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Abstract—A major challenge in blockchain sharding protocols
is that more than 95% transactions are cross-shard. Not only
those cross-shard transactions degrade the system throughput but
also double the confirmation time, and exhaust an already scarce
network bandwidth. Are cross-shard transactions imminent for
sharding schemes? In this paper, we propose a new sharding
paradigm, called OptChain, in which cross-shard transactions
are minimized, resulting in almost twice faster confirmation
time and throughput. By treating transactions as a stream of
nodes in an online graph, OptChain utilizes a lightweight and
on-the-fly transaction placement method to group both related
and soon-related transactions into the same shards. At the same
time, OptChain maintains a temporal balance among shards to
guarantee the high parallelism. Our comprehensive and large-
scale simulation using Oversim P2P library confirms a significant
boost in performance with up to 10 folds reduction in cross-shard
transactions, more than twice reduction in confirmation time, and
50% increase in throughput. When combined with Omniledger
sharding protocol, OptChain delivers a 6000 transactions per
second throughput with 10.5s confirmation time.

I. INTRODUCTION

Blockchain has emerged as a disruptive and transforma-
tional technology, with great potential and benefits, offering
a promising new decentralized economy without the risk of
single point of failures, monopoly, or censorship [1]. Examples
of these systems are ranging from the cryptocurrency such
as Bitcoin [2] and Ethereum [3], to other infrastructures and
application domains such as the Internet-of-Things [4], [5] and
Digitial Health [6], [7]. Unfortunately, the performance level
of existing decentralized systems based on the Blockchain
technology is too low to realize that vision, e.g., 7 transactions
per second (tps) and up to 60 minutes confirmation time for
Bitcoin and 10 tps/12 minutes for Ethereum.

To this end, blockchain sharding, which splits the
Blockchain into multiple disjoint parts, called shards, each
maintained by a subgroup of nodes, has been proposed as
a prominent solution for Blockchain scaling. Since each node
only needs to communicate with a few (hundreds) nodes from
the same shard to maintain a small chunk of blockchain,
sharding reduces substantially the storage, computation, and
communication costs. This is different from legacy blockchain
systems, e.g., Bitcoin and Ethereum, in which all nodes need
to communicate to maintain the same copy of blockchain,
thus, the performance is limited by the nodes average pro-
cessing capabilities. The latest sharding approaches such as
Omniledger [8] and Rapidchain [9] can handle thousands of
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transactions per second with confirmation time about a few
dozens of seconds.

All existing sharding approaches, however, face the same
challenge of handling cross-shard transactions, which involve
data from more than one shards. To prevent the double-
spending problem [10], all shards that involve a cross-shard
transaction (tx) need to execute multiple-phase protocols to
confirm the tx. This can multiple fold increase both the latency
and the effort to confirm the tx, comparing to the case when
the tx need to be processed by only one shard. In turns, extra
efforts in confirming txs may lead to higher tx fees. To make
it even worse, more than 95% of the transactions are cross-
shard [8], [9]. Previous sharding approaches often place txs
into shards randomly to balance the load among the shards.
It is natural to ask “is there a smart transactions placement
strategy that reduces the cross-shard txs, making sharding even
faster?”

In this paper, we propose OptChain, a sharding-agnostic
framework that boosts the performance of existing (and future)
sharding approaches via optimizing the placement of txs into
shards. OptChain learns the pattern from the past txs to decide
the shard-location for incoming txs based on 1) whether such
placement reduces the cross-shard txs and 2) load balance
among the shards. Specifically, OptChain works on top an
unexplored graph construction for transaction networks in
UTXO model [2], termed Transactions as Nodes (TaN), and
introduces a new score, termed Temporal Fitness to assess the
suitability of placing an incoming transaction to each shard.

The TaN network is constructed by abstracting each trans-
action as a node and there is a directed edge (u, v) if tx u uses
tx v as an input. This TaN is an online directed acyclic graph
(DAG), in which nodes arriving one by one. This construction
is different from existing abstraction of transaction networks
in which transactions are abstracted as edges among the nodes
made of addresses [11].

The Temporal Fitness score is composed by two compo-
nent scores Transaction-to-Shard (T2S) and Latency-to-Shard
(L2S). The T2S scores between a transaction u and a shard
Si, measures the probability that a random walk from a
node/tx u ends up at some node in Si (see section IV.B),
i.e., hence, how likely the transaction should be placed into
the shard without causing further crosshard txs. The L2S score
estimates the processing delay when placing the transaction to
a shard. Importantly, the protocol to estimate the two scores
is lightweight and is executed at the users side.

Practicality. Our solution OptChain can be implemented
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with simple modification in user-side software, e.g., wallet.
That is OptChain does not interfere with the core consensus
protocols and, hence, can be integrated into almost all sharding
approaches. Specifically, as computing the T2S score only
requires the information on the input txs, it can be done
efficiently at the user side by modifying the existing Simple
Payment Verification protocol [2], i.e., users do not need
to download the complete transaction history. Based on the
latencies observed from the shard, the wallet software at the
user side can use OptChain to make the decision on which
shard he/she wants the tx to be processed.

To validate our approach, we measure the performance of an
enhanced version of OmniLedger [8] with our OptChain ap-
proach on existing Bitcoin transactions. The results indicate
that OptChain can effectively reduce the cross-shard txs up
to 10 folds, cut the txs confirmation time by 93%, and at the
same time, increase the throughput by 50%. While we only
test OptChain with Omniledger, we predict a similar level of
improvement in performance when combining OptChain with
other sharding protocols such as Rapidchain.

Our contribution. We summarize our contribution as fol-
lows.

• We introduce a new way of sharding txs, reducing cross-
shard txs via an optimal placement of txs into shards.
This simple idea effectively reduces the cross-shard txs
and boosts the performance comparing to the random
placement in existing sharding approaches.

• We investigate a new abstraction of transactions network
(TaN) in which transactions are abstracted as nodes rather
than edges among addresses in previous studies. This new
abstraction results in an online DAG that can provide new
ways to analyze the transaction stream in UTXO-based
ledgers. We provide various charateristics of this TaN on
Bitcoin transactions consisting of 298,325,121 nodes and
696,860,716 edges.

• We introduce a novel algorithm, called OptChain, that
analyze the stream of txs in TaN network to make the
optimal placement of txs into shards. OptChain is simple,
lightweight, and can be easily implemented into existing
wallet software.

• Our comprehensive experiments with an enhanced Om-
niledger protocol on real Bitcoin transactions affirm the
significant benefit of our approach in cutting down the
confirmation time and boosting throughput.

Organization. The rest of this paper is structured as follows.
We summarize the related work in Section II. Section III
discusses the basis of handling cross-shard transactions in
blockchain sharding and provides some observations as well
as primary goals of the transactions placement strategies.
In Section IV, we investigate the TaN network and present
our OptChain algorithm. The experimental design and results
are presented in Section V. Finally, Section VI gives the
concluding remarks.

II. RELATED WORK

Blockchain sharding. Several blockchain sharding proto-
cols [8], [9], [12]–[15] have been proposed to address the
scalability issue in legacy blockchain. In typical blockchain
sharding, the entire state of the blockchain is splitted into
partitions called shards that contain their own independent

piece of state and transaction history. The key idea is to
parallelize the available computation power, dividing it into
several smaller shards where each of them processes a disjoint
set of transactions.

Currently, most of existing sharding protocols are built on
top of the UTXOs model. The most notable exception is
Ethereum 2.0 [15] which is the next development phase of
the Ethereum blockchain [3], employing the account model.
Unlike the UTXO model, each transaction in the account
model has only one input and one output.

The three core components of an existing sharding protocol
are 1) how to (randomly) assign nodes into shards to form
shard committees; 2) an intra-shard consensus protocol to
execute by shard committees (often a BFT protocol [8], [9]
but also can be a Nakamoto-like protocol [16]); and 3) an
atomic protocol for cross-shard transactions. In this work, we
focus on the third component in which we aim to optimize the
placement of transactions, hence mitigate the negative impact
of cross-shard transactions on the performance of existing
sharding approaches [8], [9].

Transaction networks. In our method, we abstract the
relation between transactions under a graph representation. In
previous work, Kondor et al. [11] addressed the transactions
network as a graph where each node represents a user address,
each directed edge between two nodes is created if there is
at least one transaction between the corresponding addresses.
Our work is fundamentally different in which we abstract
transactions as nodes while an edge between two nodes
represents the behavior that one transaction spends an output
of the other. By such representation, we model the problem of
transaction sharding to be an online graph partitioning problem
with temporal balancing, where nodes in a graph is divided
into disjoint subsets and the objective is to identify which
subset should contain a new arriving node.

Online and Balanced DAG Partitioning. Online graph
partitioning has been addressed in the literature [17], [18].
Stanton et al. [17] and Abbas et al. [18] have proposed multiple
natural, simple heuristics and compared their performance to
Metis [19], a fast and offline method. The objective of their
algorithms is to partition network vertices into almost equal
disjoint sets while minimizing number of crossing edges (edge
whose two endpoints are in two different set). However, these
works are fundamentally different to our work, in which we
would like to minimize number of cross-shard transactions
rather than crossing edges. Furthermore, even their works
eventually guarantee the balances between sets, we concern
more on temporal balancing, in which we would like the
number of vertices on each sets should be almost equal for
any given of time.

III. CROSS-SHARD TRANSACTIONS AND

TRANSACTIONS PLACEMENT STRATEGIES

In this section, we present an overview of state-of-the-art
transaction sharding procedures. Although blockchain shard-
ing itself could help boost the transactions confirmation pro-
cess, nonetheless, the high amount of cross-shard transactions
is one of the obstacles that hinder the system from getting
better performance. Hence, we illustrate its negative impact
which motivates us to devise the OptChain to tolerate this
issue.
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Fig. 1: Handling cross-shard transactions in Omniledger [8]

A. Atomic Commit Protocols for Cross-shard Transactions
As both cross-shard protocols in [8] and [9] are built on top

of ledgers using UTXO model, we begin with the presentation
of this model.

Unspent Transaction outputs (UTXO) model. The UTXO
model was introduced in original Nakamoto protocol for
Bitcoin [2]. In this model, transactions may have multiple
inputs and outputs where an output is assigned with credits
and locked to a user’s address. This newly created transaction
output is referred to as a UTXO. The UTXOs may then be
used as inputs of another transaction, and after this transaction
is committed to a block, those UTXOs will be marked as spent
and cannot be used again. For simplicity, we will consider a
transaction tx with two inputs tx1

in, tx2
in.

Cross-shard Transactions. Let S1
in, S

2
in, and Sout denote

the shards that contain tx1
in, tx2

in and tx, respectively. If all the
shards S1

in, S
2
in, and Sout are the same, we have a same-shard

transaction, otherwise the transaction is cross-shard (cross-
TX).

If transactions are placed into shards randomly, it was shown
that the probability for a typical transaction having two inputs
and one output to be a cross-shard transaction is about 94%
[8], assuming 4 shards, and 99.98%, assuming 16 shards.

Committing Cross-TXs in OmniLedger [8]. OmniLedger
proposed a novel atomic protocol to commit cross-TXs con-
sistently among all shards. The protocol locks all input
transactions at the input shards before committing the output
transaction(s) to output shard(s).

1) Initialize. A user creates a cross-TX tx whose inputs
spend UTXOs, e.g., tx1

in, tx2
in, from some input shards,

e.g., S1
in, S

2
in. The client gossips the cross-TX and it

eventually reaches all input shards.
2) Lock. All input shards validate the transactions within

his shard. If the transactions are valid, they are marked
spent on the shard’s ledger, and a proof-of-acceptance
is gossiped; otherwise a proof-of-rejection is gossiped.

3) Commit. If all input shards gossip the proof-of-
acceptance, the client can gossip an unlock-to-commit
transactions that eventually reach all output shards. In
turn, each output shard validates the transaction and
includes it to his ledger. However, if even one input
shard issued a proof-of-rejection, then the transaction
cannot be committed and has to abort. The client then
can gossip an unlock-to-abort message to reclaim the
fund.

Committing Cross-TXs in RapidChain [9]. Rapidchain
uses a “yanking” mechanism, in which the input transac-
tions, e.g., tx1

in, tx2
in, will be first moved to from the input

shards, e.g., S1
in, S

2
in, to the output shard, e.g., Sout via

an inter-committee protocol. After all the input transactions
are successfully “yanked” to the output shard, then the final
transactions can be added to the ledger of the output shard.

B. Performance Penalty for cross-TXs.

Comparing to same-shard transactions, cross-TX incurs
much higher confirmation time, communication and compu-
tation costs.

Longer confirmation time. In Omniledger [8], a cross-TX
will easily double the confirmation time of those in the same-
shard transactions. For the same-shard transaction, the user
only needs to submit the transaction to the shard and wait for
confirmation. The confirmation time will only be the round
time trip between the users and the shard pluses the time for
the shard committee to agree on the transactions. A cross-
TX will incur extra time to confirm the input transactions as
the input shards as well as another round time trip between
the users and the shard committees. The same is applied for
Rapidchain cross-TX protocol as each cross-TX incurs extra
round-time trip among the committees as well as the waiting
time for input transactions to agree on ‘yanking’ transactions
between shards.

Extra communication and computation cost. For a typical
cross-TX with 2 inputs and one output, the communication
cost will triple that of a same-shard transaction as all the three
shard committees and the user need to communicate to confirm
the transaction. The same holds for the computation cost.

Thus, assuming uniform time and cost to handle transac-
tions in shards, each cross-TX will double confirmation time
and triple the bandwith consumption and computation cost.
Therefore, if we can reduce the fraction of cross-TXs to 20%,
we will cut the confirmation time by more than 40% and more
than double the throughput.

C. OptChain: A Transactions Placement Strategy

Random Placement. In existing sharding approaches [8],
[9], transactions are placed randomly into shards. Often, the
hashed value of a transaction is used to determine which
shards the transaction will be placed into. This will balance
the amount of transactions per shard, however, cause almost all
transactions to be cross-TXs. For a typical transaction having
two inputs and one output to be a cross-shard transaction is
about 94%, assuming 4 shards, and 99.98%, assuming 16
shards [8]. To be specific, the systems do not consider the
relationship between transactions on sharding process, which
makes a majority of transactions eventually become cross-TXs.

Smart Transaction Placement. Ideally, the best method is
to groups well-connected transactions into a same shard. By
that way, we can minimize the number of verification steps
(step 2) of cross-TXto get proof-of-acceptance. Moreover, the
current state of shards should also be considered. We would
like to avoid situations where some shards are extremely
busy (i.e huge number of transactions in queue to wait for
verification) while some are idle. Intuitively, with a random
selection, we can balance the number of transactions in each
shards. However, some transactions could take more time to
processed than the others. Therefore, in simulation, we observe
that there are some certain moments the random selection will
eventually cause extremely imbalance on queue sizes between
shards.

527



OptChain. Motivated by observations on the limits of
OmniLedger and RapidChain, in this paper, we investigate
an optimization problem in which users need to determine
the best shard to submit their transactions in order to min-
imize cross-TXs while guaranteeing the temporal balance,
thus, shorten the confirmation time and boost the overall
system throughput. Specifically, the ultimate goal of our smart
transactions placement OptChain are:

1) Fast Confirmation Time: As major txs are same-shard
txs and load are distributed evenly, txs get confirmed in
much shorter time.

2) High Throughput: Same-shard txs require less time and
communication to confirm, thus, the system throughput
gets significantly boosted.

The above goals are obtained via optimizing two indirect goals

1) Cross-TX Minimization: Reduce the number of cross-
shard transactions by grouping related transactions into
a same shard.

2) Temporal Balancing: To distribute load evenly among
shards to increase parallelism and reduce queuing time.

In practice, we aim to deploy OptChain as a user-side
software. By monitoring its own transactions as well as the
information on the loads and confirmation time at the shards,
a client software can make decision on which is the best shard
to submit transactions. It is important that users do not have
to store the whole blockchain to optimize the placement.

In the next section, we will propose a lightweight, yet,
efficient solution, answering the question: How to identify an
appropriate shard for a new transaction such that in the long
future, our system can achieve four main goals as described?

IV. OPTCHAIN ALGORITHM

In this section, we propose an algorithm used by OptChain
to place transactions into shards. First, we introduce the system
model, in which we represent transactions under a directed
network. Under this model, we utilize a well-known PageRank
analysis to propose T2S-score, which is to measure how likely
a transaction should be placed into the shard. Then, we propose
a mathematical model to estimate confirmation latency for
placing a transaction into shards, which we called L2S score.
Finally, we describe how OptChain places transactions into
shards based on the combination of T2S and L2S scores.

A. Transaction-as-Node Network and Partitioning
To observe the relation between transactions, we model

the set of transactions under a graph representation, which
is defined as follows:

Definition 1 (TaN Network): A TaN network of a set of
transactions is presented as a directed graph G = (V,E) where
V is the set of transactions and E is a set of directed edges
in which there exists (u, v) ∈ E if the transaction u uses the
UTXO(s) of transaction v.

To have a clear picture on how a TaN network looks like, we
construct a TaN network from a set of transctions in the first
508,241 blocks of the Bitcoin blockchain which was gathered
by MIT [20]. The most recent transaction of the dataset was
issued on February 2018. From this dataset, we construct a
TaN network of 298,325,121 nodes and 696,860,716 edges.
Nodes that do not have any outgoing edges represent coinbase
transactions (rewards for mining Bitcoin blocks). On the other

hand, nodes that do not have any incoming edges represent
transactions whose UTXOs have not been spent. TaN network
is a directed acyclic graph since a transaction only uses
UTXO(s) of past transactions. Therefore, TaN network can be
sorted in a topological order, which exactly reflects the order
of appearance of transactions.

Fig. 2a shows the plot of the degree distribution of the con-
structed TaN network in log-log scale. The degree distribution
of TaN network exhibits power-law distribution with average
in- or out- degree of ≈ 2.3. There are total 508,241 coin-
base transactions (transactions without inputs), and 369,2947
transactions whose UTXO(s) have not been spent. Also, there
are 37,108 transactions without any outputs or inputs. As can
be seen from the degree distribution in Fig. 2b, major nodes
(93.1%) in TaN network have the in-degree lower than 3. As
regards the out-degree, 97.6% of nodes have the out-degree
lower than 10, and 86.3% lower than 3.

We investigate the average degree of nodes of TaN net-
work overtime and plot in Fig. 2c. We observe that for a
major of time, the average degree of TaN network is stable
and consistent. There are only 2 periods the average degree
significantly changes, which is the first 1 millions transaction
and around 80,000,000th one. This behavior does not happen
regularly because: (1) the first period is that the system needs
to generate a lot of coinbase transactions for funding and (2)
there was a flooding attack at the second period [21], which
causes mining pools to create a lot of transactions with high
degree to clean up “trash” transactions.

By distributing transactions into shards, the task of transac-
tions sharding eventually become partitioning the TaN network
into k disjoint subsets of nodes S = {S1, ..., Sk}, where k is
the number of shards and Si denotes a set of transactions under
management of shard i. We have ∪k

i=1Si = V and Si∩Sj = ∅
for all i, j = 1 → k. For simplicity, we also call Si as the
shard i.

Given a transaction represented by node u ∈ V , denote
S(u) ∈ S as a shard containing u. Let Sin(u) as a set of
input shards of u. Then u is a cross-TX iff Sin(u) �= {S(u)}.
Therefore, we consider the task of distribute a new transaction
into shards as an online partitioning to the TaN network. To be
specific, given a TaN network G = (V,E), a set of k disjoint
subsets of nodes S = {S1, S2, ..., Sk} and a new arriving
transaction (node) u, our task is to identify S(u) ∈ S .

B. Transaction-to-Shard Score
In this part, we will propose a metric to measure the fitness

score between the new arrival transaction and shards, which
we called Transaction-to-Shard (T2S) score. This score is
motivated by a well-known graph measurement, called PageR-
ank. To be specific, PageRank assigns numerical weighting to
each node of a network with the purpose of measuring node
relative importance within the network. A PageRank vector
is a weighted sum of the probability distribution obtained
by taking a sequence of random walk steps starting from a
specified initial distribution. PageRank has been proven to be
an efficient method on graph local partitioning, in which nodes
in a same set of partition tend to have a similar weight.

Although regular PageRank computation could cost consid-
erable runtime, we utilize the trait that TaN is acyclic and
the order of nodes’ appearance is also TaN’s topological order
to devise a fast T2S-score computation of each nodes. To be
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(a) Degree distribution (b) Cumulative distribution (c) Changes in average degree

Fig. 2: TaN network statistics

specific, we represent the T2S-scores of a transaction u to
shards under a k-dimensional vector p(u), in which the entry
i measures the fitness between u and shard i. Denote r[i] as
the value of entry i of vector r. Also, let Nin(u) (Nout(u))
as a set of input (output) transactions of u. p(u) is computed
by the following equation:

p(u) = αs(u) + (1− α)
∑

v∈Nin(u)

p(v)

|Nout(v)|

where α is a constant in (0, 1] and s(u) is a starting vector
for a node u. s(u) is initiated as follows:

• If u is a new arriving node, s(u) = {0}k
• Otherwise, s(u) receives a value 1

|S(u)| at the entry

corresponding to shard S(u) and 0 elsewhere.

Clearly p(u) can easily be calculated in the manner similar
to Bread-First Search, in which we start from nodes who have
no input (coinbase transaction). Therefore, computing p(u)
for all u ∈ V costs O(k(|V | + |E|)) runtime complexity,
which is very expensive as the TaN network grows. However,
we observe that: after placing a new transaction u into shard
S(u), the change on s(v) for all v ∈ V does not impact the
fitness score of all nodes other than normalization scale. To
be specific, assume at time t+ 1, u arrives and is placed into
shard i (S(u) = Si). Denote p(t)(v) is the T2S-score vector

of node v at time t and S
(t)
i is the shard i at time t. We have:

• If v �= u, p(t+1)(v)[i] =
|S(t)

i |
|S(t)

i |+1
p(t)(v)[i] and

p(t+1)(v)[j] = p(t)(v)[j] for all j �= i.

• If v = u, p(t+1)(v)[i] = α 1

|S(t)
i |+1

+
S

(t)
i

S
(t)
i +1

p(t)(v)[i] and

p(t+1)(v)[j] = p(t)(v)[j] for all j �= i.

Therefore, rather than computing p(v) for all v ∈ V from
scratch to get T2S score of a new transaction u, we propose
the following methods for the faster calculation. First, we
introduce two other vectors p′(v), s′(v) associated to each
node v ∈ V in addition to s(v) and p(v). If a transaction
v is placed in shard j then s′(v)[j] = 1 and s′(v)[i] = 0 for
all i �= j, s′(v) is fixed right after v is placed. Given a new
transaction u, p(u) can be computed as follows.

• If u is a coinbase transaction, there is no calculation
needed.

• Otherwise, we set p′(u) = (1 − α)
∑

v∈Nin(u)
p′ (v)

|Nout(v)| .

The T2S score of node u is p(u) = { p′(u)[i]∑
v s′(v)[i]}ki .

Then, after placing u into shard i (S(u) = Si), we update
p′(u) = p′(u)+αs′(u). Overall, the computation of p(u) now
only costs O(|Nin(u)|k). As TaN network has been shown to
be scale-free, the average computation, thus, costs only O(k).

Discussion. Why do we develop the new T2S score instead
of using existing graph partitioning methods to minimize
the number of cross-TX? The best way yet unrealistic to
minimize the number of cross-TXs is that we know the
structure of the TaN network beforehand, i.e. all transactions
have been arrived, and apply graph partitioning algorithms.
But even those, does such algorithm improve the performance
of sharding blockchain? The answer could be not likely.
In experiment, we applied a well-known graph partitioning
tool, called Metis k-way [19], to get the partitioning on
transactions. Metis aims at partitioning the graph into disjoint
sets of nodes with almost equal size while minimizing the
number of edges whose two endpoints belong to different sets.
However, when simulating, if we put transaction exactly like in
the Metis solution, the system’s throughput and confirmation
latency are highly impacted as the Metis solution tends to put
large amount of consecutive transactions into one shard. More
details of such experiments will be shown in Section V.

A more realistic method, but simple, is Greedy. To compare
with Metis, given n txs and k shards, we set the maximum
number of transactions that a shard can have as (1 + ε)n/k.
Then we consider transactions sequentially. Considering a

transaction u arrives at a moment t, denote S
(t)
i as a set

of transactions in shard i at time t. The greedy algorithm
computes the cost of placing u on shard j as f(u, j) =

|Sin(u) \ S(t)
j |. Then the algorithm places u into a shard j

which has the maximum f(u, j) and its size has not exceeded
(1+ε)n/k. Intuitively, the greedy solution will help reduce the
number of cross-TXs. However, this solution does not take the
global view on TaN network structure while only considering
connection of one-hop away from u. Thus, in the long future,
the performance of greedy algorithm becomes undesireable.

To prove the efficiency of T2S-score, we compare the
percentage of cross-TXs between Omniledger, Greedy solution
and a solution which is similar to Greedy except that after
computing p(u), we put u into a shard with the highest T2S-
score, i.e. argmaxip(u)[i]. We set α = 0.5 and we call such

529



method T2S-based. With both Greedy and T2S solution, we
set ε = 0.1.

We use the same data set from MIT. First, we ran the
algorithms from scratch where all shards are empty at the
beginning. The result is presented in Table I. It is easy to see
that our solution significantly reduces the number of cross-
TXs and overcomes Greedy solution with a huge margin. Even
Metis is unrealistic, we put its results in the table as a baseline
for comparison.

TABLE I: Percentage of cross-TXs when running from scratch

k Metis Greedy Omniledger T2S-based

4 1.66 % 24.62 % 80.82 % 9.28 %
8 3.09 % 27.02 % 90.33 % 12.52 %

16 4.70 % 28.14 % 94.87 % 15.73 %
32 6.91 % 28.69 % 97.09 % 18.94 %
64 9.91 % 28.97 % 98.18 % 21.65 %

Next, we consider at a certain moment, the system already
places a certain amount of transactions into shards. We then
apply the algorithms with a set of new arrival transactions
and compare the number of cross-TXs in such set. To be
specific, first, we use Metis to partition the TaN network of 30
millions Bitcoin transactions into k shards. Then we apply the
algorithm to place transactions of a sequence of next 1 millions
transactions into k shards. The results is presented in Table
II. Again, our solution showed its efficiency comparing with
Greedy and OmniLedger in term of minimizing the number
of cross-TXs.

C. Latency-to-Shard Score and Temporal Fitness

We have shown that a simple solution using T2S-score
could significantly reduce the number of cross-TXs. However,
this is not a ultimate goal of our algorithm design. What if
there is a huge amount of transactions with the same “fittest”
shard w.r.t T2S-score arriving sequentially? Trivially, putting
all those transactions into the same shard is not a good
solution. Therefore, in this part, we propose a mathematical
model to estimate confirmation latency of a transaction under
transaction sharding. We call the estimated latency Latency-
to-Shard (L2S) score. Hence, the best transaction placement
is the one that maximizes the T2S-score while minimizing the
L2S-score.

Let consider a moment a new transaction u arrives and
system shards are S1, ...Sk. Assume if u is placed in shard
j, u will need proof-of-acceptance from a set of shards
Sj . We model the communication time between a user who
creates u and the shard Si under exponential distribution

l
(i)
c (t) = λ

(i)
c e−λ(i)

v t, where 1

λ
(i)
c

is expected communication

time, which could be collected through frequently sampling
between the user and shard Si. Also, for each shard Si, we
model the verification time of Si under exponential distribution

l
(i)
v (t) = λ

(i)
v e−λ(i)

v t, where 1

λ
(i)
v

is expected verification time,

which could be estimated from observation of recent consensus
time of shard i and its current queue size. With high precision,

it is likely that λ
(1)
v �= ... �= λ

(k)
v �= λ

(1)
c �= ... �= λ

(k)
c

Therefore, a probability distributed function of time to get
proof-of-acceptance from shard Si is modeled as follows.

TABLE II: Number of cross-TXs when running from a certain
stage of the system

k Greedy Omniledger T2S-based

4 335,269 837,356 112,657
8 407,747 922,073 172,978
16 441,267 960,935 226,171
32 449,032 979,323 282,108
64 454,321 988,144 366,854

Algorithm 1 Transaction Sharding in OptChain

Input: G(V,E), S1, ...Sk, p′ : V → R
+, α and a new

transaction u
Output: a new state of S1, ...Sk

1: # Compute T2S-scores of u

2: p′(u) = (1− α)
∑

v∈Nin(u)
p′(v)

|Nout(v)|
3: p(u) = {p′(u)[i]

|Si| }ki=1

4: # Compute L2S-scores of u
5: for j = 1→ k do
6: E(j) = ∫∞

0
t
∫ t

0
f
(j)
v (x)f

(j)
v (t− x)ΔxΔt

7: end for
8: # Put u into shard with the highest Temporal Fitness score

9: su = argmaxi

(
p(u)[i]− 0.01 · E(i)

)
10: Ssu ← Ssu ∪ {u}
11: # Update after placing u into Ssu
12: p′(u)[su] = p′(u)[su] + α
13: Return S1, ...Sk

f (i)(t) =

∫ t

0

l(i)c (x)l(i)v (t− x)Δx

=
λ
(i)
c λ

(i)
v

λ
(i)
v − λ

(i)
c

(
e−λ(i)

c t − e−λ(i)
v t

)

while the cumulative distributed function is:

F (i)(t < T ) =

∫ T

0

λ
(i)
c λ

(i)
v

λ
(i)
v − λ

(i)
c

(
e−λ(i)

c t − e−λ(i)
v t

)
Δt

=
λ
(i)
v

λ
(i)
v − λ

(i)
c

(1− e−λ(i)
c T )− λ

(i)
c

λ
(i)
v − λ

(i)
c

(1− e−λ(i)
v T )

As the user can send request for verification simutaneously
to shards in Sj , the probability that verification process is done
by time T is computed as

F (t < T ) =
∏

Si∈Sj

F (i)(t < T )

Thus, the probability distributed function of time for the
user to get all proof-of-acceptance if place u into shard j is
modeled as follows

f (j)
v (t) =

ΔF (t)

Δt

=
∑

Si∈Sj

λ
(i)
c λ

(i)
v

λ
(i)
v − λ

(i)
c

(
e−λ(i)

c t − e−λ(i)
v t

) ∏
Sr∈Sj\Si

F (r)(t)
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Similarly, we can find the probability distribution for u to
get confirmation from shard j, which is:

f (j)
c (t) =

λ
(j)
c λ

(j)
v

λ
(j)
v − λ

(j)
c

(
e−λ(j)

c t − e−λ(j)
v t

)

Therefore, the L2S-score of u if putting into shard j is
computed by

E(j) =
∫ ∞

0

t

∫ t

0

f (j)
v (x)f (j)

v (t− x)ΔxΔt

In overall, for a given transaction, we would like to balance
between the T2S and L2S-score. Specifically, given a new
arrived transaction u and a shard j, we define the Temporal
Fitness score between u and j as p(u)[j] − 0.01 · E(j).
OptChain then places u into the shard whose has the highest
Temporal Fitness score. The procedure of transaction sharding
in OptChain is presented in detailed by Alg. 1.

V. EXPERIMENTS

The aim of this experiment is to evaluate the impact of
OptChain on Blockhain system’s latency and throughput. To
demonstrate the strengths of our proposed solution, the per-
formance of OptChain is rigorously compared to OmniLedger,
Metis, and the Greedy heuristic discussed in section IV.

A. Experiments Design and Configuration
The experiments presented in OmniLedger [8] used the first,

arguably simple, 10,000 Bitcoin blocks which contain only
10,093 transactions in total. Additionally, of those transactions,
99.1% are coinbase, which cannot be cross-TXs. At that point
in time, Bitcoin was still in an initial phase in which there
was only about 1 transaction per block and most of them were
coinbase transactions. Therefore, their experimental results do
not represent the impact of cross-TXs.

Our experiments are conducted on the first 10 million
Bitcoin transactions, taken from the dataset in [20]. From
this dataset, we build a TaN network that contains 10,000,000
nodes and 19,958,051 edges. As opposed to OmniLedger, our
dataset is much bigger with more chance of creating cross-
TXs. Specifically, with 16 shards, the OmniLedger’s random
placement produces 9,349,979 cross-TXs comprising 93.5%
of the whole set.

We develop a sharding-based blockchain simulation and run
the transactions placement algorithms to calculate the latency
and throughput. Particularly, we use the OverSim framework
[22] to simulate a Bitcoin-like blockchain system on OM-
NeT++ 4.6 [23], which is a discrete event-based network
simulator. The bandwidth of all connections between nodes
is set to 20 Mbps and a latency of 100 ms is imposed on all
communication links. We set the block size of 1MB because
this is currently the block size limit in Bitcoin. The average
size of a transaction is about 500 bytes, so we put about 2000
transactions in one block. A shard is assigned with about 400
validators and one leader that are randomly placed at different
coordinates. In our simulation, the distance between nodes
affects the communication latency. Each shard implements a
queue (or mempool) to store incoming transactions that have
not been processed yet.

Our simulation involves a set of clients that continuously
issue transactions from the dataset to the system at a predefined

TABLE III: Experiment configuration

Number of transactions 10,000,000
Block size 1 MB
Transactions per block 2,000
Network bandwidth 20 Mbps
Number of shards 4, 6, 8, 10, 12, 14, 16
Transactions rate (tps) 2000, 3000, 4000, 5000, 6000
Algorithms OptChain, Metis k-way, OmniLedger, Greedy

rate. We re-implement the mechanism for handling cross-TXs
as decribed in Section III. Before sending a transaction u
for verification, a client will run a transactions placement
algorithm to determine the shard S(u) to place that transaction.

Getting rid of Omniledger’s bottleneck. In Omniledger,
users gossip each transaction to all nodes in the network, thus,
all nodes must receive the whole blockchain (and also the
unconfirmed transactions, if any). Thus, even when the number
of nodes and shards go to infinity, the throughput of nodes
in Omniledger is still limited by typical network bandwidth
of the nodes. To address this issue, users will direct each
transaction directly to the input shards and output shards of
the transaction.

Transaction placement strategies. We compare OptChain
with three transaction placement methods.

• OmniLedger: The default random placement strategy in
Omniledger.

• Greedy: Greedy placement strategy, discussed in Sec-
tion IV-B.

• Metis k-way: Running (offline) Metis partitioning algo-
rithm to partition the network into k shards.

As Metis k-way is an offline algorithm, it is not a realistic
transactions sharding scheme. However, if we can put trans-
actions as in Metis solution, we can minimize the number
of cross-TXs. Our purpose is, therefore, to see whether only
minimizing the number of cross-TXs can improve the system
performance. Therefore, we first input the whole TaN network
to get its Metis solution and then use the resulting partitions
to determine S(u) for each transaction u.

We carry out the experiment with various configurations by
combining different number of shards and transaction rates.
Specifically, we vary the number of shards from 4 to 16
to conform with the experiments presented in OmniLedger
[8]. With regard to the transactions rate, which represents the
rate at which transactions are sent to the system, we refer to
the VISA-level throughput of 4000 transactions per second
(tps) to set the transactions rate from 2000 tps to 6000 tps.
Table III summarizes all the parameters and configuration of
the experiments.

B. Experimental results
In Fig. 3, we summarize the system’s average latency

and throughput when running the algorithms with different
combination of transactions rates and number of shards. The
thoughput is calculated by taking the number of transaction
divided by the total time for all transactions get committed.
The latency of a transaction is measured by the time from
when the transaction is sent until it is committed to the
blockchain. In this part, we would like to have more insight
on how different configuration impacts the performance of
OptChain as well as other transaction sharding methods in
term of throughput and latency.
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(a) OptChain

(b) OmniLedger

(c) METIS k-way

(d) Greedy

Fig. 3: Impact of different transactions rates and number of
shards on the latency and throughput

1) Maximum Throughput: From Fig. 3, it is easy to see that
all the methods achieve their highest throughput at transaction
rate of 6000 and 16 shards. However, except OptChain, the
other three algorithms produce throughput much lower than
the input rate, which shows that these three are incapable
of handling such transaction rate in this setting. We observe
that even OptChain does not always run well in all config-
urations, i.e. throughput is lower than transaction rate. But
for each value of transaction rates, OptChain always has a
certain configuration on the number of shards guaranteeing no
backlogging in the system. To be specific, with a transaction
rate of 2000, OptChain is totally healthy with at least 6 shards.
This number in transaction rates of 3000, 4000, 5000, 6000 is
8, 10, 14, 16 respectively. Meanwhile, the Omniledger system
needs at least 16 shards to be able to process up to 3000

(a) Number of shards = 16 (b) Varying transactions rate and #shards

Fig. 4: System throughput

transactions per second. With 16 shards, Greedy is only able
to process with transactions rate up to 5000. Therefore, given
a same transaction rate, OptChain needs a lower number of
shards than other methods to avoid backlogging in the system.

For a more comprehensive comparison, Fig. 4b presents
the maximum system throughput at different pairs of value
of transactions rate and number of shards. As can be seen, no
other transaction sharding methods can reach up to the same
level as OptChain. For example, the maximum throughput
OptChain can achieve at 16 shards is 34.4%, 30.5%, and
16.6% higher than that of OmniLedger, Metis, and Greedy,
respectively.

Metis has been proven to be the best method, yet unrealistic,
to distribute transactions into shards in order to minimize the
number of cross-TXs. High number of cross-TXs is claimed by
Omniledger [8] to be the main factor limiting the system per-
formance. However, when we place transactions as in Metis’s
solution, the throughput never inline with transaction rate. For
example, Fig. 4a shows the throughput of the algorithms as
we fix the number of shards to 16 and vary the transactions
rates. As previously stated, OptChain, Omniledger and Greedy
are comfortable to a certain rate within such range. But
Metis’s throughput never reaches the transaction rate. Thus,
we conclude that high number of cross-TXs is not a sole factor
hindering Blockchain sharding performance.

What cause Metis’s throughput being worse than other
three solutions? We take more insights on the timeline that
transactions are finally committed. We set the transaction rate
to be 6000 and 16 shards. Then we count the number of
transactions getting committed in each 50-seconds period and
plot the results as in Fig. 5. It is easy to see that OptChain,
OmniLedger, and Greedy produce almost consistent number
of committed transactions over each period of 50 seconds.
Meanwhile Metis is not efficient during the first 500 seconds.
Also, Metis tends to agitate more than other three solutions,
which could imply congestion on shards in some certain
moments, i.e. some shards get more transactions than the other.
The huge drop in the end of each line in Fig. 5 is because the
simulator has reached the end of the dataset in which no more
transactions are sent to the system.

To observe the congestion, we plot out the change on queue
sizes of shards under four sharding methods as in Fig. 6.
The congestion on Metis method is from the fact that Metis
tends to put a large amount of consecutive transactions into
one same shard. Thus, the pattern, in which some shards are
overwhelmed while the others have no transactions, happens
frequently in Metis. Greedy also met a situation that some
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Fig. 5: Number of committed transactions across time

shards have no transaction in several moments but in over-
all, transactions are splitted more equally than Metis among
remaining shards. Such event does not happen in OptChain
and OmniLedger. However, as OmniLedger is not capable of
running with a transactions rate of 6000 tps, shards queue
size will increase linearly overtime. OptChain performs the
best in term of load balancing among shards. We can see
that both the maximum and minimum queue size in OptChain
are consistent and stable. Also, in worst case, a queue size
in OptChain only reaches up to ≈ 44,000 transactions while
these numbers in Metis, Greedy and OmniLedger are 507000,
230000 and 499000 respectively.

To have a clearer observation of this behavior, we calculate
the ratio between the maximum and minimum queue size of
each algorithm at each simulation timestamp and compare
them. Fig. 7 illustrates this comparison where we can clearly
see how inefficient the Metis and Greedy are in terms of
temporal balance. Being unable to handle the load balancing
among shards not only affects the throughput negatively but
also notably increases the system’s average latency as we shall
see in the following experiments.

2) Transaction Latency: Next, we compare the average
(maximum) transaction latency, i.e., transaction confirmation
time, among the different sharding approaches. As demon-
strated in Fig. 3, all four sharding methods share the same
behavior: at a certain transaction rate, the average transaction
latency decreases significantly when the number of shards
increases. Therefore, all four methods performs their best in
term of latency with the configuration of 16 shards as the
number of transactions in each shard is low enough.

To closely evaluate the latency, we varied the transaction
rate while keeping the number of shards at 16 as shown
in Fig. 8a. Clearly there exists a considerable gap be-
tween OptChain’s average latency and other methods’ results.
OptChain always achieves the best performance comparing
to the others. In fact, at the transactions rate of 4000 tps,
the system only takes 8.7 seconds to process a transaction
in average. At low transactions rate (i.e., 2000 to 3000 tps),
we can see that all algorithms except for Metis have good
latency in general. This is because the system can balance
between throughput and transaction rate at these ranges, thus
no backlogging happens.

As we increase the rate to 6000 tps, our algorithm still
maintains a good latency, while we can see a significant
increase in other algorithms. In particular, at 6000 tps, we
reduce up to 93% the latency comparing to the OmniLedger.

(a) OptChain (b) Omniledger

(c) Greedy (d) Metis k-way

Fig. 6: Maximum and minimum queue size of shards over
time

Fig. 7: Queue size ratio

This comes from the fact that OmniLedger can not tolerate
6000 transactions per second in such settings. Thus, the
queuing delay (time staying in queue) of a transaction will
increase overtime and come to infinity. This behavior can also
be observed in Greedy. As for Metis, even though it has the
least amount of cross-shard transactions, it still gets really high
average latency. This issue can be explained as Metis failed
to achieve the temporal balance in queue size between shards
as we mentioned above, causing there were only some active
shards at a time and exacerbating the final average latency.

Next, we measure the system’s latency with different com-
binations of transactions rate and number of shards as in
Fig. 8b. Specifically, we set the configuration in the same way
as Fig. 4b. Again as can be seen in Fig. 8b, OptChain obtains
the best performance in term of balancing throughput and
transaction rate. At these configurations, the highest average
latency of OptChain is only 10.5 seconds at the transactions
rate of 6000 tps and 16 shards, while OmniLedger reaches
346.2 seconds at this configuration. In addition, at the trans-
actions rate of 4000 and 10 shards, OptChain reduces up to
98% the latency as compared to OmniLedger.

533



(a) Number of shards = 16 (b) Vary transactions rate and #shards

Fig. 8: Average transaction latency

(a) Number of shards = 16 (b) Vary transactions rate and #shards

Fig. 9: Maximum transaction latency

Fig. 9a illustrates the maximum latency to process transac-
tions with 16 shards at different transaction rates. At 6000 tps,
OptChain takes at most 100.9 seconds for a transaction while
OmniLedger, Metis, and Greedy respectively takes 1309.5,
1345.9, and 628.9 seconds. This result, together with Fig. 8,
again confirms that our algorithm significantly reduces the
transaction processing latency. Additionally, in Fig. 9b, we
also plot the result of this metric at different combinations
of transactions rate and number of shards as in the previous
Fig. 8b. Among these configurations, the highest latency we
ever reach is 102.7 seconds at the transactions rate of 5000 tps
and 14 shards. At this point, OmniLedger, Metis, and Greedy
respectively takes at most 1397.0, 1730.0, and 497.0 seconds
to process one transaction.

For a more detailed view on the impact of algorithms
on system’s latency, in Fig. 10, we present the cumulative
distribution of the latency when we set the shards number
to 16 and transactions rate 6000 tps. As can be seen, up to
70% of the transactions are processed within 10 seconds with
OptChain. For other algorithms, within this time frame, only
41.2%, 7.9%, and 2.4% of the transactions were completed
with Greedy, OmniLedger, and Metis, respectively.

C. Summary of results

The experiments conducted in this section notably show
that the proposed OptChain significantly outperforms other
transaction sharding methods. To be specific, OptChain could
reduce up to 93% the latency and increase 50% the throughput
in comparison to OmniLedger. Furthermore, OptChain is more
scalable than OmniLedger where it can scale up to the rate of
6000 transactions per second and 16 shards. Meanwhile, for
a certain transaction rate, OptChain requires less shards than
OmniLedgers to guarantee the system performance without
backlogging. In overall, Optchain’s good performance comes

Fig. 10: Latency distribution

Fig. 11: OptChain scalability

from the fact that OptChain is able to concurrently handle two
main factors that hinder the system performance: (1) reducing
cross-TXs and (2) temporally balancing workload between
shards.

The highest transaction rate OptChain can scale up to
(throughput is equal to transaction rate) with multiple number
of shards is plotted out as in Fig. 11. The best throughput of
OptChain is almost linear with the number of shards and it
can reach above 20,000 tps with 62 shards. More importantly,
when the throughput is comfortable with transaction rate,
OptChain guarantees that the confirmation delay is never more
than 11 seconds.

VI. CONCLUSION

Handling cross-shard transactions has been a major chal-
lenge in research on blockchain sharding as they are the
main factor that limits the scalability of the system. In this
paper, we have proposed OptChain, a scalable protocol to
optimally place transactions into shards, which guarantee re-
ducing number of cross-shard transaction as well as temporally
balancing workload between shards. In experiments, OptChain
reduces the latency by 93% and increases the throughput by
50% in comparison with the state-of-the-art sharding system,
OmniLedger. Finally, our empirical evaluation demonstrates
that OptChain scales smoothly with transactions rate up to
6,000 transactions per seconds with 16 shards and potentially
handle much higher rate with more shards.
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