
Endorsement in Hyperledger
Fabric via service discovery
Hyperledger Fabric (HLF) is a modular and extensible permissioned
blockchain platform. The platform’s design exhibits principles
required by enterprise-grade business applications, such as supply
chains, financial transactions, asset management, etc. For that end,
HLF introduces several innovations, two of which are smart
contracts in general-purpose languages (chaincode in HLF), and
flexible endorsement policies, which govern whether a transaction is
considered valid. Typical blockchain applications comprise two tiers:
The “platform” tier defines the data schema and embedding of
business rules by means of chaincode and endorsement policies; the
“client-side” tier uses the HLF software development kit (SDK) to
implement client application logic. The client side should be aware of
the deployment address of chaincode and endorsement policies
within the platform. In past releases, this was statically configured
into the client side. As of HLF v1.2, a new feature called service
discovery, presented in this paper, provides APIs that allow dynamic
discovery of the configuration required for the client SDK to interact
with the platform. This enables the client to rapidly adapt to changes
in the platform, thus improving the reliability of the application layer
and making the HLF platform more consumable.

Y. Manevich
A. Barger
Y. Tock

1 Introduction
Blockchain technology is gaining a lot of traction,

becoming one of the most appealing and intriguing areas of

interest for both research communities and industrial

parties. The popularity of blockchain technologies stems

from its huge potential of developing a wide range of

distributed applications, allowing safe collaboration

between mutually distrusting parties, without the use of a

central trusted authority.

Blockchain could be viewed as an append-only immutable

data structure—a distributed ledger that maintains transaction

records between distrusting parties. The transactions are

usually grouped into blocks. Then, every party involved in the

blockchain network takes part in a consensus protocol to

validate transactions and agree on an order between blocks,

consequently building a hash chain over these blocks. This

process forms a ledger of ordered transactions and is crucial

for consistency and integrity. Each party is responsible,

maintaining its own copy of the distributed ledger, not

assuming trust on anyone else. Therefore, blockchain

protocols are related to Byzantine fault-tolerant consensus.

Much of the increasing enthusiasm around Bitcoin [1] is

attributed to blockchain as a promising technology to run

trusted exchanges in the digital world. Bitcoin is operated in

public, where anyone can join or leave the blockchain

network, and no one is required to specify the real identity.

Such blockchain systems are known as public or

permissionless blockchains. Public blockchains inherently

involve the notion of a native cryptocurrency and are

mostly based on the proof-of-work consensus protocol to

compensate for the lack of identity in the open-group

model. The proof-of-work consensus protocol has several

salient disadvantages, which are as follows:

1) a huge computational cost that manifests in

prohibitive power consumption;

2) probabilistic nature of transaction confirmation,

leading to large confirmation latency;

3) low transaction throughput.

These factors make public blockchains unsuitable for

enterprise-grade application. Therefore, growing interest

from industry triggered the development of new blockchain

platforms designed for permissioned settings, where the

blockchain protocol runs among a set of known,
Digital Object Identifier: 10.1147/JRD.2019.2900647

� Copyright 2019 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/19 � 2019 IBM

IBM J. RES. & DEV. VOL. 63 NO. 2/3 PAPER 2 MARCH/MAY 2019 Y. MANEVICH ET AL. 2 : 1

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 27,2021 at 11:45:05 UTC from IEEE Xplore. Restrictions apply.

authenticated participants. This is a natural evolution to

address requirements posed by business applications

running blockchain among a set of identifiable participants

that do not fully trust each other.

It is possible to embed business rules into a Turing-

complete programmable transaction logic, to be executed

by blockchain in the form of a smart contract, as introduced

by Ethereum [2]. The Bitcoin script was a predecessor of

this concept allowing the transfer of native crypto-coins

(bitcoins) from one owner to another. A smart contract

provides an abstraction that resembles the functionality of a

trusted distributed application, leveraging underlying

blockchain facilities to gain security and consistency

guaranties. Many permissioned blockchains use a replicated

state machine [3] paradigm: They order the transactions and

then execute them on all peers. This is known as the order-

execute architecture that leads to intolerance to

nondeterministic smart contracts and to sequential

execution of transactions that severely limits performance

[4].

Hyperledger Fabric [4] (HLF) is an open-source project,

released by the Linux Foundation. It introduces a new

architecture (see Figure 1) for enterprise-grade

permissioned blockchain platforms following the novel

paradigm of execute-order-validate for distributed

execution of smart contracts (chaincode in HLF). In

contrast to the order-execute paradigm, in HLF,

transactions are first tentatively executed by a subset of

peers (endorsed). Transactions (with tentative results) are

then grouped into blocks and ordered, and finally a

validation phase makes sure that transactions were properly

endorsed and are not in conflict with other transactions.

Validated transactions are then committed to the blockchain

state. This architecture allows multiple transactions to be

executed in parallel by disjoint subsets of peers, increasing

throughput, and tolerates nondeterministic chaincode.

Invalid transactions are dropped in the validation phase.

The endorsement policy is the set of rules that determines

which subset of peers should execute a transaction and what

constitutes a valid execution. In a sense, HLF benefits from

the combination of two well-known approaches for

replication, passive and active [5, 6].

Blockchain applications are typically composed of two

tiers. The first—called the “platform tier”—focuses on

modeling the data schema and embedding of business rules

into the blockchain by means of chaincode and

endorsement policies. The second—called the “client

tier”—uses the software development kit (SDK) provided

by HLF to implement client-side application logic.

For its proper operation, the client needs to know the

identifier and deployment address (i.e., peers) of the

chaincode it intends to invoke. It also needs to select a

proper subset of those peers in order to fulfill the

endorsement policy coupled with said chaincode. The

challenge is that all of these entities are dynamic: Peers may

be added, removed, or simply crash; endorsement policies

may be updated; and chaincode may be upgraded.

In past releases of HLF (before v1.2), the chaincode

identifier and location, as well as endorsement policies,

were statically configured into the HLF client. That is, the

client was statically configured with the addresses of the

peers that need to execute and endorse a transaction

proposal for a particular chaincode. This limited the

reliability and availability of the client in the event of

changes in the platform. Moreover, client configuration was

complicated and technical, which made the platform more

difficult to use.

In this paper, we describe the design and implementation

of the service discovery component, introduced in HLF

v1.2, which addresses the challenges posed by the dynamic

nature of the platform. Service discovery provides APIs that

allow the client application to dynamically discover the

configuration details of the endorsement policies and

chaincode it needs to use. It, therefore, alleviates the client

application developer from the burden of painstakingly

reconfiguring the client every time these change, thus

increasing the availability and resiliency of the client-side

applications. Service discovery leverages the membership

propagation capability of the HLF replication layer [7] to

gather and disseminate the necessary information needed to

implement these APIs.

The remainder of this paper is organized as follows:

Section 2 provides some background by briefly describing

the internal structure of HLF. Section 3 describes the HLF

gossip layer, whereas Section 4 outlines the endorsement

Figure 1

High-level structure of Hyperledger Fabric blockchain network. Pre-

sented is a deployment that includes three organizations OrgA, OrgB,

and OrgC, each including three, two, and three peers, respectively.

The chaincode SampleCC is deployed on some of the peers, and its

associated endorsement policy requires the signatures of at least one

peer from OrgA, and at least one peer form either OrgB or OrgC. The

ordering service is responsible for the total order of transactions.

2 : 2 Y. MANEVICH ET AL. IBM J. RES. & DEV. VOL. 63 NO. 2/3 PAPER 2 MARCH/MAY 2019

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 27,2021 at 11:45:05 UTC from IEEE Xplore. Restrictions apply.

policies. Next, Section 5 presents the design and

implementation of the new service discovery component,

and finally, Section 6 concludes this paper.

2 Background
Prior to HLF, all blockchain platforms, permissioned or

permissionless, followed the order-execute pattern. That is,

network participants use a consensus protocol to order

transactions, and only once the order is decided, all

transactions are executed sequentially, thus essentially

implementing active state machine replication [3]. The

order-execute approach poses a set of limitations. The fact

that transactions have to be executed sequentially

effectively leads to throughput degradation, becoming a

bottleneck. In addition, an important issue to consider is the

possible nondeterministic outcome of transactions. The

active state machine replication technique implies that

transaction execution results have to be deterministic in

order to prevent state “forks.” Most of the current

blockchain platforms implement domain-specific language

to overcome the problem of nondeterminism [8].

HLF provides a modular architecture and introduces a

novel execute-order-validate approach to address the

limitations of the order-execute approach mentioned

before. A distributed application in HLF is basically

composed of the following two main parts (see Figure 1).

1) Chaincode: It is business logic implemented in a gen-

eral-purpose programming language (Java, Go, and

JavaScript) and invoked during the execution phase.

The chaincode is a synonym for the well-known con-

cept of smart contracts and is a core element of HLF,

which is executed in a distributed fashion.

2) Endorsement policies: They are rules that specify

what is the correct set of peers responsible for the

execution and approval of a given chaincode invoca-

tion. Such peers, called endorsing peers, govern the

validity of the chaincode execution results by pro-

viding a signature over those results. The endorse-

ment policies are defined with logical expressions

such as:AND(OrgA, or(OrgB, OrgC)).

2.1 Node types
The HLF blockchain network is formed by nodes that could

be classified into the following three categories based on

their roles.

1) Clients: Clients are network nodes running the appli-

cation code, which coordinates transaction execution.

Client application code typically uses the HLF SDK

in order to communicate with the platform.

2) Peers: Peers are platform nodes that maintain a

record of transactions using an append-only ledger

and are responsible for the execution of the chain-

code and its life-cycle. These nodes also maintain a

“state” in the form of a versioned key-value store.

In order to allow load balancing, not all peers are

responsible for execution of the chaincode, but only

a subset of peers called endorsing peers.

3) Ordering nodes: Ordering nodes are platform nodes

that form a cluster that exposes an abstraction of

atomic broadcast in order to establish total order

between all transactions. Ordering nodes are

completely oblivious to the application state and do

not take any part in transaction validation or

execution.

In order to provide finer grained privacy and

confidentiality, HLF introduces the concept of channels, a

high-level abstraction that basically represents an isolated

blockchain network. Each channel can contain different or

even disjoint sets of peers, thus allowing to segregate

application state achieving greater privacy by partitioning

data across different nodes.

2.2 Transaction execution flow
The following summarizes the execution flow of a

transaction submitted by a client into HLF (see Figure 2).

1) The client uses an SDK to form a transaction pro-

posal, which includes the channel name, the chain-

code name to invoke, and the input parameters to

the chaincode that is about to be executed. Next, the

client sends the transaction proposal to all endorsing

peers to satisfy the endorsement policy of the given

chaincode.

2) Endorsing peers simulate the transaction based

on the parameters received from the client. The

endorsing peers invoke the chaincode, record

state updates, and produce output in the form of a

Figure 2

Hyperledger Fabric—high-level transaction flow. Client (yellow actor)

proposes a transaction to the endorsing peers (blue) and collects transac-

tion responses. Client then submits a transaction to the ordering service,

which orders incoming transactions and cuts them into blocks. Peers

(green) pull blocks from the ordering service, validate the transactions,

append them to the ledger, and apply valid transactions to the state.

IBM J. RES. & DEV. VOL. 63 NO. 2/3 PAPER 2 MARCH/MAY 2019 Y. MANEVICH ET AL. 2 : 3

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 27,2021 at 11:45:05 UTC from IEEE Xplore. Restrictions apply.

versioned read–write set. The state does not change

at this stage. Next, each endorsing peer signs the

read–write set and returns the result back to the

client.

3) The client collects responses from all endorsing

peers and validates that results are consistent, i.e.,

enough endorsing peers have signed the same

payload.

4) Then, client concatenates all the signatures of the

endorsing peers along with the read–write sets, cre-

ating a transaction that is submitted to the ordering

service.

5) The ordering service collects all incoming transac-

tions, orders them to impose total order of transac-

tions within a channel context, and periodically cuts

blocks that include all those transactions ordered.

6) For each organization, a single peer pulls new blocks

from the ordering service and disseminates them by

using scalable middleware for ledger replication,

whose implementation is based on an epidemic diffu-

sion-based protocol—gossip [7]. Upon receiving a

new block, each peer iterates over the transactions in

it and validates the following: first, the endorsement

policy, i.e., whether the set of endorsing peers’ signa-

tures satisfies the endorsement policy correlated to the

chaincode; and, second, performsmultiversion con-

currency control checks against the state.

7) Once the transaction validation is finished, the peer

appends the block to the ledger and updates its state

based on valid transactions. After the block is com-

mitted, the peer emits events to notify clients con-

nected to it.

3 Gossip layer
One of the immediate benefits of the HLF architecture is the

ability to independently scale each of the execute-order-

validate phases. However, the fifth step of the transaction

execution flow (see Section 2.2)—block dissemination to

peers—poses additional challenges. Most consensus

algorithms (both BFT and CFT) are very sensitive to the

available bandwidth. Therefore, the ability to scale the

ordering service is limited by the network capacity of its

nodes. Attempts to horizontally scale consensus by adding

more ordering service nodes eventually lead to throughput

degradation [9, 10]. Fortunately, decoupling the ordering

and validation steps allows us to mitigate this limitation by

devising a scalable communication layer responsible for

efficient block dissemination.

Fabric utilizes gossip [7], an epidemic multicast protocol,

to address the requirement for efficient ledger replication

middleware. In addition, the communication layer needs to

provide the capability to synchronize peers that were

disconnected for a long time or joined the network late. The

ordering service provides a cryptographic signature over the

block, thus enabling peers to attest the integrity of

disseminated blocks.

3.1 Block dissemination
Gossip protocols exchange traditional strong reliability

guarantees [11] in favor of a probabilistic approach, leading

to greater scalability and fault tolerance. In a “push” gossip

protocol, each node selects a random subset of peers from

its full membership set and forwards a message to the

subset. This mechanism provides a probabilistic guarantee

of eventually delivering the message to the entire group of

members. In a “pull” gossip protocol, a peer checks with a

random subset of peers whether it missed a message, and

requests only the messages it missed. The HLF gossip layer

uses a combination of push and pull gossip to reliably and

efficiently disseminate the transaction blocks ordered by the

ordering service. Figure 3 depicts a high-level architecture
of the gossip layer in HLF and its key components.

1) Communication: The communication layer for gos-

sip is based on gRPC and utilizes Transport Layer

Security (TLS) with mutual authentication, which

enables each side of the connection to bind the TLS

credentials to the identity of the remote peer.

2) Authentication/ACL: It is in charge of authenticat-

ing remote peers, validating and storing peer certifi-

cates, and enforcing the segregation of information

introduced by channels.

3) Dissemination: It forwards (pushes) and pulls mes-

sages to/from peers according to routing policies

(i.e., peer’s organization, channels, message type).

HLF gossip uses two phases for information dis-

semination: During push, each peer selects a ran-

dom set of active neighbors from the membership

view and forwards them the message; during pull,

each peer periodically probes a set of randomly

selected peers and requests missing messages. It has

been shown [12, 13] that using both methods in tan-

dem is crucial to optimally utilize the available

bandwidth and to ensure that all peers receive all

messages with high probability.

Figure 3

Gossip layer stack.

2 : 4 Y. MANEVICH ET AL. IBM J. RES. & DEV. VOL. 63 NO. 2/3 PAPER 2 MARCH/MAY 2019

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 27,2021 at 11:45:05 UTC from IEEE Xplore. Restrictions apply.

4) Discovery/Membership: The gossip component

maintains an up-to-date membership view of the

online peers in the system. All peers independently

build a local view from periodically disseminated

membership data. Furthermore, a peer can recon-

nect to the view after a crash or a network outage.

5) Leader Election: In order to reduce the load of

sending blocks from the ordering nodes to the net-

work, the protocol also elects a leader peer that

pulls blocks from the ordering service on their

behalf and initiates the gossip distribution. This

mechanism is resilient to leader failures.

6) State Transfer: A point-to-point replication mecha-

nism that brings new nodes rapidly up to speed by

having peers request blocks in batches from peers

with higher ledger heights and having those retrieve

them directly from the ledger.

3.2 Membership and metadata dissemination
The HLF gossip protocol depends on the ability to

randomly select peers from the current membership view;

thus, the scalability aspects of the communication layer

requires a decentralized membership protocol to be used by

epidemic-based algorithms. Essentially, Fabric utilizes a

gossip protocol to maintain a membership list in a highly

efficient and scalable way similarly to Lpbcast [14] and

Newcast [15], achieving strong connectivity properties.

In HLF, peers exchange information about available

peers by replicating their “alive” messages, which includes

information about peer endpoint (hostport), timestamp,

peers identifiers, and peer’s incarnation time. In addition,

the gossip layer is responsible for disseminating metadata

that pertains to the ledger status and the configuration of

chaincode and endorsement policies. This includes

information, such as ledger height, chaincodes that are

active in the channel, and on which peers those chaincodes

are installed. This metadata is then leveraged by the

discovery service in the peer in order to know which peers

can execute given chaincodes.

4 Endorsement policies
The chaincode execution phase is decoupled from the

ordering and validation phases by means of using scalable

“execute-verify” replication technique [16] adopted to the

Byzantine environment. Agreement on execution results is

governed by endorsement policies, i.e., every transaction is

executed by a subset of peers allowing for parallel

execution.

Due to the permissioned nature of Fabric, each node inHLF

network has an identity that certifies his affiliation to one of

the organizations forming the blockchain network. Each

identity is associated with amembership service provider

(MSP)—amodular abstraction that authenticates identities in

the system.MSPs reside in all peer and orderer nodes and are

used for identity validation, signature verification, and are

used in endorsement policy verification.

An endorsement policy in HLF specifies the peers or

number of peers that are required to provide an attestation

of proper execution of a given chaincode. Endorsement

policies are evaluated prior to block commit, during the

transaction validation phase. As part of the endorsement

policy validation, the signature over the chaincode

execution results are verified under the public key of the

endorser peer’s identity. The endorsement policy is in fact

more expressive than just identities—it requires an identity

from an organization and a specific role, where roles can be,

for example: “Member,” “Auditor,” etc. The combination

of organization and role is called a Principal.

Consider an example, as outlined in Figure 1, where the

endorsement policy for chaincode SampleCC is defined as

follows:

AND OrgA:Member; OR OrgB:Member; OrgC:Memberð Þð Þ
(1)

while available endorser peers can be: {peer1.OrgA, peer2.

OrgA, peer3.OrgA, peer1.OrgB, peer2.OrgB, peer1.OrgC,

peer2.OrgC, peer3.OrgC} (assuming that all those peers

satisfy the “Member” role). Therefore, to satisfy the given

endorsement policy, one would have to ask endorsement of

a peer from OrgA and one peer of either OrgB or OrgC.

Clearly, the endorsement policy could be satisfied in more

than one way.

Let us describe how endorsement policies are represented

and validated. An endorsement policy is composed of the

following two objects.

1) An array of principals: A principal is a predicate

over an identity, meaning that every identity either

satisfies or does not satisfy a given principal (e.g.,

by having a certain role).

2) A tree that represents principal sets that correspond

the endorsement policy. At least one of the sets

should be satisfied entirely in order for the endorse-

ment policy to be deemed satisfied. The tree has the

following two types of vertices.

a) NoutOf: Inner vertices (nonleaves) are quanti-

fiers, i.e., specifies how many of its direct

descendants should be satisfied to consider ver-

tex itself as satisfied.

b) SignedBy: Leaf vertices are pointers to the array

of principals, which give the endorsement

policy expression power of security roles and

conditions over identities.

Even though quantifiers can denote any number from 1 to

the out degree of a vertex, the most common use cases are

1OutOf andALLoutOf,which represent logical gates or and

and, respectively. Consider example 1 of endorsement

IBM J. RES. & DEV. VOL. 63 NO. 2/3 PAPER 2 MARCH/MAY 2019 Y. MANEVICH ET AL. 2 : 5

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 27,2021 at 11:45:05 UTC from IEEE Xplore. Restrictions apply.

policy; the corresponding endorsement tree is depicted in

Figure 4. Correspondingly, the possible principal sets that

will satisfy the endorsement policy would be {OrgA,OrgB},

{OrgA,OrgC}, and {OrgA,OrgB,OrgC}1; or basically each

combination of members fromOrgA and ofOrgB orOrgC.

More formally, to evaluate the endorsement policy for a

given set of peer identities, the endorsement tree is

traversed recursively to find the first combination of

principals that is satisfied with the given set of identities.

The discovery service computes a descriptor that enables to

compute all possible combinations of peers, such that

endorsements collected from every combination satisfy the

endorsement policy.

4.1 Computation of principals sets
In the discovery service, an endorsement policy is evaluated

to produce combinations of principals such that every

combination satisfies the endorsement policy on its own. To

compute the combinations of principals, the endorsement

policy tree is traversed, and subtrees are computed such that

the leaf level in every such subtree is a combination of

principals that satisfies the policy. This is done by computing

for each inner vertex with an NoutOf quantifier of n, all

permutations of its descendants of size n. Afterward, the

endorsement tree is traversed in BFS, and for each inner

vertex, the subtree is duplicated to accommodate all

permutations, until all the vertices are visited.

Note that for every such principal set that satisfies the

endorsement policy, there might be pluralities of principals

required. For instance—an endorsement policy might

require multiple signatures of different peers from the same

organization.

In order to represent such a principal set in a space-

efficient manner, the principal set is saved as a mapping

from principals to their pluralities. Each such mapping is a

combination of principals and is called a layout. For

example, a single layout would look like this, {‘OrgA.

Member’: 2, ‘OrgB.Auditor’: 1}, to indicate that two

“Member” peers from “OrgA” and one “Auditor” peer

from “OrgB” would satisfy the endorsement policy.

Going back to the example shown in Figure 4, the

endorsement descriptor corresponding to the endorsement

policy represented by the example’s chaincode SampleCC

will be structured as follows.

Listing 1 Endorsement Descriptor

Layouts: [

{

“OrgA”: 1,

“OrgB”: 1,

},

{

“OrgA”: 1,

“OrgC”: 1,

}],

EndorsersByGroups: {

“OrgA”: [peer1.OrgA,peer2.OrgA,peer3.

OrgA],

“OrgB”: [peer1.OrgB,peer2.OrgB],

“OrgC”: [peer1.OrgC,peer2.OrgC,peer3.

OrgC]

}

Given a layout, there are multiple ways to select peers such

that they satisfy the principals in the layout. Therefore, the

discovery service also computes a mapping from principals to

peers (the EndorsersByGroupsmapping in Listing 1).

This computation is achieved by utilizing a bipartite graph

matching algorithm [17], in which the left side of the bipartite

graph represents principals, the right side represents peer

identities, and an edge between two vertices exists iff the peer

identity satisfies the principal. If all principal vertices are

covered in the matching, it means there is a valid assignment

of every principal to a single peer.

Note: This selection does not take into account network-

level information that would result in a more appropriate

selection of peers, such as preferring peers with higher

ledger heights than other peers or excluding peers that are

found to be offline by the client, etc., and should be handled

by the client SDK.

5 Service discovery
In order to execute chaincode on peers, submit transactions

to orderers, and to be updated about the status of

Figure 4

Endorsement tree corresponding to the example shown in Figure 1, for

chaincode SampleCC.

1
This set is redundant. Usually minimal sets are supplied; see next section. For brevity,

we assume all peers have the same role.

2 : 6 Y. MANEVICH ET AL. IBM J. RES. & DEV. VOL. 63 NO. 2/3 PAPER 2 MARCH/MAY 2019

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 27,2021 at 11:45:05 UTC from IEEE Xplore. Restrictions apply.

transactions, applications connect to an API exposed by an

SDK, as outlined in Section 2.2.

However, the SDK needs a lot of information in order to

allow applications to connect to the relevant network nodes.

It needs to know the enrollment CA and TLS CA

certificates of the orderers and peers on the channel, as well

as their IP addresses and port numbers. In addition, it must

know the relevant endorsement policies that are coupled

with the chaincode that the peers have installed on them.

This is necessary so that the application knows to which

peers to send chaincode proposals.

In early versions of HLF (prior to v1.2), this information

was statically encoded. However, that implementation was

not dynamically reactive to network changes (such as the

addition of peers who have installed the relevant chaincode,

or peers that are temporarily offline). Static configurations

also do not allow applications to react to changes of the

endorsement policy itself (as might happen when a new

organization joins a channel). Furthermore, the client

application had noway of knowing which peers have updated

ledgers and which do not, so it might submit proposals to

peers whose ledger data are not in sync with the rest of the

network, resulting in transaction being invalidated upon

commit. That was a waste of both time and resources.

The discovery service improves this process by having

the peers compute the needed information dynamically and

present it to the SDK in a consumable manner.

5.1 How service discovery works in Fabric
The application is bootstrapped knowing about a group of

peers that are trusted by the application developer/

administrator to provide authentic responses to discovery

queries. A good candidate peer to be used by the client

application is one that is in the same organization.

The application issues a configuration query to the

discovery service and obtains all the static information it

would have otherwise needed to communicate with the rest

of the nodes of the network. This information can be

refreshed at any point by sending a subsequent query to the

discovery service of a peer.

The service runs on peers—not on the application—and

uses the network metadata information maintained by the

gossip (see Section 3) to render the list of peers that are

online. It also fetches information, such as relevant

endorsement policies, from the peer’s state database.

With service discovery, applications no longer need to

specify fromwhich peers they need endorsements. The SDK

can simply send a query to the discovery service asking which

peers are needed given a channel and a chaincode ID.

The discovery service can respond to the following

queries.

1) Configuration query—returns the configuration

required for initialization of the CA certificates of

all organizations in the channel along with the

orderer endpoints of the channel.

2) Peer membership query—returns the peers that

have joined the channel. Additional metadata, such

as the chaincodes that are installed, the certificates

of the peers, and the ledger height, is included in the

information.

3) Endorsement query—returns an endorsement

descriptor for given chaincode(s). The descriptor

allows easy selection of some set of peers such that

if endorsements are obtained from the set, the

endorsement policy would be satisfied. The same

metadata on peers that is returned in the member-

ship query is also included in the results.

4) Local peer membership query—returns channel-

oblivious information known to the peer, i.e., all

peers it knows about, regardless of channels.

5.2 Chaincode to chaincode invocation
and endorsement queries

A chaincode may also invoke another chaincode during its

execution. In such a scenario, the resulting transaction can

affect several namespaces of the world state, and not just

the namespace of the target chaincode to which the client

sent the transaction proposal. At validation time, such a

transaction is valid only if the endorsements satisfy the

endorsement policies of all the chaincodes denoted in the

transaction, and not just the target chaincode‘s endorsement

policy. The discovery service supports these types of

scenarios by computing principal sets of all chaincodes in

the invocation chain of an endorsement query and by the

following.

1) Merging principal sets that cover other principal

sets.

2) Unifying principal sets that are disjoint between the

various chaincodes in the query’s invocation chain,

such that every principal set satisfies all endorse-

ment policies.

5.3 Private data collections and endorsement
queries

HLF also possesses a mechanism to share data among a

subset of the channel members—called “private data

collection” (or collection). This is done by storing in the

transaction simulation results the hashes (using a

cryptographic hash function, such as SHA256) of the data

itself and disseminating the hash pre-images only among

the peers that are members of the collection. This adds

another hurdle to the endorser selection of the client—a

peer that is not part of a collection cannot simulate

transactions that use keys that are known only to peers that

are members of the collection. Furthermore, the client’s

input to the chaincode might contain sensitive information

IBM J. RES. & DEV. VOL. 63 NO. 2/3 PAPER 2 MARCH/MAY 2019 Y. MANEVICH ET AL. 2 : 7

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 27,2021 at 11:45:05 UTC from IEEE Xplore. Restrictions apply.

that should be hidden from peers that are not members in

the collection. Therefore, the client needs to send proposals

to peers that are members of the collection and avoid

sending to those which are not. The discovery service

addresses this requirement by having the client’s

endorsement queries specify collections per chaincode and

returning to the client a descriptor that contains only peers

that are part of the collection.

6 Evaluation
We evaluated the performance handling of requests that

contain either an endorsement query or a membership query.

We use a single x86 VMwith 4 CPU 2.7 GHz and 10GB of

RAM andmeasure the query processing time as a function of

network size. The query is executed against a single peer; the

rest of the peers in the network are idle and are introduced

only to vary the difficulty of processing the query. It is,

therefore, valid to use a single VM, as only a single peer

consumes compute resources at the time of the query.

The time measured was the time it took for the request to

be processed and does not include the round-trip time

between the client and the peer. The benchmarking entailed

invoking an endorsement or a membership query on the

same peer twice on network configurations that differ in the

number of peers in the channel. Figures 5 and 6 present the

time it takes to process an endorsement query and a

membership query, respectively, as a function of network

size. Each figure presents two curves: one with and one

without the use of a cache.

Processing an endorsement query amounts to principal

matching to peers, which involves the assessment of

whether a given peer identity satisfies a given principal (see

Section 4.1). This computation is done by the MSP peer

component, and involves Elliptic Curve Digital Signature

Algorithm (ECDSA) signature verification. Signature

verification was found to be the major contributor to request

handling duration. Therefore (as is clearly shown in

Figure 5, no-cache), the query processing time increases

with the number of different peers.

Fortunately, the MSP component has a caching layer that

significantly reduces the processing time of subsequent

queries, as long as peers are not replaced. As shown in

Figure 5, the caching of whether peer identities satisfy

principals significantly shortens the computation time in

a network with 22 peers from 13 ms to a mere 2.34 ms

(�5.5 � speedup).

Membership queries are much simpler than endorsement

queries, as they do not require principal matching to peers.

Therefore, the effect of caching on these queries, as shown

in Figure 6, is less dramatic and improved only 10% to 20%

of the processing time.

7 Conclusion
HLF was the first blockchain platform to employ the

execute-order-validate pattern. This innovation decouples

the execution and endorsement of a transaction from its

total ordering and commitment to the ledger and opens the

door for parallel execution of independent transactions.

This architecture also addresses the problem of

nondeterministic chaincode execution since such

transactions are filtered away either by the client that

collects endorsements or by the validation phase that

enforces valid endorsements.

However, these advantages come at the cost of added

complexity. The transaction flow in HLF is more

complicated compared to Bitcoin or Ethereum, for example,

and the onus of coordinating this flow falls on the client.

The client has to communicate with, and be aware of,

multiple entities: the chaincode location, the endorsement

policy, the endorsing peers, and the ordering service. All of

these entities are subject to change during the life-cycle of

the platform: Peers and organizations may come and go,

Figure 5

Time taken to process endorsement query via service discovery as a

function of network size.

Figure 6

Time taken to process membership query via service discovery as a

function of network size.

2 : 8 Y. MANEVICH ET AL. IBM J. RES. & DEV. VOL. 63 NO. 2/3 PAPER 2 MARCH/MAY 2019

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 27,2021 at 11:45:05 UTC from IEEE Xplore. Restrictions apply.

chaincode may be upgraded, and endorsement policies may

be updated. The fact that HLF is a permissioned ledger

means that the configuration of the client involves the

intricacies of authentication, authorization, and access

control, which can be very technical and error-prone.

The service discovery component helps the client

application code deal with the complexity and dynamic

nature of the platform. It hides a lot of the complexity

involved in configuring the client by providing, via the

client SDK, a set of APIs that ease and automate the job of

configuring the client. By allowing the client to easily and

automatically adapt to changes in the platform, the

reliability and availability of the blockchain application is

significantly increased. The service discovery component

also simplifies the task of the application developer, making

the task of writing robust application code much easier.

References
1. S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System,

2008.
2. V. Buterin, “A next-generation smart contract and decentralized

application platform,” Ethereum white paper, 2014.
3. F. B. Schneider, “Implementing fault-tolerant services using the

state machine approach: A tutorial,” ACM Comput. Surv., vol. 22,
no. 4, pp. 299–319, 1990.

4. E. Androulaki, A. Barger, V. Bortnikov, et al., “Hyperledger
fabric: A distributed operating system for permissioned
blockchains,” in Proc. 13th EuroSys Conf., Porto, Portugal,
Apr. 2018, paper 30. [Online]. Available: ht_tp://doi.acm.org/
10.1145/3190508.3190538

5. N. Budhiraja, K. Marzullo, F. B. Schneider, et al., “The primary-
backup approach,” Distrib. Syst., vol. 2, pp. 199–216, 1993.

6. B. Charron-Bost, F. Pedone, and A. Schiper, Replication
(Lecture Notes in Computer Science Series), vol. 5959.
Berlin, Germany: Springer, 2010, pp. 19–40.

7. A. Barger, Y. Manevich, B. Mandler, et al., “Scalable
communication middleware for permissioned distributed ledgers,”
in Proc. 10th ACM Int. Syst. Storage Conf., 2017, paper 23.

8. C. Cachin, S. Schubert, and M. Vukoli�c, “Non-determinism in
Byzantine fault-tolerant replication,” in Proc. 20th Int. Conf.
Principles Distrib. Syst. Leibniz Int. Proc. Inf., 2016,
pp. 24:1–24:16.

9. K. Croman, C. Decker, I. Eyal, et al., “On scaling decentralized
blockchains,” in Proc. Int. Conf. Financial Cryptography Data
Secur., 2016, pp. 106–125.

10. M. Vukoli�c, “The quest for scalable blockchain fabric: Proof-
of-work vs. BFT replication,” in Proc. Int. Workshop Open
Problems Netw. Secur., 2015, pp. 112–125.

11. K. Birman and T. Joseph, Exploiting virtual synchrony in distributed
systems.ACMOper. Syst. Rev., vol. 21, no. 5, pp. 123–138, 1987.

12. A. Demers, D. Greene, C. Hauser, et al., “Epidemic algorithms for
replicated database maintenance,” in Proc. 6th Annu. ACM Symp.
Principles Distrib. Comput., 1987, pp. 1–12.

13. R. Karp, C. Schindelhauer, S. Shenker, et al., “Randomized rumor
spreading,” in Proc. Proc. 41st Annu. Symp. Found. Comput. Sci.,
2000, pp. 565–574.

14. P. T. Eugster, R. Guerraoui, S. B. Handurukande, et al.,
“Lightweight probabilistic broadcast,” ACM Trans. Comput. Syst.,
vol. 21, no. 4, pp. 341–374, 2003.

15. M. Jelasity, W. Kowalczyk, and M. v. Steen, “Newscast
computing,” Dept. Comput. Sci., Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands, Internal Rep. IR-CS-006, 2012.

16. M. Kapritsos, Y. Wang, V. Quema, et al., “All about eve: Execute-
verify replication for multi-core servers,” in Proc. Symp. Oper.
Syst. Des. Implementation, 2012, vol. 12, pp. 237–250.

17. J. E. Hopcroftand and R. M. Karp, “An n̂5/2 algorithm for
maximum matchings in bipartite graphs,” SIAM J. Comput.,
vol. 2, no. 4, pp. 225–231, 1973.

Received July 18, 2018; accepted for publication February 1,

2019

Yacov Manevich IBM Research, Haifa 31905, Israel (yacovm@il.
ibm.com).Mr. Manevich received a B.Sc. degree in computer science
from Technion—Israel Institute of Technology, Haifa, Israel, in 2016.
He is currently a Research Staff Member with IBM Research - Haifa,
where he is working in the area of Blockchain, and is a maintainer of the
Hyperledger Fabric core.

Artem Barger IBM Research, Haifa 31905, Israel (bartem@il.ibm.
com).Mr. Barger received a B.Sc. degree in computer science from
Technion—Israel Institute of Technology, Haifa, Israel, in 2010, and the
M.Sc. degree in computer science from University of Haifa, Haifa. He is
currently a Research Staff Member with IBM Research - Haifa, where
he is working in the areas of distributed computing, recently focusing on
Blockchain domain developing and contributing to the Hyperledger
Fabric open-source project.

Yoav Tock IBM Research, Haifa 31905, Israel (tock@il.ibm.com).
Dr. Tock received B.Sc. (cum laude), M.Sc., and Ph.D. degrees from the
Electrical Engineering faculty, Technion—Israel Institute of
Technology, Haifa, Israel, in 1994, 1999, and 2003, respectively. He is
currently a research staff member with the IBM Research - Haifa, where
he is working in the areas of scalable and highly available distributed
middleware.

IBM J. RES. & DEV. VOL. 63 NO. 2/3 PAPER 2 MARCH/MAY 2019 Y. MANEVICH ET AL. 2 : 9

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 27,2021 at 11:45:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

