to the first
implementation method: actually giving a process a private workspace at the
instant it begins a transaction.

The problem with this technique is that the cost of copying everything to a
private workspace is prohibitive, but various optimizations make it feasible. The
first optimization is based on the realization that when a process reads a file but
does not modify it, there is no need for a private copy. It can just use the real file
{unless it has been changed since the transaction started). Consequently, when a
process starts a transaction, it is sufficient to create a private workspace for it that
1s empty except for a pointer back (o its parent's workspace. When the transaction
is at the top level, the parent’'s workspace is the file system. When the process
opens a file for reading, the back pointers are followed until the file is located in
the parent’s (or further ancestor’s) workspace.

When a file is opened for writing, it can be located in the same way as for
reading, except that now it is first copied to the private workspace. However, a
second optimization removes most of the copying, even here. Instead of copying
the entire file, only the file’s index is copied into the private workspace. The
index is the block of data associated with each file telling where its disk blocks
are. In UNIX, the index is the inode. Using the private index, the file can be read
in the usual way, since the disk addresses it contains are for the original disk
blocks. However, when a file block is first modificd, a copy of the block is made
and the address of the copy inserted into the index, as shown in Fig. 5-21. The
block can then be updated withom affecting the original. Appended blocks are
handled this way too. The new blocks are sometimes called shadow blocks.

As can be seen from Fig. 5-21(b), the process running the transaction sees the
modified file, but all other processes continue to see the original file. In a more
complex transaction, the private workspace might contain a large number of files
instead of just one. If the transaction abotts, the private workspace is simply
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Figure 5-21. (a) The file index and disk blocks for a three-block {ile. (b) The
situation after a transaction has maodified block 0 and appended block 3. {(c) The
situation after commiting.

deleted and all the private blocks that it points to are put back on the free list. If
the transaction commits, the private indices are moved into the parent’s
workspace atomically, as shown in Fig. 5-21{c). The blocks that arc no longer
reachable are put onto the free list.

This scheme also works for distributed transactions. In that case, a process is
started on each machine containing a file that is to be accessed as parl of the tran-
saction. Each process is given its own private workspace as described above. If
the transaction aborts, all processes simply discard their private workspace. On
the other hand, when the transaction commits, updates are propagated locaily, at
which point the transaction as a whole completes.

Writeahead Log

Another common method of implementing transactions is the writeahead log.
With this method, {iles are actually medified in place, but before any block is
changed, a record is written to a log telling which transaction is making the
change, which file and block is being changed, and what the old and new values
are. Only after the log has been written successfully is the change made to the file.

Fig. 5-22 gives an example of how the log works. In Fig. 5-22(a) we have a
simple transaction that uses two shared variables (or other objects), x and y, both
initialized to 0. For each of the three statements inside the transaction, a log
record is written before executing the statement, giving the old and new values.
These values are separated by a slash in Fig. 5-22(b)-(d).
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x=0

y=0 Log Log Log

BEGIN_TRANSACTION;
X=X+1; [x=0M1] [x=0M11 [x=0/1]
¥=Y+2; [y=0/2]1 Ity=0/2]
X=y"y; {x = 1/4}

END_TRANSACTION;
(&) &) (c} (d)

Figure 5-22. (a) A transaction. {b}~{d) The log before each statement is cxceut-
ed.

If the ransaction succeeds and is committed, a2 commit record 1s written 1o the
log, but the data structures do not have to be changed as they have already been
updated. If the transaction aborts, the log can be used to back up to the original
sltate. Starting at the end and going backward, each log record is read and the
change described in it undone. This action is called a rollback.

Again, this scheme is also seen to work for distributed transactions. In that
case, each machine keeps its own log of changes to its local file system. Rolling
back in the case of an abort requires that each machine rolls back separately to
restore the original files.

5.6.4 Concurrency Control

So far, we have explained the essence of achieving atomicity of transactions.
Achieving atomicity (and durability) in the presence of failures is an important
topic that we will discuss in Chap. 7, as it is related to more than only transac-
tions. The properties of consistency and isolation are basically handled by prop-
erly controlling the execution of concurrent transactions, that is, transactions that
are executed at the same time on shared data.

The goal of concurrency control is to allow several transactions to be exe-
cuted simultancously, but in such a way that the collection of data items (e.g.,
files or dalabase records) that is being manipulated, is left in a consistent state.
This consistency is achieved by giving transactions access to data items in a
specific order whereby the final result is the same as if all transactions had run
sequentially.

Concurrency control is best understood in terms of three different managers
which are organized in a layered fashion as shown in Fig. 5-23. The bottom layer
consists of a data manager that performs the actual read and write operations on
data. The data manager is not concerned about which transaction it is performing
a read or write. In fact. it knows nothing about transactions.

The middie layer consists of a scheduler and carries the main responsibility
for properly controlling concurrency. It determines which transaction is allowed
to pass a read or write operation to the data manager and at which time. It does so
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Fignre 5-23, General organization of managers for handling transactions.

by scheduling individual read and write operations in such a way that isolation
and consistency of transactions are met. Below, we discuss scheduling based on
the use of locks, and scheduling based on the use of timestamps.

The highest layer contains the transaction manager, which is primarily respon-
sible for guaranteeing atomicity of transactions. [t processes lransaction primitives
by transforming them into scheduling requests for the scheduler.

The model shown in Fig. 5-23 can be adopted for the distributed case as
shown in Fig. 5-24. Each site has its own scheduler and data manager, together
responsible for ensuriug that local data remain consistent. Each transaction is han-
dled by a single transaction manager. The latter communicates with the scheduler
of individual sites. Depending on the concurrency control algorithm, a scheduler
may also communicate with remote data managers. We return to the distribution
of concurrency control betow.

Serializability

The main purpose of concurrency control algorithms is to guaraniee that mul-
tiple transactions can be executed simultancously while still being isolated at the
same time. This means that the final result should be the same as if the transac-
tions were exccuted onc after the other in some specific order.

In Fig. 5-23(a)-(c) we have three transactions that are executed simultane-
ously by thrce separate processes. If they were to be run sequentially, the final
value of x would be 1, 2, or 3, depending upon which one ran last (x could be a
shared variable, a file, or some other kind of entity). In Fig. 5-25(d) we see vari-
ous orders, called schedules, in which they might be interleaved. Schedule 1 is
actually senialized. In other words, the transactions run strictly sequentially, so it
meets (he serializability condition by definition. Schedule 2 is not scrialized, but
ts still legal because it results in a value for x that could have beeu achieved by
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Figure 5-24. General organization of managers for handling distributed transactions.

running the transactions strictly sequentially. The third one is illegal since it sets x
to 3, something that no sequential order of the transactions couid produce. It is up
to the system to ensure that individual operations are interleaved comrectly. By
allowing the system the freedom to choose any ordering of the operations it wants
to, provided that it gets the answer correct, we eliminate the need for program-
mers to do their own mutual exclusion, thus simplifying the programming.

BEGIN_ TRANSACTION BEGIN . TRANSACTION BEGIN_TRANSACTICN
x=4 x =10 x=0
X=x+1; X=X+2; X=xX+3;
END_TRANSACTION END_TRANSACTION END_TRANSACTICN
(a} (b} {c)
Time -
Schedule1 | x=0; x=x+1;, x=0 x=x+2; x=0 Xx=x+3; | Legal
Schedule 2 | x=0; x=0; X=Xx+1, x=x+2, x=0 X=x+3; | Legal
Schedule 3 ;x=0; x=0; Xx=x+1 x=0 X=x+2; x=x+3; | llegal
{d)

Figure 5-25. (a)~(c) Three transactions 7, T4, and T3. (d) Possible schedules.

To understand schedules and concurrency control, it is not necessary to know
exactly what is being computed. In other words, it does not matter whether the
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value of x is incremented by 2 or 3. What does matter is that the value of x is
being changed. Consequently, we can represent transactions as a series of read
and write operations on specific data items. For example, each of the three tran-
sactions T, T;, and 75 shown in Fig. 5-25(a)—(c), respectively, can be represented
as the series

write{ T, x); read(T,x); write(T;,x)

The whole idea behind concurrency control is to properly schedule conflicting
operations. Two operations conflict if they operate on the same data item, and if
at least one of them is a write operation. In a read-write conflict exactly one of
the operations is a write. Otherwise, we are dealing with a write-write conflict.
Note that it does not matter whether conflicting operations are from the same tran-
saction or from different transactions. It is important to note that two read opera-
tions never conflict,

Concurrency control algorithms can generally be classified by looking at the
way read and write operations are synchronized. Synchronization can take place
either through mutual exclusion mechanisms on shared data (ie., locking), or
explicitly ordering operations using timestamps.

A further distinction can be made between pessimistic and optimistic con-
currency control. Fundamental to pessimistic approaches is Mnrphy’s law: if
something can go wrong, it will. In pessimistic approaches, operations are syn-
chronized before they are carried out, meaning that conflicts are resolved before
they are allowed to happen. In contrast, optimistic approaches are based on the
idea that, in general, nothing will go wrong. Operations are therefore simply car-
ried out and synchronization takes place at the end of a transaction. If ar that point
it tnrns out that conflicts ocenrred, one or more transactions are forced 1o abort. In
the following pages, we study two pessimistic and one optimistic approach. An

excellent overview of various mechanisms is given in (Bemstein and Goodman,
1981).

Two-Phase Locking

The oldest and most widely used concurrency control algorithm 1s locking. In
the simplest form, when a process needs to read or write a data item as part of a
transaction, it requests the scheduler to grant it a lock for that data item. Likewise,
when a data itemt is no longer needed. the scheduler is requested to release the
lock. The task of the scheduler is to grant and release locks in such 2 way that
only valid schedules result. In other words, it needs to apply an algorithm that pro-
vides only serializable schedules. One such algorithm is two-phase locking,

In two-phase locking (2PL), wbich is illustrated in Fig. 5-26, the scheduler
first acquires all the locks it needs during the growing phase, and then releases
them during the shrinking phase. More specifically, the following three rules are
obeyed, as explained in (Bernstein et al., 1987):
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Figure 5-26. Two-phase locking,

1. When the scheduler receives an operation oper(T,x} from the transac-
tion manager, it tests whether that operation conflicts with any other
operation for which it already granted a lock. If there is a conflict,
operation oper(T,x) is delayed (and thus also transaction 7). If there
is no conflict, the scheduler grants a lock for data item x, and passes
the operation to the data manager.

2. The scheduler will never release a lock for data item x, until the data

manager acknowledges it has performed the operation for which the
lock was sel.

3. Once the scheduler has released a lock on behalf of a transaction 7, it
will never grant another lock on behalf of T, no matter for which data
item T is requesting a lock. Any attempt by 7 to acquire another lock
is a programining ervor that aborts T.

It can be proven (Eswaran el al., 1976) that if all transactions use two-phase lock-
ing, all schedules formed by interleaving them are serializable. This is why two-
phase locking is widely used.

In many systems, the shrinking phase does not take place until the transaction
has finished running and has either committed or aborted, leading to the release of
locks as shown in Fig. 5-27, This policy, called strict two-phase locking, has
two main advantages. First, a transaction always reads a value written by a com-
mitted transaction; therefore, one never has to abort a transaction because its cal-
culations were based on a data item it should not have seen. Second. all lock
acquisitions and releases can be handled by the system without the tramsaction
being awarce of them: locks are acquired whenever a data item is to be accessed
and released when the transaction has finished. This policy ¢liminates cascaded

aborts: having to undo a committed transaction because it saw a data item it
should not have seen.
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Figure 5-27. Stnct two-phase locking.

Both two-phase locking and strict two-phase locking can lead to deadlocks. If
two processes each try to acquire the same pair of locks but in the opposite order,
a deadlock may result. The usual techniques apply here, such. as acquiring all
locks in some canonical order to prevent hold-and-wait ¢ycles. Also possible is
deadlock detection by maintaining an explicit graph of which process has which
locks and wants which locks, and checking the graph for cycles. Finally, when it
is known in advance that a lock will never be held longer than ¢ sec, a timeout
scheme can be used: if a lock remains continuously under the same ownership for
lenger than 1 sec, there must be a deadlock.,

There are several ways that the basic two-phase locking scheme can be imple-
mented in a distributed system. The assumption is that the data that is operated on
are distributed across multiple machines. In centralized 2PL, a single site is
responsible for granting and releasing locks. Each transaction manager communi-
cates with this centralized lock manager, from which it receives lock grants.
When a lock has been granted, the transaction manager subsequently communi-
cates directly with the data managers. Note that in this scheme, data iterns may
also be replicated possibly across multiple machines. When the operation has
completed, the transaction manager returns the tock to the lock manager.

In primary 2PL, each data item is assigned a primary copy. The lock
manager on that copy’s machine is responsible for granting and releasing locks.
Primary 2PL works essentially the same as centralized 2PL., except that locking
has been distributed across multiple machines.

Finally, in distributed 2PL, it is assumed that data may be replicated across
multiple machines. In contrast to primary 2PL and centralized 2PL, the schedulers
on each machine not only take care that locks are granted and released, but also
that the operation is forwarded to the (local) data manager. In this sense, distrib-
uted 2PL comes much closer to the basic 2PL scheme, but which is now executed
at each site where the data reside.

A classical treatment of two-phase locking for database systems and con-
currency control in general can be found in (Bemstein et al., 1987).
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Pessimistic Timestamp Ordering

A completely different approach, to concurrency control is to assign each tran-
saction T a timestamp £5(T) at the moment it starts. Using Lamport’s algorithm,
we can ensure that the timestamps are unique, which is important here. Every
operation that is part of a transaction 7, is timestamped with 75 (7). Furthermore,
every data item x in the system has a read timestamp tspp(x) and a write time-
stamp rsyr(x) associated with it. The read timestamp is set to the timestamp of
the transaction that most recently read x, whereas the write timestamp is that of
the transaction that most recently changed x. Using timestamp ordering, if two
operations conflict, the data manager processes the one with the lowest timestamp
first.

Now suppose that the scheduler receives an operation read (T,x) from transac-
tion 7 with timestamp 15, but that fs < tsyr(x). In other words, it notices that a
write operation on x has been performed after T started. In that case, transaction T
is simply aborted. On the other hand, if t5 > tsyr(x), it is correct to let the read
operation take place. In addition, tspp(x) is set to max{ts,tspp(x)}.

Likewise, assume the scheduler receives a write operation write (T,x) as part
of transaction T with timestamp ts. If ts < tspp(x), it can only abort transaction 7,
because the current value of x has been read by a more recent transaction. Tran-
saction T is simply too late. On the other hand, if ts > tspp(x), it is in order to
change the value of x, as no younger transaction has yet read it. Also, tsyp(x) is
set to max{ts,isyp(x)).

To better understand timestamp ordering, consider the following example.
Imagine that there are three transactions, T;, T,, and T3. T ran a long time ago,
and used every data item needed by T, and T, so all their data items have read
and write timestamps set to fs(7)). Transactions T, and 7Ty start concurrently,
with 15 (1) < t5(T3).

Let us first consider T, writing a data item x. Unless T3 has snuck in already
and committed, both tspp(x) and fspr(x) will have been set to zs(7T;), and thus
less than rs(T3). In Fig. 5-28(a) and (b) we see that t5(75) is larger than both
tsgp(x) and tswp(x) (T3 has not already committed), so the write is accepted and
done tentatively. It will become permanent when 7, commits. 7,'s limestamp is
now recorded in the data item as a tentative write.

In Fig. 5-28(c) and (d) T, is out of luck. T3 has either read (c) or written (d) x
and committed. T,’s transaction is aborted. However, it can apply for a new time-
stamp and start all over again.

Now look at reads. In Fig. 5-28(e), there is no conflict, so the read can happen
immediately. In Fig. 5-28(f), some interloper has gotten in there and is trying to
write x. The interloper’s timestamp is lower than T,’s, so T, simply waits until the
interloper commits, at which time it can read the new file and continue.

In Fig. 5-28(g), T5 has changed x and already committed. Again 75 must
abort. In Fig. 5-28(h), T3 is in the process of changing x, although it has not

R b -
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Figure 5-28. Concurrency control using timestamps.

committed yet. Still, T, is too late and must abort.

Timestamping has different properties than locking. When a transaction
encounters a larger (later) timestamp, it aborts, whereas under the same cir-
cumstances with locking it would either wait or be able to proceed immediately.
On the other hand, it is deadlock free, which is a big plus.

The basic timestamp ordering has several variants, notably conservative time-
stamp ordering and multiversion timestamp ordering. Details can be found in
(Gray and Reuter, 1993; and Oszu and Valduriez, 1999).

Optimistic Timestamp Ordering

A third approach to handling multiple transactions at the same time is
optimistic concurrency control (Kung and Robinson, 1981). The idea behind
this technique is surprisingly simple: just go ahead and do whatever you want to
without paying attention to what anybody else is doing. If there is a prohlem,
worry about it later. (Many politicians use this algorithm, too.) In practice, con-
flicts are relatively rare, so most of the time it works all right.

Although conflicts may be rare, they are not impossible, so some way is
needed to handle them. What optimistic concurrency control does is keep track of
which data items have been read and written. At the point of committing, it
checks all other transactions to see if any of its items have been changed since the
transaction started. If so, the transaction is aborted. If not, it is committed.

Optimistic concurrency contro! fits best with the implementation based on
private workspaces. That way, each transaction changes its data privately, without
interference from the others. At the end, the new data are either committed or
released, leading to a relatively simple and straightforward scheme.
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The big advantages of optimistic concurrency control are that it is deadlock
frec and allows maximum parallelism because no process ever has to wait for a
lock. The disadvantage 18 that sometimes it may fail, in which case the transaction
has to be run again. Under conditions of heavy load, the probability of failure may
go up substantially, making optimistic concurrency control a poor choice.

As pointed out in (Oszu and Valduriez, 1999), research on optimistic con-
currency control has primarily focused on nondistributed systems. In addition, it
has hardly been implemented in commercial or prototype systems, making it hard
to evaluate it against the other approaches we discussed.

5.7 SUMMARY

Strongly related to communication between processes is the issue of how
processes in distributed systems synchronize. Synchronization is all about doing
the right thing at the right time. A problem in distributed systems, and computer
networks in general, is that there is no notion of a globally shared clock. In other
words, processes on different machines have their own idea of what time it is.

There are various way to synchronize clocks in a distributed system, but at}
methods are essentially based on exchanging clock values, while taking into
accourt the time it takes to send and receive messages. Variations in communica-
tion delays and the way those variations are dealt with, largely determine the
accuracy of clock synchronization algorithms.

In many cases, knowing the absolute time is not necessary. What counts is
(that related events at different processes happen in the comect order. Lamport
showed that by introducing a notion of logical clocks, it is possible for a collec-
tion of processes to reach global agreement on the correct ordering of events. In
essence, each event e, such as sending or receiving a message, is assigned a glo-
bally unique logical timestamp C(e) such that when event g happened before b,
Cla) < C(b). Lampor! timesiamps can be extended to vector timestamnps: if
C(a) < C(b), we even know that event a causally preceded b.

Because there is no notion of shared memory in a distributed system, it is
often hard to determine exactly what a system’s current state is. Determining the
global state of a distributed system can be done by synchronizing all processes so
that each collects its own local state, along with the messages that are currently in
transit. The synchronization itself can be done without forcing processes to stop
and collect their state. Instead, what is called a distributed snapshot, can be col-
lected while the distributed system continues to operate.

Synchronization between processes often requires that one process acts as a
coordinator. In those cases where the coordinator is not fixed, it is necessary that
processes in a distributed computation decide on who is going to be that coordina-
tor. Such a decision is taken by means of election algorithms. Election algorithms
are primarily used in cases where the coordinator can crash.
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An important class of synchronization algorithms is that of distributcd mutual
exclusion. These algorithms ensure that in a distributed collection of processes, at
most one process at a time has access to a shared resource. Distributed mutual
exclusion can easily be achieved if we make use of a coordinator that keeps track
of whose turn i is. Fully distributed algorithms also exist, but have the drawback
that they are generally more susceptible to communication and process failures,

Related to mutual exclusion are distributed transactions. A transaction con-
sists of a series of operations on (shared) data, such that the transaction is either
carried out completely, or not at all. In addition, a number of transactions can be
executed simultaneously so that the overall effect is as if the transactions had been
carried out in some arbitrary but sequential order. Finally, a transaction is durable,
meaning that if it completes, its effects are permanent.

PROBLEMS

1. Name at least three sources of delay that can be introduced between WWV broadcast-
ing the time and the processors in a distributed system setting their internal clocks.

2. Consider the behavior of two machines in a distributed system. Both have clocks that

" are supposed to tick 1000 times per millisecond. One of them actually does, bui the
other ticks only 990 times per millisecond. If UTC updates come in once a minute,
what is the maximum clock skew that will occur?

3. Add a new message to Fig. 5-7 that is concurrent with message A, that is, it neither
happens before A nor happens after A.

4. To achieve totally-ordered multicasting with Lamport timestamps, is it strictly neces-
sary that each message is acknowledged?

5. Consider a communication layer in which messages are delivered only in the order

that they were sent. Give an example in which even this ordering is unnecessarily re-
strictive.

6. Suppose that two processes detect the demise of the coordinator simultancously and
both decide to hold an election using the bully algorithm. What happens?

7. In Fig. 5-12 we have two ELECTION messages circulating simultaneously. While it
does no harm to have two of them, it would be more elegant if one could be killed off.
Devise an algorithm for doing this without affecting the operation of the basic election
algorithm.

8. Many distributed algorithms require the use of a coordinating process. To what extent
can such algorithms actually be considered distributed? Discuss.

9. In the centralized approach to mutual exclusion (Fig. 5-13), upon receiving a message
from a process releasing its exclusive access to the critical region it was using, the

coordinator normally grants permission to the first process on the queue. Give another
possible algorithm for the coordinator.
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10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

21,
22,

Consider Fig. 5-13 again. Suppose that the coordinator c¢rashes. Does this always bring
the system down? Il not, under what circumstances does this happen? Is there any way
to avoid the problem and make the system able to tolerate coordinator crashes?

Ricart and Agrawala’s algorithm has the problem that if a process has crashed and
does not reply to a request from another process to enter a critical region, the lack of
response will be interpreted as denial of permission. We suggested that all requests be
answered immediately, to make it easy to detect crashed processes. Are there any cir-
cumstances where even this method is insufficient? Discuss.

How do the entries in Fig. 3-16 change if we assume that the algorithms can be imple-
mented on a LAN that supports hardware broadcasts?

A distrihuted system may have multiple, independent critical regions. Imagine that
process 0 wants to enter critical region A and precess | wants to enter critical region
B. Can Ricart and Agrawala’s algorithm lead to deadlocks? Explain your answer.

In Fig. 5-17 we saw a way to update an inveniory list atomically using magnetic tape.
Since a tape can easily be simulated on disk {as a file), why do you think this method
is not used any more?

In Fig. 5-25(d) three schedules are shown, two legal and ome illegal. For thc samc
trapsactions, give a complete list of all values that x might have at the end, and state
which are legal and which are illegal.

When a private workspace is used to implement transactions on files, it may happen
that a large number of file indices must be copied hack to the parent’s workspace.
How can this be done without introducing race conditions?

Give the full ajgorithm for whether an attempt to lock a file should succeed or fail.

Consider both read and write locks, and the possibility that the file was unlocked, read
locked, or write locked.

Systemns that use locking for concurrency control usually distinguish read locks from
write locks, What should happen if a process has already acquired a read lock and now

wants to change il into a write lock? What about changing a write lock into a read
lock?

With timestamp ordering in distributed transactions, suppose a write operation
write{T,x} can be passed to the data manager, because the only, possibly conflicting
operation write(T;,x) had a lower timestamp. Why would it make sense to let the
scheduler postpone passing write(Ty,x) until transaction T, finishes?

. Is optimistic concurrency control more or less restrictive than using timestamps?

Why?
Does using timestamping for concurrency control ensure serializability? Discuss.

We have repeatedly said that when a transaction is aborted, the world is restored to its
previous state, as though the transaction had never happened. We lied. Give an exam-
ple where resetting the world is impossible.



CONSISTENCY AND REPLICATION

An important issue in distributed systems is the replication of data. Data are
generally replicated to enhance reliability or improve performance. One of the
major problems is keeping replicas consistent. Informally, this means thai when
one copy is updated, we need to ensure that the other copies are updated as well;
otherwise the replicas will no longer be the same. In this chapter, we take a
detailed look at what consistency of replicated data actwally means, and the vari-
ous ways that consistency can be achieved.

We start with a general introduction by discussing why replication is useful
and how it relates to scalability. Particular attention is paid to object-based repli-
cation, which is becoming increasingly important in many distributed systems.

To achieve high performance of operations on shared data, designers of paral-
lel compuiers have paid much attention to different consistency models for dis-
tributed shared memory systems. These models are equally well applicable to
other kinds of distributed systems, and are extensively discussed in this chapter.

Consistency models for shared data are often hard to implement efficiently in
large-scale distributed systems. Moreover, in many cases simpler models can be
used, which are also often easier to implement. One specific class is formed by
client-centric consistency models, which concentrate on consistency from the per-
spective of a single (possibly mobile) client. Client-centric consistency models are
discussed in a separate section.

~ Consistency is only half of the story. We also need to consider how con-
sistency is actually implemented. Two, more or less independent, issues play a

291
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role in keeping replicas consistent. The first issue is the actual distribution of
updates, which concerns placement of replicas and how updates are propagated
between replicas. We present and compare different distribution protocols.

The second issue is how replicas are kept consistent. In most cases, applica-
tions require a strong form of consistency. Informally, this means that updates are
to be propagated more or less immediately between replicas. There are various
alternatives for implementing strong consisiency, which are discussed in a
separate section. Also, attention is paid to caching protocols, which form a special
case of consistency prolocols.

We conclude this chapter by taking a look at two examples of applications
that make exiensive use of consistency and replication. The first example is from
the field of parallel programming, but is also useful for our discussion on object-
based distributed systems in Chap. 9. The second example brings together causal
constsiency and what is called lazy replication.

6.1 INTRODUCTION

In this section, we start with discussing the important reasons for wanting to
replicate data in the first place. Special attention is paid to replicating objects, as
this forms an increasingly important topic iri modern distributed systems. Finally,
we discuss replication as a technique for achieving scalability, and motivate why
reasoning about consistency is so important.

6.1.1 Reasons for Replication

There are two primary reasons for replicating data: reliability and perfor-
mance. First, data are replicated to increase the reliability of a system. If a file
system has been replicated it may be possible to continue working after one
replica crashes by simply swilching to one of the other replicas. Also, by main-
taining multiple copies, it becomes possible to provide better protection against
corrupted data. For example, imagine there are three copies of a file, and every
read and write operation is performed on each copy. We can safeguard ourselves
against a single, failing write operation, by considering the value that is returned
by at least two copies as being the correct one.

The other reason for replicating data is performance. Replication for perfor-
mance i important when the distributed system needs to scale in numbers and
geographical area. Scaling in numbers occurs, for example, when an increasing
number of processes needs to access data that are managed by a single server. In
that case, performance can be improved by replicating the server and subse-
quently dividing the work. We already came across such an example in Chap. 1,
when we briefly discussed clusters of replicated Web servers.

i+ et ——
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Scaling with respect to the size of a geographical arca may also require repli-
cation. The basic idea is that by placing a copy of data in the proximity of the pro-
cess using them, the lime to access the data decreases. As a consequence, the per-
formance as perceived by that process increases. This example also illustrates that
the benefits of replication for performance may be hard to evaluate. Although a
client process may percetve better performance. it may also be the case that more
network bandwidth is now consumed keeping all replicas up-to-date. We return to
such trade-offs when discussing distribution protocols.

If replication helps to improve reliability and performance, who could be
against it? Unfortunately, there is a price to be paid when data are replicated. The
problem with replication is that having multiple copies may lead to consistency
problems. Whenever a copy is modified, that copy becomes different from the
rest. Consequently, modifications have to be carried out on all copies to ensure
consistency. Exactly when and how those modifications need to be carried out
determines the price of replication.

To understand the problem, consider improving access times to Web pages. If
no special measures are taken, fetching a page from a remote Web server may
sometimes even take seconds to complete. To improve performance, Web
browsers often locally store a copy of a previously fetched Web page (i.e., they
cache a Web page). If a user requires that page again, the browser automatically
returns the local copy. The access time as perceived by the user is excellent. How-
ever, if the user always wants to have the latest version of a page, he may be in for
bad luck. The problem is that if the page has been modified in the meantime,
modifications will not have been propagated to cached copies, making those
copies ont-of-date.

One solution to the problem of returning a stale copy to the user is to forbid
the browser to keep local copies in the first placc, effectively letting the server be
fully in charge of replication. However, this solution may still lead to poor access
times if uo replica is placed near the user. Another solution is to let the Web
server invalidate or update each cached copy, but this requires that the server
keeps track of all caches and sending them messages. This, in turn, may degrade

the overall performance of the server. We return to performance versus scalability
issues below.

6.1.2 Object Replication

To better understand the role of distributed systems with respect {0 managing
(shared) replicated data, it is useful to consider objects instcad of data alone.
Objects have the benefit of encapsulating data and operations on that data. As
such, it makes it easier to draw the line between operations that are specific to
some data, and operations that are typically data independent. The latter kind of
operations typically belong to a general-purpose distributed system, such as that
implemented by the many middleware systems discussed in this book. '
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Consider a distributed remote object that is shared by multiple clients, as
shown in Fig. 6-1. Before we can even think of replicating a remote object across
several machines, we need to solve the problem of how to protect the object
against simultaneous access by multiple clients. There are basically two solutions
10 this problem (see, for example, Briot et al., 1998).

Client machine Server maching Client maching

Server

D |

L A

Server 0OS

' m—

e N -

Network

Figure 6-1. Organization of a distributed remote object shared by two different
clients.

The first solution is that the object itself can handle concurrent invocations.
As an example, we explained that a Java object can be constructed as a monitor
by declaring the object’s methods to be synchronized. Assume that two clients
simultaneously invoke a method of the same object, leading to two concurrent
threads at the server where the object resides. In Java, if the object’s methods
have been synchronized, only one of those two threads is allowed to proceed
while the other s blocked until further notice. Different levels of concurrency
may exist, but the important issue is that the object itself implements the means to
handle concurrent invocations. This principle is shown in Fig. 6-2(a).

The second solution is that the object is completely unprotected against con-
current invocations, but that instead, the server in which the obiect resides is made
responsible for concurrency control. In particular, by using an appropriate object
adapter, it becomes possible to ensure that concurrent invocations will not leave
the object in a corrupted state. For example, such an object adapter is one that
uses a single thread per object, effectively serializing all accesses 1o each object it
manages, as shown in Fig. 6-2(b).

Replicating a shared remote object without taking any special measures
regarding the handling of concurrent invocations may lead to consistency prob-
lems. These problems are caused by the fact that the replicas need additional syn-
chronization to ensure that concurrent invocations are performed in the correct
order at each of the replicas. An example of this synchronization problem was the
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Server machine Server machine

Server Server

Machanism
for mutual
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Mechanism
for mutual
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invocations | axclusion —j-.|
Adapter »
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Concurrert 08
invocations ————»
Incoming requests Incoming requests
@ (o)

Figure 6-2. (a) A remote object capable of handling concurrent invecations on
its own. (b) A remote object for which an object adapter is required to handle
CONCUITent invocations.

replicated bank-account database, discussed in Sec. 5.2. Again, there are essen-
tially only two approaches to tackle this issue.

The first approach is that the object is aware of the fact that it can be repli-
cated. In that case, the object is responsible for ensuring that its replicas stay con-
sistent in the presence of concurrent invocations. This approach is very much in
line with objects that handle concurrent invocations by themselves. The distrib-
uted system underlying such objects essentially need not provide any general sup-
port for replication. Support may be restricted to providing servers and adapters
that assist in constructing replication-aware objects, as shown in Fig. 6-3(a).
Examples of such systems, which we discuss in Chap. 9, are SOS (Shapiro et al.,
1989) and Globe (van Steen et al., 1999a). An advantage of replication-aware
objects is that it is possible to adopt object-specific replication strategies, similar
to the case where concurrent objects can have their own way of dealing with con-
current invocations.

The second, more common, approach for handling consistency with con-
current ohjects is 10 make the distributed system responsible for managing replica-
tion, as shown in Fig. 6-3(b). In particular, the distributed system ensures that
concurrent invocations are passed 1o the various replicas in the correct order. This
approach is followed, for example, in Piranha (Maffeis, 1997), which provides
facilitics for fault-tolerant, totaily-ordered, and causaliy-ordered object invoca-
tions in CORBA. The advantage of leiting the distributed system take care of

T TR e RO e -
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Figure 6-3. (a) A distributed system for replication-aware distributed objects.
(b) A distributed system responsible for replica management.

replica management is the simplicity for application developers. Sometimes it is
harder to adopt object-specific solutions, which can be a drawback. As we shall
see, such solutions are often needed in the face of solving scalability problems.

6.1.3 Replication as Scaling Technique

Replication and caching for performance are widely applied as scaling tech-
niques. Scalability issues generally appear in the form of performance problems.
Placing copies of data and objects close to the processes using them can improve
performance through reduction of access time, and thus solve scalability proh-
lems.

A possible trade-off that needs 10 be made is that keeping copies up to date
may require more network bandwidih. Consider a process P that accesses a local
replica N times per sccond, whereas the replica itself is updated M times per
second. Assume that an update completely refreshes the previous version of the-
local replica. If N « M, that is, the access-to-update ratio is very low, we have the
situation where many updated versions of the local replica will never be accessed
by P, rendering the network communication for those versions useless, In this
case, it may have been better not to install a local replica ciose to P, or to apply a
different strategy for updating the replica. We return to these issues befow,

A more serious problem, however, is that keeping multiple copies consistent
may itself be subject to serious scalability problems. Intuitively, a collection of
copies is consistent when the copies are always the same. This means that a read
operation performed at any copy will always return the same result. Consequently,
when an update operation is performed on one copy, the update should be pro-
pagated to all copies before a subsequent operation takes place, no matier at
which copy that operation is initiated or performed.
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This type of consistency is sometimes informally (and imprecisely) referred to
as tight consistency as provided by what is also called synchronous replication
(Buretta, 1997). (In the next section, we will provide precise definitions of con-
sistency and introduce a range of consistency models.) The key idea is that an
update s performed at all copies as a single atomic operation, or transaction.
Unfortunately, implementing atomicity involving a large number of replicas that
may be widely dispersed across a large-scale network is inherently difficult when
operations are also required to complete quickly.

Difficultics come from the fact that we need to synchronize all replicas. In
essence, this means that all replicas first need to reach agreement on when exactly
an update is to be performed locally. For example, replicas may need to decide on
a global ordering of operations using Lamport timestamps, or let a coordinator
assign such an order. Global synchronization simply takes a lot of communication
time, especially when replicas are spread across a wide-area network.

We are now faced with a dilemma. On the one hand, scalability problems can
be alleviated by applying replication and caching, leading to improved perfor-
mance. On the other hand, to keep all copies consistent generally requires global
synchronization, which is inherently costly in terms of performance. The cure
may be worse than the disease.

In many cases, the only real solution is to loosen the consistency constraints.
In other words, if we can relax the requirement that updates need to be executed
as atomic operations, we may be able to avoid (instantaneous) global synchroniza-
tions, and may thus gain performance. The price paid is that copies may not
always be the same everywhere. As it turns out, to what extent consistency can be
loosened depends highly on the access and update patterns of the replicated data,
as well as on the purpose for which those data are used.

In the following sections, we first consider a range of consistency models pro-
viding precise definitions of what consistency actually means. We then continue
with our discussion of the different ways to implement consistency models
through what are called distribution and consistency protocols. Different

approaches to classifying consistency and replication can be found in (Gray et al.,
1996; and Wiesmann et al., 2000).

6.2 DATA-CENTRIC CONSISTENCY MODELS

Traditionally, consistency has always been discussed in the context of read
and write operations on shared data, available by means of (distributed) shared
memory, a (distributed) shared database, or a (distributed) file system. In this sec-
tion, we use the hroader term data store. A data store may be physically distrib-
uted across multiple machines. In particular, each process that can access data
from the store is assumed to have a local (or nearby) copy available of the entire
store. Write operations are propagated to the other copies, as shown in Fig. 6-4. A
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data operation is classified as a write operation when it changes the data, and is
otherwise classified as a read operation.

Process Process Process

Local copy

Distributed data stare

Figure 6-4. The general organization of a logical data store, physically distrib-
uted and replicated across multiple processes.,

A consistency model is essentially a contract between prucesses and the data
store. It says that if processes agree to obey certain rules, the store promises to
work correctly. Normally, a process that performs a read operation on a data item,
expects the operation to return a value that shows the results of the last write
operation on that data.

In the absence of a global clock, it is difficult to define precisely which write
operation is the last one. As an altemative, we need to provide other definitions,
leading to a range of consistency models. Each model effectively restricts the
values that a read operation on a data jtem can retwn. As is 10 be expected, the
ones with minor restrictions are easy to use, whereas those with major restrictions
are sometimes difficult. The trade-off is, of course, that the easy-to-use models do
not perform nearly as well as the difficult ones. Such is life. For additional infor-
mation on consistency models, see (Mosberger, 1993; and Adve and Gharachor-
loo, 1996).

6.2.1 Strict Consistency

The most stringenl consistency model is called strict consistency. It is
defined by the following condition:

Any read on a data item x returns a value corresponding 1o the result of
the most recent write on x.

This definition is natural and obvious, although it implicitly assumes the cxistence
of absolute global time (as in Newtonian physics) so that the determination of
“most recent” is unambignous. Uniprocessor systems have traditionally observed
strict consistency and uniprocessor programmers have come to expect such
behavior as a matter of course. A system on which the program

a=1; a=2; print{a);
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printed 1 or any value other than 2 would quickly lead (o a lot of very agitated
programumers, and {or good reason too.

In a system in which data are spread across muitiple machines, and which can
be accessed by multiple processes, matters are more complicated. Suppose x is a
data item stored only on machine B. Imagine that a process on machine A reads x
at time 7', which means that a message is then sent to B to get x. Slightly later, at
T, a process on B does a write to x. If strict consistency holds, the read should
always return the old value regardless of where the machines are and how close
Ty is to T\, However, if T; — T is, say, 1 nanosecond, and the machines are 3
meters apart, in order to propagate the read request from A to B to get there before
the write, the signal would have to travel at 10 times the speed of light, something
forbidden by Einstein’s special theory of relativity. Is it reasonable for program-
mers to demand that the system be strictly consistent, even if this requires violat-
ing the laws of physics?

The problem with strict consistency is that it relies on absolnte global time. In
essence, it is impossible in a distributed system to assign a unique timestamp to
each operation that corresponds to actual global time. We can relax this situation
by dividing time into a series of consecutive, nonoverlapping intervals. Each
operation is assumed to take place within an interval and receives a timestamp
that corresponds to that interval. Depending on how accurate clocks can be syn-
chronized, we may now reach a situation in which there is at most one operation
per interval,

Unfortunately, no guarantees can be given that at most a single operation
takes place within an interval. Consequently, we still need to deal with multiple
operations that take place within the same interval. Analogous 10 our discussion of
concurrency control for distributed transactions, two operations in the same inter-
val are said to conflict if they operate on the same data and one of them is a write
operation. An important issne m defining consistency models is to define exactly
what kind of behavior is acceptable in the presence of conflicting operations.

To study consistency in detail, we will give numerous examples. To make
these examples precise, we need a special notation in which we draw the opera-
tions of a process along a time axis. The time axis is always drawn horizontally,
with time increasing {rom left to right. The symbols

Wiix)a and R;(x)b

mean that a write by process 7; to data item x with the value a and a read from
that item by P; returning b have been done, respectively. We assume that each
data item is initially N/I.. When there is no confusion cencerning which process is
accessing data, we omit the index from the symbols W and R,

As an example, in Fig. 6-5(a) P, does a write to a data item x, modifying its
valuc to a. Note that, in principle, this operation W, (x)a is first performed on a
copy of the data storc that is local to P, and is then subsequently propagated to
the other local copies. In our example, P, later reads x (from its local copy of the
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P1: W(x)a P1: Wix)a
P2: R(x}a P2: R{x)NIL  R{x)a
(a) (b)

Figure 6-5. Behavior of two processes operating on the same data item. The
horizontal axis is time. (a) A strictly consistent store. (b) A store that is not
strictly consistent.

store and sees value a. This behavior is correct for a stricily consistent data store.
In contrast, in Fig. 6-5(b), P, does a read after the write (possibly only a
nanosecond after it, but still after it), and gets NIL. A subsequent read returns a.
Such behavior is incorrect for a strictly consistent data store,

In summary, when a data store is strictly consistent, all writes are instantane-
ously visible to all processes and an absolute global time order is maintained. If a
data item is changed, all subsequent reads performed on that data return the new
value, no matter bow soon after the change the reads are done, and no matter
which processes are doing the reading and where they are located. Similarly, if a
read is done, it gets the then-current value, no matter how quickly the next write is
done.

In the next section, we will relax this model by considering uime intervals
instead of absolute time, and define precisely what is acceptable behavior for con-
flicting operations.

6.2.2 Linearizability and Seqnential Consistency

While strict consistency is the ideal consistency model, it is impossible to
implement in a distributed system. Furthermore, experience shows that program-
mers can often manage quite well with weaker models. For example, all textbooks
on operating systems discuss critical sections and the mutual exclusion problem.
This discussion always includes the caveat that properly-written concurrent pro-
grams (such as the producer-censumer problem) should not make any assurmnptions
about the relative speeds of the processes or how their statements will interleave
in time. Counting on two events within one process happening so quickly that the
other process will not be able to do something in between is looking for trouble.
Instead, the reader is taught to program in such a way that the exact order of state-
ment execution (in fact, memory references) does not matter. When the order of
events is essential, semaphores or other synchronizalion operations should be
used. Accepting this argument means learning to live with a weaker cousistency
model.

Sequential consistency is a sligbtly weaker consistency model than strict
consistency. It was first defined by Lamport (1979), in the context of shared
memory for multiprocessor sysiems. In general, a data store is said to be sequen-
tially consistent wben it satisfies the following condition:
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The result of any execution is the same as if the (read and write} opera-
tions by all processes on the data store were executed in some sequential
order and the operations of each individual process appear in this
sequence in the order specified by its program.

What this definition means is that when processes run concurrently on (possi-
bly) different machines, any valid interleaving of read and write operations is
acceptable behavior, but all processes see the same interleaving of operations.
Note that nothing is said about time; that is, there is no reference to the “most
recent” write operation on an object. Note that in this context, a process “sces”
writes from all processes but only its own reads.

That time does not play a role can be secen from Fig. 6-6. Consider four
processes operating on the same data item x. In Fig. 6-6(a) process P, first per-
forms W(x)a to x. Later (in absolute time), process P, also performs a write
operation, by setting the value of x to 5. However, both processes P4 and P, first
read value b, and later value a. In other words, the write operation of process P,
appears to have taken place before that of P;.

£1: Wixja P1: W(x)a

P2 Wi{x)b Pz: Wb

P3: R{x)b R{x)a Pa: R{x)b R{x}a
Pa: R(xb R{x)a Pa: Rixja RO

(a) (b}

Figure 6-6. (a} A sequentially consistent data store. (b) A data store that is not
sequentially consistent.

In contrast, Fig. 6-6(b) violates sequential consistency because not all
processes see the same interleaving of write operations. In particular, to process
P, it appears as if the data item has first been changed to b, and later to @. On the
other hand, P, will conclude that the final value is b.

A consistency model that is weaker than strict consistency, but stronger than
sequential consistency, is linearizability. In this model, operations are assumed to
receive a timestamp using a globally available clock, but one with only finite pre-
cision. Such a clock can be implemented in a distributed system by assuming
processes use loosely synchronized clocks as discussed in the previous chapter.
Let tspp(x) denote the timestamp assigned to operation OP that is performed on
data item x, where OP is either a read (R) or write (W). A data store is said to be

linearizable (Herlihy and Wing, 1991) when each operation is timestamped and
the following condition holds: .

The result of any execution is the same as if the (read and write) opera-
tions by all processes on the data store were executed in some sequential
order and the operations of each individual process appear in this
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sequence in the order specified by its program. In addition, if
tsop1(X) < t50p2(y), then operation OP 1(x) should precede OP2(y) in
this sequence,

Note that a lincarizable data store is also sequentially consistent. The differ-
ence lies in the fact that we take ordering according to a set of synchronized
clocks into account. In practice, lincarizability is primarily used to assist formal
verification of concurrent algorithms (Herlihy and Wing, 1991). The additional
constraint that the ordering according to timestamps should also be preserved,
makes linearizability more expensive to implement than sequential consistency, as
shown in (Attiva and Welch, 1994),

Sequential consistency is comparable to serializability in the case of transac-
tions, as we discussed in the previous chapter. Recall that a collection of con-
currently executing transactions is serializable if the final result could also have
been obtained by executing the transactions one after the other in some sequential
order. The main difference is that of granularity: sequential consistency is defined
in terms of read and write operations, whereas serializability is defined in terms of
transactions, which aggregate such operations.

Process P1 Process P2 Process P3
=1, y=1; z=1;
printy,z); print{x,z}; print{x,y);

Figure 6-7. Three copcurrently executing processes.

To make the notion of sequential consistency more concrete, consider three
concurrently executing processes Py, Py, and P3, shown in Fig. 6-7 {Dubois et al.,
1988). The data items in this example are formed by the three integer variables x,
¥y, and z, which are stored in a (possibly distributed) shared sequentially consistent
data store. We assume that each variable is initialized to 0. In this example, an
assignment corresponds to a write operation, whereas a print statement
corresponds (0 a simulianeous read operation of its two arguments. All statements
are assumed to be indivisible,

Various interleaved execution sequences are possible. With six independent
statements, there are potentially 720 (6!) possible exccution sequences, although
some of these violate program order. Consider the 120 (5!) sequences that begin
with x = 1. Half of these have print (x,z} before y = 1 and thus violate program
order. Half also have print (x,y) before z =1 and also violate program order. Only
1/4 of the 120 sequences, or 30, are valid. Another 30 valid sequences are possi-
ble starting with y = 1 and another 30 can begin with z = 1, for a total of 90 valid
execution sequences. Four of these are shown in Fig. 6-8.

In Fig. 6-8(a), the three processes are run in order, first P;, then P,, then P;.
The other three examples demonstrate different, but equally valid, interleavings of
die statements in time. Bach of the three processes prints two variables. Since the
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=1 x=1 y=1 y=1;
print{y,z); y=1; z=1; x=1;

y=1, print(x.z): print{x.y); z=1;
print(x,z); print(y,z); print(x,z}; print{x,2);
z=1 z=1 x=1; print(y,z};
print(x.y}: print(x.y); print(y.z); printx.y):
Prints; 001011 Prints: 101011 Prints: 010411 Prints: 111111

Signature: 001011 Signature: 101011 Signature: 110101 Signature: 111111

{a) (b) (c) {d)

Figure 6-8. Four valid execution sequences for the processes of Fig. 6-7. The
vertical axis is time.

only values each variable can take on are the initial value (0), or the assigned
value (1), each process produces a 2-bit string. The numbers after Prints are the
actual outputs that appear on the output device.

If we concatenate the output of P| P,, and P; in that order, we get a 6-bit
string that characterizes a particular interleaving of statements. This is the string
listed as the Signature in Fig. 6-8. Below we will characterize each ordering by
its signature rather than by its printout,

Not all 64 signature patterns are allowed. As a trivial example, 000000 is not
permitted, because that would imply that the print statements ran before the
assignment statements, violating the requirement that statements are executed in
program order. A more subtle example is 001001. The first two bits, 00, mean
that b and ¢ were both 0 when P, did its printing. This situation occurs only when
Py executes both statements before P, or P; starts. The next two bits, 10, mean
that P, must run after P, has started but before P; has started, The last two bits,
01, mean that Py must complete before P starts, hut we have already seen that P,
tuust go first. Therefore, 001001 is not allowed.

In sbort, the 90 different valid statement orderings produce a variety of dif-
ferent program results (less than 64, though) that are allowed under the assump-
tion of sequential consistency. The contract between the processes and the distrib-
uted shared data store, is that the processes must accept all of these as valid
resulis. In other words, the processes must accept tbe four results shown in
Fig. 6-8 and all the other valid results as proper answers, and must work correctly
if any of them occurs. A program that works for some of these results and not for
others violates the contract with the data store and is incorrect.

There are various ways to formally express sequential consistency (and other
models). A common approach is as follows (Ahamad et al., 1992; Mizuno et al.,
1995). Each process P; has an associated execution E;, which is a sequence of
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read and writc operations by process P; performed on a data store S. This
sequence adheres to the program order associated with P;.
For example. the executions of the four processes in Fig. 6-6(a) are given as:

EWi(x)a
E: Wy(x)b
E31: Ry(x)b, Ry(x)a
E4: Ry(x)b, Ry(x)a

To get the relative order in which the operations appear to be executed, we must
merge the operation strings in ; into a single string, #, in which each operation
appearing in E; appears in #f once. H is also called a history. Inwitively, H gives
the order that the operations would have been carried out had there been a single
centralized store. All legal values for # must obey two constrainis:

l. Program order must be maintained.
2. Data coherence must be respected.

The first constraint means that if a read or write operation, OP,, appears before
another operation, OP,, in one of the strings in E;, OP, must also appear before
OP, in H. 1If this constraint is true for all pairs of operations, the resulting # will
not show any operations in an order that violates any of the programs.

The second constraint, which we refer to as data coherence, means that a
read R (x) to some data item x, must always return the value most recently written
to x; that is, the value v written by the most recent W (x)v before the R(x). Data
coherence examines in isolation each data item and the sequence of operations on
it, without regard to other data. Consistency, in contrast, deals with writes to dif-
ferent data items and their ordering. When specifically dealing with a distributed
shared memory, and memory locations instead of data items, data coherence is
called memory coherence.

Retuming to the four processes from Fig. 6-6(a), it can be seen that a legal
value for f is

H=W\(x)b,R5(x}b,Rq(x 0. Wy (x)a, R3(x)a, R4 (x)a

On the other hand, for the executions of the four processes in Fig. 6-6(b), no legal
history can be found hecause it is impossible in a sequentially consistent system to
let process P; first perform R3(x)b, and later R3(x)a, while process P, reads the
values & and b in different order.

For more complicated examples there might be several legal values of H. The
behavior of a program is said to be correct if its operation sequence corresponds to
some legal value of H.

Although sequential consistency is a programmer-friendly model, it has a seri-
ous performance problem. Lipton and Sandberg (1988) proved that if the read
time is 7, the write time is w, and the minimal packet transfer time between nodes
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is ¢, then it is always true that r + w 2 . In other words, for any sequentially con-
sistent store, changing the protocol to improve read performance makes write per-
formance worse, and vice versa. For this reason, researchers have investigated
other (weaker) models. In the following sections we will discuss some of them.

6.2.3 Causal Consistency

The causal consistency model (Hutto and Ahamad, 1990) represents a weak-
ening of sequential consistency in that it makes a distinction between events that
are poteniially causally related and those that are not. We already came across
causality when discussing vector timestamps in the previous chapter. If event B is
caused or inflnenced by an earlier event, A, causality requires that everyone else
first see A, then see B.

Consider a memory example. Suppose that process P; writes a variable x.
Then P, reads x and writes y. Here the reading of x and the writing of y are
poteutially causally related because the computation of y may have depended on
the value of x read by P, (i.c., the value written by P|). On the other hand, if two
processes spontaneously and simultaneously write two different variables, these
are not causally related. When there is a read followed later by a wrile, the two
events are potentially causally related. Similarly, a read is causally related to the
write that provided the data the read got. Operations that are not causally related
are said to be concurrent.

For a data store to be considered causally consistent, it is necessary that the
store obeys the following condition:

Writes that are potentially causally related must be seen by all processes

in the same order. Concurrent writes may be seen in a different order on
different machines.

As an example of causal consistency, consider Fig. 6-9. Here we have an event
sequence that is allowed with a causally-consistent store, but which is forbidden
with a sequentially consistent store or a strictly consistent store. The thing to note

is that the writes W,(x)b and W, (x)c are concurrent, so it is not required that ail
processes see them in the same order.

P1: W{x)a Wix)c

P2: RA{x)a Wb

P3: R(x)a Rix)c R{x)b
P4: RA{0a RA{x)b R{xc

Figure 6-9. This sequence is allowed with a causally-consistent store, but not
with sequentially or strictly consistent store.

Now consider a secoud example. In Fig. 6-10(a) we have W, (x)& potentially
depending on W,(x)a because the b may be a result of a computation involving
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the value read by R;(x)a. The two writes are causally related, so all processes
must see them in the same order. Therefore, Fig. 6-10(a) is incomect. On the other
hand, in Fig. 6-10(b) the read has been rcmoved, so W (x)a and W,(x)b are now
concurrent writes, A causally-consistent store does not require concurrent writes
to be globally ordered, so Fig. 6-10(b) is correct.

P1: Wix)a P1: W{x)a

P2; Ri{x)a Wb P2 Wb

P3: Ri)b  R{xa F3; Rix}b R()a
Fa: R(xja Rix}b P4 R{x)ya HR{x}b

(a) (b)

Figure 6-10. (a) A violation of a cansally-consistent store. {b) A correct se-
quence of events in a cawsally-consistent store.

Implementing causal consisiency requires keeping track of which processes
have seen which writes. It effectively means that a dependency graph of which
operation is dependent on which other operations must be constructed and main-
tained. One way of doing this is by means of vector iiinestamps, as we discussed
in the previous chapter. We return to the use of vector timestamps (o capture
causality later in this chapter.

6.2.4 FIFO Consistency

In causal consistency, it is permitted that concurrent writes be seen in a dif-
ferent order on different machines, although causally-related ones must be seen in
the same order by all machines. The next step in relaxing consistency is to drop

the latter requirement. Doing so gives FIFQ consistency, which is subject to the
condition:

Writes done by a single process are seen by all other processes in the
order in which they were issued, but writes from different processes may
be seen in a different order by different processes.

FIFO consistency is called PRAM consistency in the case of distributed shared
metory systems and is described in (Lipton and Sandberg, 1988). PRAM stands
for Pipelined RAM, because writes by a single process can be pipelined, that is,
the process does not have to stall wailing for each one to complete before starting
the next one. FIFO consistency is contrasted with causal consistency in Fig. 6-(1.
The sequence of events shown here is allowed with a FIFO consistent data store
but not with any of the stronger models we have studied so far,

FIFO consistency is interesting because it is easy to implement. In effect il
says that there are no guarantees about the order in which different processes see
writes, except that two or tuore writes from a single source must arrive in order.
Put in other terms, in this model all writes generated by different processes are



SEC. 6.2 DATA-CENTRIC CONSISTENCY MODELS 307

P1. Wixja

P2: Rixja Wix)bh Wix)c

P3: Rix)p R(xja R{x)c
P4: Rix)a Rixb Rx)k

Figure 6-11. A valid sequence of events for FIFO consistency.

concurrent. The model can be implemented by simply tagging each write opera-
tion with a (process, sequence number) pair, and performing writes per process in
the order of their sequence number.

Let us now reconsider the three processes of Fig. 6-7 but this time use FIFO
consistency instead of sequential consistency. Under FIFO consistency, different
processes may see the statements executed in a different order. For example,
Fig. 6-12(a) shows how P, might see the events, whereas Fig, 6-12(b) shows how
P, might see them and Fig. 6-12(c) shows P3’s view. For a sequentially consistent
store, three different views would not be allowed.

x=1; x=1 y=1,
print{y,z); y=1 printix,z);
y=1; print{x,z); z=1:
print(x,z); print{y,z); print{x,y});
z=1; z=1; x=1
print(x.y); print(x,y); printly.z);
Prints: 00 Prints: 1¢ Prints: 01

(a) (b) (©

Figure 6-12. Statement execution as seen by the three processes from Fig. 6-7.
The statements in bold are the ones that generate the output shown.

If we concatenate the output of the three processes, we get a result of 001001,
which, as we saw earlier, is impossible with sequential consistency. The key
difference between sequential cousistency and FIFO consistency is that with the
former, although the order of statement execution is nondeterministic, at least ail
processes agree what it is. With the latter, they need not agree. Different
processes can see the operations in a different order.

Pracess P1 Process P2
x=1; y=1;
if {y == 0) kill(P2}; if (x == 0) kill{P1);

Figure 6-13. Two concurrent processes.
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Sometimes FIFO consistency can lead to resulis that may be counterintuitive,
In the following exampie, described in (Goodman, 1989}, assume that the integer
variables x and y are initialized to 0. In Fig, 6-13 one might naively expect one of
three possible outcomes: P, is killed, P, is killed, or neither is killed (if the two
assignments go first). With FIFO consistency, however, both processes can be
killed. This result can occur if P, reads R;(y)0 before it sees P,’s W5 (y)1 and P,
reads R, (x)0 before it sees P;’s Wi(x)1. With a sequentially consistent data store,
there are six possible statement interleavings, and none of them results in both
processes being killed.

6.2.5 Weak Consistency

Although FIFO consistency can give better performance than the stronger
consistency models, it is still unnecessarily restrictive for many applications
because they require that writes originating in a single process be seen every-
where in order. Not all applications require even seeing all writes, let alone seeing
them in order. Consider the case of a process inside a critical section wriling
records to a replicated database. Even though other processes are not supposed to
touch the records until the first process has left its eritical section, the database
system has no way of knowing when a process is in a critical section and when it
i not, so it has to propagate all writes to all copies of the database.

A better solution would be to let the process finish its critical section and then
make sure that the final results are sent everywhere, not worrying too much
whether all intermediate results have also been propagated to all copies in order,
or even at all. In general, this can be done by introducing what is called a syn-
chronization variable. A synchronization variable S has only a single associated
operation synchronize(S), which synchronizes all local copies of the data store.
Recall that a process P performs operations only on its locally available copy of
the store. When the data store is synchronized, all tocal writes by process P are
propagated to the other copies, whereas writes by other processes are brought in to
P’s copy.

Using synchronization variables to partly define cousistency leads to what is

called weak consistency (Dubois et al., 1988). Weak consistency models have
three properties:

1. Accesses 1o synchronization variables associated with a data store,
are sequentiaily consistent.

2. No operation on a synchronization variable is allowed to be per-
formed until all previous writes have completed everywhere.

3. No read or write operation on data items are allowed to be per-
formed until all previous operations to synchronization varigbles
have been performed.



5EC. 6.2 DATA-CENTRIC CONSISTENCY MODELS 309

The first point says that all processcs see all operations on synchronization vari-
ables in the same order. In other words, if process P calls synchronize(S1} at the
same time that process P, calls synchronize(S2}), the effect will be the same as if
either synchronize(S1) preceded synchronize{S2}, or vice versa.

The second poinl says that synchronization “flushes the pipeline.” It forces
all writes that are in progress or partially completed or completed at some local
copies but not others to complete everywhere. When the synchronization is done,
all previous writes are guaranteed to be done as well. By doing a synchronization
after updating shared data, a process can force the new values out to all other local
copies of the store.

The third point says that when data items are accessed, either for reading or
writing, all previous synchronizations will have been completed. By doing a syn-
chronization before reading shared data, a process can be sure of geiting the most
recent values,

Unlike the previous consistency models, weak consistency enforces con-
sistency on a group of operations, not on individual reads and writes. This model
is most useful when isolated accesses to shared data are rare, with most accesses
coming in clusters {(many accesses in a short period, then none for a long time).

Another important distinction with the previous consistency models is that we
now limit only the fime when consistency holds, rather than limiting the form of
consistency. In fact, we could say that with weak consistency, sequential con-
sistency is enforced between groups of operations instead of between individual
operations. Synchronization variables are nsed to delimit those groups.

inta,b,c,d, e, xy; f* variables Wi
int *p, *q; /* pointers *f
int f(int *p, int *q); f function prototype *f
a=x"x /* ais stored in a register *f
b=y y; /“ b as well i
c=a"a'a+b*b+a*b;  used later */
d=a*a‘g /" used later */
p=&a; /* p gets the address of a i
q=&b; " p gets the address of b */
e =f{p,q); /* function call Wi

Figure 6-14. A program fragmeni in which some variables may be kept in re-
gisters.

The 1dea of having memory be wrong is nothing new, Many compilers cheat
too. For example, consider the program fragment of Fig. 6-14, with all the vari-
ables initialized to appropriate values. An optimizing compiler may decide to
compute a and b in registers and keep the values there for a while, not updating
their memory locations. Only when the function fis called does the compiler have
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to put the current values of a and b back in memory, because f might try to access
them. This is a typical compiler optimization.

Having memory be wrong is acceptable here because the compiler knows
what it is doing (i.e., because the software does not insist that memory be up-to-
date). Clearly, if a second process existed that could read memory in an uncon-
strained way, this scheme would not work. For example, if during the assigument
to 4, the second process read «a, b, and ¢, it would get inconsistent values (the old
values of a and b, but the new value of ¢}. One could imagine a special way to
prevent chaos by having the compiler first write a special flag bit saying that
memory was out-of-date. If another process wanted to access a, it would busy
wait on the flag bit. In this way one can live with less than perfect consistency
provided that synchronization is done in software and all parties obey the rules.

Now let us consider a somewhat less far-fetched situation. In Fig. 6-15(a) we
see that process P does two writes to a data item, and theu synchronizes (indi-
cated by the letter 8). If P, and P; have not yet been synchronized, no guarantees
are given about what they see, so this sequence of events is valid.

P1:W(x)a Wb 35 P1:Wi)a Wb 8
P2: Rix)Ja Rxik S p2: 5 R{x)a
P3: Rixb R(xa S

(a) (o)

Figure 6-15. (a) A valid sequence of events for weak consistency. (b) An in-
valid sequence for weak consistency.

Fig. 6-15(b} is different. Here P, has been synchronized, which means that its
local copy of the data store is brought up to date. When it reads x, it must get the
value b. Getting a, as shown in the figure, is not permitted with weak consistency.

6.2.6 Release Consistency

Weak consistency has the problem that when a synchronization variable is
accessed, the data store does not know whether this is being done because the pro-
cess is cither finished writing the shared data or is otherwise about to start reading
data. Consequently, it must take the actions required in both cases, namely mak-
ing sure that all locally imitiated writes have been completed (i.e., propagated to
all other copies), as well as gathering in all writes from other copies. If the store
could tell the difference between entering a critical region and leaving oue, a
more efficient implementation might be possible. To provide this information, two
kinds of synchronization variables or operations are needed instead of one.

Release consistency (Gharachorloo et al., 1990) provides these two kinds. An
acquire operation is used to tell the data store that a critical region is about 0 be
entered, whereas a release operation says that a critical region has just been ex-
ited. These operatious can be implemented in either of two ways: (1) ordinary
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operations on special variables or (2) special operations. Either way, the pro-
grammer is responsible for inserting explicit code in the program stating when to
do the operations, for example, by calling library procedures such as acquire and
release or procedures such as enter_critical _region and leave _critical _region.

It is also possible to use barmiers instead of critical regions with release con-
sistency. A barrier is a synchronization mechanism that prevents any process
from starting phase n + 1 of a program until all processes have finished phase n.
When a process arrives al a barrier, it must wait until all other processes get there
as well. When the last one arrives, all shared data are synchronized and then all
processes are resumed. Departure from the barrier is done on an acquire, and
arrival is done on a release.

In addition to these synchronizing operations, reading and writing shared data
is also possible. Acquire and release do not have to apply to all data in a store.
Instead, they may guard only specific shared data, in which case only those data
items are kept consistent. The shared data that are kept consistent are said to be
protected.

A data store that offers release consistency guarantees that when a process
does an acquire, the store will ensure that all the local copies of the protected data
are brought up to dale to be consistent with the remote ones if necd be. When a
release i1s done, protected data that have been changed are propagated out to other
local copies of the store. Doing an acquire does not guarantee that locally made
changes will be sent to other local copies immediately. Similarly, doing a release
does not necessarily import changes from other copics.

P1: Acgil) WixlJa Wb Relh)
P2: Acq(L} Ri(x)b Rel{L)
P3: Rixa

Figure 6-16. A valid event scquence for release consistency.

Fig. 6-16 depicts a valid sequence of events for release consistency. Process
P does an acquire, changes a shared dala item twice, and then does a release.
Process P, does an acquire and reads data item x. It is guaranteed to get the value
that x had at the time of the release, namely b (unless P,’s acquire performs
before Py’s acquire). If the acquire had been done before P, did the release, the
acquire would have been delayed until the release had occurred. Since P3 does not
do an acquire before reading shared data, the daia store has no obligation to give it
the current value of x, so returning a is allowed.

To make release consistency clearer, let us briefly describe a possible
simple-minded implementation in the context of a replicated database. To do an
acquire. a process sends a message to a central synchronization manager request-
ing an acquire on a particular lock. In the absence of any competition, the request
is granted and the acquire completes. Then an arbitrary sequence of reads and
writes to the shared data can take place locally. None of these are propagated to
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other copies of the database. When the release is done, the modified data are sent
to the other copies that use them. After each copy has acknowledged receipt of the
data, the synchronization manager is informed of the relcasc. In this way, an arbi-
trary number of reads and writes on shared data can be done with a fixed amount
of overhead. Acquires and releases on different locks occur independently of onc
another.

While the centralized algorithm described above will do the job, it is by no
means the only approach. In general, a distributed data store is release consistent
if it obeys the following rules:

1. Before a read or write operation on shared data is performed, all
previous acquires done by the process must have completed success-

Sfully.

2. Before a releuse is allowed to be performed, all previous reads and
writes done by the process must have been completed,

3. Accesses to synchronization variables are FIFO consistent (sequen-
tial consistency is not required).

If all these conditions are met and processes use acquire and release properly (i.c.,
in acquire-release pairs), the results of any execution will be no different than they
would have been with a sequentially consistent data store. In effect, blocks of
operations on shared data are made atomic by the acquire and release primitives
o prevent interleaving,

A different implementation of release consistency is lazy release consistency
(Keleher et al,, 1992). In normal retease consistency, which we will henceforth
call eager release consistency to distinguish it from the lazy variant, when a
release is done, the process doing the release pushes out all the modified data to
all other processes that already have a copy of the data and thus might potentially
need it. There is no way to tell if they actually will need it, so to be safe, all of
them get everything thar has changed.

Although pushing all the data out this way is straightforward, it is gencrally
inefficient. In lazy release consistency, at the time of a release, nothing is sent
anywhere. Instead, when an acquire is done, the process trying to do the acquire
has to get the most recent values of the data from the process or processes holding
them. A timestamp protocol can be used to determine which data items have to be
actually transmitted.

In many programs, a critical region is located inside a loop. With eager
release consistency, on every pass through the loop a release is done, and all the
modified data bave to be pushed out to all the processes maintaining copies of
them. This algorithm wastes bandwidth and introduces needless delay. With lazy
release consistency, at the release nothing is done. At the next acquire, the process
determines that it already has all the data it nceds, so no messages are generated
here either, The net result is that with lazy release consistency no network traffic
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is generated at all until another process does an acquire. Repeated acquire-release
pairs done by the same process in the absence of outside competition are free.

6.2.7 Entry Consistency

Another consistency model that has been designed to be used with critical
sections is entry consistency (Bershad et al., 1993). Like both variants of release
consistency, it requires the programmer (or compiler) to use acquire and release at
the start and end of each critical section, respectively. However, unlike release
consistency, entry consistency requires each ordinary shared data item to be asso-
ciated with some synchronization variable such as a lock or barrier. If it is desired
that elements of an array be accessed independently in parallel, then different
array elements must be associated with different locks. When an acquire is done
on a synchronization variable, only those data guarded by that synchronization
variable are made consistent. Entry consistency differs from lazy release con-
sistency in that the latter does not associate shared data items with locks or bar-
riers and at acquire time has to determine empirically which variables it needs.

Associaling a list of shared data items with each synchronization variable
reduces the overhead associated with acquiring and releasing a synchronization
variable since only a few shared data items have to be synchronized. It also allows
multiple critical sections involving disjoint shared data to execute simultaneously,
increasing the amount of parallelism. The price paid is the extra overhead and
complexity of associating every shared data item with some synchronization vari-
able. Programming this way can also be more complicated and error prone.

Synchronization variables are used as follows. Each synchronization variable
has a current owner, namely, the process that last acquired il. The owner may
enter and exit critical sections repeatedly without having 10 send any messages on
the network. A process not currently owning a synchronization variable but want-
ing to acquire it has to scnd a incssage to the current owner asking for ownership
and the current values of the data associated with that synchronization variable. It
is also possible for several processes to simultaneously own a synchronization
variable in nonexclusive mode, meaning that they can read, but not write, the
associated data,

Formally, a data store exhibits entry consistency if it meets ali the following
conditions (Bershad and Zekausas, 1991):

1. An acquire access of a synchronization variable is not allowed to
perform with respect to a process until all updates to the guarded
shared data have been performed with respect fo that process.

154

Before un exciusive mode access to a synchronization variable by a
process is allowed to perform with respect to that process, no other

process may hold the synchronization variable, not even in nonex-
clusive mode.,
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3. After an exclusive mode access to a synchronization variable has
been performed, any other process’s next nonexclusive mode access
to that synchronization variable may not be performed until it has
performed with respect to that variable's owner.

The first condition says that when a process does an acquire, the acquire may not
complete (i.e., retum contro! to the next statement) until all the guarded shared
data have been brought up to date. In other words, at an acquire, all remote
changes to the guarded data must be made visible.

The second condition says that before updating a shared data item, a process
must enter a critical region in exclusive mode to make sure that no other process
is trying to update it at the same time.

The third condition says that if a process wants to enter a critical region in
nonexclusive mode, it must first check with the owner of the synchronization vari-
able guarding the critical region to fetch the most recent copies of the guarded
shared data.

Fig. 6-17 shows an example of entry consistency. Instead of operating on the
entire shared data, in this example we associate locks with each data item. In this
case, P does an acquire for x, changes x once, after which it also does an acquire
for y. Process P, does an acquire for x but not for y, so that it will read value a for
x, but may read NIL for y. Because process P first does an acquire for y, it will
read the value b when y is released by P,.

P1: Acg(Lx) Wix)a Acally] W{yib Rel{Lx] Rel{Ly)
P2: AcqiLx) R(x)a  R{y)NIL
P3: Acqily] R(y)b

Figure 6-17. A valid event sequence for entry consistency.

One of the programming problems with entry consistency is properly associat-
ing data with synchronization variables, One approach to this problem is the use
of distributed shared objects. It works as follows. Each distributed object has an
associated synchronization variable. This variable is provided by the underlying
distributed system whenever a distributed object is created, bur is otherwise com-
pletely hidden from clients.

When a client invokes a method of a distributed object, the underlying system
first does an acquire on the object’s associated synchronization variable, The ef-
fect is that the most recent values of the object’s state, which may be replicated
and distributed across multiple machines, are brought in to the client’s copy of the
object. At that point, the invocation is carried out, while the object remains locked
for concurrent operations. Wheu the invocation is finished, it is followed by an
implicit release operation, which also unlocks the object for pending operations.

The effect is that all accesses 1o a distributed shared object are sequentially
consistent. Fortunately, the client does not have to worry about synchronization
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variables, as this is completely handled by the underlying distributed system. At
the same time, each object is automatically protected against simultaneously exe-
cuting concurrent invocations.

This approach has been implemented in the Orca programming language (Bal
et al., 1992; Bal et al., 1998), which we discuss in detail later in this chapter. A
similar approach has also heen followed in CRL (Johnson et al., 1995), where
objects appear in the form of nonoverlapping regions of distributed shared
memory. Each region has an associated synchronization variable provided by the
underlying runtime system. The runtime system takes care of synchronization
when a region is accessed.,

6.2.8 Summary of Consistency Models

Although other (data-centric) consistency models have been proposed, the
main ones are discussed above, They differ in how restrictive they are, how com-
plex their implementations are, their ease of programming, and their performance.
Strict consistency is the most restrictive, but because its implementation in a dis-
tributed system is essentially impossible, it is never used.

Linearizability is a weaker consistency model based on synchronized clocks.
It makes reasoning about the correctness of concurrent programs easier, but is oth-
erwise hardly ever used for actually building programs. From this perspective, a
better model is sequential consistency, which has shown 1o be feasible, is popular
with programmers, and is indeed widely used. It has the problem of poor perfor-
mance, however. The way to get around this result is to relax the consistency
model. Some of the possibilities are shown in Fig. 6-18(a), roughly in order of
decreasing restrictiveness.

Causal consistency and FIFO consistency both represent weakenings in which
there is no longer a globally agreed upon view of which operations appear in
which order. Different processes may see different sequences of operations.
These two models differ in terms of which sequences are allowed and which are
not, but in all cases it is up to the programmer to avoid doing things that work
only if the data store is sequentially consistent.

A different approach is to introduce explicit synchronization variables, as do
weak consistency, release conmsistency, and entry consistency, These three are
summarized in Fig. 6-18(h). When a process performs an operation on an ordi-
nary shared data item, no guarantees are given about when they will be visible 1o
other processes. Only when an explicit synchronization takes place are changes
propagated. The three models differ in how synchronization works, bui in all
cases a process can perform multiple reads and writes in a critical section without
invoking any data transport. When the critical section has been completed, the
final result is either propagated to the other processes or made ready for propaga-
tion should any other process express interest in those data
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Consistency Description
Strict Absolute time ordering of all shared accesses

Linearizability | All processes see all shared accesses in the same order. Accesses
are furthermore ordered according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses
are not ordered in time '

Causal All processes see causally-retated shared accesses in the same order

FIFO All processes see writes from each other in the order they were issued.
Writes from different processes may not always be seen in that order

(@

Consistency Description

Weak Shared data can be counted on to be consistent only after a
synchrgnization is done

Relsase Shared data are made consistent when a critical region is exited

Entry rEharrad data perfaining to a critical region are made consistent when a
critical region is entered

(b}

Figure 6-18. (a) Consistency models not using synchronization operations, (b)
Models with synchronization operations,

In short, weak consistency, release consistency, and entry consistency require
additional programming constructs that, when used as directed, allow program-
mers to pretend that a data store is sequentially consistent, when, in fact, it is not.
In principle, these three models using explicit synchronization should be able to
offer the best performance, but it is likely that different applications will give
quite different results.

6.3 CLIENT-CENTRIC CONSISTENCY MODELS

The consistency models described in the previous section aim at providing a
systemwide consistent view on a data store. An important assumption is that con-
current processes may be simultaneously updating the data store, and that it is
necessary to provide consistency in the face of such concurrency. For example, in
the case of ohject-based entry consistency, the data store guarantees that when an
object is invoked, the invoking process is provided with a copy of the object that
reflects all changes to the object that have been made so far, possibly by other
processes. During the invocation, it is also guaranteed that no other process can
mnterfere, that is, mutual exclusive access is provided to the invoking process.
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Being able to handle concurrent operations on shared data while maintaining
sequential consistency is fundamental to distributed systems. For performance
reasons, sequential consistency may possibly be guaranteed only when processes
use synchronization mechanisms such as transactions or locks.

In this section, we take a look at a special class of distributed data stores. The
data stores we consider are characterized by the lack of simultaneous updates, or
when such updates happen, they can easily be resolved. Most operations involve
reading data. These data stores offer a very weak consistency model, called even-
tual consistency. By introducing special client-centric consistency models, it turns
out that many inconsistencies can be hidden in a relatively cheap way.

6.3.1 Eventual Consistency

To what extent processes actually operate in a concurrent fashion, and to what
extent consistency needs to be guaranteed, may vary. There are many examples in
which concurrency appears only in a restricted form. For example, in many data-
base systems, most processes hardly ever perform update operations but only read
data from the database. Only one, or very few processes perform update opera-
tions. The question then is how fast updates should be made available to only-
reading processes.

As another example, consider a worldwide naming system such as DNS. The
DNS name space is partitioned into domains, where each domain is assigned to a
naming authority, which acts as owner of that domain. Only that authority is
allowed to update its part of the name space. Consequently, conflicts resulting
from two operations that both want to perform an update on the same data never
occur (i.e., write-write conflicts). The only situation that needs to be handled are
read-write conflicts. As it tumns out, it is often acceptable to propagate an update
in a lazy fasbion, meaning that a reading process will see an update only after
some time bas passed since the update took place.

Yet another example is the World Wide Web. In virtually all cases, Web
pages are updated by a single authority, such as a webmaster or the actual owner
of the page. There are normally no write-write conflicts to resolve. On the other
hard, to improve efficiency, browsers and Web proxies are ofien configured to
keep a fetched page in a local cache, and to return that page upon the next request.
An important aspect of both types of Web caches is that they may return out-of-
date Web pages. In other words, the cached page that is returned to the requesting
client is an older version compared to the one available at the actual Web server.
As it turns out, many users find this inconsistency acceptable.

These examples can be viewed as cases of (large-scale) distributed and repli-
cated databases that tolerate a relatively high degree of inconsistency. They have
in common that il no updates take place for a long time, all replicas will gradually
become consistent. This form of consistency is called eventual consistency.
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Data stores that are eventually consistent thus have the property that in the
absence of updates, all replicas converge toward identical copies of each other. As
we will discuss later in this chapter, eveniual consistency essentially requires only
that updates are guaranteed to propagate to all replicas. Write-write conflicts are
often relatively easy to solve when assuming that only a small group of processes
can perform updates. Eventual consistency is therefore often cheap to implement.
Specific implementation details will be discussed later in this chapter.

Client moves to other location
and (transparently) connects to
other replica

Replicas need to maintain
client-centric consistency

Distributed and replicated database

ﬂ Aead and write operations
Portable computer

Figure 6-19. The principle of a mobile user accessing different replicas of a
distributed database.

Eventual consistent data stores work fine as long as clients always access the
same replica. However, problems arise when different replicas are accessed. This
1s best illustraied by considering a mobile user accessing 2 distributed databasc as
shown in Fig, 6-19,

The mobile user accesses the database by connecting to one of the replicas in
a transpareni way. In other words, the application running on the user's poriable
computer is unaware on which replica it is actually operating. Assume the user
performs several update operations and then disconnects again. Later, he accesses
the database again, possibly after moving to a different location or by using a dif-
ferent access device. At that point, the user may be connected to a different
replica than before, as shown in Fig. 6-19. However, if the updates performed
previously have not yet been propagated, the user will notice inconsistent
behavior. In particular, he would expect to sec all previously-made changes, but
instead, it appears as if nothing at all has happened.
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This example is typical for eventually consistent data stores and is caused by
the fact that users may sometimes operate on different replicas. The problem can
be alleviated by introducing client-centric consistency. In essence, client-centric
consistency provides guarantees for a single client conceming the consistency of
accesses to a data store by that client. No guarantees are given concerning con-
curtent accesses by different clients.

Client-centric consistency models originate from the work on Bayou (see, for
example, Terry et al., 1994; and Terry et al., 1998). Bayou is a database system
developed for mobile computing, where it is assumed that network connectivity is
unreliable and subject to various performance problems. Wireless networks and
networks that span large areas, such as the Internet, fall into this category.

Bayou essentially distinguishes four different consistency models. To explain
these models, we again consider a data store that is physically distributed across
multiple machines. When a process accesses the data store, it generally connects
to the locally (or nearest) available copy, although, in principle, any copy will do
just fine. All read and write operations are performed on that local copy. Updates
are eventually propagated to the other copies. To simplify matters, we assume that
data items have an associated owner, which is the only process that is permitted to
modify that item. In this way, we avoid write-write conflicts.

Client-centric consistency models are described using the following notations.
Let x;[t] denote the version of data item x at local copy Z; at time ¢. Version x;[t]
is the result of a series of write operations at L; that took place since initialization.
We denote this set as WS (x;(¢]). If operations in WS (x;[z,]) have also been per-
formed at local copy L; at a later time 1, we write WS {x;[¢, Iix;[12]). If the order-

ing of operations or the timing is clear from the context, the time index will be
omitted.

6.3.2 Monotonic Reads

The first client-centric consistency model is that of monotonic reads. A data

store is said to provide monotonic-read consistency if the following condition
holds:

If a process reads the value of a data item x, any successive read opera-
tion on x by that process will always return that same value or a more
recent value,

In other words, monotonic-read consistency guarantees that if a process has seen a
value of x at time ¢, it will ncver see an older version of x at a later Lime.

As an example where monotonic reads are useful, consider a distributed e-
mail databasc. In such a database, cach user’s mailbox may be distributed and
replicated across multiple machines. Mail can be inserted in a mailbox at any
location. However, updates are propagated in a lazy (i.e., on demand) fashion.
Only when a copy needs certain data for consistency are those data are propagated
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io that copy. Suppose a user reads his mail in San Francisco. Assume that only
reading mail does not affect the mailbox, that is, messages are not removed,
stored in subdirectories, or even tagged as having already been read, and so on.
When the user later flies to New York and opens his mailbox again, monotonic-
read consisiency guarantees that the messages that were in the mailbox in San
Francisco will also be in the mailbox when it is opened in New York.

Using a notation similar to that for data-centric consistency modeis,
monotonic-read consistency can be graphically represented as shown in Fig. 6-20.
Along the vertical axis, two different local copies of the data store are shown, L,
and L,. Time is shown along the horizontal axis.

L1: WS{x,) R(xy) L1 WS(x)) R(x;)
Le: WS{x;xp) Rz} L2: WS(xp) Rix) WS(x;x)
(a} {b)

Figure 6-20. The read operations performed by a single process P at two dif-
ferent local copies of the same data store. {a) A monotonic-read consistent data
store. (b) A data store that does not provide monotonic reads.

In Fig. 6-20(a), process P first performs a read operation on x at L|, returning
the value of x; (at that time). This value results from the write operations in
WS (x;) performed at L,. Later, P performs a read operation on x at L,. shown as
R (x3). To guarantee monotonic-read consistency, all operations in WS (x,) should
have been propagated to L, before the second read operation takes place. In other
words, we need to know for sure that WS(x;) is part of WS(x,), which is
expressed as WS (x;:x;).

In contrast, Fig. 6-20(b) shows a situation in which monotonic-read con-
sistency is not guaranteed. After process P has read x, at L, it later performs the
operation K (x;) at L. However, only the write operations in WS (x,) have been
performed at I,. No guaraniees are given that this set also contains all operations
contained in WS (x).

6.3.3 Monotonic Writes

In many situations, it is important that write operations are propagated in the
correct order to all copies of the data store. This property is expressed in mon-
otonic-write consistency. In a monotonic-write consistent store, the following
condition holds:

A write operation by a process on a data item x is completed before any
successive write operation an x by the same process.

Thus completing a write operation means that the copy on which a successive
operation is performed, reflects the effect of a previous write operation by the
same process, no matter where that operation was initiated. In other words, a write
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operation on a copy of data item x is performed only if that copy has been brought
up to date by means of any preceding write operation, which may have taken
place on other copies of x.

Note that monotonic-write consistency resembles data-centric FIFO con-
sistency. The essence of FIFO consistency is that write operations by the same
process are performed in the correct order everywhere. This ordering constraint
also applies to monotonic writes, except that we are now considering consistency
only for a single process instead of for a collection of concurrent processes.

Bringing a copy of x up to date need not be necessary when each write opera-
tion completely overwrites the present value of x. However, write operations are
often performed on only part of the state of a data item. Consider, for example, a
software library. In many cases, updating such a library is done by replacing one
or more functions, leading to a next version. With monotonic-write consistency,
guarantees are given that if an update is performed on a copy of the library, all
preceding updates will be performed first. The resulting library will then indeed
become the most recent version and will include all updates that have led to previ-
ous versions of the library.

Monotonic-write consistency is shown in Fig. 6-21. In Fig. 6-21(a), process P
performs a write operation on x at local copy L;, presented as the operation
W x,). Later, P performs another write operation on x, but this time at L,, shown
as W (x,). To ensure monotonic-write consistency, it is necessary that the previous
write operation at L, has already heen propagated to L,. This explains operation
Wix,) at L,, and why it takes place before W (x,).

Lt:  Wixy) Li: Wx,)
L2: W) Wix) L2: Wixy

(a) (b)

Figure 6-21. The write operations performed by a single process P at two dif-
ferent local copies of the same data store. (a) A monotonic-write consistent data
store. {bj A data store that does not provide monotonic-write consisiency.

In contrast, Fig. 6-21(b) shows a situation in which monotonic-write con-
sistency is not guaranteed. Compared to Fig. 6-21(a), what is missing is the propa-
gation of W{x|) to copy L,. In other words, no guarantees can be given that the
copy of x on which the second write is being performed, has the same or more
recent value at the time W(x;) completed at .

Note that, by the definition of monotonic-write consistency, write operations
by the same process are performed in the same order as they are initiated. A
somewhat weaker form of monotonic writes is one in which the effects of a write
operation are seen only if all preceding writes have been carried out as well, but
perhaps not in the order in which they have been originally initiated. This con-
sistency is applicable in those cases in which write operations are commutative,
so that ordering is really not necessary. Details are found in (Terry et al.,, 1994),
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6.3.4 Read Your Writes

A client-centrie consistency model that is closely related to monotonic reads,
is as follows. A data store is said 1o provide read-your-writes consistency, if the
following condition holds:

The effect of u write operation by a process on data item x will alwavs be
seen by a successive reqd operation on x by the same process.

In other words, a write operation is always completed before a successive read
operation by the same process, no matter where that read operation takes place.

The absence of read-your-writes consistency is often experienced when updat-
ing Web HTML pages and subsequently viewing the effects. Update operations
often take place by means of a standard editor or word processor, which saves the
new version on a file system that is shared by the Web server. The user's Web
browser accesses that same {ile, possibly after requesting it from the local Web
server, However, once the f{ile has been fetched, either the server or the browser
often caches a local copy for subsequent accesses. Consequently, when the Web
page is updated, the user will not see the effects if the browser or the server
returns the cached copy instead of the original file. Read-your-writes consistency
can guarantee that if the editor and browser are integrated into a single program,
the cache is invalidated when the page is updated, so that the updated file is
fetched and displayed.

Similar effects occur when updating passwords. For example, to enter a digi-
(al library on the Wcb, it is often necessary to have an account with an accom-
panying password. However, changing a password make take some time to come
into effect, with the result that the library may be inaccessible to the user for a few
minutes. The delay can be caused because a separate server is used to manage
passwords and it may take time time to subsequently propagate (encrypled) pass-
words to the various servers that constitute the library. This problem was already
known in Grapevine, one of the first distributed systems that used eventual con-
sistency. Again, an implementation of read-your-writes consistency would solve
this problem (Birrell ct al., 1982).

Fig. 6-22(a) shows a data store that provides read-your-writes consistency.
Note that Fig. 6-22(a} is very similar to Fig. 6-20(a), except that consistency is
now determined by the last write operation by process P, instead of its last read
operation. )

In Fig. 6-22(a), process P performed a write operation W(x;) and later a read
operation at a different loca) copy. Read-your-writes consistency guarantees that
the effects of the write operation can be seen by the succeeding read operation.
This is expressed hy WS (x);x;), which states that W(x;) is part of WS (x7). In
contrast, in Fig. 6-22(b), W(x;) has been left out of WS (x,), meaning that the ef-
fects of the previous write operation by process P have not been propagated to L,.
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L1 Wx;} L1 Wixy
L2: WS{x1:%) R{x5) L2 WS(x,) Alx}
(a) (b)

Figure 6-22. (a) A data store that provides read-your-writes consistency. (b} A
data store that does not.

6.3.5 Writes Follow Reads

The last client-centric consistency model is one in which updates are pro-
pagated as the result of previous read operations. A data store is said to provide
writes-follow-reads consistency, if the following holds.

A write operation by a process on a data item x following a previous read
operation on x by the same process, is guaranteed to take place on the
same or a more recent value of x that was read,

In other words, any successive write operation by a process on a data item x will
be performed on a copy of x that is up to date with the value most recently read by
that process.

Writes-follow-reads consistency can be used to guarantee that users of a net-
work newsgroup sec a posting of a reaction to an article only after they have seen
the original article (Terry et al., 1994). To understand the problem, assume that a
user first reads an article A. Then, he reacts by posting a response B. By requiring
writes-follow-reads consistency, B will he written to any copy of the newsgroup
only after A has been written as well. Note that users who only read anticles need
not require any specific client-centric consistency model. The writes-follows-
reads consistency assures that reactions to articles are stored at a local copy only
if the original is stored there as well.

L1: WS{x,) Rix;) L1: WS(x,) Alxy)
L2: WS(%,;%;) Wi(x,) L2: WS(x,) W(xs)
(a) (b)

Figure 6-23. (a) A writes-follow-rcads consistent data store. {b) A data store
that does not provide writes-follow-reads consistency.

This consistency is shown in Fig. 6-23. In Fig. 6-23(a), a process reads x at
local copy L. The write operations that led to the value just read, also appear in
the write set at L,, where the same process later performs a write operation.
(Note that other processes at L, see those write operations as well.) In contrast,
no guarantees are given that the operation performed at L,, as shown in Fig, 6-
23(b), are performed on a copy that is consistent with the one just read at L L

5 e i e e T P . i et
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6.3.6 Implementation

Implementing client-centric consistency is relatively siraightforward if perfor-
mance issues are ignored. In the following pages, we first describe such an imple-
mentation, followed by a description of a more realistic implementation,

A Naive Implementation

In a naive implementation of client-centric consistency, each write operation
is assigned a globally unique identifier. Such an identifier is assigned by the
server that accepts the operation for the first time. We also say that the operation
is initiated at that server. (Note that generating globally unique identifiers can be
implemented as a local operation. See the exercises at the end of Chap. 4.) Then,
for cach client, we keep track of two sets of write identifiers. The read set for a
client consists of the write identifiers relevant for the read operations performed
by a client. Likewise, the write set consists of the identifiers of the writes per-
formed by the client.

Monotonic-read consistency is implemented as follows. When a client per-
forms a read operation at a server, that server is handed the client’s read set to
check whether all the identified writes have taken place locally. (The size of such
a set may introduce a performance problem, for which a solution is discussed
below.) If not, it contacts the other servers to ensure that it is brought up to date
before carrying out the read operation. Alternatively, the read operation is for-
warded to a server where the write operations have already taken place. After the
read operation is performed, the write operations that have taken place at the
selected server and which are relevant for the read operation, are added to the
client’s read set.

Note that it should be possible to determine exactty where the write opera-
tions identified in the read set have taken place. For example, the write identifier
could include the identifier of a server where the operation was initiated. That
server is required to, for example, log the write operation so that it can be
replayed at another server. In addition, write operations should be performed in
the order they were initiated. Ordering can be achieved by letting the client gen-
erate a globally unique sequence number that is included in the write identifier,
such as a Lamport timestamp. If each data item can be modified only by its
owner, the latter can supply the sequence number,

Monotonic-write consistency is implemented analogous to monotonic reads,
Whenever a client initiates a new write operation at a server, the server is handed
over the client’s write set. (Again, the size of the set may be prohibitively large in
the face of performance requirements. An alternative solution is discussed below.)
It then ensures that the identified write operations are performed first and in the
correct order. After performing the new operation, that operation’s write identifier
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is added to the write set. Note that bringing the current server up to date with the
client’s write set may introduce a considerable increase in the client’s response
time.

Likewise, read-your-writes consistency requires that the server where the read
operation is performed has seen all the write operations in the client’s write set.
The writes can simply be fetched from other servers before the read operation is
performed, aithough this may lead to a poor response time. Alternatively, the
client-side software can search for a server where the identified write operations
in the client’s write set have already been performed.

Finally, writes-follow-reads consistency can be implemented by first bringing
the selected server up to date with the write operations in the client’s read set, and
then later adding the identifier of the writc operation to the write set, along with
the identifiers in the read set (which have now become relevant for the write
operation just performed).

Improving Efficiency

It is easy to see that the read set and write set associated with each client can
become very large. To keep these sets manageable, a client’s read and write
operations are grouped into sessions. A session is typically associated with an
application: it is opened when the application starts and is closed when it exits.
However, sessions may also be associated with applications that are temporanly
shut down, such as user agents for e-mail. Whenever a client closes a session, the
sets are simply cleared. Of course, if a client opens a sessiou that it never closes,
the associated read and write sets can still become very large.

The main problem with the naive implementation lies in the representation of
the read and write sets. Each set consists of a number of identifiers for write
operations. Whenever a client forwards a read or write request to a server, a set of
identifiers is handed to the server as well, to sce whether all write operations
relevant to the request have been carried out by that server.

This information can be more efficiently represented by means of vector time-
stamps as follows. First, whenever a server accepts a new write operation W, it
first assigns that operation a globally unique identifier WID as described above,
along with a timestamp s (WID). A subsequent write operation at that server is
assigned a higher-valued timestamp. Each server S, maintains a vector timestamp
RCVD (i), where RCVD (i)[j] is equal to the timestamp of the latest write opera-
tion initiated at server S; that has been received (and processed) by §;.

Whenever a client issues a request to perform a read or write operation at a
specific server, the server returns its current timestamp along with the results of
the operation. Read and write sets are subsequently represented by vector time-
stamps. For any such set A, we construct a vector timestamp VT(4) with
VT (A)i] set equal to the maximum timestamp of all operations in A that were ini-
tiated at server §;, leading to an efficient representation of these sets.
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The union of two sets of write identifiers A and B is represented by a vector
timestamp VT (A+B) with VI(A+B)[i] equal to max{VI(A)i], VT(B)il}.
Furthermore, t0 check whether a set of identifiers A is contained in another sct B,
we need to check only whether for each index f, VI (A)[i] < VI (B)[i ].

When a server passes its current timestamp back to a client, the client adjusts
the vector timestamp of its own read or write set, depending on the operation that
was performed. Consider the case of monotonic-read consistency in which the
client is returned the vector timestamp RCVD (i) from server §;. If the vector
timestamp of the client’s read set is VT (Rset), then for each j, VT (Rset){f] is set
equal to max{VT(Rset){j], RCVD()){j]}. The client’s read set will thus reflect
the latest write operations it has seen. The corresponding vector timestamp will be
sent along with the next read operation that the client issues, possibly to a dif-
ferent server.

6.4 DISTRIBUTION PROTOCOLS

So far, we have concentrated only on different consistency models, hut have
hardly touched upon implementation issues. In this section, we discuss diffcrent
ways of propagating, that is, distributing updates to replicas, independent of the
consistency model that is to be supported. Specific consistency protocols are dis-
cussed in the next section.

6.4.1 Replica Placement

A major design issue for distributed data stores, is deciding where, when, and
by whom copies of the data storc are to be placed (see also Kermarrec et al.,
1998). Three different types of copies can be distinguished, logically organized as
shown in Fig. 6-24.

—» Server-nitiated replication
---» Client-initiated replication

Figure 6-24. The logical organization of different Kinds of copies of a data store
inte three concentric rings.
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Permanent Replicas

Permanent replicas can be considered as the initial set of replicas that consti-
tute a distributed data store. In many cases, the number of permanent replicas is
small. Consider, for example, a Web site. Distribution of a Web site generally
comes in one of two forms. The first kind of distribution is one in which the files
that constitute a site are replicated across a limited number of servers on a single
local-area network. Whenever a request comes in, it is forwarded 16 one of the
servers, for instance, using a round-robin strategy (see also Chawathe and Brewer,
1998).

The second form of distributed Web sites is that of what is called mirroring.
In this case, a Web site is copied (0 a limited number of servers, called mirror
sites, which are geographically spread across the Internet. In most cases, clients
simply choose one of the mirror sites from a list offered to them. Mirrored Web
sites have in common with cluster-based Web sites that there are only a few
number of replicas, which are more or less statically configured,

Similar static organizations also appear with distributed databases (Oszu and
Valduriez, 1999). Again, the database can be distributed and replicated across a
mumber of servers that together form a cluster of workstations (COW), olten
referred to as a shared-nothing architecture, emphasizing that neither disks nor
main memory are shared by processors. Alternatively, a database is distributed
and possibly replicated across a number of geographically dispersed number of

sites. This architecture is generally deployed in federated databases (Sheth and
Larson. 1990),

Server-Initiated Replicas

In contrast to permanent replicas, server-initiated replicas arc copies of a data
store that exist to enhance performance and which are created at the initiative of
the (owner of the) data store. Consider, for example, a Web server placed in New
York. Normally, this server can handle incoming requests quile easily, but it may
happen that over a couple of days a sudden burst of requesls come in from an
unexpected location far from the server. (Such bursts have happened on a number
of occasions in the recent bistory of the Web.) In that case, it may be worthwhile
to install a number of temporary replicas in regions where requests are coming
from. Such replicas are also known as push caches (Gwertzman and Selizer,
1995).

More recently, the problem of dynamically placing replicas is being addressed
in Web hosting services. These services essentially offer a (relatively static) col-
lection of servers spread across the Internet that can maintain and provide access
to Web files belonging to third parties. To provide optimal facilities such hosting
services can dynamically replicate files to servers where those files are needed to
enhance performance, that is, close to demanding (groups of} clients.
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One of the problems with server-initiated replicas is deciding exactly where
and when replicas shouid be created or deleted. An approach to dynamic replica-
tion of files in the case of a Web hosting service is described in (Rabinovich et al.,
1999). The algorithim is designed to support Web pages for which reason it
assumes that updates are relatively rare compared to read requests. Using filcs as
the unit of dala, the algorithm works as follows.

The algorithm for dynamic replication takes two issues into account. First,
replication can take place to reduce the load on a server. Second, specific files on
a server can be migrated or replicated to servers placed in the proximity of clients
that issue many requests for those files. In the following pages, we concentrate
only on this second issue. We also leave out a number of details, which can be
found in (Rabinovich et al., 1999,

Each server keeps track of access counts per file, and where access requests
come from. In particular, it is assumed that, given a client ', each server can
determine which of the servers in the Web hosting service is closest to C. (Such
information can be obtained, for example, from routing databases.) If client C,
and client C, share the same “closest’’ server P, all access requests for file F at
server O from C; and C, are jointly registered at Q as a single access count
cntg(P, F). This situation is shown in Fig. 6-25.

Ok
Server without

copy of file F /

Sarver with

2 i copy of F
Cb*——“ File F

Server Q counts access from G, and
Cz as if they would come from P

Figure 6-25. Counting access requests {rom different clients.

When the number of requests for a specific file F at server S drops below a
deletion threshold del (S, F), that file can be removed from S. As a consequence,
the number of replicas of that file is reduced, possibly leading to higher work
loads at other servers. Special measures are taken to ensure that at least one copy
of each file continues to exist.

A replication threshold rep (§,F). which is always chosen higher than the
deletion threshold, indicates that the number of requests for a specific file is so
high that it may be worthwhile replicating it on another server. If' the number of
requests lie somewhere between the deletion and replication threshold, the file is
allowed only to be migrated. In other words, in that case it is important to at least
keep the number of replicas for that file the same.
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When a server @ decides Lo reevaluate the placement of the files it stores, it
checks the access count for each file. If the total number of access requests for F
at (& drops below the deletion threshold del (Q,F), it will delete F unless it is the
last copy. Furthermore, if for some server P, cntg(P,F) exceeds more than half of
the total requests for F at Q, server P is requested to take over the copy of F. In
other words, server @ will attempt to migrate F to P.

Migration of file F to server P may not always succeed, for example, because
P is already heavily loaded or is out of disk space. In that case, O will attempt to
replicate F on other servers. Of course, replication can take place only if the total
number of access requests for F at  exceeds the replication threshold rep (Q.F).
Server Q checks all other servers in the Web hosting service, starting with the one
farthest away. If, for some server R, cnfg(R,F) exceeds a certain fraction of all
requests for F at £, an attempt is made to replicate F to R.

Server-initiated replication is gradually increasing in popularity, especially in
the context of Web hosting services such as the one just described. Note that as
long as guarantees can be given that each data item is hosted by at least one
server, it may suffice to use only server-initiated replication and not have any per-
manent replicas. Nevertheless, permanent replicas are siill often useful as a back-
up facility, or to be used as the only replicas that are allowed to be changed to

guarantee consistency. Server-initiated replicas are then used for placing read-
only copies close to clients.

Client-Initiated Replicas

An important kind of replica is the one created at the initiative of clients.
Client-initiated replicas are more commonly known as (client) caches. In
essence, a cache is a local storage facility that is used by a client to temporarily
store a copy of the data it has just requested. In principle, managing the cache is
left entirely to the client. The data store from where the data had been fetched has
nothing to do with keeping cached data consistent. However, as we shall see,
there are many occasiens in which the client can rely on participation from the
data store to inform it when cached data has become stale.

Client caches are used only to improve access times to data. Normally, when
a client wants access to some data, it connects to the nearest copy of the data store
from where it fetches the data it wants to read, or to where it stores the data it had
just modified. When most operatious involve only reading data, performance can
be improved by letting the client store requested data in a nearby cache. Such a
cache could be located on the clieut’s machine, or on a separate machine in the
same local-area network as the client. The next time that same data needs to be
read, the client can simply fetch it from this local cache. This scheme works fine
as long as the fetched data have not been modified in the meantime.

Data are generally kept in a cache for a limited amount of time, for example,
to prevent extremely stale data from being used, or simply to make room for other
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data, Whenever requested data can be fetched from the local cache, a cache hit is
said to have occurred. To improve the number of cache hits, caches can be shared
between clients. The underlying assumption is that a data request from client C,
may also be useful for a request from another nearby client C,.

Whether this assumplion is correct depends very much on the type of data
store. For example, in traditional file systems, files are rarely shared at all (see,
e.g., Muntz and Honeyman, 1992; and Blaze, 1993) rendering a shared cache use-
less. In contrast, shared caches in the Web have proven to be useful, although
their impact with respect to performance is gradually declining for the reason that
sharing between different clients occurs less often as the total number of Web
pages grows (Barford et al., 1999),

Placement of client caches is relatively simple: a cache is normally placed on
the same machine as its client, or otherwise on a machine shared by clients on the
same local-area network. However, in some cases, extra levels of caching are
introduced by system adwministrators by placing a shared cache between a number
of departments or organizations, or cven placing a shared cache for an entire
region such as a province or country,

Yet another approach is (o place (cache) servers at specific points in a wide-
area network and let a client locate the nearest server. When the server is located,
it can be requested to hold copies of the data the client was previously fetching
from somcwhere else, as described in {Noble et al., 1999), We will return to
caching later in this chapter when discussing consistency protocols.

6.4.2 Update Propagation

Update operations on a distributed and replicated data store are generally ini-
tiated at a client and subsequently forwarded to one of the copies. From there, the
update should be propagated to the other copies, while at the same time ensuring
consistency. There are different design issues to consider with respect to pro-
pagating updates, which we discuss next,

State versus Operations
An important design issue concerns what is actually to be propagated. Basi-
cally, there are three possibilities:
1. Propagate only a notification of an update.
2. Transfer data from one copy to another.
3. Propagate the update operation to other copies.

Propagating a notification is what invalidation protocols do. In an invalida-
tion protocol, other copies are informed that an update has taken place and that the
data they contain are no longer valid. The invalidation may specify which part of
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the data store has been updated, so that only part of a copy is actually invalidated.
The important issue is that no more than a notification is propagated. Whenever
an operation on an invalidated copy is requested, that copy generally needs to be
updated first, depending on the specific consistency model that is to be supported.

The main advantage of invalidation protocols is that they use litile network
bandwidth. The only information that needs to be transferred is a specification of
which data are no longer valid. Such protocols generally work best when there are
many update operations compared to read operations, that is, the read-to-write
ratio is relatively small.

Consider, for example, a data store in which updates are propagated by send-
ing the modified data to all replicas. If the size of the modified data is large, and
updates occur frequently compared to read operations, we may have the situation
that two updates occur after one another without any read operation being per-
formed between them. Consequently, propagation of the first update to all replicas
1s effectively useless, as it will be overwritten by the second update. Instead, send-
ing a notification that the data have been modified would have been more effi-
cient.

Transferring the modified data among replicas is the second alternative, and is
useful when the read-to-write ratio is relatively high. In that case, the probability
that an update will be effective in the sense that the modified data will be read
before the next update takes place is high. Instead of propagating modified data, it
is also possible to log the changes and transfer only those logs to save bandwidth.
In addition, transfers are often aggregated in the sense that multiple modifications
are packed into a singie message, thus saving communication overhead.

The third approach is not to transfer any data modifications at all, but to tell
cach replica which update operation it should perform. This approach, also
referved to as active replication, assumes that each replica is represented by a
process capable of “actively” keeping its associated data up to date by perform-
ing operations (Schneider, 1990). The main benefit of active replication is that
updates can often be propagated at minimal bandwidth costs, provided the size of
the parameters associated with an operation are relatively small. On the other

hand, more processing power may be required by each replica, especially when
operations are relatively complex.

Pull versus Push Protocols

Arnother design issue is whether updates are pulled or pushed. In a push-
based approach, also referred to as server-hased protocols, updates are pro-
pagated to other replicas without those replicas even asking for the updates.
Push-based approaches are often used between permanent and scrver-initiated
replicas, bul can also be used to push updates to client caches. Server-based proto-
cols are applied when replicas generally need to maintain a relatively high degree
of consistency. In other words, replicas need to be kept identical.
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This need for a high degree of consistency is related to the fact that permanent
and server-initiated replicas, as well as large shared caches, are often shared by
many clients, which, in turn, mainly perform read operations. Consequently, the
read-to-update ratio at each replica is relatively high. In these cases, push-based
protocols are etficient in the sense that every pushed update can be expected to be
of use for one or more readers. In addition, push-based protocols make consistent
data immediately available when asked for.

In contrast, in a pull-based approach, a server or client requests another
server to send it any updates it has at that moment. Pull-based protocols, also
called client-based protocols, are often used by client caches. For example, a
common strategy applied to Web caches, is first to check whether cached data
items are still up to date. When a cache receives a request for items that are still
locally available, the cache checks with the original Web server whether those
data items have been modified since they were cached. In the case of a modifica-
tion, the modified data are first transferred to the cache, and then returned to the
requesting chient. If no modifications took place, the cached data are returned. In
other words, the client polls the server to see whether an update is needed.

A pull-based approach is efficient when the read-to-update ratio is relatively
low. This is often the case with (nonshared) client caches, which have only one
chient. However, even wheu a cache is shared by many clients, a pull-based
approach may also prove to be efficient when the cached data items are rarely
shared. The main drawback of a pull-based strategy in comparison to a push-
based approach, is that the response time increases in the case of a cache miss.

When comparing push-based and pull-based solutions, there are a number of
trade-offs to be made, as shown in Fig. 6-26. For simplicity, consider a client-
server system consisting of a single, nondistributed server, and a number of client
processes, each having their own cache.

Issue Push-based Pull-based
State at server List of client replicas and caches None
Messages sent Update (and possibly fetch update later) | Poll and update
Response time at client | Immediate {or fetch-update tima) Fetch-update time

Figure 6-26. A comparison between push-based and pull-based protocols in the
case of multiple clieat, single server systems.

An important issue is that in push-based protocols, the server needs to keep
track of all client caches. Apart from the fact that stateful servers are often less
fault tolerant, as we discussed in Chap. 3, keeping track of all client caches may
introduce a considerable overhead at the server. For example, in a push-based
approach, a Web server may easily need to keep track of tens of thousands of
client caches. Each time a Web page is updated, the server will need to go through
its list of client caches holding a copy of that page, and subsequently propagate
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thc update. Worse yet, if a client purges a page due to lack of space, it has to
inform the server, leading to even more communication.

The messages that need 10 be sent between a client and the server also differ.
In a push-based approach, the only communication is that the server sends updates
to each client. When updates are actually only invalidations, additional communi-
cation is needed by a client to fetch the modified data. In a pull-based approach, a
client will have to poll the server, and, if necessary, fetch the modified data.

Finally, the response time at the client is also different. When a server pushes
niodified data to the client caches, it is clear that the response time at the client
side is zero. When invalidations are pushed, the response time is the same as in
the pull-based approach, and is determined by the time it takes to fetch the modi-
fied data from the server.

These trade-offs have lead to a hybrid form of update propagation based on
leases. A lease is a promise by the server that it will push updates to the client for
a specified time. When a lease expires, the client is forced to poll the server for
updates and pull in the modified data if necessary. An altemmative is that a client
requests a new lease for pushing updates when the previous lease expires.

Leases were originally introduced by Gray and Cheriton (1989). They pro-
vide a conventent mechanism for dynamically switching between a push-based
and pull-based strategy. Duvvuri et al. (2000) describe a flexible lease system
that allows the expiration time to be dynamically adapted depending on different
lease criteria. They distinguish the following three types of leases. (Note that in
all cases, updates are pushed by the server as long as the lease has not expired.)

First, age-based leases are given out on data items depending on the last time
the item was modified. The underlying assumption is that data that have not been
modified for a long time can be expected to remain unmodified for some time yet
to come. This assumption has shown to be reasonable in the case of Web-based
data. By granting long-lasting leases to data items that are expected to remain
unmeodified, the number of update messages can be strongly reduced compared to
the case where all leases have the same expiration time.

Another lease criterion is how often a specific client requests its cached copy
to be updated. With renewal-frequency based leases, a server will band out a
long-lasting lease to a client whose cache often needs to be refreshed. On the
other hand, a client that asks only occasionally for a specific data item will be
handed a short-term lease for that item. The effect of this strategy is that the
server essentially keeps track only of those clients where its data are popular;
moreover, those clients are offered a high degree of consistency.

The last criterion is that of state-space overhead at the server. When the server
realizes that it is gradually becoming overloaded, it lowers the expiration time of
new leases it hands out to clients. The effect of this strategy is that the server
needs to keep track of fewer clients as leases expire more quickly. In other words,
the server dynamically switches to a more stateless mode of operation, thereby
offloading itself so that it can handle requests more efficiently.
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Unicasting versus Mnlticasting

Related to pushing or pulling updates is deciding whether unicasting or multi-
casting should be used. In unicast communication, when a server that is part of the
data storc sends its update to N other servers, it does so by sending N separate
messages, one to each server. With multicasting, the underlying network takes
care of sending a message efficiently to multiple receivers.

In many cases, it is cheaper to use available multicasting facilities. An
extreme situation is when all replicas are located in the same local-area network
and that hardware broadcasting is available. In that case, broadcasting or multi-
casting a message is no more expensive than a single point-to-point message. Uni-
casting updates would then be less efficient.

Multicasting can often be efficiently combined with a push-based approach to
propagating updates. In that case, a server that decides to push its updates to a
number of other servers simply uses a single multicast group to send its updates.
In contrast, with a pull-based approach, it is generally only a single client or
server that requests its copy to be updated. In that case, unicasting may be the
most efficient solution.

6.4.3 Epidemic Protocols

We already mentioned that for many data stores it is sufficient to provide only
eventual consistency. In other words, in the absence of updates, it need only be
guaranteed that all replicas are eventuatly identical. Update propagation in
eventual-cousistent data stores is often implemented by a class of algorithms
known as epidemic protocols. Epidemic algorithms do not solve any update con-
flicts for which separate solutions are used. Instead, their only concern is pro-
pagating updates to all replicas in as few messages as possible. For this purpose,
updates are ofien aggregated into a single message, and subsequently exchanged
between two servers. Epidemic algorithms form the basis for the Bayou system
described previously; its various update propagation schemes are described in
(Petersen et al., 1997).

To explain the general principles of these algorithms, we assume that all
updates for a specific data item are initiated at a single server. In this way, we
simply avoid write-write conflicts. The following presentation is based on the
classical paper by Demers et al. (1987) on epidemic algorithms,

Update Propagation Models

As the name suggests, epidemic algorithms are based on the th