
Reliable Decentralized Oracle with Mechanisms for
Verification and Disputation

1st Limao Ma, 2nd Kosuke Kaneko, 3rd Subodh Sharma, 4th Kouichi Sakurai
1stDepartment of Informatics Graduate School of Informtion, Science and Electrical Engineering, Kyushu University, Japan

Email:malimao 66@yahoo.co.jp

2ndCybersecurity Center, Kyushu University, Japan

Email:kaneko.kosuke.437@m.kyushu-u.ac.jp

3rdIndian Institute of Technology, Deli, India

Email:svs@iitd.ac.in

4thDepartment of Informatics Faculty of Information, Science and Electrical Engineering, Kyushu University, Japan

Email:sakurai@inf.kyushu-u.ac.jp

Abstract—Smart contract using Blockchain technology pro-
vides a mechanism to automatically exchange “cash” and “ser-
vice” according to programmed conditions without requiring
reliable third-party intervention. This results in reduction of
time and cost for complex contract execution. Some contract
execution require external information outside Blockchain as
a trigger to execute the code specifying process for a certain
contract. However, because Blockchain technology itself does not
provide a function to directly access such external information,
these applications require a proxy system called “oracle”. Oracle
is in charge accessing external information, to verify it, and to
write it on Blockchain. To avoid security incidents such as oracle
writing malicious information on Blockchain, reliability of oracle
must be required. This paper introduces a decentralized oracle
equipping with verification and disputation mechanisms. To eval-
uate reliability of the proposed mechanisms, a simulation-based
experiment was conducted. The experimental results showed
that our solution could effectively suppress the interference of
malicious participants and obtained reliable consensus results
even if relatively many malicious participants joined in the
consensus process on the proposed decentralized oracle.
Index Terms—Blockchain, smart contract, decentralized ora-

cle, system security

I. INTRODUCTION

A. Blockchain

Blockchain [1] network is a P2P network with high

Byzantine fault tolerance, and every user in this network

shares the same ledger data in their own system. Transaction

data is stored as a list of time ordered encrypted blocks.

Each block in Blockchain contains a cryptographic hash

of previous block, a nonce for Proof-of-Work, and its own

transaction data. Because of consensus mechanism, once the

contents stored in a block by this construction are modified,

data in subsequent blocks must also be tampered. Bitcoin

[2] is one of the representatives of Blockchain applications.

With the introduction of Turing-complete smart contract [3],

Blockchain platforms such as Ethereum [4] are developed.

As a result, decentralized applications can run above the

Blockchain network, expanding its application field. Since

most Blockchain-based applications require external data

to facilitate the execution of smart contracts, external data

feedback for smart contracts becomes an important issue.

B. Smart Contract

Smart contract [6] is a special computer protocol designed

to digitally facilitate, validate or enforce contract negotiation

and performance. Compared with traditional contract, smart

contract enables trusted transactions even without trusted

third parties by a trusted mechanism. The mechanism

provides better security and makes commission fee lower. In

Bitcoin network, users can create and customize simple smart

contracts through a Turing incomplete scripting language.

In another way, smart contracts with Turing-complete [7]

programming languages are built into certain Blockchains,

such as Ethereum, making it possible to create customized

smart contracts with more complex logic on the Blockchain.

Ethereum users record and write the execution results of

smart contract into blocks, keeping program execution history

and results consistent throughout the network.

C. Oracle

Decentralized applications based on Blockchain

development can be categorized into two categories according

to the data sources required for their internal smart contracts:

intra-chain data triggering, and extra-chain data triggering [8].

The former is similar to the currency system such as Bitcoin.

Its circulation of money within the Blockchain network can

be carried out without the need of extra-chain information.

The other category needs to face a problem with smart

contract: oracle issues.

Since the execution of smart contract is passively triggered,

smart contract needs to receive a certain data in order to

execute the previously written contract terms. Contrary to

the deterministic and consistent environment in Blockchain,

outside world is uncertain, any data from outside cannot be

written directly in Blockchain. If a smart contract trigger

condition is extra-chain data information, the information

needs to be written into Blockchain in another way. The

346

2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW)

978-1-7281-5268-4/19/$31.00 ©2019 IEEE
DOI 10.1109/CANDARW.2019.00067

mechanism for writing extra-chain data information into

Blockchain is often referred as oracle mechanism [5].

Oracle’s main function is to provide external data for

Blockchain, enforcing the relevant treaties in smart contract.

External data is primarily information related to the conditions

which trigger smart contract terms. They can be temperature

at a certain time, stock price, match results, and so on. Oracle

collects and provides requested data in a secure, reliable way

so that Blockchain can interact with the outside world, which

means oracle is the interface between Blockchain and real

world.

D. Contribution

A secure link between smart contracts in Blockchain

and outside world is critical, while oracle provides an

important function for communicating data inside and

outside Blockchain. Existing solutions each have their own

advantages and can be utilized to maximize their application

in certain specific situations, which means further research on

general solution is still an issue. In this paper, the reliability

of proposed mechanism was evaluated by a simulation-based

experiment. Base on the effectiveness of experiment result,

our proposal will provide a hint for the developers exploring

oracle solutions with better generality and security.

II. RELATED METHODS

A. Oracle Architecture Types

Architecture of oracle can be divided into two types; Cen-

tralized oracle or Decentralized oracle. Centralized type is

a comparatively practical architecture to achieve the role of

oracle than Decentralized type because of its simple architec-

ture. The architecture locates one oracle in a smart contract

application. The oracle reads information which are in outside

of Blockchain and writes it on a code of smart contract.

Centralized oracle is indicated several problems such as a

single point of failure (SPOF), non-transparent processing that

users cannot verified their data on the chain [19].On the other

hand, Decentralized oracle does not cause SPOF because of

the decentralized architecture. However, Decentralize oracle

also has problems. For example, the input of unstructured data

requires manual input, which means more time is needed to

collect as much input as possible in order to obtain reliable

data.

B. Centralized Oracle

Provable, also known as Oraclize, [9] is an Amazon Web

Service based oracle service designed to provide data feedback

for smart contracts and Blockchain applications. The concept

of Oraclize focuses on proving that the data obtained from

original data source is genuine and untampered. Oraclize itself

does not interfere with the choice and reliability of data source.

Although it is a centralized project and costly, it still has a

large user base because of its practicality. Town Crier [10]

is a centralized oracle that provides data feedback based on

Ethereum. It focuses on providing proven data feedback for

smart contract and Blockchain applications via Inter Software

Guard Extension. However, Town Crier has been pointed out

the types of APIs and data feedback that can be provided are

limited. It is also referred to be susceptible to SPOF for its

centralization.

C. Decentralized Oracle

Chainlink [11] was originally a decentralized oracle

network on the Ethereum platform. Its main purpose is to

provide reliable data tamper-proof input and output for smart

contracts by accessing key data resources through designated

APIs. Chainlink requests and provides data through incentives

and aggregation models. However, it is pointed out that

there are problems such as large chain aggregation cost

and low scalability. ASTRAEA [12] is also a decentralized

oracle that determines the credibility of voter submission

data primarily by using different roles (voter and verifier) to

conduct voting games. By splitting roles and incentives of

users, voters’ choices are influenced by randomness, it can

resist malicious voting attacks to a certain extent. Kleros

[16] is a decentralized contract dispute arbitration application

based on Ethereum. It relies on game theory incentives to

ensure that referees properly rule cases.

Augur [13], like Gnosis [14], is a Blockchain-based

decentralized forecasting market. It predicts future real-world

events through crowd intelligence as oracle’s output, and

writes the predictions into Blockchain. Augur was strongly

influenced by Truthcoin [15] and suppressed the fraudulent

behavior of participants by introducing report and dispute

systems. At the same time, due to the limitations of its

own prediction mechanism, there will be a big challenge to

introduce Augur into other applications except forecasting

market.

III. OUR PROPOSAL ORACLE

In this paper, we present a decentralized oracle approach

introducing the concept of ”reporters” and ”verifiers”. Also

the approach provides a more selective and secure oracle

mechanism through a reputation system. In our proposal, re-

questers can filter the participants for their requests by setting

reputation level limit. The higher the level limit requester set,

the more reliable data feedback requester get. Participants with

higher reputation will be more likely to be reporters, whose

role is to collect data requested by smart contracts and report

their answers to oracle. On the other hand, participants who

cannot become reporters will join as verifiers. Their role is

to collect requested data, and submit their answers with an

additional amount of reputation to oracle.

A. Roles of participants

1) Requester: A requester generates a request (Request
explained as formula 1) through oracle’s smart contract. When

oracle accepts the request, it will be added to the task list

which contained all requests from the whole oracle network.

347

Participants can obtain all requests from the task list through

synchronization information of oracle nodes.

2) Reporter: When a reporter participates in a request, as

a means of suppressing Sybil attack, a certain of reputation

will be deposited as a proof of participation. The reporter

must submit its answer (Reporter1Report explained as for-

mula 2) to oracle’s smart contract within a given time. In

this request, if the submitted answer is consistent with final

consensus result of the request, the reporter can receive a

reward (cryptocurrency) and the deposited reputation will be

returned. Otherwise, the reporter cannot receive any reward.

As a penalty, the deposited reputation will be paid as a bonus

for other participants.

3) Verifier: A verifier also needs to deposit a certain of

reputation as a proof of participation. The verifier is required

to submit its answer (Verifier1Report explained as formula

3) to oracle and stack an additional reputation for its own

claim within a given period of time. Reputation weighted

calculation will be processed for verification result based on

all reports submitted by verifiers. The result with the highest

reputation will be chosen as consensus result to verify the

reports from reporters and verifiers. The reports consistent with

the consensus result will become ”correct”. Those verifiers will

be considered as ”correct” participants and receive rewards

according to their respective contributions. In the proposed

method, only the ”correct” verifiers can recover their deposited

reputation and obtain a certain percentage of reputation as

reward.

B. Whole Process

The overall process of our proposal is described in Fig1 and

Fig 2.

1) Request Phase: StepI: A user submits a request to

oracle based on its smart contract as a requester (1-1 in

Fig.1). Before the requester submit its request, its ability to

meet payment terms will be checked and its property will be

confirmed.

StepII: Oracle’s smart contract generates a request based

on user’s requirements and adds it to the task list of oracle

network(1-2 and 1-3in Fig.1). Each request contains at least

the following information. Each element in the information is

described such as ”element: type”.

Request = { ’Task id’ : string, ’Task content’ : string,
’Reporter number’ : integer, ’Reporter4reputation’ :
float, ’Verifier4reputation’ : float, ’Fee2reporters’ : float,
’Fee2verifiers’ : float }(formula 1)

’Reporter number’ refers to the maximum number of par-

ticipants who can participate in this request as a reporter.

’Reporter4reputation’ refers to the reputation that a reporter

needs to deposit beforehand as a proof of participating in this

request. ’Verifier4reputation’ is the reputation that a verifier

needs to deposit. In general, the reporter needs to deposit more

reputation than the verifier. ’Fee2reporters’ and ’Fee2Verifier’
refer to the rewards of ”correct” reporters and verifier, respec-

tively.

2) Report Phase: StepIII: After the oracle participants

find the request, and if the number of participants does

not exceed the specified number (’Reporter number’), they

can deposit the required reputation (’Report4reputation’) in

advance as a proof of participation to join as reporters(2-1

and 2-2 in Fig.1). Reporters need to collect requested data

and submit them to oracle within the deadline of certain

time period (2-3 and 2-4 in Fig.1). A report submitted by

a reporter contains at least the following information. Each

element in the information is described such as ”element:

type”.

Reporter1Report = { ’Task id’ : string, ’User id’ : string,
’Answer’ : string, ’Report reputation’ : float, ’Statue’ :
’Reported’, ’Time’ : float }(formula 2)

3) Verification Phase: StepIV: If the number of

participants exceeds ’Reporter number’, subsequent

participants can only join as verifiers (3-1 in Fig.1).

The verifiers deposited a portion of reputation

(’Verifier4reputation’) as a proof of participation. They

are required to submits their own answers within the deadline

of certain time period(3-2 and 3-3 in Fig.1). Unlike reporters,

verifiers need to stack an extra reputation (‘Stack’) on their

own answers (3-4 in Fig.1). A report submitted by a verifier

contains at least the following information. Each element in

the information is described such as ”element: type”.

Verifier1Report = { ’Task id’ : string, ’User id’ : string,
’Answer’ : string, ‘Stack’ : float, ’Verifier reputation’ : float,
’Statue’ : ’Verified’, ’Time’ : float }(formula 3)

StepV: After the verification phase over, reputation

weighted calculation will be performed. In detail, among the

reports submitted by all verifiers, the one with the highest

reputation will become consensus result (3-5 in Fig.1).

4) Dispute Phase: StepVI: After a consensus result appears

by the end of verification phrase, if several people indicate that

they do not agree with the result, they can join in the request

for the consensus result they want to dispute (4-1 in Fig.2).

This part of participants will become disputers for this request.

Similar to ordinary verifiers, they need to deposit a portion

of the reputation (’Verifier4reputation’) and stack additional

reputation on a new answer to raise a dispute phrase (4-2

and 4-3 in in Fig.2). Only when the reputation stacked on the

new answer exceeds two times the old consensus result’s, the

disputers can form a new consensus result. After that, a new

round of dispute is observed (4-4 in Fig.2). When disputers

failed to form their answer or there is no more dispute on

the consensus result by deadline, reward distribution will be

occurred (5-1 in Fig.2).

5) Reward Phase: StepVII: In reward phase, every report

submitted by participants will be compared with the consensus

result. The participants whose reports are consistent with the

consensus result will be considered as ”correct” participants

(include reporters, verifiers and disputers) (5-2-1 in Fig.2),

the other will be ”incorrect” participants (5-2-2 in Fig.2).

All ”incorrect” participants will not be able to receive any

348

Fig. 1. Overall process of the solution(part 1)

reward set by the requester, but they lose all of the reputation

they have deposited (5-3-2 in Fig.2). The ”correct” reporters

will average the reward ’Fee2reporters’ (cryptocurrency). The

”correct” verifiers and disputers will receive an additional

reputation as rewards (5-3-1 in Fig.2). For example, we assume

that n reporters participated in request0, among them n1
reporters are considered as ”correct” participants. The sum of

verifiers and disputers are m, and m1 of them are considered

as ”correct” participants. By the time of reward phase, there

is a total of Trp reputation stacked on the final consensus

result, Frp reputation stacked on others. For reporter R1 who

is considered as ”correct” participant in request0, the reward

R1rwd for R1 is as follow(1):

R1rwd =
feer

n1
(1)

Among them, feer is the encrypted currency reward

(’Fee2reporters’) set by requester. For verifier V1 who

stacked Trpa reputation on its own answer and be considered

as ”correct” participant, the reputation reward V1grp for V1
is as follow(2):

V 1grp =
Trpa

Trp
× [feec+ (n− n1)× rrepr+

(m−m1)× rrepc+ Frp+ (rrepc+ Frpa)

(2)

Specifically, feec represents the reputation reward

(’Fee2verifiers’) set by requester. And rrepr refers the

proof of participation (’Reporter4reputation’) deposited by

reporters. (rrepc + Frpa) is the refund deposit for V1,

including the proof of participation (’Verifier4reputation’)
and the stack on V1’s answer.

IV. SIMULATION EVALUATION

We evaluated our proposal method by conducting

experiments through several simulations. In this simulation,

we created 100 participants including reporters, verifiers and

disputers. All of them will obtain benefits from a feasible

range. The reputation (rp) initially owned by each participant

is set to 1000 rp. To join in a request, reporters need to

deposit 100 rp, verifier and disputers need to deposit 10 rp.

The request for simulation was set as follow:

Request = { ’Task id’ : 0x001, ’Task content’ : T or F,
’Reporter number’ : 10, ’Reporter4reputation’ : 100.00,

349

Fig. 2. Overall process of the solution(part 2)

’Verifier4reputation’ : 10.00, ’Fee2reporters’ : 10.00,
’Fee2verifiers’ : 1000.00 }

The maximum possible of verifiers’ number was defined

as PPL. The number of verifiers for each simulation was

randomly chosen from [1,PPL]. In addition, we set the

maximum for the reputation that verifiers can stack on

their answers (max=3×rrepr) in order to avoid the abuse

of reputation. We assume that there are P honest and Q
dishonest participants in every request. When a dishonest

participants became reporter, the reporter will have 100% to

submit a wrong answer (F). A dishonest verifier submits a

correct answer (T) by proportion of P1, while a dishonest

disputer submits the same one by proportion of P2. For a

certain Q, we will release a same request for 10000 times.

When reward phase was ended, the percentage of the final

consensus result which formed by the honest participants

will be calculated. To evaluate our proposal method, we

conducted a comparative experiment. As comparative method,

we prepared a majority voting-based consensus method called

m-first voting in research field of Volunteer Computing. Also,

to evaluate the effect of dispute phase, we compared two

cases of proposal method with dispute phase and without

dispute phase. We evaluated the performance of each method

in 4 cases shown below. The results are shown in Fig.3 -

Fig.6.

CASE1:PPL=30,P1=50%,P2=50%.

CASE2:PPL=50,P1=50%,P2=50%.

CASE3:PPL=30,P1=30%,P2=30%.

CASE4:PPL=30,P1=0%,P2=0%.

The horizontal axis represents the proportion of current

dishonest participants (Q), while the vertical axis represents

the accuracy of the consensus results at this ratio. At the same

time, we observed the impact of the proportion of dishonest

participants on the frequency of disputes.

It can be seen from the above data that the correct rate of the

three consensus schemes shows different degrees of decline

with the dishonest increases without considering the Nash

equilibrium. However, the proposal maintains a fairly high

rate of accuracy when the proportion of dishonest participants

reaches 50%, especially around 30%. If we considering that

the dishonest participants have motivation to submit correct

answer, the performance of the proposal is better than the

350

Fig. 3. Comparative result in CASE1

Fig. 4. Comparative result in CASE2

other two comparative method to varying degrees.

In [18], a similar incentive mechanism without dispute phase

was proposed. A dishonest verifier with the highest reputation

can bribe reporters and easily controll consensus results with

a relatively small cost. It is because there is no mechanism of

reconsideration for other honest verifiers with relatively low

reputation to overturn the result they want to dispute. For ex-

ample, when the answer of a request is whether Ture or False,

malicious reporters and verifiers only need to submit False

to the system and form two ”False” consensus results while

correct answer is True. After the consensus are established,

since the results are consistent with each other, the malicious

will not only be exiled from the system, but also obtain

considerable benefits, thus declining the reliability of system.

Based on this, we consider the introduction of a dispute

mechanism can suppress this phenomenon to some extent.

When dishonest verifiers try to form an incorrect consensus

result with a small amount of cost, the remaining participants

Fig. 5. Comparative result in CASE3

Fig. 6. Comparative result in CASE4

can dispute it and form a new consensus through the dispute

phase. Once the new consensus is established, the dishonest

need more manpower and reputation to overturn it. As an

incentive, honest participants can earn the reputation of the

dishonest verifiers in from the dispute if it failed to overturn

the new consensus result, thus gaining a high reputation level.

A higher reputation level means that it is easier to become a

reporter and obtain cryptocurrency from other requests.

V. SECURITY ANALYSIS

A. Reliability

1) Malicious Reporter: Since requesters can set the lowest

reputation (’Reporter4reputation’ and ’Verifier4reputation’)
as a proof of participation, it is necessary for participants

to gain a higher level of reputation so that they are able to

become participants in most requests as reporters. When a

malicious reporter submitted incorrect data to oracle, due

to the high deposit for the proof of participation, it has a

351

high risk of losing the deposit, as well as the reward from

request it joined. On the other hand, requesters can increase

the minimum reputation requirement for their requests. As

a result, participants with low reputation will be blocked by

this, thereby suppressing the possibility of malicious attacks.

2) Malicious Verifier: Since requesters can filter out ver-

ifiers with low reputation by raising minimum reputation of

proof of participation, it is assured for malicious verifier to

obtain the reputation in advance. Furthermore, verifiers need

to stack enough reputation on their own answers, or they will

probably failed to form their consensus result in verification

phase. A feasible way to controll the verification phase is to

work with other malicious verifiers. However, success rate

of this method is quite low because of the exsistence of

dispute phase. Even if the verifiers succeeded to controll

the verification phase, honest participants can overturn the

verification result formed by malicious verifiers. Moreover,

to overturn a previous consensus result requires twice the

reputation stacked on it.

In the proposal, restrictions on reputation and dispute mecha-

nisms will make Sybil Attacks almost impossible. It is because

that no one can become a participant in any requests with no

reputation. Verifiers’ reward is reputation, which means they

will not gain actual benefits (cryptocurrency) from requests.

However, they will increase their reputation level, being more

competitive in the verification and dispute phase of other

requests. Owing to the fact that getting real profits requires a

high level of reputation, one of the incentives to be a verifier

is to earn reputation, ultimately become a reporter for most

requests to get real benefits (cryptocurrency).

B. Bribery tolerance

If malicious participants want to benefit from the proposed

mechanisms, they need to work together to controll consensus

results. Truthcoin introduced a kind of concept called ”double

incentives”, enabling participants to vote anonymously. It

claimed that voters have incentives to confuse other voters,

reminding them that they are lying, so that they can share the

reward with the least voters. In this way, malicious participants

are unable to accurately controll the number of people who

actually voted for wrong answers. In our proposal, participants

are anonymous to each other, and malicious participants have

an incentive to betray others. It demonstrates that there is also

such incentive mentioned above.

The P + epsilon attack [17] is characterized by the fact

that attackers pay their bribes only if their attacks failed. In

other words, the attackers are able to attack systems without

actually paying any price if the attack succeeded. In this paper,

since the reputation of ”incorrect” participants will be paid

to ”correct” verifiers and disputers, when the benefits that

participants can obtain from being honest are more valuable

than bribes, there is high possibility of betraying attackers.

VI. CONCLUSION

In this paper, we present a reliable decentralized oracle

approach. The proposal performs role differentiation and con-

sensus result calculation based on participants’ reputation. A

simulation-based experiment was conducted to evaluate the

reliability of the proposal. It showed that the interference of

malicious participants was suppressed, and reliable consensus

results could be obtain even if relatively many malicious

participants joined in the consensus process of the proposal.

As future work, we will try to program smart contracts for the

proposal and deploy it on Ethereum for further research.

ACKNOWLEDGMENT

This research was supported by the National Institute of Sci-

ence and Technology Corporation (JST) Strategic International

Collaborative Research Program (SICORP) and the grant of

JSPS Grant-in-Aid for Scientific Research JP18H03240.

REFERENCES

[1] Brito, J., Castillo, A. (2013). Bitcoin: A primer for policymakers.
Mercatus Center at George Mason University.

[2] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
[3] Buterin, V. (2014). A next-generation smart contract and decentralized

application platform. white paper, 3, 37.
[4] Wood, G. (2014). Ethereum: A secure decentralised generalised trans-

action ledger. Ethereum project yellow paper, 151(2014), 1-32.
[5] Xu Zhong, Zou Chuanwei. (2018). What can the blockchain do and

can’t do? Financial research, 461(11), 1-16.
http://www.jryj.org.cn/CN/Y2018/V461/I11/1

[6] Bashir, I. (2018). Mastering blockchain: Distributed ledger technology,
decentralization, and smart contracts explained. Packt Publishing Ltd.

[7] Governatori, G., Idelberger, F., Milosevic, Z., Riveret, R., Sartor, G., Xu,
X. (2018). On legal contracts, imperative and declarative smart contracts,
and blockchain systems. Artificial Intelligence and Law, 26(4), 377-409.

[8] Oraclechain Technical White Paper. (2017)
http://oraclechain.io/files/oraclechain white paper en.pdf

[9] Provable Documentation. (2019).
https://docs.provable.xyz/

[10] Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E. (2016, Oc-
tober). Town crier: An authenticated data feed for smart contracts. In
Proceedings of the 2016 aCM sIGSAC conference on computer and
communications security (pp. 270-282). ACM

[11] Ellis, S., Juels, A., Nazarov, S. (2017). Chainlink: A decentralized oracle
network. Retrieved March, 11, 2018.

[12] Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N., Kastania,
A. (2018, July). Astraea: A decentralized blockchain oracle. In 2018
IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData) (pp. 1145-1152). IEEE.

[13] Peterson, J., Krug, J. (2015). Augur: a decentralized, open-source
platform for prediction markets. arXiv preprint arXiv:1501.01042.

[14] Gnosis Whitepaper(2017)
https://gnosis.io/pdf/gnosis-whitepaper.pdf

[15] Sztorc, P. (2015). Truthcoin, peer-to-peer oracle system and prediction
marketplace.

[16] Clément Lesaege, Federico Ast. (2018).Kleros Short Paper v1.0.6
kleros.io/assets/whitepaper.pdf

[17] Vitalik Buterin. (2015). The P + epsilon Attack
https://blog.ethereum.org/2015/01/28/p-epsilon-attack/

[18] Shota Johjima, Kosuke Kaneko, Subodh Sharma, Kouichi Saku-
rai.(2019). “Simulation of Secure Volunteer Computing by Using
Blockchain”, The Proceedings of the 33rd International Conference
on Advanced Information Networking and Applications (AINA-2019)
, pp.883-894, Kunibiki Messe, Matsue, Japan Mar. 27-29, 2019.

[19] Orisi White Paper(2014)
https://github.com/orisi/wiki/wiki/Orisi-White-Paper

352

