
Off-chain Data Fetching Architecture for Ethereum
Smart Contract

Xiaolong Liu

College of Computer and Information Sciences
Fujian Agriculture and Forestry University

Fuzhou 350002, China
E-mail: xlliu@fafu.edu.cn

Yu-Wen Chen

Dept. of Computer Science
National Chiao Tung University

Hsinchu, Taiwan, ROC
E-mail: w369gf523@gmail.com

Riqing Chen
College of Computer and Information Sciences

Fujian Agriculture and Forestry University
Fuzhou 350002, China

E-mail: riqing.chen@fafu.edu.cn

Shyan-Ming Yuan*
Dept. of Computer Science

National Chiao Tung University
Hsinchu, Taiwan, ROC

E-mail: smyuan@cs.nctu.edu.tw

Abstract—Ethereum smart contract makes developers can

deploy decentralized applications to inherit features from
blockchain, such as decentralization and openness. Although
Ethereum provided a decentralized platform, Ethereum
Virtual Machine for smart contracts, it lacks of ability to fetch
off-chain data. The general solution is Oracle data carrier.
However, Oracle results in rising deployment costs. It requires
Ethereum smart contract developers to follow format in
programing contract, this constraint decreases the readability
of smart contract. This paper proposes an off-chain data
fetching architecture which is cost-effective and highly elastic
for smart contract. It also compatible with exited contract,
which makes Ethereum smart contract owner able to automate
the reply process.

Keywords—Blockchain; Ethereum; Smart contract; Oracle.

I. INTRODUCTION
In recent years, blockchain technology has developed

rapidly. The most representative application was Bitcoin
proposed by Satoshi Nakamoto in 2008 [1], which is a
peer-to-peer electronic cash system and a distributed ledger
base on blockchain� It eliminates the need for trusted third
party for e-commerce payment system. In 2013, blockchain
developers came up with the second-generation blockchain
application, Ethereum [2], which contains more feature than
Bitcoin. Ethereum not only provides a ledger system but
also provides the implementation of smart contract.
Although there have been a lot of blockchain provides
function of smart contracts in recent years, most of them are
altcoin, and the foundation is still Ethereum.

 The concept of smart contract gives blockchain the
ability to do simply computation. However, smart contracts
live like in a walled garden, they cannot fetch external data
and generate random number on its own. This is due to the
computation in Ethereum Virtual Machine should be
determined. Despite smart contract provides computation
ability, every transaction should be able to verify. In other
words, every transaction processed by different Ethereum
Virtual Machine spreading in same blockchain should be
the same result, fetching off-chain data is not determined,

generating random number is not either. This feature highly
limits the developing of decentralized application [3].
Practically, smart contract developers have to setup an agent
to get desired data, after getting data off-chain, calling the
contract function to pass data back to the contract.

The object of this paper is to propose an architecture of
data carrier for Ethereum smart contracts that increases little
deployment costs, and monitor contract event without
subscribing any filter at Ethereum node. The proposed
architecture would not depend on Ethereum node to monitor
events, and the data source is not limited. It is responsible
for the interactions of contract developer register, monitor
smart contract, Ethereum node callback and fetch of
external data source and computation source. We also
proposed selective solutions for filtering smart contract
event, decoding event log to fit different requirements. The
comparison result with Oracle in terms of deployment cost
is presented to show the superiority of the proposed data
carrier system.

The remainder of this paper is organized as follows.
Section 2 presents the related work of this paper. The design
of the proposed data carrier system is described in Section 3.
Section 4 presents and discusses the evaluation results.
Finally, Section 5 draws conclusions.

II. RELATED WORK
Ethereum [2] was proposed in late 2013 which is an

opensource, public, blockchain-based distributed computing
platform featuring smart contract, while Ether is the
cryptocurrency used on this platform. The intent of
Ethereum is to create an alternative protocol for building
decentralized applications. The concept of smart contract is
first proposed by Nick Szabo in 1997 [5], but it lack of
platform to implement until blockchain was proposed.
Smart contract should not be seen as something that should
be fulfilled or complied with, rather, smart contracts are
more like autonomous agents. A smart contract is a set of
commitments that are defined in digital form, including the
agreement on how contract participants shall fulfill these
commitments. Generally, Ethereum based smart contract is
programed by Solidity, which is a contract-oriented,

high-level language. It was influenced by C++, Python and
JavaScript and is designed to target the Ethereum Virtual
Machine. One issue related to using smart contracts on a
public blockchain is that bugs, including security holes, are
visible to all but cannot be fixed quickly. Smart contracts
such as casinos require random numbers, decentralized
exchanges, and exchange rate information, which require
Oracle help to obtain this information.

Fig.1 shows the conceptual architecture of Oracle [4], the
concept of it is to enable smart contract fetch off-chain data.
Although Oracle has a variety of different ways to
implement, in this paper the architecture based on the
version issued by commercial company, Oraclize[6], was
used. Oraclize provide part of the infrastructure needed to
build smart and useful decentralized applications, and its
service guarantee the correctness of data [7].

Fig. 1. The architecture of Oracle

 The first benefit of Oracle is that if you have multiple
contracts which needs external data, traditionally, you may
program responder, launching one responder for one smart
contract, but if you take the architecture of Oracle, the only
event emitted by contract which needs off-chain data would
be Oracle contract, this makes Oracle become the agent of
all contracts needing off-chain data. The second benefit is
that Oracle does not need manage contract’s application
binary interface. In general, anyone wants to interact with
specific contract, he need two elements, i.e. contract address
and application binary interface. However Oracle user do
not need to provide any application binary interface for
Oracle provider. Because the Oracle provided by Oraclize
contains a virtual function used for callback, user needs to
inherent standard callback function to receive external data.

However, the feature that Oracle does not need
application binary interface actually is a double-edged
sword, its shortcoming is everyone can easily decode your
event, even trigger your callback function when contract
programmer does not limit the message sender of callback
function Appropriately, although the purpose of application
binary interface does not encrypt the transaction, it still
increases the risk of smart contract [8].

III. SYSTEM DESIGN
The object of this paper is to propose a smart contract

data carrier architecture that is cost-effective, highly flexible
and user friendly. This section introduces the overview of

the proposed architecture and detail of each component. Fig.
2 shows the interactions of the proposed data carrier system,
it is responsible for the interactions of contract developer
register, monitor smart contract, Ethereum node callback
and fetch of external data source and computation source.
Fig. 3 shows the conceptual architecture of the proposed
data carrier system. Basically, it contains three components:
Mission Manager, Task Publisher and Worker.

Fig. 2. The interactions of the proposed data carrier

Mission Manager: mission manager is used to receive
mission registered by system user, a mission contains event
hash and contract address, how to response the event, and
the queue channel response for event. In addition database
was used to store missions, which provide the necessary
information for monitoring Ethereum blockchain, how to
send external data back to the smart contract, and how does
worker retrieve the external data. A popular web framework
Express, which is written in JavaScript and hosted within
the node.js runtime environment, is used to build service
back-end. We use express to set up a RESTful API for users
to register mission, and the document oriented database
MongoDB to store the mission.

Fig. 3. The architecture of the proposed data carrier

Task Publisher: task publisher will perform four phases

action for each pended block: filter out unconcerned
transaction, fetch argument in event, send generated task to
specific work, and publisher collect transactions on new
block. Task publisher is implemented by Node.js with the
characteristic of event-driven and non-blocking I/O model.
As shown in Fig.4, There are three modules in task
publisher: Filter module is triggered when every new block
header comes in to find out whether managed Ethereum
smart contract is activated by any address. When user call
smart contract function these event will be document in the
log entry. Decoding module will get the arguments in the
event log, decode the event log and replace the command
template to generate task for worker. After replacing the
command, publishing module will push the task to the
message queue.

Fig. 4. The architecture of Task Publisher

Worker: worker executes receiving command to obtain
data, which could be computation or simply fetch data. In
general worker consists of execution module and
transaction module. The execution module uses the
child_process package of Node.js to generate an external
execution program which is specified by task entry
“command”. This program can be fetching agent or
computation agent, and both scenarios needs to output the
parameters of smart contract to standard output. The worker
will obtain this output for the transaction module as
callback parameter. The transaction module is responsible
for passing the results generated by the execution module
back to the smart contract via function calls.

IV. EVALUATION RESULTS
The difference between the proposed data carrier

architecture in this paper and the Oracle system is that the
deployment costs when deploying smart contracts are
different. The example contract is KrakenPriceTicker.sol [9],
here we use Remix, Solidity IDE to evaluate deployment
cost. KrakenPriceTicker is a smart contract which fetch
Bitcoin price at digital asset trading platform, i.e. Kraken.
Table 1 and 2 shows the original contract of
KrakenPriceTicker cost about 400,000 gas, on the other
hand, Oracle contract cost for it is about 1.8million gas after
optimization. From table 8 and 9, we can also find that the
cost of Oracle contract may even be several times higher
than the original smart contract. This is because Oracle

provides a lot of additional features. At the time of the
inherit Oracle resolver contract, these functions were still
inherited, which resulting in a very large storage consume.

Table 1 Deployment Cost - KrakenPriceTicker.sol
Enable compiler Optimization Deployment Cost (gas)

No 433,800
Yes 393,000

Table 2 Deployment Cost - OraclizeLib.sol

Enable compiler Optimization Deployment Cost (gas)
No 2,563,800
Yes 1,719,200

The formula for calculating the cost of a smart contract is
shown as (1):

��������	
������ � ���������� � ����������������������

where Gas Used was decided after compiling the smart contract
(more specifically, it was decided during the deployment). When
deploying smart contracts, the cost mainly comes from the size
of the original data, the space occupied by the smart contract
after deployment, and the constructor operating costs. Gas price
refers to the amount of Ether you’re willing to pay for every unit
of gas, and is usually measured in “Gwei”, which means ten to
the negative ninth power Ether.

Fig. 5. Ethereum Gas Price per Million Gas

In this evaluation, we use data of Ethereum gas price for
per Million Gas from February to May 2018 [10, 11], which
was shown in Fig.5, to evaluate the development cost of a
smart contract. After calculation, the result in Fig.5 shows
the deployment cost for every one million gas cost will be
about 11.5 US Dollar. Since Oracle contract takes about
1.8million gas as shown in table 2, we can extrapolate that
using our architecture can save about $20 deployment cost
in average for a smart contract.

V. CONCLUSIONS
In this paper, the architecture of data carrier for Ethereum

smart contract is proposed. This work is trying to solve

�������
��������
��������
��������
�	������
�
������

��
��
��
��
�

��
��
��
��
�

��
�

��
��
��

��
��
��
��
��

��
��
��
��
�

��
��
��
��
�

��
�

��
��
��

��
��
��
��
��

��
�

��
��
��

	�

�
��
��
�

	�
��
��
��
��

	�
�

��
��
��

	�
��
��
��
��

�
��
��
��
�

�
��
��
��
��

�
��
��
��
��

�
�	
��
��
��

�
��
��
��
��

��������������������������

problems causes by Oracle style data carrier, such as
expensive deployment, lack of compatibility. We also
propose a deployment to solve consensus issue caused by
fetching off-chain data. In the evaluation, we evaluated how
much deployment cost can be save by the average data from
February 2018 to May 2018. Generally, by using our
architecture, it will decrease about 20 USD for every smart
contract who need data carrier service. In this work, while
making consensus on external data, we push external data to
the smart contract to do processing.

VI. ACKNOWLEDGEMENT
This work was supported by the fund of the National

Natural Science Foundation of China (Grant No. 61702102),
Natural Science Foundation of Fujian Province, China
(Grant No. 2018J05100), and MOST of Taiwan (Grant
No.105-2511-S-009-007-MY3).

REFERENCES

[1] NAKAMOTO, Satoshi, “Bitcoin: A peer-to-peer electronic

cash system,” 2008. Available: https://bitcoin.org/bitcoin.pdf
[2] BUTERIN, Vitalik, et al, “A next-generation smart contract

and decentralized application platform,” white paper, 2014.
Available:
https://github.com/ethereum/wiki/wiki/White-Paper

[3] Kieron, O. (2017). Smart contracts - dumb idea. IEEE
Internet Computing, 21(2), 97-101.

[4] ELLIS, Steve, “A Decentralized Oracle Network Steve Ellis,
Ari Juels, and Sergey Nazarov.” Available:
https://icowhitepapers.co/wp-content/uploads/ChainLink-Whi
tepaper.pdf

[5] Szabo N. Formalizing and Securing Relationships on Public
Networks[J]. 1997, 2(9).

[6] Oraclize, API documentation. Available:
http://docs.oraclize.it/

[7] MERZDOVNIK, Georg, et al, “Whom you gonna trust? a
longitudinal study on TLS notary services,” IFIP Annual
Conference on Data and Applications Security and Privacy.
Springer, Cham,. pp. 331-346, 2016.

[8] ATZEI, Nicola; “BARTOLETTI, Massimo; CIMOLI,
Tiziana. A survey of attacks on Ethereum smart contracts
(SoK),” International Conference on Principles of Security
and Trust, Springer, Berlin, Heidelberg, pp. 164-186, 2017.

[9] Oraclize, KrakenPriceTicker.sol V0.4.25. Available:
https://dapps.oraclize.it/browser-solidity/#version=soljson-v0.
4.19+commit.c4cbbb05.js&optimize=false&gist=ad3d1f6007
942b727f5909b55e6445d2

[10] Etherscan The Ethereum Block Explorer. Ether Historical
Prices, Retrieved June 6, 2018, Available:
https://etherscan.io/chart/etherprice

[11] Etherscan The Ethereum Block Explorer. Transaction Fees ,
Retrieved June 6, 2018, Available:
https://etherscan.io/chart/transactionfee

[12] POON, Joseph; DRYJA, Thaddeus. The bitcoin lightning
network: Scalable off-chain instant payments. draft version
0.5, 2016, 9: 14. Available:
http://coinshp.com/assets/pdf/lightning.pdf

