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ABSTRACT
In this paper, we consider the problem of fair scheduling of trans-

actions of multiple types that are submitted to a permissioned

blockchain system. Permissioned blockchains are being increas-

ingly used for enterprise applications and by design are hetero-

geneous in nature, with different peer organizations performing

different business functions. Transactions execute different smart

contract operations that may have widely varying business impor-

tance. In such a setting, we argue that the typically adopted First-

In-First-Out ordering mechanism for transactions in a blockchain

system, which is a performance-limited resource, is inefficient and

unfair. We propose a weighted fair queueing strategy for ordering

transactions that can support differentiated quality of service for

submitted transactions on the blockchain. The main challenge we

address in this paper is to support fair allocation and differentiation

in a decentralized manner, as there is no single authority that can

facilitate this as in traditional systems. We demonstrate such a fair

scheduling strategy and support multiple transaction types with

different priorities on Hyperledger Fabric.
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1 INTRODUCTION
Over the last few years blockchain has been growing in popularity

and is being applied to a variety of industries including banking

and payments, insurance, supply chain and logistics, and health-

care. Blockchain, with its use of complex cryptography and dis-

tributed consensus, is a highly resource-constrained system and

performance and scalability has been a topic of significant research

interest and debate. One class of blockchain systems, called permis-

sionless blockchains, permit anyone to join the network, perform

transactions, participate in consensus and manage the distributed

ledger. Such networks are typically homogeneous in nature, with

all nodes performing the same function (called miners) and all

transactions being of a single type, typically peer to peer transfer

of cryptocurrency such as in the Bitcoin blockchain. Transactions

include a fee in the native cryptocurrency to be paid to miners for

including the transaction in the blockchain. Transactions that pay a

higher fee are picked up by miners for inclusion in the blockchain,

and this becomes the de facto ordering of how transactions get

serviced by the network. This results in a market economy with

incentive-based scheduling of transactions.

Permissioned networks, on the other hand, are highly heteroge-

neous in nature. They are targeted towards enterprise applications

and the participants of a business ecosystem are permissioned to

join the network and remains private to them. The different organi-

zations in the ecosystem form the peers of the network, participate

in consensus and maintain the distributed ledger. The organiza-

tions may perform different functions of a business process, which

are codified as smart contracts. For instance, a supply chain net-

work may comprise of manufacturers, suppliers, retailers, logistic

providers, warehouses and financiers, and the ledger would in-

clude information pertaining to shipments, their status, documents

such as purchase orders and invoices, and actions on each of these

artifacts performed by different organizations maintained as an

immutable log of transactions. It could also include periodic genera-

tion of reports, data cleansing and analytics operations, provenance

tracking of supply chain artifacts for regulatory oversight. In one of

our internal production system, the floods of record keeping trans-

actions on blockchain was keeping some of the business critical

transactions from going through for a very long time. Clearly not

all transactions are of equal business importance and place different

service requirements on the blockchain.
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All permissioned blockchain platforms today consider all trans-

actions uniformly and order them in a FIFO order, irrespective of

the type of consensus algorithm they adopt. This results in sub-

optimal usage of blockchain’s capacity to include transactions of

critical business importance. Further, a single client can easily flood

the network with transactions of low importance and prevent other

transactions from being included in a timely manner. In this paper,

we propose for the first time a fair resource allocation to different

transaction types in a blockchain network. The biggest challenge

we overcome is to perform such a fair allocation in a decentral-

ized manner. We adopt a weighted fair queueing strategy [12] and

support multiple priority classes for differentiated service for trans-

actions. This permits transactions of higher business importance to

be scheduled and processed faster by the blockchain, irrespective of

lower priority transactions that may have flooded the network. The

weighted fair queueing also supports proportionate fairness [10]

for different transaction types to ensure a starvation-free schedule.

This paper makes the following contributions:

• We propose the first ever approach ( 3) for fair resource

allocation and prioritization of transactions in a blockchain

network.

• We present an implementation of our approach ( 4) atop

Hyperledger Fabric (or Fabric) [9].

• Our evaluation ( 5) shows that our technique is accurate

and scalable. We are able to achieve resource fairness and

prioritization for transactions with minimal performance

overhead.

2 BACKGROUND
Fabric is an open source modular implementation of a permissioned

blockchain system. It supports running business logic as smart con-

tracts (or chaincodes in Fabric terminology), in a decentralized

fashion. Internally it implements a distributed ledger that is im-

mutable, replicated and consistent. Fabric has different components

working in tandem to provide fault resilience, security, trust and

consensus to the involved non-trusting business organizations. We

briefly describe the function of different Fabric components below:

Peer nodes in Fabric are operated by different organizations

participating in the permissioned blockchain network. A peer node

executes the chaincode and maintains a copy of the ledger. Each

peer communicates with the chaincodes it executes, and provides

them with an interface to operate on the underlying ledger. A peer

can take the role of an Endorser, Committer or both.

• An Endorser simulates the transaction and collects output

in the form of key-value pairs. A client application inter-

acts with multiple endorsers (as specified and governed by

endorsement policy) to agree on the results of a transac-

tion. Apart from that, endorsers also sign their responses,

which are later used to verify the authenticity of the results

at commit time.

• A Committer that is not an endorser, does not run chain-

code but maintains a full copy of the ledger. A committer

receives a signed ordered block of transactions from the

ordering service, which we describe next. It validates each

transaction in the block and appends the local ledger with

the final state changes.

The Ordering service nodes (hereinafter referred to as OSNs

for brevity) provide an atomic broadcast delivery guarantee to

the connected peers. Incoming transactions from multiple client

applications are ordered by the OSN. Fabric supports a pluggable

ordering service, with different implementations such as crash or

byzantine fault tolerance. We utilize and modify the crash fault

implementation using Apache Kafka [17] in this paper. Kafka is a

pub-sub system and provides a shared concurrent queue service that

implements total order. Each OSN independently cuts the blocks

after a configured number of transactions or a timeout. Since Kafka

queues deliver messages in a consistent order to all nodes, each OSN

includes the same transactions, thus providing ledger consistency.

These blocks are then delivered to the connected peers.

Channel in Fabric forms the basis for private communication

between two or more participating organisations (network mem-

bers) conducting confidential transactions between them. A channel

typically includes a subset of network members, smart contracts

(chaincodes), peers, OSNs, membership service nodes and a ded-

icated ledger. All the transactions in Fabric are associated with a

channel, where only the authorised parties are able to transact and

make modifications to the ledger.

AClient in Fabric is an application that interacts with the Fabric
peers to perform transactions on the network. The client submits

the transaction to one or more endorsers for endorsement and after

receiving the sufficient number of endorsements (satisfying the

endorsement policy) it sends the transaction with the collected

endorsements to a OSN. The client can also subscribe to notifica-

tions from a peer for when its transactions or other transactions of

interest are committed on the blockchain.

3 SYSTEM DESIGN
The main challenge we address with our design is to support pri-

oritization for different transaction types in the system without a

central controller for both determining as well as enforcing priority.

Priorities are assigned by endorsers (or peers executing the trans-

action) independently and consolidated into a single priority value.

This priority is then enforced by the ordering service which sup-

ports weighted fair queueing for the different priority classes at the

time of block creation (rather than following a FIFO order). Finally,

transactions in a block are validated based on their assigned prior-

ities by the committers. Overall, the framework proposed in this

paper introduces four new components in Fabric’s transaction flow:

(a) Priority Calculators, (b) Priority Consolidator, (c) Multi-Queue
Block Generator, and (d) Prioritized Validator.

The overview of the system architecture and the transaction flow

is shown in Figure 1. The client intiates a transaction by submitting

it to a set of endorsers. Since there is no central controller and the

client cannot be trusted to assign the right priority for a transaction,

we leverage the endorsers to vote on the transaction priority, acting

as Priority Calculators. While endorsers can independently assign

a priority to each transaction, the criteria for priority assignment

needs to be specified apriori. Different use cases may leverage dif-

ferent criteria and priorities may be static or dynamic. For instance,

transactions pertaining to different chaincodes could statically be

assigned different priorities at the time of chaincode deployment.

It is also possible to have the smart contract specify a priority as
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Figure 1: System Architecture and Transaction Flow

part of its execution. An example of a dynamic priority assignment

could be varying the priority based on load from different applica-

tions in the network perceived by different nodes. Further details

are presented in 3.1.

The endorsers execute the transactions and sign the response

together with the priority assigned by them. The client collects

these endorsements and sends it an OSN, as in the regular Fabric

transaction flow. Since we do not dictate any universal criteria for

priority assignment, it is possible for endorsers to assign different

priorities to a transaction. For example, for priorities that are static

based on the chaincode, all endorsers are likely to assign the same

priority. However, when priorities are assigned based on other

criteria (such as load on the system for a particular application

type), endorsers may assign different priorities. Hence, there is a

need to consolidate the different priorities assigned by endorsers

into a single priority value. This function is performed by the OSNs,

based on a priority consolidation policy, described further in 3.2.

In Fabric using Kafka, the OSNsmaintain only one FIFO queue of

transactions per channel. In order to support weighted fair queue-

ing for multiple priority levels, we propose to have N queues cor-

responding to N priority levels. In accordance with the priority

decided by priority consolidator, the transaction is submitted to the

designated queue for that priority. TheMulti-Queue Block Generator
described in detail in 3.3, reads the transactions from the priority

queues based on a priority-aware block formation policy, which
specifies the ratio of transactions from each priority level to be

included in a block based on their fair share. This creates the block

of transaction which is then delivered to all the committer peers.

Each committer validates transactions in the block to ensure that

the endorsement policy is fulfilled and that the read-write set that

was generated by the endorser peers is still valid as per the current

ledger state (there are no read-write or write-write conflicts). The

committer peer plays the additional role of a prioritized validator.
In case of a conflict between two transactions within a block,

the prioritized validator picks the transaction with a higher priority

over the transaction with a lower priority. This is another instance

in the transaction flow where the priority is enforced. As a result

of this exercise, each transaction in the block is either tagged as

valid or invalid. The peers then append this block to their chain and
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commit the write sets of valid transactions to the ledger. Following

this, the client is notified for the committed transactions.

The complete transaction flow is also depicted in Figure 2.

3.1 Priority Calculator
Since each endorser independently computes the priority and signs

it along with the transaction response, it is impossible for the client

to fake their priority. The only thing the client can do is to omit

endorsements that assign it an unfavorable priority, which in our

opinion is harmless as long as the endorsement policy requires

endorsements from multiple participating organizations.

The client collects these endorsements and optionally verifies

the signatures including the priority assignment. The endorsements

will be verified later in the transaction flow as well, since the client

cannot be trusted. Nevertheless, it is in the client’s interest to per-

form the verification up front to ensure that the transaction doesn’t

get invalidated later. This verification involves comparing endorse-

ments to determine if the specified endorsement policy and the

priority consolidation policy (described in the next section) have

been fulfilled before submitting the transaction to an OSN.

3.2 Priority Consolidator
A priority consolidation policy specified at the time of chaincode

deployment, dictates how priorities assigned by different endorsers

must be consolidated into a single priority value. One sample policy

can be that at least k out of n endorsers should assign the same

priority to the transaction, else the transaction will be considered

invalid. Such a consolidation policy works well for static priority

assignments. Alternatively, the policy could require aggregating

the different priority values such as computing an average, which

is then rounded off to the nearest integer value. The priority consol-

idation policy could also be modified using a channel configuration

transaction, although we did not implement this in our prototype.

The OSN performs the priority consolidation based on the policy

and places the transaction in the corresponding priority queue to

be included in a block.

3.3 Multi-Queue Block Generator
The objective of the multi-queue block generator is to support fair

queueing for multiple priorities and transaction types. The weights

or the ratio in which transactions of different priority levels should
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be included in a block is specified as a block formation policy, which
is part of the channel configuration. There can be scenarios where

there is a need to modify the block formation policy during the

course of operation of the channel, such as:

(1) The system designer realizes that the block formation policy
defined at the beginning is not the best policy for the system.

(2) The system designer might want to have an online learning

mechanism in place to determine the best policy and adjust

the block formation policy accordingly.

This could also be modified using a channel configuration trans-

action, although we did not implement this in our prototype.

We propose a novel block generation algorithm for prioritized

weighted fair queueing based on the block formation policy, where

the OSNs generate the block by reading transactions from multi-

ple transaction queues (see Algorithm 1). The number of priority

levels (N ) and the number of transactions of each priority (TR) to
be included in a block are available to the OSNs from the block

formation policy. As an example, if there were 3 priority levels and

the block formation policy was TR =< 100 : 0 : 0 >, this essen-

tially implies that the highest priority transactions would always

be picked first, and the medium and low priority transactions are

served as best effort (the 0 signifies best effort), based on whether

there is space in the block to include them after all highest prior-

ity transactions have been included. Further, the lowest priority

transactions will be picked as part of a block only after all medium

priority transactions have been picked. If the block formation policy

was TR =< 50 : 40 : 30 >, this would try to form the block with

transactions in this ratio. In case a priority level does not receive

sufficient transactions before timeout , the remaining transactions

are taken from the highest priority level with surplus transactions

(see lines 17- 23 in Algorithm 1).

In the existing design of Fabric, OSNs cut a block if one of the

below mentioned two conditions is satisfied:

(1) When the OSN has read the maximum number of transac-

tions to be included in a block (BS , for block size).

(2) When the timer for the block being generated expires at

timeout .

OSNs maintain only one queue of transactions. This queueing

service supported by Kafka, delivers a totally ordered sequence of

transactions to all OSNs. However, in the architecture proposed in

this paper, we maintain multiple kafka queues, one for each priority

level, and ensuring a total order amongst the transactions read from

these multiple queues is a challenge we address in this paper.

Consider a scenario, where we have two OSNs, OSN1 and OSN2,
and two priority levels (high and low). Suppose that TR =< 100 :

0 >. Further, lets assume at time T , there are 99 high priority

transactions and 1 low priority transaction in kafka. At time T + 1,
a high priority transaction arrives. As both the OSNs run a local

timer which may not be in sync, it is possible that OSN1’s timer

expires atT , whereas OSN2’s timer expires atT + 1. In this case, the

resultant block at OSN1 will have 99 high priority transactions and

1 low priority transaction, and the block at OSN2 will have 100 high
priority transactions and 0 low priority transactions. The two OSNs
in this scenario have diverged and produced different sequences of

transactions, which is unacceptable.

Algorithm 1: Multi-Queue Block Generator
1 Multi_Queue_Block_Generator(N , TR, BS, BN , t imeout )
2 Input: N : Number of priority levels

3 TR: Array containing the number of transactions of each priority level

to include in a block

4 BS : Maximum block size in terms of total number of transactions

5 BN : Block number of the block to be generated

6 t imeout : Clock time to cut this block

7 Output: B: Generated block of transactions

8 Global: QUEUE: Array of queues of transactions corresponding to

each priority level, from highest to lowest priority

9 Assumption: sumi (TR[i]) = BS (the number of transactions to

include of each priority level is normalized to the block size)

10 Initialize: B: { }, ∀i≤N TTCFLAG[i] = f alse

11 while (existsi (TTCFLAG[i] = f alse) AND sumi (TR[i]) , 0) do
/* Conditions on which a block should be formed */

12 for (i = 1 to N ) do
/* Parse queues in decreasing priority order */

13 if (¬ TTCFLAG[i] AND TR[i] , 0) then
/* TTC message not seen and limit of

transactions not reached, so read more
transactions from this queue */

14 [TX, TTCFLAG[i]] := READ_QUEUE(i , TR[i], BN );

15 B := B ∪ TX;

16 TR[i] = TR[i] - TX.lenдth;
17 if (TTCFLAG[i]) then

/* Transfer remaining transaction buffer
to the highest priority level which has
not seen TTCBN yet */

18 h := f ind (TTCFLAG);
/* The call to find method returns the

first index in TTCFLAG array with
value as false, if all entries are true
the method returns −1 */

19 if (h , −1) then
20 TR[h] := TR[h] + TR[i];
21 TR[i] = 0;

22 end
23 end
24 end
25 end
26 if (System .currentT ime ≥ t imeout ) then
27 Enqueue TTCBN in all queues;

28 end
29 end
30 return B

This implies that whenever an OSN generates block on timeout ,
it needs to send an explicit coordination signal to the other OSNs.
This coordination signal is a time to cut block (TTCBN ) message,

where BN is the block number being generated. When any OSN
reaches timeout , it sends a TTCBN message to all queues. In the

design proposed in this paper, an OSN cuts a block only if one of

the below mentioned two conditions is satisfied:
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Algorithm 2: Read Transactions From Queue
1 READ_QUEUE(i, T N , BN )

2 Input: i : Queue number to read from

3 T N : Number of transactions to read

4 BN : Block number of block to be generated

5 Output: TX: Array of transactions read from QUEUE[i]
6 TTC : Boolean set to true if TTCBN is received on QUEUE[i]
7 Initialize: TX: { }, TR = 0

8 while ((TR < T N ) AND (QUEUE[i].lenдth , 0)) do
9 τ := Deqe a transaction from QUEUE[i];

10 if τ is TTCBN then
11 return [TX, true];
12 end
13 TX := TX ∪ τ ;
14 TR := TR + 1;

15 end
16 return [TX, f alse];

(1) When the OSN has seen the maximum number of trans-

actions for each priority level as per the block formation

policy.

(2) When it has received theTTCBN message for all the priority

levels (see line 11 in Algorithm 1).

As each OSN can submitTTCBN message, there can be multiple

TTCBN messages in a queue. To handle this, while generating block

BN , OSNs stop reading from a queue on seeing the first TTCBN
message. Subsequent TTCBN messages for that queue are ignored.

Also, note that the ordering service implemented in Fabric pro-

vides crash fault tolerance. Therefore, we assume that an orderer,

if alive, shall always consolidate priorities correctly. However, in

an alternate byzantine fault tolerant implementation, each orderer,

while consuming the transactions from the queue, can indepen-

dently verify if the priority consolidation was done correctly by the

orderer that pushed the transaction to the corresponding queue.

3.4 Prioritized Validator
As blockchain is a complex distributed system, it is not sufficient to

enforce priorities at OSNs alone. It also needs to be enforced at the

time of validation and commit to the ledger. Specifically, if there is

a read-write or a write-write conflict between two transactions of

different priorities in a block, the transaction with higher priority

should be accepted while the transaction of lower priority should

be invalidated. This functionality is provided by the prioritized

validator, executed by the committing peers. Observe that the or-

dering provided by our multi-queue block generator preserves FIFO

order within each priority level, so if there is a conflict between two

transactions of the same priority, the transaction that was ordered

earlier will be deemed valid and the other will be invalidated.

4 IMPLEMENTATION DETAILS
The code was implemented and experimented on a fork of Fab-

ric v1.0 [3] using Kafka consensus. The client used the officially

released java SDK for making requests. We included support for

prioritization at the transaction level, including a priority field in

the transaction data structure and modifying the peer and client

code to support this. The priority consolidation policy and the block

formation policy are included in the channel configuration at the

time of channel creation. While it is possible to implement the

ability to modify these using a channel configuration transaction

at run time, we did not implement this feature in our prototype.

When setting up the channel for communication, each orderer

creates a priority queue for each priority level to be supported. In

order to create multiple queues in Kafka corresponding to different

priorities, we created Kafka queues with separate topic. Messages

in a topic in Kafka are sequentially ordered and are associated with

separate producers and read by separate consumers (the producers

and consumers being part of the OSNs). Thus, different produc-
ers and consumers representing different priority topics were set

up in the ordering service on channel creation. After the channel

setup and once chaincodes are installed and instantiated, client

applications can perform transactions on blockchain. All special

transactions such as install, instantiate, and other chaincode life-

cycle transactions and channel configuration transactions are by

default executed at the highest priority level.

5 EVALUATION
5.1 Experimental Setup
Our experiments were performed with Fabric components deployed

as Docker containers running atop Soft-Layer [6] servers. Each com-

ponent was provisioned a separate server with 32 cores, 64GB RAM

and ran Ubuntu16.04.We use Hyperledger Caliper (or Caliper) [2] as

the benchmarking tool. Caliper allows users to measure the perfor-

mance of a blockchain implementation with a set of predefined use

cases and produces reports containing a number of performance in-

dicators, such as tps (Transactions Per Second), transaction latency,

etc. We forked and modified Caliper to be able to generate load

for different priority levels and also report performance indicators

across these levels.

Note that the number of priority levels is a configurable parame-

ter but we restrict ourselves to three priority levels (high, medium,

low) for operational reasons alone. There wasn’t a significant over-

head change with increasing the number of priority levels. Unless

specified, we assume the incoming rate of transactions across the

three priority levels to be in 1:2:1 ratio. This was done to model a

real world scenario where only selected transactions are prioritized

or de-prioritized. The block size for all our experiments was 500

and the block timeout was 1s. The default block formation policy

was considered as 2:3:1. The default transaction submission rate

was 500tps. We ran each experiment 10 times and in each run a

total of 15000 transactions were submitted. We report the average

across all the runs.

5.2 Analysis of Block Formation Policy
Figure 3 shows the effect of block formation policy on the trans-

action latency. To highlight the effects of prioritization, all the

latency numbers have been normalized with respect to the average

latency for a system without priority and the black horizontal line

at y = 1 shows this baseline latency. We observe that when the

block formation policy was in sync with the incoming transaction

ratio (1:2:1), the transaction latency for all the priority levels is
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Figure 3: Effect of Block Formation Policy on relative trans-
action latency

Figure 4: Effect of Increasing number of peers on relative
transaction latency

roughly the same as baseline latency. The marginal increase can be

construed as the overhead of our system in enabling prioritization

and fairness. If for a system, it is important to achieve low latency

for high priority transactions without impacting the performance

of medium priority transactions, the system designer can choose

to configure the block formation policy to be 2:3:1 or 3:5:1. This will

provide the required speedup for high priority transactions but at

the cost of increased latency for low priority transactions. Also, as

observed for 1:1:1 and 3:5:1, the farther we skew the policy from

the incoming rate, the overall average transaction latency for the

system also increases. This demonstrates that the block formation
policy enables the system designer to have fine grained control over

the transaction latencies.

5.3 Effect of Increasing number of Peers on
Performance

We next studied the effect of increasing the number of peers in

Figure 4. As our objective was to measure the overhead introduced

by our system compared to one that doesn’t enforce priorities,

for each blockchain size in terms of number of peers, we have

normalized the latencies with respect to the average latency of

the same blockchain size without priorities (the ‘without priority’

baseline measurements were normalized to 1). We observe that

the gap between the average transaction latency of our system

with priority enforcement and the average transaction latency of

the system without priority is small and doesn’t increase with the

Figure 5: Relative latency with increase in send rate

blockchain size. This demonstrates that our system can easily scale

and support large blockchain setups. It is noteworthy that as the

number of peers increase, the number of endorsements collected

and validated also increases. This causes the absolute values of the

transaction latencies to increase with the number of peers. The

average latency of a system with 8 peers was roughly 2.7 times the

average latency of a system with 4 peers. For 12 peers, the average

latency was approximately 4.3 times that of the system with 4 peers.

However, our above experiment demonstrates that this increase

in latency with the number of peers is not exacerbated because of

introducing priorities with our system. [9] presents a more detailed

analysis of scalability of Fabric with increasing number of peers.

5.4 Effect of Increasing Send Rate
In this experiment shown in Figure 5, we study the impact of increas-

ing the send rate or load on transaction latency. Latency numbers

at each send rate have been normalized with respect to the average

latency of a system without priority operating at that send rate.

Note that below 500tps, enabling priorities does not really help

because the system was operating well under capacity and low

priority transactions were not affecting the performance of higher

priority transactions. From a send rate of 500tps onwards, higher

priority transactions are benefited due to prioritization. An impor-

tant observation here is that with the increase in send rate the gap

between the average latency of a system with and without priority

decreases. This implies that the performance overhead incurred

due to introduction of priorities at higher send rates is lower.

5.5 Resource Fairness
In the current Fabric implementation, a single client can flood the

network with its transactions, which might lead to poor perfor-

mance for the other clients in the system. One of the important

contributions of this paper is to enable a system design that can

ensure resource fairness to all clients. This can be done by tweaking

the block formation policy to provide a weighted fair share to all

clients, specifically an equal weight if equality is desired.

To demonstrate this we conduct an experiment where we ob-

serve the latency numbers as one of the client starts flooding the

system. We assume that the system has three clients (C1, C2, C3)

corresponding to the three priority levels. We start with all clients

having the same send rate of 100tps. All the latency numbers have

been normalized with respect to the average latency of the system
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Figure 6: Relative latency with increase in send rate of one
client

without priority for this rate. In each of the subsequent runs, we

increase the number of transactions submitted by C1 by 100tps.

As observed in Figure 6, in subsequent runs, the average latency

for a system without priority starts increasing. This implies that

although it is just C1 who is submitting additional transactions,

clients C2 and C3 also observe increased latency, which is unfair to

them. In contrast, with our system providing resource fairness, the

latency for clients C2 and C3 remain completely unaffected. Only

client C1 observes increased latency. Such a design protects the

system against transaction flooding, resource hijacking and delay

or denial of service.

6 RELATEDWORK
Prioritization of tasks, jobs or transactions in distributed systems

dealing with data, compute or network is a well studied problem

[14] [13] [11] [20] [18]. In traditional distributed systems this is

generally incorporated with a scheduling module where a scheduler

determines how andwhat resources should be allocated to an incom-

ing request. In such systems, a scheduler is tuned to achieve one of

the many guarantees with regards to fairness, importance, resource

optimization or performance [17] [21] [7] [24] [22]. Specifically, in

transactional distributed databases dealing with real time traffic,

where not every incoming transaction has the same importance,

and many requests are associated with time bound constrains, it

becomes difficult to manage the system [16] [19] [15]. A blockchain

or a distributed ledger is one such transactional system.

Public blockchain implementations such as Bitcoin, Ethereum,

and Litecoin [4] [23] [14] use transaction fees to determine transac-

tion priorities. Higher the fees a client pays on a transaction, greater

is its chance of inclusion in the distributed ledger. Miners try to

pick transactions with higher transaction fees in order to maximise

their returns for the work they do to advance the distributed ledger.

Bitcoin historically used transaction size and age of previous

confirmed transactions (unspent transaction outputs or UTXOs)

that are being spent in this transaction, in deciding priorities [8].

The age is determined in terms of the number of committed blocks

since the block in which an unspent output was created. The for-

mula for deciding priority was,

priority = suminputs(inputValue*inputAge)/TxSizeInBytes

Higher the size of the transaction, lower would be its prior-

ity. Furthermore, higher the inputAge of input transactions (older

UTXOs), higher the priority. However as bitcoin grew, miners have

preferred to simply use transaction fees to determine whether to

include a transaction or not. Transactions which pay very low or

no fees have no realistic chance of being accepted.

Similarly, miners in the Ethereum network work on the notion

of Gas and GasPrice for deciding a transaction priority [1]. Every

transaction can specify the maximum Gas a transaction can con-

sume and the unit price for Gas expressed in terms of Ether ( the

native cryptocurrency of Ethereum). Both of these fields are decided

by the transaction sender. Each operation performed as part of the

transaction execution consumes a fixed amount of Gas as specified

by the Ethereum protocol. When a transaction is submitted and

executed by a miner, Gas consumed*GasPrice worth of Ether are

withdrawn from the sender’s account, which acts as the fee paid

by the transaction. If the gas consumed exceeds the maximum gas

limit set by the sender, then the transaction is invalidated and the

sender loses the equivalent Ether (this is to prevent spamming).

As in Bitcoin, miners prioritize and select transactions that have

the highest payoff in terms of the GasPrice specified by the sender.

The main difference between Bitcoin and Ethereum in terms of

transaction fees, is that in Bitcoin all transactions are similar while

in Ethereum different contracts may have different execution times.

Ethereum expects transactors to pay proportional to the resource

cost of their transactions.

In contrast to such permissionless systems that prioritize based

on transaction fees, permissioned blockchain systems targetting

enterprise use cases are designed to not have any transaction fees.

Even the least important transactions, if they are valid, are expected

to eventually be included in the blockchain. Further, clients should

not be burdened with having to make micropayments for every

transaction they submit to the system (the scale of permissioned

blockchain systems serve orders of magnitude more transactions

than permissionless systems). Current implementations of permis-

sioned blockchain systems such as Fabric [3] and Corda [5] simply

order the transactions on a first come first served basis. This leaves

the system vulnerable to transaction flooding, resource highjack-

ing and even denial or delay of service. In this paper, we address

these issues by providing the ability to support prioritization and

resource fairness in a decentralized manner to different transaction

types in a permissioned blockchain system.

7 CONCLUSION
In this paper, we presented a novel way to incorporate fairness and

prioritisation to different classes of transactions in a permissioned

blockchain network. We achieve this in a decentralized manner

without compromising any guarantees provided by blockchain and

provide a reference implementation on Fabric. Our experiments

demonstrate the efficacy of the system by providing fairness and

flexibility, with little overhead, and prevents individual malicious

clients from overwhelming the system.
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