
Pervasive Smart Contracts for Blockchains in IoT Systems

Amir Taherkordi†‡ and Peter Herrmann‡
†University of Oslo, Oslo, Norway

amirhost@ifi.uio.no
‡Norwegian University of Science and Technology (NTNU), Trondheim, Norway

herrmann@ntnu.no

ABSTRACT
Thanks to its decentralized structure and immutability, blockchain
technology has the potential to address relevant security and pri-
vacy challenges in the Internet of Things (IoT). In particular, by
hosting and executing smart contracts, blockchain allows secure,
flexible, and traceable message communication between IoT devices.
The unique characteristics of IoT systems, such as heterogeneity
and pervasiveness, however, pose challenges in designing smart
contracts for such systems. In this paper, we study these challenges
and propose a design approach for smart contracts used in IoT
systems. The main goal of our design model is to enhance the de-
velopment of IoT smart contracts based on the inherent pervasive
attributes of IoT systems. In particular, the design model allows
the smart contracts to encapsulate functionalities such as contract-
level communication between IoT devices, access to data-sources
within contracts, and interoperability of heterogeneous IoT smart
contracts. The essence of our approach is structuring the design of
IoT smart contracts as self-contained software services, inspired
by the microservice architecture model. The flexibility, scalability
and modularity of this model make it an efficient approach for
developing pervasive IoT smart contracts.

CCS CONCEPTS
• Applied computing→ Service-oriented architectures;

KEYWORDS
Blockchains, Internet of Things, Smart Contracts, Microservices.

ACM Reference Format:
Amir Taherkordi†‡ and Peter Herrmann‡. 2018. Pervasive Smart Con-
tracts for Blockchains in IoT Systems. In 2018 International Conference on
Blockchain Technology and Application (ICBTA 2018), December 10–12, 2018,
Xi’an, China. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3301403.3301405

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICBTA 2018, December 10–12, 2018, Xi’an, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6646-5/18/12.
https://doi.org/10.1145/3301403.3301405

1 INTRODUCTION
Smart devices have facilitated the pervasive presence of a variety
of things, interacting and cooperating with each other through
unique addressing schemes—Internet of Things (IoT). These de-
vices often exchange huge amounts of security, safety-critical and
privacy-sensitive data. This makes them tempting targets for var-
ious cyber attacks [25]. Equipping such devices with appropriate
security and privacy support mechanisms is a challenging task due
to their resource limitations, in particular, their often limited com-
puting power and energy supply. In addition, many state-of-the-art
security solutions are highly centralized and not well-suited for
IoT systems due to the lack of scalability, many-to-one nature of
the traffic, and single points of failure [20]. With respect to privacy,
existing privacy preserving methods rely on revealing noisy, in-
complete or summarized data to the data requester, while many
IoT applications require users to reveal precise data in order to re-
ceive personalized services [5]. For all these reasons, many existing
security and privacy technologies do not fit well to IoT systems
which demand more lightweight, scalable, and distributed security
and privacy solutions. Blockchain technology has the potential to
meet these demands thanks to its decentralized, secure, and private
nature [4].

Blockchain treats message exchanges between IoT devices sim-
ilarly to financial transactions in Bitcoin, a popular application
of this technology. To enable message exchanges, the IoT devices
leverage smart contracts defining the rules according to which the
communication has to take place [3]. IoT systems can also benefit
from smart contracts for other purposes such as tracing consumer-
to-machine and machine-to-machine transactions. The unique char-
acteristics of IoT systems, such as autonomy of IoT devices and their
interactions, device heterogeneity, and pervasive communication,
however, make the design and development of IoT smart contracts
often challenging.

There exists a number of smart contract programming models
such as Solidity [21] which are suitable for conventional blockchain
systems. Moreover, their design is based on simple function-based
programming, without high-level abstractions for better engineer-
ing of smart contract code which is required for pervasive and
heterogeneous systems like IoT. In the context of smart contracts
design for IoT, most existing approaches mainly focus on addressing
the scalability issue for blockchains integrated with large-scale IoT
systems in terms of limited bandwidth connections and processing
capabilities in IoT deployments [5].

https://doi.org/10.1145/3301403.3301405
https://doi.org/10.1145/3301403.3301405
https://doi.org/10.1145/3301403.3301405

In this paper, we study the challenges in designing smart con-
tracts for blockchains integrated with IoT systems, including au-
tonomous operations of smart devices, heterogeneity of smart con-
tract terms, and intermittent communication between IoT devices
involved in a transaction. We term the smart contract that ad-
dresses these design challenges as pervasive smart contract. The
main design principle behind a pervasive smart contract is encap-
sulating functionalities specific to IoT smart contracts, including
contract-level communication between IoT devices, access to exter-
nal data-sources within contracts, and supporting interoperability
of heterogeneous IoT smart contracts. To this end, we adopt a self-
contained lightweight development model for IoT smart contracts,
inspired by the microservice architecture model. The flexibility,
scalability, and technology diversity of the proposed model make
it an efficient solution for developing pervasive smart contracts.
Our initial implementation of the proposed development model
for pervasive smart contracts focuses on tackling issues caused by
the secured and isolated sandboxed runtime environment within
which the contracts are hosted.

The rest of this paper is organized as follows. In Section 2, an
overview of integration of IoT and blockchains is provided. The
design aspects of smart contracts in IoT systems are discussed in
Section 3, followed by a microservice-based design model proposed
for developing pervasive IoT smart contracts. In Section 4, the
implementation highlights and challenges are discussed. Related
work and concluding remarks are presented in Sections 5 and 6,
respectively.

2 BLOCKCHAINS AND IOT: AN OVERVIEW
Currently, digital trade mostly relies on trusted third-party authori-
ties for handling financial or operational transactions, e.g. a bank
which confirms the delivery of money to a person. These trusted
third parties control and manage all data and information and typ-
ically use a centralized costly system for transaction processing.
Moreover, they can be hacked, compromised or administered by
malicious agents. This is where blockchain technology is introduced.
It solves the mentioned issues by creating a decentralized system
without the need for such third parties. A blockchain is basically
a distributed data structure, or a public ledger of all transactions
or digital events executed and shared among participating par-
ties [10]. Each transaction in the public ledger is immutable and
verified by consensus of a majority of the participants in the sys-
tem. Blockchain makes trustless, peer-to-peer messaging possible
without the need for third-party brokers. Thus, it can be used for
financial services, e.g. cryptocurrencies such as Bitcoin [13].

IoT systems often consist of a large number of heterogeneous
smart devices that interact with each other or with other networks
and platforms such as clouds. IoT devices usually generate a huge
amount of data that has to be coordinated. Due to the varying nature,
context, and location of the nodes, this coordination can be quite
difficult. Moreover, the transmitted data is often sensitive since it
may contain personal information about device owners and users.
In addition, the users’ behaviors and preferences may be revealed.
To preserve the security and privacy of IoT data and coordinate
the flow of IoT data among different devices and systems, several

security frameworks have been proposed which are usually highly
centralized. As discussed above, that makes these frameworks inept
for IoT systems due to the difficulty to scale the systems, the many-
to-one nature of the IoT data traffic, and the existence of single
points of failure [20, 27].

The decentralized nature of blockchain without the need to in-
volve trusted third parties makes it possible to eliminate single
points of failure and centralized management of sensitive data by a
third party. This makes blockchain an ideal solution to provide a
secure tamper-proof IoT network. The blockchain treats the process-
ing of transactions and communication and coordination between
IoT devices similarly to financial transactions in Bitcoin. In this
way, a more resilient and unified ecosystem is created for smart
devices in an IoT network to interact and exchange data securely.
When two IoT devices want to exchange messages, they negoti-
ate so-called smart contracts that state the terms to be met by the
two parties in their interaction [3]. The concept of smart contract
was first introduced by Nick Szabo as “a computerized transaction
protocol that executes the terms of a contract”[23].

3 DESIGNING SMART CONTRACTS FOR IOT
SYSTEMS

A smart contract is realized as a script that is stored on the blockchain
with a unique address. The script contains references to transac-
tions that are automatically executed for data exchanged between
two devices following the smart contract. In this way, the cooperat-
ing parties can directly deal with each other without having to rely
on a central system. The smart contracts are stored in blocks that
are electronically linked to one another in a blockchain. Since all
users own a copy of the stored contracts, all kinds of exploits and
contract tampering are prevented.

IoT systems can benefit from smart contracts for different pur-
poses such as consumer-to-machine and machine-to-machine trans-
actions, developing traceability applications, etc. For instance, in
cloud-based manufacturing platforms, smart contracts act as agree-
ments between the service consumers and the manufacturing re-
sources to provide on-demand manufacturing services [2]. As an-
other example, in supply chain systems, smart contracts can main-
tain a registry of products and track their position through different
points in a supply chain through cryptographically verifiable re-
ceipts for product delivery [3].

In the following, we discuss the main issues in designing IoT
smart contracts that result from the nature of IoT data, the IoT
network architecture, and the unique properties of IoT applications:

Autonomous execution: This feature enables the autonomous
operation of smart devices without the need for a centralized
authority. In blockchains, the autonomy of smart contracts
is typically limited to the automatic execution of contract
terms, while triggering the execution of a smart contract
function is basically performed through a user transaction in
the blockchain. In the case of IoT, a higher level of autonomy
is required since the functions in a smart contract are often
triggered and executed based on the particular contextual
situation of the devices in the environment. For instance, two

devices managing the handing over of a physical good be-
tween two transport vehicles only need to coordinate when
the vehicles are close by.

Heterogeneous contracts: Key players in smart contracts for
IoT systems are the IoT devices themselves. They may di-
rectly interact with each other to fulfill a requirement or take
part in executing a workflow, e.g. in logistics management
systems. In a manufacturing scenario, for instance, plenty
of smart devices may need to communicate, where each de-
vice possesses its own settings in terms of semantics for
describing blockchain transactions and programming smart
contracts and their dependencies (e.g. database access or
network communication). This implies that we cannot rely
on a single pre-defined smart contract description model
that can serve as a general model for designing and devel-
oping smart contracts for IoT systems, but we need to deal
with a plethora of different contracts. Therefore, a high-level
heterogeneity support is required to enable developing and
deploying IoT smart contracts that may contain terms and
transactions with different semantics.

Intermittent information flow: IoT devices communicate
intermittently. Thus, when a device is granted and verified
to perform a transaction, we should not expect that the de-
vice is necessarily online. This may lead to a temporary halt
in the information flow that involves smart contracts. For
example, in the case of a supply chain, the lack of network
connectivity during the delivery of a shipment may result
in the lack of delivery confirmation, and consequently no
payment to the supplier will be made. Smart contracts for IoT
systems should be designed in such a way to minimize the
effect of intermittent IoT communication on their execution
and the information flow.

In the following, we propose a software design model for smart
contracts in IoT systems which is aimed to address the above men-
tioned concerns. We term such types of contracts as pervasive smart
contracts.

3.1 Pervasive IoT Smart Contracts
The state-of-the art smart contract design and development models
are mainly focused on supporting primitive actions such as trans-
ferring of digital currencies or assets between parties under certain
conditions. From a development perspective, the scope of a smart
contract implementation code is often limited to manipulating vari-
ables (e.g. currencies) that are globally defined in the blockchain
hosting the smart contracts. We aim to enhance this traditional
development model with features that primarily not only support
intra-blockchain interactions within smart contracts, but also en-
able inter-blockchain communication to other nodes and resources
in the IoT network. Beyond the challenges in enabling interaction
between a contract with the external world, the enhanced develop-
ment model has to adhere to the core implementation model of a
smart contract—a self-contained software module with all required
dependencies embedded in the implementation of the contract.

The basic idea behind our approach is structuring the design of
IoT smart contracts as self-contained software services inspired by

the microservice architecture. This is a novel software development
method focused on building single-function modules with well-
defined interfaces and operations. In a monolithic application, built
as a single software unit, a change made to a small section of code
might require building and deploying an entirely new software
version which leads to low flexibility and scalability in engineering
applications. Themicroservice architecture is defined as a design ap-
proach in which a monolithic application is built as a suite of small
services, each running in its own process and communicating using
lightweight mechanisms. Such a service is small, independently
deployable, highly decoupled and usually carries out only small
tasks [15]. Microservices may be developed in different languages
and use different data storage techniques, while they promise scal-
able and flexible development of systems.

Microservices has been recently introduced for IoT systems be-
cause of the continuous evolvement of IoT applications and growth
in the scale of monolithic applications with more complexity in
their structure [22]. Considering their unique characteristics and
the challenges discussed above, microservices promise to be an
efficient design choice for building pervasive IoT smart contracts.
In particular, microservices can encapsulate all design concerns of
a pervasive contract in a single software unit. Therefore, we use
them as a fundamental model for our approach.

Figure 1 shows the main elements of the model used to integrate
IoT and the blockchain based on the design concerns of pervasive
smart contracts. On the right side, there is a peer-to-peer network
for hosting and maintaining the blockchain in which each node
has a copy of the blockchain. It should be noted that the nodes
hosting the blockchain are assumed to be quite powerful. Thus,
they are different from the IoT devices which serve only as the
clients of a blockchain. Each block in the blockchain can contain
normal transactions and/or the bytecode of smart contracts. Having
the address of the smart contract code available, other transactions
can execute a smart contract function and create new transactions.
Furthermore, IoT devices should be equipped with client code to
interact with the blockchain. The interaction can be either a normal
transaction or a smart contract transaction. The former refers to
creating typical transactions which should be stored in a block, e.g.
transferring digital assets like Bitcoin from an account to another
one when a delivery is performed in the supply chain application.
In contrast, the smart contract transaction can be either creating
and posting a new smart contract to the blockchain, or invoking a
function of a given smart contract deployed on the blockchain.

As mentioned above, smart contracts are basically computer
code stored in blocks, containing a set of functions implementing
the terms of a contract, so-called Contract Functions. The top right
part of Figure 1 includes three sample smart contracts for the logis-
tic and supply chain applications. In their traditional design, each
one includes only Contract Functions that can, for instance, be im-
plemented using the language Solidity in the Ethereum blockchain
platform [21]. The top left part of the figure shows our proposed
model for implementing pervasive smart contracts as microser-
vices. In this model, a microservice contains not only the Contract
Functions, but also functionalities that are essentially specific to a
pervasive smart contract and address the aforementioned IoT smart

Ethereum Node

P2
P1

P3 P4

Blockchain

Peer-to-Peer Network

Smart Contracts

Pervasive
S

m
art C

ontract
as M

icroservice

Contract Functions

Contract Database

Thing Communication

Interoperability Support

P5

IoT Device

Network

</>

Client

</>

</>

Transactions (normal/smart contract)

Inventory Shipping Sale

Ethereum Virtual Machine Virtual ROM

EVM code

(immutable)

Machine State
(volatile)

World State
(persistent)

Storage
Stack Memory Program Counter

Gas Available

PC

Gas

Figure 1: Overall integration model for IoT and blockchain with pervasive smart contracts as microservices

contract design concerns. In the rest of this section, we discuss
these functionalities in details.

Thing Communication is a key functional requirement, arising
from the fact that smart contracts cannot directly access and fetch
the data they require, e.g. traffic-related information for estimating
cost in the workflow of goods delivery. For that, the smart contract
requires to communicate with a third-party system or another
IoT device to complete the execution of a contract function. For
example, to fetch the required information, the device can establish
a RESTful communication with another one having IP-access. This
functionality also handles failures in communication with other
devices to overcome the issue of intermittent information flow.
For that, the communication between devices and the contract
can exploit message-oriented middleware technologies such as the
Advanced Message Queuing Protocol (AMQP) [24] or the Message
Queuing Telemetry Transport (MQTT) [11].

Additionally, Thing Communication encompasses logic for the
autonomous execution of contract functions based on different
contextual situations of the IoT application. For instance, in the
asset tracking use case, the sendMoney function will be executed if
a container and a retailer share the same location [3]. To this end,
every stakeholder carries a BLE, GSM or LTE radio to maintain the
current location of smart devices. Then, the IoT application triggers
the blockchain Client on the devices that are co-located.

The Contract Database allows a contract to communicate with a
trusted data provider. For example, the data source can be a secure
application running on an hardware-enforced Trusted Execution
Environment (TEE) such as the Industrial IoT TEE for Edge Devices
(IIoTEED) [19]. The Contract Database serves as a data access
point for an individual smart contract. A relevant example of a data
source is IPFS (Interplanetary File System). IPFS files are content-
addressed and identified by their hashes. In order to fetch a data file,
the entire network is searched for a file corresponding to a particular
hash. Thus, it is an ideal file storage and sharing technology for
developing decentralized IoT access control models [1].

It should be noted that, according to the general specification
of smart contracts, their communication with the off-chain world
is either limited (i.e. to other smart contracts) or not allowed at
all. For instance, the Ethereum Virtual Machine (EVM) [7] is com-
pletely isolated in a sandbox, i.e. the code running inside the EVM
has no access to the network, file system or other processes. To
communicate with other parties like a data source, we need to
make sure that the data fetched from the original data-source is
genuine and untampered. One solution, developed by Oraclize [17],
is to accompany the returned data together with a document called
authenticity proof, which can be built using technologies such as
auditable virtual machines and TEE. In the next section, we discuss
this issue in detail.

Interoperability Support is proposed to support heterogeneity
among devices interacting with each other based on a smart con-
tract. The most common type of heterogeneity appears in the se-
mantics for describing the transactions added to the blockchain by
executing different smart contracts. For example, the high diversity
of IoT devices in logistic applications can lead to workflow transac-
tions that are semantically heterogeneous. Interoperability Support
encompasses mechanisms for interpreting transactions produced
by the corresponding smart contract to a general form interpretable
and traceable by the blockchain.

4 IMPLEMENTATION HIGHLIGHTS
Anumber of well-known blockchain platforms exist featuring smart
contract functionality, such as Ethereum [6], Hyperledger Fabric [8],
and NEO [14]. In this paper, we adopt Ethereum as the smart con-
tract development framework. Its main advantage is the high degree
of standardization and support it offers. In particular, the providers
of Ethereum have made extensive effort to improve the develop-
ment and operation of smart contracts. Additionally, it comes with
a set of well-defined rules to develop smart contracts which make
the development process easier and less risky. Ethereum features
its own high-level programming language Solidity for smart con-
tracts which facilitates the development and setting up of smart

Ethereum Node

P2
P1

P3 P4

Blockchain

Peer-to-Peer Network

Smart Contracts

S
m

art C
ontract as

M
icroservice

Contract Functions

Contract Database

Thing Communication

Interoperability Support

P5

IoT Device

Network

</>

Client

</>

</>

Transactions (normal/smart contract)

Inventory Shipping Sale

Ethereum Virtual Machine Virtual ROM

EVM code

(immutable)

Machine State
(volatile)

World State
(persistent)

Storage
Stack Memory Program Counter

Gas Available

PC

Gas

Figure 2: The main architectural elements of the EVM

contracts [21]. Solidity is influenced by C++, Python and JavaScript
and is designed to let smart contracts run on the Ethereum Virtual
Machine (EVM). The language is statically typed, and supports
inheritance, libraries and complex user-defined types.

Our main implementation goal is to provide a programming
framework that enables the developer to encapsulate the contract
functions and functionalities in a microservice. This requires to un-
derstand the runtime environment of smart contracts in Ethereum.
In particular, we need to investigate the features and limitations
of the secured runtime environment for smart contracts. As men-
tioned before, Ethereum smart contracts run on the EVM which is
a sandboxed, completely isolated runtime environment. Thus, no
smart contract hosted by the EVM has access to the network, file
system, data sources, or other processes running on the computer
hosting the EVM. This makes the implementation of the proposed
microservice model challenging, in particular, with respect to the
functionalities that need interaction with one or more of the afore-
mentioned sources. To tackle this issue, we first need to look into
the architectural design of the EVM.

Figure 2 depicts the main architectural element of the EVM. The
byte code of the smart contract is hosted in an immutable virtual
ROM within the EVM which manages three different kinds of data:
memory, stack, and storage. Memory and stack are volatile spaces
used to store data during execution and small local variables, e.g.
passing arguments to internal functions. Storage is a persistent
read-write word-addressable space in which the contract stores its
persistent information. Compared to other operations of the EVM,
the transaction costs required to save data into the storage (called
gas in the blockchain context) are considerably high.

The inside architecture of the EVM shows that smart contracts
have the capability to communicate with the storage for storing and
retrieving data, even though this space is limited to some extent
because it is structured as a key-value mapping of 2256 slots of 32
bytes each. Moreover, there is no possibility to communicate with
entities out of the EVM. Considering the proposed microservice
design, the storage of the EVM can serve as Contract Database. In
this way, for each smart contract C we can create a new database
contract Cd which is used only to store and retrieve data of C .
By separating the contract database from the contract itself, the
deployment and management of new versions of the contract in
the blockchain will become less costly. In order to get access to Cd

from C , cross-contract message calls can be leveraged. Contracts
can call other contracts through message calls. To call a function
of another contract in Solidity, so-called external functions should
be defined. The following code snippet exemplifies the structure of
such a database contract Cd :
pragma solidity ^0.4.0;

contract MyContractDB {

uint public dataA = valueA;

uint public dataB = valueB;

....

function setDataA(uint value)

external returns (uint) {

dataA = value;

return dataA;

}

function getDataA(uint value)

external returns (uint) {

...

}

}

Using the contract Application Binary Interface (ABI), other con-
tracts in Ethereum can interact with Cd .

As mentioned above, the size of storage is somewhat limited and,
beyond this, the gas cost of interacting with the storage is quite
high. A complementary solution to the above data access model
is using Oraclize [17]. It supports various types of data sources,
such as URL (to access to any webpage or HTTP API endpoint) and
IPFS (to access to any content stored on an IPFS file). Data from
these sources can be retrieved using queries. A query is an array
of parameters that are evaluated to complete a specific data source
type request. For instance, in the case of sample smart contracts in
Fig. 1, the Shipping contract requires to communicate with a device-
specific locally-deployed service that calculates the shipment cost
of a specific IoT device category. Using Oraclize, the corresponding
query is described as:
oraclize_query("URL", "http://127.0.0.1/

ShipmentCost?device=VerticalPump")

The result of executing the query will be the execution of a transac-
tion carrying the result. In the default configuration, the transaction
will execute a _callback function which is implemented by the
developer in the smart contract.

To conclude, the Contract Database can be either realized as
a new contract co-located with the main contract in the EVM or
deployed as a separate data-source service external to the contract
deployed in the EVM. In the latter case, the service will be accessi-
ble through a REST API or IPFS, using Oraclize libraries. Likewise,
for functionalities related to Thing Communication, Oraclize can
be leveraged to communicate with IoT services that are external
to Ethereum nodes. For implementing Interoperability Support,
similar to Cd , we propose developing new smart contracts with a
set of well-defined external functions that merely perform semantic
analysis and mapping. In this way, such functionality will serve as
a reference for semantic interoperability between heterogeneous
IoT smart contracts. Shared by all three functionalities introduced
above, our implementation approach meets the essential program-
ming requirements for developing pervasive IoT smart contracts as
microservices.

5 RELATEDWORK
Although smart contracts have recently received considerable at-
tention by the research community and industry, most existing
work on IoT smart contracts has so far focused on the issues in
integrating blockchains with IoT, such as designing lightweight
blockchains for IoT.

In [26], a smart contract-based framework is proposed to imple-
ment distributed and trustworthy access control for IoT systems.
The authors use the Ethereum smart contract platform to provide
an access control method for static and dynamic access rights vali-
dation. In [16], a blockchain-based solution is proposed to address
scalability in managing access in large-scale IoT systems. From
a different view to scalability, Dorri et al. propose a lightweight
scalable blockchain model to overcome the concerns of limited scal-
ability, significant bandwidth overheads and delays for blockchains
integrated with IoT [5]. EdgeChain [18] uses a credit-based resource
management system to control the resources of IoT devices that are
obtained from the edge server. The authors propose using smart
contracts to regulate the behavior of the IoT devices by enforc-
ing certain policies. The above approaches are mainly focused on
addressing the scalability issue in IoT smart contracts.

In [3], Christidis and Devetsikiotis discuss how smart contracts
allow for automated complex multi-step IoT processes. The authors
indicate that smart contracts enable cryptographic verifiability of
IoT workflow and significant cost and time savings in IoT workflow
execution. A decentralized, peer-to-peer blockchain platform for
industrial IoT is proposed in [2] to enable cloud-based manufactur-
ing and on-demand access to manufacturing resources . Both above
approaches are mainly about the usefulness of smart contracts in
executing IoT workflows. In [12], a microservice architecture is
introduced for developing scalable and secure smart surveillance
systems. For data protection and synchronization, the framework
uses blockchain and smart contracts. However, in that framework,
microservices are proposed for the components of the surveillance
systems, but not for the design of smart contracts.

Among IoT-specific blockchain platforms, IOTA is a distributed
ledger designed to process and execute transactions between ma-
chines in the IoT ecosystem [9]. The main focus of IOTA is building
a high speed and fast transaction processing environment with
better transaction validating. For that, the so-called Distributed
Ledger Technology follows a Directed Acyclic Graph (DAG) ap-
proach to implement distributed consensus. For that, it features a
new consensus algorithm known as Tangle. However, IOTA is not
designed as a blockchain platform focussing on smart contracts.
In other words, smart contracts are not yet a core feature of IOTA.
The IOTA Foundation, however, is actively working on a new smart
contract layer on top of the current IOTA platform.

6 CONCLUSIONS AND FUTUREWORK
Blockchain technology and smart contracts pose great potential
for automating, securing and scaling message communication in
IoT systems. In this paper, we studied the design concerns in using
smart contracts for IoT systems such as autonomous operations of
smart devices, heterogeneity of contract terms, and intermittent

communication between devices involved in a transaction. To ad-
dress these concerns, we proposed a microservice-based approach
to develop such types of contracts, named pervasive smart contracts.
The adoption of the microservice design model tackles challenges
such as heterogeneity and pervasiveness in designing IoT smart con-
tracts. However, implementing IoT smart contracts as microservices
with the proposed functionalities comes with some programming
challenges that we explored further, e.g. access to external data
sources within a contract. In the future, we will investigate on
the interoperability of pervasive contracts and requirements for
container platforms that can host pervasive smart contracts.

REFERENCES
[1] Muhammad Salek Ali, Koustabh Dolui, and Fabio Antonelli. 2017. IoT Data

Privacy via Blockchains and IPFS. In Proceedings of the Seventh International
Conference on the Internet of Things (IoT ’17). ACM, 14:1–14:7.

[2] Arshdeep Bahga and Vijay K Madisetti. 2016. Blockchain Platform for Industrial
Internet of Things. Journal of Software Engineering and Applications 9, 10 (2016),
533–546.

[3] K. Christidis and M. Devetsikiotis. 2016. Blockchains and Smart Contracts for
the Internet of Things. IEEE Access 4 (2016), 2292–2303.

[4] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram. 2017. Blockchain for IoT
Security and Privacy: The Case Study of a Smart Home. In IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops). IEEE Computer, Kona, HI, USA, 618–623.

[5] Ali Dorri, Salil S. Kanhere, Raja Jurdak, and Praveen Gauravaram. 2017. LSB:
A Lightweight Scalable BlockChain for IoT Security and Privacy. CoRR
abs/1712.02969 (2017), 1–17. http://arxiv.org/abs/1712.02969

[6] Ethereum Project. Accessed: 2018. http://www.ethereum.org.
[7] Ethereum Virtual Machine. Accessed: 2018. http://ethdocs.org/en/latest/

introduction.
[8] Hyperledger Fabric. Accessed: 2018. http://www.hyperledger.org/projects/fabric.
[9] IOTA. Accessed: 2018. https://www.iota.org.
[10] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. 2016. Hawk: The

Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts. In
IEEE Symposium on Security and Privacy (SP). IEEE Computer, CA, USA, 839–858.

[11] Dave Locke. 2010. MQ telemetry transport (MQTT) V3.1 protocol specification.
Technical Report. IBM developer Works Technical Library.

[12] Deeraj Nagothu, Ronghua Xu, Seyed Yahya Nikouei, and Yu Chen. 2018. A
Microservice-enabled Architecture for Smart Surveillance using Blockchain Tech-
nology. CoRR abs/1807.07487 (2018), 4 pages. http://arxiv.org/abs/1807.07487

[13] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-peer Electronic Cash System,âĂİ
http://bitcoin.org/bitcoin.pdf.

[14] NEO. Accessed: 2018. http://neo.org.
[15] Sam Newman. 2015. Building Microservices. O’Reilly Media, CA, USA.
[16] O. Novo. 2018. Blockchain Meets IoT: An Architecture for Scalable Access

Management in IoT. IEEE Internet of Things Journal 5, 2 (2018), 1184–1195.
[17] Oraclize. Accessed: 2018. https://docs.oraclize.it.
[18] J. Pan, Jianyu Wang, Austin Hester, Ismail AlQerm, Yuanni Liu, and Ying Zhao.

2018. EdgeChain: An Edge-IoT Framework and Prototype Based on Blockchain
and Smart Contracts. CoRR abs/1806.06185 (2018), 14 pages.

[19] S. Pinto, T. Gomes, J. Pereira, J. Cabral, and A. Tavares. 2017. IIoTEED: An
Enhanced, Trusted Execution Environment for Industrial IoT Edge Devices. IEEE
Internet Computing 21, 1 (2017), 40–47.

[20] Rodrigo Roman, Jianying Zhou, and Javier Lopez. 2013. On the Features and
Challenges of Security and Privacy in Distributed Internet of Things. Computer
Networks 57, 10 (2013), 2266–2279.

[21] Solidity Programming Language. Accessed: 2018. http://solidity.readthedocs.io.
[22] L. Sun, Y. Li, and R. A. Memon. 2017. An Open IoT Framework based on Mi-

croservices Architecture. China Communications 14, 2 (February 2017), 154–162.
[23] Nick Szabo. 1994 (Accessed: 2018). http://szabo.best.vwh.net/smart.contracts.

html.
[24] Steve Vinoski. 2006. Advanced Message Queuing Protocol. IEEE Internet Com-

puting 10, 6 (2006), 87–89.
[25] Y. Yang et al. 2017. A Survey on Security and Privacy Issues in Internet-of-Things.

IEEE Internet of Things Journal 4, 5 (Oct 2017), 1250–1258.
[26] Yuanyu Zhang, Shoji Kasahara, Yulong Shen, Xiaohong Jiang, and JianxiongWan.

2018. Smart Contract-Based Access Control for the Internet of Things. CoRR
abs/1802.04410 (2018), 1–11. http://arxiv.org/abs/1802.04410

[27] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos. 2017. Security and Privacy for
Cloud-Based IoT: Challenges. IEEE Communications Magazine 55, 1 (2017), 26–33.

http://arxiv.org/abs/1712.02969
http://www.ethereum.org
http://ethdocs.org/en/latest/introduction
http://ethdocs.org/en/latest/introduction
http://www.hyperledger.org/projects/fabric
https://www.iota.org
http://arxiv.org/abs/1807.07487
http://bitcoin.org/bitcoin.pdf
http://neo.org
https://docs.oraclize.it
http://solidity.readthedocs.io
http://szabo.best.vwh.net/smart.contracts.html
http://szabo.best.vwh.net/smart.contracts.html
http://arxiv.org/abs/1802.04410

