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Abstract—Blockchain technology enables the operation of fully
decentralized applications without the need for a central author-
ity to manage the execution of the underlying process. However,
a critical limitation in the technology today is the inability for
such applications to query information external to the blockchain.
Applications must make use of a decentralized oracle, i.e. a
trusted source of external information. In this work we propose
the paired-question decentralized oracle protocol, designed to
extract true answers from the public. When querying the oracle, a
user submits pairs of antithetic questions and voting users answer
them for the chance to receive rewards. This new protocol lends
itself to a simple formal analysis, and it is shown to strongly
incentivize a Nash equilibrium of truthful reporting. This paper
also discusses a number of extensions to the base protocol to
improve its cost-effectiveness, security, and applicability.

Index Terms—blockchain, decentralized, oracle, voting,
Ethereum.

I. INTRODUCTION

A key benefit enabled by blockchain or Distributed Ledger
Technology (DLT) is decentralization, which removes the need
for trusted third parties. Many applications for trustless ser-
vices have been proposed, such as decentralized insurance [1],
decentralized prediction markets [2], and management of
financial instruments [3]. Each of these services requires
information that is external to the blockchain. For example, de-
centralized insurance must access information about property
damage and prediction markets must discover actual market
outcomes. Contemporary blockchain platforms are unable to
directly access real-world information, requiring any such data
to be input by a user or some form of centralized mechanism.
In many applications it can be difficult to find such a user who
has no incentive to misrepresent or to withhold information,
resulting in a loss of trustlessness that compromises the
essence of DLT. This is known as the gateway problem [4].

A decentralized oracle can address the gateway problem for
applications requiring decentralization. These oracles obtain
off-chain information by allowing members of the public to
provide answers to a question; these answers are then used by
the oracle to compute a final output. In order to create trust in
the oracle’s output, a reward mechanism is used to incentivize
users to truthfully report their actual beliefs.

A major challenge to these incentive schemes is the lazy
equilibrium problem, a variant of the Verifier’s Dilemma [5].
The problem, simply stated, is the existence of a degenerate
Nash equilibrium where voters always report the same answer

on all questions regardless of what they believe to be true, so
as to secure economic incentives/profits. A simple mechanism
behind such an oracle cannot guarantee that payoffs for
truthful reporting are greater than payoffs in a lazy Nash
equilibrium, and therefore cannot guarantee that voters will
contribute correct information.

The decentralized oracle ASTRAEA [6] was the first to
address this problem, using two groups of users voting on
each question. Different reward schemes for these groups serve
to reduce expected payoffs in a lazy equilibrium. However,
ASTRAEA’s relatively complex mechanism leads to signifi-
cant challenges in its analysis. Ideally this analysis should
be straightforward enough to convince voters that truthful
reporting is their best course of action.

Following, the decentralized oracle SHINTAKU [7] attempts
to reduce the complexity of ASTRAEA while still disincen-
tivizing the lazy equilibrium. Instead of two voting groups, all
voters answer two questions at once each time they participate.
This enables a simple reward scheme which forces the lazy
equilibrium to have an expected payoff of zero. SHINTAKU
does not provide a formal analysis of its protocol, and although
its design may seem to address the lazy equilibrium problem,
its pair-voting protocol admits new types of strategies which
are unaccounted for in the paper.

In this paper, we propose a novel paired-question protocol
for decentralized oracles. When a user wishes to query the
oracle, they submit two antithetic questions and post a bond.
The oracle collects votes and checks whether the two questions
converged to different answers; if so, the submitter regains
their bond and voters are rewarded (penalized) for agreement
(disagreement) with the majority answer. If the questions
converged to the same answer, the submitter loses their bond
and voters receive neither rewards nor penalties. In contrast
to ASTRAEA and SHINTAKU this protocol is readily analyzed
and has many desirable properties: for example, the interface
for voters is simplified and truthful voters receive larger
expected payoffs. We also introduce a general mathematical
model of decentralized oracles and apply it to show that
reporting one’s beliefs is a Nash equilibrium with better
payoffs than in the lazy equilibrium.

The remainder of this paper is organized as follows. Sec-
tions II and III give a brief overview of blockchain oracles,
set a general mathematical model for decentralized oracles,
and present a summary of recent oracle projects. Section IV
follows with a description of the new decentralized oracle
protocol and its analysis from a game-theoretical point of view.
Section V examines the protocol’s resilience to adversaries and978-1-5386-5541-2/18/$31.00 c©2019 IEEE
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suggests a simple technique to improve security. Section VI
discusses several extensions to the base protocol. Finally,
section VII concludes the paper.

II. PRELIMINARIES

A. Blockchain Oracles
In the context of blockchain applications (e.g. smart con-

tracts), an oracle is an entity which provides trustwor-
thy information. Several oracle solutions currently exist:
Oraclize.it [8] fetches data from a specified web source
and publishes it to a blockchain application. Outside the
blockchain, they also maintain cryptographic proofs which
show that the information originated from the correct source.
Town Crier [9] works in a similar way, making use of Intel
Software Guard Extensions [10] to protect against malicious
operating systems. Augur’s market closing mechanism [11]
instead allows token holders to report outcomes or to challenge
reported outcomes in a multi-phase procedure.

A subclass of blockchain oracles are decentralized
blockchain oracles. We will consider an oracle decentralized
if it is both permissionless (any user may join the protocol
without requiring other users’ permission) and equi-privileged
(all users have identical privileges). In this light, each of the
above oracle solutions exhibits a strong form of centralization.
Oraclize.it maintains a central server which handles all
requests for off-chain information (giving it the privilege to
deny requests, or to collude with website owners to produce
false information). Town Crier also operates a centralized
server with the notable difference that trusted hardware proofs
are used to verify authenticity. Finally, though Augur includes
a decentralized reporting/disputing mechanism, all markets
must declare a Designated Reporter: a single Augur user with
the privilege of reporting first on the market’s outcome.

B. A Decentralized Oracle Model
1) Oracle Operator: In order to provide decentralization it

is assumed that the main operation of the protocol is handled
on a suitably decentralized platform, such as through smart
contracts on Ethereum [12] or Hyperledger [13]. This entity
is hereafter referred to as the operator.

The operator maintains a list of active Boolean propositions
(i.e. statements which are either True or False). Any user
may submit new propositions to the operator, and any user may
vote on an active proposition. At certain times (as defined by
the protocol) propositions are considered closed: the operator
tallies votes, distributes rewards, and ceases to accept new
votes on the closed proposition.

2) Voters: In general, a decentralized oracle requires input
from users. We say that a user who inputs data into an oracle
is a voter, and could be any member of the public. Let
V = {v1, v2, v3, ..., vn} be the set of all voters participating
in the decentralized oracle protocol.

For a proposition pj , each voter vi ∈ V has a private
opinion POij ∈ {True, False}. This indicates what voter
vi honestly believes about the validity of pj after reading
its text. We assume the value of POij is fixed, but in the
honest scenario it is unknown to voters other than vi. Voters
who choose to collude and share their private opinions are
considered adversarial, which is discussed in further detail in
Section V.

Each voter vi also has a voting strategy σij , such
that σij(POij) is the answer that vi actually reports to
the oracle on proposition pj . For example, an honest
voter has σi(POij) = POij , while a lazy voter has ei-
ther σi(POij) = True for all j or σi(POij) = False
for all j. Finally, we define two random variables: let
Γj ∈ {True,False} denote the private opinion of a voter
selected randomly from V on proposition pj , and let
Aj ∈ {True,False} denote the answer reported by a voter
selected randomly from V on proposition pj .

3) Correctness of Oracle Outputs: No corporeal entity
(let alone a blockchain oracle) is capable of determining the
objectively true answer to a question [14, §1]. Even in the
elusive scenario where this were possible, users may choose
to submit subjective questions (which do not really have an
objective truth in the first place). Therefore, to rigorously
define the notion of correctness in this work, we make the
following definitions:

Definition 1. The Most Probable Private Opinion (MPPO)
is a randomly selected voter’s most likely private belief. On
proposition pj ,

MPPOj
.
=

⎧⎪⎨
⎪⎩
True P(Γj = True) > 0.5

False P(Γj = True) < 0.5

Undefined P(Γj = True) = 0.5

(1)

Definition 2. We say that the oracle is correct on proposition
pj when its output is equal to MPPOj .

Additionally, let cij denote voter vi’s perceived probability
of reporting an answer to pj equal to MPPOj . Assuming that
vi does not know POj for other voters, this is the same as the
probability that vi answers MPPOj on a POj value selected
randomly from V :

cij
.
= P (σij(Γj) = MPPOj) (2)

We also let cj denote the probability that a voter selected
randomly from V reports an answer equal to MPPOj :

cj
.
= P(Aj = MPPOj) (3)

The key distinction between the definitions of cij and cj is
that cij pertains to a specific voter vi with a fixed strategy σij ,
and thus may be different for voters with different strategies,
whereas in cj the strategy also varies with the random variable
Aj .

As an example, if all voters in V adopt the honest voting
strategy, then P(Aj = True) = P(Γj = True) and we have

cj =

{
P(Γj = True) MPPOj = True

P(Γj = False) MPPOj = False
(4)

Because much of this formulation applies to any arbitrary
proposition pj , we drop the subscript j from this point forward
where no ambiguity arises from doing so.

III. PRIOR ART

A. ASTRAEA

In ASTRAEA [6], there are three groups of users: voters,
certifiers, and proposition submitters. Voters post a relatively
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small bond and are given a random proposition to answer.
Certifiers post a relatively large bond and choose which
proposition to answer. A submitter sends a proposition along
with a bounty which is used to fund rewards for the two voting
groups.

Once voting ends, ASTRAEA always outputs the majority
answer from the voters. After tallying votes on a proposition,
the majority answer from the voters is compared to the ma-
jority answer from the certifiers, splitting the reward structure
into two cases:

Voters and Certifiers Agree: Certifiers are rewarded for
agreement with the majority and penalized for disagreement.
In the event a certifier receives a reward, they are paid from
a certifier reward pool. Specifically, there is one certifier
reward pool for propositions decided as True, and one for
propositions decided as False. Penalties exacted from the
certifiers are used to fund the certifier reward pool of the
opposite value (e.g. if a proposition was decided as True,
certifier penalties would be used to fund the False reward
pool). Similarly, voters are rewarded for agreement with the
majority, and penalized for disagreement; the rewards are
disbursed from the bounty paid by the proposition submitter,
and penalties are used to fund the opposite reward pool.

Voters and Certifiers Disagree: Certifiers receive the max-
imum possible penalty (i.e. any previously posted bond is
not returned). This penalty funds both certifier reward pools
equally. Voters are not penalized, but they are not rewarded
either (i.e. all of their posted bonds are returned). The bounty
provided by the submitter is instead used to equally fund the
certifier reward pools.

Over time, if propositions often converge to the same
answer (e.g. True) then the corresponding reward pool will
be drained much faster, causing the opposite answer to look
more attractive. In order for voters and certifiers to receive
the best payoffs for honesty, this mechanism depends on the
assumption that proposition submitters submit a roughly equal
amount of True and False propositions. Furthermore, if one
reward pool could deliver significantly higher rewards, this
may incentivize voters/certifiers to provide a dishonest answer.
Nonetheless, this temporary dishonesty would still serve to
stabilize the system against the lazy equilibrium.

B. SHINTAKU

Instead of having two types of voters, SHINTAKU has only
one [7]. To participate, each voter posts a bond and receives
two random propositions from the active proposition list. The
voter returns both their answers (their vote-pair) to the oracle,
and is rewarded for each answer independently. Similarly to
ASTRAEA, a vote is rewarded for agreement with the majority,
and penalized otherwise. However, SHINTAKU adds an extra
condition: in order for the votes in a vote-pair to be eligible
for rewards (or penalties) the two votes must have different
answers. In the lazy equilibrium, all voters are reporting the
same answer on all propositions. Thus, the vote-pair eligibility
condition forces lazy voting to have lower expected rewards
than honest voting.

Although SHINTAKU disincentivizes lazy voting, its ballot
mechanism admits new types of strategies. A rigorous analysis
of the SHINTAKU protocol can show that this voting strategy
would have positive payoffs unless penalties for disagreement

It is sunny

The Blue Jays won

It is not sunny

Christmas is on OCT 31

The Blue Jays lost

Active propositions

T T F T

T T T T

F T F

F T

F F F F

Votes

Submitter
etc. etc.

Voter

Figure 1: Overview of proposed oracle system

are at least twice as large as rewards for agreement. Although
beyond the context of this paper, a sketch of the proof for this
is found in Section IV-C. Not only does SHINTAKU require
relatively harsh penalties, similarly to ASTRAEA its rewards
to honest voters are lowered even further if submitters add an
unbalanced number of True and False propositions.

IV. A PAIRED-QUESTION PROTOCOL

This section describes our proposed decentralized oracle
protocol. It begins with a general overview, then presents a de-
tailed analysis. The oracle’s correctness and expected payoffs
are examined in the scenario where all voters are honest; we
find that honest voters receive higher payoffs than lazy voters,
while not sacrificing the oracle’s correctness. Additionally, we
demonstrate that honest voting is a Nash equilibrium. The
next section analyzes the protocol’s properties in an adversarial
scenario.

A. Description
An overview of the new protocol is depicted in Figure 1.

At any time a submitter can add propositions to the active
proposition list, and at any time a voter can place a vote on
an active proposition.

Submitting propositions. To add to the list of active propo-
sitions, in a single transaction a submitter provides:

• A bond
• Two propositions, called p and p′
• A bounty
• A duration
The submitter’s bond is returned if and only if the answers

to p and p′ converge to different True/False outcomes
after voting. Thus, the propositions should be designed to have
opposite answers: this is easily done if the submitter constructs
p′ to be the converse of p (e.g. “Team X won the sports game”
and “Team X did not win the sports game”). Constructing the
converse proposition would be an expensive and error-prone
operation if done automatically by the oracle itself, as the
propositions are assumed to be written in natural language;
it is a fair assumption that it will be done by a submitter
who would otherwise risk penalization. The bounty is used to
pay voters, and the duration determines the amount of time
available for voting on p and p′.

Submitting votes. To place a vote, a voter must engage in the
following dialogue with the oracle:

1) The voter posts a bond
2) The oracle selects a proposition and passes it to the voter
3) The voter returns a sealed vote to the oracle
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4) Once the proposition closes, the voter reveals their vote
At step 3, the voter computes their vote based on their

private opinion POi and their voting strategy σi. Sealed voting
is necessary to prevent against certain types of undesirable
strategies or attack vectors and is further discussed in section
VI-B. Additionally, at step 2, it is advantageous for the oracle
to choose a random proposition (discussed in section VI-C).

Once a proposition’s duration expires, it is closed. At
this point the oracle tallies votes and outputs the majority
answer. It then rewards voters as follows: for each pair of
propositions, it checks if the majorities converged to different
answers. If so, voters are rewarded for agreement, penalized
for disagreement, and the submitter’s bond is returned. If the
propositions converged to the same answer, the submitter loses
their entire bond, and voters receive neither a reward nor a
penalty (i.e. their bond is returned to them in full).

B. Analysis
1) Correctness: Of primary importance to applications

querying the oracle is its correctness (in the context of Defi-
nition 2). Consider a proposition p with n honest voters and
where c is the probability that a randomly selected voter agrees
with MPPO. PCorr, the probability that the oracle produces
a correct output, is simply the probability that a majority of
voters agree with MPPO :

PCorr = M(n,MPPO) (5)

Here, we use the majority function M(n, x) to denote the
probability that a majority out of n voters report x to the
oracle. In the case of honest voters,

M(n,MPPO) = 1−B
(⌊n

2

⌋
, n, c

)
where B(k, n, p) denotes the cumulative binomial density
function. M(n,MPPO) is calculated differently depending
on the configuration of voters and voting strategies, such as
the adversarial scenario in section V-B.

Figure 2 shows the probability that the oracle produces a
correct output for different values of c (if all voters are honest).
If a low number of voters is expected, then only propositions
with widely accepted answers are likely to come out correctly.
However, even if a proposition is highly contentious (with c
near 0.5), the oracle will eventually converge on the MPPO
with high probability provided there are enough voters.

2) Expected Rewards for Honest Voting: In our new proto-
col a voter is rewarded if they are in the majority and penalized
if they are in the minority. In the case of a tie, neither rewards
nor penalties are applied.

Suppose that voter vi with strategy σi is one of n voters
on p, and that p and p′ are paired questions (i.e. they were
submitted together). PMaj, the probability that voter vi is in
the majority on p, is equal to the probability that at least �n−1

2 �
other voters agree with them:

PMaj = (ci)M(n− 1,MPPO)

+(1− ci)M(n− 1,¬MPPO) (6)

PTie, the probability that a tie occurred, is the probability
that exactly n

2 voters voted according to the MPPO and is
calculated differently depending on the configuration of voters.

Figure 2: Probability of correctness as a function of n and c

Figure 3: Expected payoffs as a function of n and ci
assuming r = p = 1 and P (o �= o′) ≈ 1

Finally, PMin, the probability that voter vi is in the minority,
is simply the probability that they were not in the majority
and that there was no tie:

PMin = 1− PMaj − PTie (7)

For a voter to be paid or penalized, p must converge to a
different answer from p′. Letting o and o′ denote the oracle’s
outputs on p and p′,

P (o �= o′) = M(n,True)M(n′,False)
+M(n,False)M(n′,True) (8)

Combining Eqs. (6) and (8), we can compute the probability
that vi receives a reward/penalty:

PRew = PMaj · P (o �= o′)

Similarly,

PPen =PMin · P (o �= o′)

Finally, if the reward size is r and the penalty size is p, then
a voter’s expected payoffs are rPRew − pPPen.

Figure 3 shows the expected rewards for a voter vi depend-
ing on their own value of ci assuming r = p = 1 and that
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all other voters are honest with c = 0.75. Note that rewards
increase monotonically with an increasing ci.

3) Expected Rewards for Lazy Voting: The main challenge
for any oracle protocol is to disincentivize lazy voting. The
previous subsection shows that honest voting enjoys positive
expected payoffs in the honest scenario (and section V-B
shows that payoffs are positive provided an adversary is not too
powerful). In the lazy case, it is clear to see P (o �= o′) ≈ 0.
This forces expected payoffs to also be zero, which causes
lazy voting to be less efficient than honest voting.

NAME STRATEGY FUNCTION c
Honesty σi(POi) = POi > 0.5, Lemma 1
Lying σi(POi) = ¬POi < 0.5, Lemma 1

Always True σi(POi) = True 0.5, Lemma 2
Always False σi(POi) = False 0.5, Lemma 2

Table I: Summary of c values for pure strategies in response
to honest voting

4) Honest Nash Equilibrium: We conclude this subsection
by showing that honest voting is a Nash equilibrium. First, we
enumerate the pure strategies available to a voter, and consider
the c values for each one (summarized in Table I). Assuming
that POi is the only input signal to the strategy function σi,
then all strategies can be expressed as a mixture of these
pure strategies. We then argue that the pure honest strategy
has a strictly higher c, which implies strictly higher expected
rewards. Thus, since the pure honest strategy is a best response
to pure honest strategies, honesty is a Nash equilibrium.

Lemma 1. In a scenario where all other users are honest,
honest voting has an expected ci > 0.5 for an arbitrary
voter vi with no information about the PO of other voters.
Additionally, lying has an expected ci < 0.5 for such a voter.

Proof: First, note that by definition of MPPO, it
must always be the case that P (Γ = MPPO) ≥ 0.5
when all voters are honest. The only circumstance in
which P (Γ = MPPO) = 0.5 is an extreme case where
P(Γ = True) = 0.5 (i.e. the MPPO is undefined). As-
suming most submitters ask questions which have an answer,
it is reasonable to conclude that P (Γ = MPPO) > 0.5.
This means that from the perspective of a specific voter vi
with incomplete information about the PO of other voters,
P (POi = MPPO) > 0.5, and so ci > 0.5 if vi reports
honestly. Additionally, if an honest voter has probability x of
reporting the MPPO, then a lying voter has probability 1− x
of reporting the MPPO and thus ci < 0.5.

Lemma 2. In a scenario where all other users are honest,
lazy voting has an expected ci of 0.5 for an arbitrary voter vi
with incomplete information.

Proof: If submitters act honestly, then we can conclude
they are creating an equal number of True and False
propositions, implying P (MPPO = True) = 0.5. Thus, on
any particular proposition, a voter who always votes True
(or False) has a probability of 0.5 of reporting the MPPO,
which implies ci = 0.5.

Theorem 1. Honest voting is a Nash equilibrium.

Proof: By Lemmas 1 and 2, the pure strategy of honest
voting has a strictly better expected ci than the pure strategies
of lying and lazy voting. This means that no mixed strategy
can achieve a greater expected ci than honest voting. Since
expected payoffs increase monotonically with increasing ci,
honest voting is a strictly best response in a scenario where
all other users are honest.

C. Advantages of Proposed Protocol

An important feature of our proposed protocol is a rebal-
ancing of incentives. In ASTRAEA and SHINTAKU, proposi-
tion submitters can create unfavourable conditions for vot-
ers. Notably, if most propositions have MPPO = True,
expected rewards are significantly lowered in both protocols
(and in the case of ASTRAEA, this would cause the False
certifier reward pool to be disproportionately large, possibly
incentivizing certifiers to vote dishonestly on future proposi-
tions). In the paired-question protocol, a submitter receives a
penalty for creating an imbalance of MPPO = True and
MPPO = False propositions.

Additionally, we are able to reduce the size of penalties
without sacrificing incentive compatibility. In SHINTAKU a
voter could vote honestly on the first proposition of their
ballot, then place the opposite answer for their second vote
(regardless of their private opinion). This voting strategy (σx)
has cx > 0.5 on the first proposition and cx = 0.5 on the
second proposition (see Lemmas 1 and 2). Using r to denote
the size of rewards and p to denote the size of penalties, if
r = p then in expectation the first and second votes would
receive positive and zero payoffs, respectively (see section
IV-B). While we omit the details due to space limitations, in
can be shown that SHINTAKU requires p ≥ 2r to disincentivize
this particular strategy. In contrast, our proposed protocol is
able to correctly balance incentives with p = r, thus improving
payoffs for honest voters.

The simplicity of the new protocol is also advantageous. It
is not enough that a protocol guarantees optimal rewards for
honesty; its users must be convinced of this fact. Otherwise,
they may act according to an incorrect belief that a dishonest
strategy is optimal. Furthermore, a simpler protocol exhibits
a simpler formal analysis. While making fewer assumptions,
stronger guarantees are proven, and extensions or critical
adjustments to system parameters are easily evaluated.

D. Discussion

The proposed protocol is most effective for scenarios in
which voters are able to answer any proposition, and suffi-
ciently many voters are available to answer. As indicated by
Figures 2 and 3, the ideal scenario would have at least 10-20
voters per proposition in order to achieve strong incentives for
voter honesty and a high probability of correctness, depending
on the level of agreement among the voters.

It is also important to note that our oracle model involves
several idealizations in order to lend itself to a more tractable
analysis. In particular, by assuming that a voter’s strategy
σi depends only on POi, we implicitly disregard strategies
that make use of information contained in the proposition
itself. For instance, a voter may try to guess which of the
propositions p and p′ is the positive statement and which is the
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negation, and always vote True on the positive and False
on the negation. If voters are able to guess correctly with high
probability then this strategy can be a Nash equilibrium with
large payoffs. However, in many scenarios it is possible to
construct proposition statements in such a way that guessing
accurately is extremely difficult.

V. RESILIENCE TO ADVERSARIES

In this section we treat the issue of adversaries partici-
pating in the paired-question protocol. To model the effects
of multiple voting strategies on a proposition, we will first
generalize M(n,MPPO) to accept a vector representing the
number of voters for each strategy. Then, we will apply this
generalized expression to calculate the probability that an
adversary can manipulate the oracle’s outcome as well as the
costs of doing so. Finally, we propose a simple method to
increase the oracle’s security against such attacks.

A. Generalized Majority Function
Let �σ = (σ1, σ2, ..., σm) denote a vector of voting strategies

for proposition p, and let the vector �n = (n1, n2, ..., nm)
represent the number of voters following each strategy in �σ.
Using N =

∑
�n and ci to denote the probability that a voter

using strategy σi reports MPPO to the oracle,

M(�n,MPPO) =
∑

�k∈K0.5

m∏
i=0

b(ki, ni, ci) (9)

where b(k, n, p) is the binomial probability density function
and K0.5 = {(k1, ..., km) : 0 ≤ ki ≤ ni,

∑
i ki > N

2 }.
In other words, equation (9) sums over the probabilities that
(for 1 ≤ i ≤ m) there are ki voters with strategy σi who
report MPPO to the oracle, and such that

∑
i ki constitutes a

majority out of N .

B. Analysis of Adversarial Scenario
Suppose that on proposition p there are nh honest voters

and na voters controlled by the adversary (i.e. N = nh+na).
As usual the MPPO is determined in the sense of Definition 1,
and each honest voter has probability ch ≥ 0.5 of reporting
the MPPO to the oracle. The adversary is free to select a value
of ca for its voters. It is a straightforward matter to apply the
generalized majority function in Eq. (9) to the expressions for
correctness and payoffs in section IV-B.

Figure 4 shows the effect of an adversary on the oracle’s
correctness, assuming ca = 0 (the case where the adversary is
trying to force an incorrect answer). If na+(1−ch)nh < chnh

(i.e. the adversary with the incorrect honest voters do not
outnumber the correct honest voters) then the oracle still
maintains correctness with relatively high probability. This is
easily seen in Figure 4 when correctness starts to decrease
sharply near na = 13 and nh = 17. However, once the
adversary-controlled voters outnumber all honest voters, the
oracle is guaranteed to be incorrect, as when na ≥ 15.

Figure 5 shows the effect of an adversary on expected
payoffs for each voting strategy. Similarly to the case for
correctness, if na + (1 − ch)nh < chnh the oracle maintains
relatively good payoffs for honesty and relatively strong penal-
ties for dishonesty. In Figure 5, we note that the adversary’s

Figure 4: Oracle correctness as a function of proportion of
adversary-controlled votes (ca = 0).

Honest
Adversary

Figure 5: Payoffs to each voting strategy as a function of
proportion of adversary-controlled votes (ca = 0).

expected payoffs outpace an honest voter’s expected payoffs
past na = 13. Of course, once the adversary outnumbers the
honest voters, their expected payoffs are guaranteed to be a
maximum, as when na ≥ 15.

C. Quorum Payoff Schedule
Figures 4 and 5 demonstrate that if an adversary controls

over 50% of votes, they can successfully manipulate an output
at no cost (indeed, they will receive a profit). However,
the payoffs to a successful adversary can be reduced if the
condition for payment is to belong in a supermajority, i.e. a
majority larger than 50%.

This change can be effected with a simple extension to the
generalized majority function:

Mq(�n,MPPO) =
∑
�k∈Kq

m∏
i=0

b(ki, ni, ci) (10)

where Kq = {(k1, ..., km) : 0 ≤ ki ≤ ni and
∑

i ki > qN}.
Mq requires an additional parameter 0.5 ≤ q ≤ 1 which
specifies the minimum quorum size for payment. Note that
M0.5(n, x) = M(n, x).
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Figure 6: Effect of q > 0.5 in the honest scenario, for
r = p = 1 and P (o �= o′) ≈ 1. Compare with Figure ??.

Honest
Adversary

Figure 7: Effect of q > 0.5 in the adversarial scenario.
Compare with Figure 5.

This extended majority function can be used in Eq. (??),
and an example is shown in Figure 6 for q = 0.7. Although
expected payoffs have the same asymptotic values, for small
values of n a minimum quorum size greater than 0.5 will
reduce expected payoffs (as well as penalties).

On the other hand, in the adversarial scenario, a larger
minimum quorum size acts as an additional deterrent to
adversaries. Figure 7 shows that an adversary must control qN
votes before their expected payoffs are maximized. Although
the adversary can force an incorrect response by controlling
only N

2 votes, the quorum-based payment schedule makes this
a more economically unattractive prospect.

VI. EXTENSIONS AND IMPLEMENTATION DETAILS

To complete the discussion of the new protocol, we discuss
several important implementation details.

A. Voting Pools

The proposed oracle protocol exhibits its best performance
when a large number of voters participate. As demonstrated
in Figure 2, if c = 0.6 then at least 80 voters are required
for PCorr to exceed 95%. Of course, this would require many
voters to submit voting transactions; however, on contempo-
rary blockchain platforms, transactions can carry significant

fees [15]. This indirectly raises the cost to proposition sub-
mitters who must provide a large enough bounty to offset the
fees a voter must pay. Here, we describe a method to reduce
costly transactions while not significantly lowering the oracle’s
correctness.

A voting pool consists of a pool operator and a number
of pool members. Instead of interacting with the decentralized
oracle, pool members answer propositions and receive rewards
directly from the pool operator. The pool operator is free to use
the answers collected from the pool members and to decide
on individual rewards.

1) Advantages for a Pool Operator: In exchange for com-
pensating pool members directly, a pool operator can use a
variety of techniques which (due to its inability to hide infor-
mation) are impossible for a decentralized oracle. For example,
the pool operator could create their own propositions with
known answers in order to test a pool member’s knowledge,
or a proposition could be sent multiple times to the same pool
member in order to test for consistency. Furthermore, just as
the oracle’s correctness improves as it collects more votes, a
pool operator’s correctness improves as it collects more votes
from its pool members. As a result, the pool operator has a
higher ci value and receives higher expected rewards from the
oracle.

2) Advantages for Pool Members: In exchange for poten-
tially smaller rewards, working for a pool operator greatly
simplifies participation in the decentralized oracle protocol.
For example, a pool operator can provide members with a
simplified interface which does not require maintaining an
address on a public blockchain, does not require the pool
member to post a bond, and removes the need to pay transac-
tion fees. Furthermore, voting in a pool (similarly to mining
in a blockchain mining pool [16]) can lower the variance on
rewards; even though direct participation with the oracle has
positive expected rewards, it is possible for an honest voter to
lose several times in a row. Should a voter run out of funds,
they would no longer be able to post the necessary bond in
order to continue participating.

3) Advantages for the Decentralized Oracle: First, the
number of transactions is significantly reduced, which in
turn lowers the cost to submitters. Second, though fewer
participants are interacting directly with the oracle, each of
them potentially has a much higher ci parameter. As shown
in Figure 2 the oracle needs only a small number of voters
provided c is large enough.

B. Sealed Votes

To ensure the security of the oracle it is necessary for
votes to remain secret until propositions are closed. One
reason is to prevent voters from simply tallying existing votes
and choosing to agree with the current majority (instead of
honestly reporting their private beliefs).

One popular method for sealed voting is a cryptographic
commitment scheme [17, §4.4.1]. When placing a vote, a voter
sends Hash(v, r) where v is their vote and r is a privately
chosen random number. Once a proposition is closed, the voter
reveals v and r, allowing the oracle (and any other participants)
to verify that the voter committed to this vote.

Unmodified, this scheme is not enough for the set purposes.
An attacker could replay a vote, a voter could choose to never
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reveal their vote, or a voter could publicly announce their
vote before the proposition closes. We propose the following
techniques for dealing with these issues:

1) Replay Attacks: This is easily prevented by extending
the committed information. When a voter places a vote,
they should send Hash(v, j, r) to show that they answered
v on proposition pj . Additionally, when tallying votes on a
particular proposition, commitments with identical r values
should be ignored. This removes the possibility of a sealed
vote being valid in more than one context.

2) Voter Never Reveals: This scenario could take place
when a voter is trying to avoid receiving penalties. For
example, they could place a number of both True and False
votes on a proposition and selectively reveal only the votes
which will earn rewards. In order to prevent this, we should
require voters to post a bond which is larger than the maximum
penalty. If a voter disagrees with the majority, they will still
regain some fraction of their original bond; if they do not
reveal their vote, they forfeit their entire bond. This ensures
that revealing votes is incentivized.

3) Premature Revealing: Finally, a voter may reveal their
vote before a proposition is closed. Recall that sealed votes
were desired in order to prevent new voters from simply copy-
ing the majority of existing votes. One way to disincentivize
this behavior is to allow users to report one another for doing
so. For instance, if a user can prove that they know a vote
placed by voter vi (by producing the correct v, j, and r
parameters) then they can be rewarded with a large fraction
of the original bond posted by vi. A portion of the bond
should also be discarded in order to disincentivize users from
reporting themselves at zero cost (effectively cancelling their
vote).

C. Random Numbers
Though it is possible to allow voters to select which

proposition to answer, randomly selecting a proposition from
the active list has a number of advantages; it has the effect
of evenly distributing votes over all propositions, and makes
it more costly for a voter (or group of voters) to force the
output of a single proposition.

Random numbers present a significant challenge on decen-
tralized blockchain platforms, as all users must agree on the
exact same random number (implying that its selection must
be deterministic) and yet they must not be able to predict or
manipulate it. A popular method for accomplishing this uses
a ranDAO [18]. This scheme occurs in two non-overlapping
phases: the committing phase and the revealing phase. In the
committing phase, users send hashes of privately-generated
random numbers. In the revealing phase, the users reveal their
private numbers, which are combined into a final result. This
ensures that users cannot predict the output during the commit
phase (though they can influence it) and that they cannot
influence the output during the reveal phase (though they can
predict it).

Although this technique guarantees that no user can predict
or predictably influence the output, it does not guarantee
liveness (e.g. users could choose to never reveal their commit-
ments). Pragmatically, a ranDAO can choose to end the reveal
phase once a certain quorum is met, at the cost of guaranteed
security.

Note that an oracle could efficiently use both sealed votes
and a ranDAO by combining the two techniques. The r values
used for sealed votes can be repurposed as the basis for random
number generation.

VII. CONCLUSION

This work proposes a novel paired-question decentralized
oracle protocol. Submitters enter pairs of antithetic proposi-
tions into the system, while voters answer propositions for
the chance to receive rewards. We analyze oracle correctness
and voter payoffs in an honest voting scenario and show the
existence of an honest Nash equilibrium. We also analyze the
protocols performance in a scenario involving adversaries, and
show that only a powerful adversary can manipulate outcomes.
Additionally, we provide a number of extensions which can
increase the cost to force an outcome, reduce transaction
costs, provide pseudo-random number generation, and allow
for secret voting on a public decentralized blockchain plat-
form. As future work, implementation and deployment on the
blockchain would allow for a more detailed empirical analysis
of performance and costs so to further justify the theoretical
analysis present here.
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