
A Blockchain Proxy for Lightweight IoT Devices

Gero Dittmann, Jens Jelitto
IBM Research – Zurich

8803 Rüschlikon, Switzerland

{ged,jje}@zurich.ibm.com

Abstract—IoT devices are quickly becoming a critical source of
information about the physical world considered in business pro-
cesses. Blockchains are a promising platform for such processes if
they involve multiple parties with no shared, commonly trusted
IT infrastructure. Transacting with a blockchain, however, re-
quires software whose footprint overwhelms many lightweight
IoT devices.

In this paper we introduce the concept of a blockchain proxy
to which an IoT device can offload a large part of this software
footprint. The proxy only requires a slim proxy SDK on the device
that holds a regular blockchain identity with its own private key,
retaining full control of the transactions in the device. We discuss
security implications and present cold-chain monitoring as a use
case. Preliminary results show significant savings in CPU time
and communication bandwidth for the IoT device.

I. INTRODUCTION

Blockchains are an emerging platform for automating busi-

ness processes across organizations, such as supply-chain

management (SCM) or asset life-cycle management. The

internet of things (IoT) can deliver critical inputs to such

processes, in particular GPS coordinates or sensor readings

such as temperature, humidity, pressure, mechanical shock

(impact) and vibrations, reporting the status of shipments

or meteorological data. Cold-chain monitoring, for instance,

can be implemented by having a temperature sensor in a

shipping container report its readings to a blockchain-based

SCM system in regular intervals.

To trust those readings, the receiver must be able to securely

identify the sensor and to verify that the readings have not been

manipulated on the way to the blockchain. In the context of a

permissioned blockchain this can be achieved by furnishing the

sensor with a key pair and having a public-key infrastructure

(PKI) issue a certificate for those keys, giving the sensor an

identity on the blockchain. The sensor signs its readings with

its private key and sends it to the blockchain along with its

identity certificate. In this way, a receiver can verify the sensor

identity and the integrity of its readings using the certificate

and the signature.

IoT sensors, however, are often constrained in their compute

power, memory size and communication bandwidth. In this

paper we propose to minimize the footprint of connecting an

IoT device to a permissioned blockchain by offloading the

communication with the blockchain to a proxy service, except

signing the transactions which remains with the device. As

the blockchain identity rests with the sensor, even the proxy

service cannot modify the readings without detection as it

cannot forge the sensor device’s signature.

The remainder of this paper is structured as follows: Sec-

tion II discusses related work. Section III introduces our

system architecture and Section IV applies it to a cold-chain

monitoring use-case. Section V discusses trust assumptions

and security threats. Section VI details a prototype implemen-

tation and Section VII gives some preliminary experimental

results. Section VIII concludes and proposes future work.

II. RELATED WORK

In recent years, some vendors have started deploying public-

key infrastructures that offer identities to IoT sensors [1], [2].

They issue keys and certificates to be installed in a sensor and

then used to sign readings before sending them out. The trust-

worthiness of sensor readings can be improved by employing

trusted execution environments [3]. Others rely on anomaly

detection to detect rogue readings [4] or attacks on sensors [5].

There is also work on distributed processing of sensor data

[6]. None of these approaches have any specific connection

to blockchains. Non-blockchain identities can be used to sign

only the payload of blockchain transactions but verifying these

signatures requires replicating the infrastructure the blockchain

already has.

To connect a sensor to a blockchain one could use the reg-

ular blockchain SDK (software development kit, [7]) directly

on the sensor. However, this approach has a rather significant

compute, memory and communication footprint that cannot

be supported by lightweight IoT devices. The other straight-

forward approach is to run the blockchain SDK on a server

with a blockchain identity that receives readings from the

sensor and signs them for the blockchain. In this arrangement,

however, the blockchain clients need to trust the server as the

readings are not protected from modification at the server.

Our approach, in contrast, keeps the blockchain identity

on the sensor to prevent such modification but offloads the

part of the blockchain communication that is not critical

to security. To the best of our knowledge, this is the first

method to give a lightweight IoT device its own blockchain

identity, establishing end-to-end trust from a sensor to remote

blockchain clients.

III. SYSTEM ARCHITECTURE

Our approach assumes a blockchain with PKI-based iden-

tity management. Figure 1 shows the system view of our

approach. A PKI certificate authority (CA) is registered with

the blockchain, establishing it as an identity provider trusted

by the blockchain peers. The CA issues an identity certificate

82

2019 Crypto Valley Conference on Blockchain Technology (CVCBT)

978-1-7281-3669-1/19/$31.00 ©2019 IEEE
DOI 10.1109/CVCBT.2019.00010

to an IoT sensor which uses the certified private key to

sign its blockchain transactions. The sensor sends the signed

transactions along with its certificate to the blockchain proxy

which executes the required protocols with the blockchain

nodes to commit the transactions to the ledger.

issues credentials,
certificate

IoT sensor
w/ private key

Blockchain

B

C
Orderers E

D

A

Peer

end-to-end trust

receiving peers verify
certificate, credential

CA registered as an
identity provider (IdP)

Access
point

IdP

data signed by device
w/ blockchain certificate

Certificate
authority (CA)

Blockchain
Proxy

Fig. 1. End-to-end trust from an IoT device to the blockchain.

Reconfiguring an IoT device in the field is expensive and

may not always be possible, depending on the device and

use case. The IoT identity issued by the CA can be long-

lived and re-used for different blockchains. The receiving

blockchain may map the data received from one device to

different processes over time.

IV. USE CASE: CALIBRATED COLD-CHAIN MONITORING

Supply-chain management is a much-discussed application

for both blockchains and IoT. The many independent parties

involved in SCM make a blockchain an attractive platform

for tracking shipments and managing the associated data. IoT

sensors can report the location and environmental conditions of

a shipment, like temperature and humidity, to an SCM system.

Cold-chain monitoring is a particularly critical aspect of

SCM as it must ensure that temperature-sensitive products

such as food or vaccines are stored below their temperature

thresholds at all times lest they spoil, rendering them worthless

or even dangerous to consumers. IoT sensors in a package or

shipping container can monitor the temperature from sender to

recipient and either attest proper cooling or report a violation

as soon as it happens.

Sensor readings can only be considered trustworthy, how-

ever, if (1) the sensor can be securely identified, (2) the sensor

works reliably and (3) the readings cannot be modified on

the way from the sensor to the SCM system. By enabling

the sensor to sign its readings, our proxy approach ensures

that both (1) the sensor can be securely identified and (3) the

readings cannot be modified.

Proper operation of a sensor (2) is traditionally ensured

by authorities that calibrate and test sensors (e.g., industrial

scales) and issue certificates and seals to reassure the recipients

of their readings. In our system, the calibration authority can

act as a certificate authority as well by signing up as an identity

provider for the blockchain, issuing identity certificates upon

calibration that expire when the next calibration is due.

Recipients of a sensor reading can verify that the sensor’s

certificate has been issued by a trustworthy calibration author-

ity and the calibration has not expired. The authority attests

to both the sensor identity and the reliability of its readings.

In addition, it can apply seals to verify the physical integrity

of the device. The required physical inspection of the seal at

a recipient’s end is comparable to verifying a container’s seal

against unauthorized opening. If the recipient finds the seal

intact, it vouches for all readings up to that point in time.

In a cold chain this setup enables the sender and recipient

of a temperature-sensitive product to monitor the shipment’s

temperature throughout the supply chain, relying on sensors

verifiably calibrated by trustworthy authorities.

V. SECURITY ANALYSIS

A. Adversarial model

The principals in our system, shown in Figure 1, are the

IoT device, the blockchain proxy, the peers that maintain the

blockchain, and the CA. The asset to be protected is the data

the IoT device is collecting about its environment. This IoT

data must be shielded against tampering as it travels from the

device to the blockchain. As our approach relies on securely

identifying the device, its private key is also an asset to be

protected.

Of the principals we trust the blockchain peers to reliably

authenticate and immutably commit valid transactions to the

shared ledger. We trust the CA to issue credentials strictly

to trustworthy IoT devices. By extension, we trust any IoT

device with an identity provided by the CA. If the CA is also

a calibration authority, as in the cold-chain use-case, it vouches

not only for the identity of the sensor but also for the accuracy

of its measurements and, if it applies a seal, for the sensor’s

physical integrity.

Potential adversaries are parties with an interest in making

the IoT environment appear different from what it really is. In

the cold-chain use-case, a carrier might want to save fuel by

skimping on cooling a shipment. To avoid detection, the carrier

would try to make the temperature appear below the stipulated

threshold. Other adversaries bent on disrupting business might

try to arbitrarily modify IoT data. To mount an attack, an

adversary needs to control the device environment, the proxy

or the network.

An adversary with physical access to the IoT device could

tamper with its environment, e.g., by cooling only the tem-

perature sensor but not the actual shipment. Other physical

attacks are to swap an IoT device against one controlled by the

adversary or to impersonate the IoT device, e.g., by extracting

the device’s private key.

An adversary controlling the network could tamper with the

device’s readings in transit anywhere between the device and

the blockchain. There is also a risk of denial-of-service (DoS)

attacks by interrupting one of the networks between the device,

the proxy and the blockchain.

An adversary controlling the blockchain proxy could mount

a man-in-the-middle attack. A replay attack could be used to

simulate acceptable temperatures when a threshold is actually

being violated. Another vector is to make the proxy delay,

reorder or drop individual messages, or to shut down the proxy

altogether.

83

For some use cases, confidentiality of the IoT data between

device and blockchain may be a concern, either on the network

or even with respect to the proxy.

B. Analysis and mitigation

The device identity granted by the CA combined with the

required authentication of each blockchain transaction make it

difficult for an adversary to swap or impersonate the device.

When a use case carries the risk of a physical attack on the

device’s private key the key must be stored in a secure element.

Deceiving the IoT device by modifying its environment is

not prevented by our system. This threat applies to any system

relying on an individual device, independent of the back-end to

which it reports its readings. It can be addressed by correlating

readings from multiple sources to detect incoherence and

potentially derive a more trustworthy result by majority [4].

This approach can be combined with our system.

Tampering with the readings in transit would require the

adversary to forge the device signature on the modified data.

Otherwise, the tampering will be detected by the blockchain

peers as the original signature will not validate tampered

readings. Replay attacks are prevented by the blockchain

protocol employing unique transaction IDs, nonces, and by

the fact that only the IoT device has the private key to sign

messages.

DoS and reorder attacks can be detected by subscribing

to a blockchain event that confirms the submitted transaction

has been committed to the shared ledger. If the event does

not arrive before a deadline the device can resubmit the

transaction. We plan to add this capability to the proxy SDK

in the future.

If confidentiality of the IoT data on the network is a

requirement it can be addressed by using TLS for each hop

between the device, proxy and blockchain, respectively. If even

the proxy must not see the data in the clear then the device

can encrypt the data before inserting it into a transaction,

either to be decrypted by the chaincode or to be stored on the

shared ledger encrypted. Any additional encryption, however,

increases the software footprint for the IoT device.

VI. IMPLEMENTATION

We have implemented a Fabric Proxy for Hyperledger

Fabric, a permissioned blockchain with pre-order execution

and separate nodes (peers) for ordering and committing trans-

actions. Fabric clients create transaction proposals, sign them

and send them to endorsing peers, a subset of committing

peers. Each endorser simulates the transaction and sends an

endorsement, consisting of the simulation result signed by

the endorser, back to the client. The client collects enough

endorsements to satisfy the required endorsement policy into

a transaction, signs it and sends it to the orderers. They se-

quentialize transactions, group them into blocks and distribute

them to the committing peers who validate them and commit

valid transactions to their local copy of the distributed ledger.

To support application development, the basic client func-

tionality is available as Fabric SDKs for a variety of languages.

We picked the SDK for the Go language [7] and carved out

the client identity and transaction signing, resulting in a slim

SDK stub for the IoT device and the remaining SDK back

end for the Proxy, as shown in Fig. 2. We connect both

parts by MQTT [8], a lightweight publish-subscribe messaging

protocol on top of TCP/IP that is widely used in IoT for its

small footprint. MQTT clients communicate via a broker that

manages messages by topics. A client that subscribes to a topic

receives all messages other clients publish to that topic.

MQTT
client

SDK
stub

MQTT
client

SDK
backend

Transaction
proposal

Endorsements

Hyperledger Fabric

B

C
Orderer

s
E

D

A

Peer

send transaction proposal
to endorsing peers,

collect signed responses

send signed endorsements
to orderers

distribute ordered transactions
to committing peers

Fabric Proxy

Transaction

Proxy SDK MQTT broker

Fig. 2. Fabric Proxy system design.

Topics can be divided into subtopics, separated by a slash (/)

by convention. We use a first sub-topic to identify whether the

message was published by (“from”) or addressed to (“to”) an

IoT device. The second sub-topic is the device’s MQTT client

ID. In this way, a device does not need to know which Proxy

to talk to—only the Proxy needs to know which devices to

subscribe to. This makes load-balancing and fail-over between

proxies possible without reconfiguring any devices. A third

sub-topic identifies the message type corresponding to the

numbered messages in Fig. 2. An example topic for a device7

to send a transaction would be: from/device7/sendTX

IoT App Proxy SDK Proxy Endorsers Orderers

send
payload create, sign TXP

send TXP_s
broadcast TXP_s
to n Endorsers

verify TXP signature,
simulate transaction,
sign proposal response

return responsereturn n responses

form TX from TXP and
all endorser signatures,
sign TX

send TX_s broadcast TX_s to m Orderers

Fig. 3. Flow from an IoT application to the Fabric peers via the Fabric Proxy.
The IoT app and the Fabric SDK are both running on the IoT device.
TXP: transaction proposal; TX: transaction; s: signed.

Fig. 3 shows the detailed sequence of function calls and

messages to commit a transaction to the ledger. An application

(IoT app) calls the Proxy SDK, both running on an IoT device,

to submit a transaction to the blockchain via the Fabric Proxy

in the cloud. The IoT app composes the transaction payload

and sends it to the Proxy SDK. The SDK creates and signs

84

the transaction proposal (TXP) using the device’s blockchain

identity and sends the result to the Proxy which broadcasts it

to the required set of n endorsing peers.

Each endorser verifies the device’s signature of the TXP

and simulates the transaction to generate the read-write set of

accessed ledger variables. The endorser signs the read-write

set and returns it as a proposal response to the Proxy. The

Proxy collects the proposal responses from all endorsers and

returns them to the SDK. As all endorsers should produce the

same read-write set, the Proxy can strip all but one copy from

the responses to save bandwidth to the IoT device.

Without further interaction with the IoT app, the SDK forms

the final transaction (TX) from the read-write set and all

endorser signatures, signs it and sends it to the Proxy. The

Proxy broadcasts the signed transaction to m orderers from

where the Fabric infrastructure ensures the transaction will be

committed to the ledger, provided it is valid.

Other than holding an identity (keys and certificate), the

device needs to be configured with the channel ID, chaincode

name, version and function to invoke with which parameters.

This information is required for transaction forming. The

remaining configuration resides with the Proxy, comprising

the addresses of peers to contact (endorsers and orderers).

As an example blockchain application we’ve implemented

an SCM system that associates temperature and humidity

readings with a shipment. For the sensor we use a Raspberry Pi

with a Sense HAT sensor board, running our Proxy SDK. The

Fabric Proxy and the MQTT broker are deployed as cloud

services.

VII. PRELIMINARY RESULTS

The goal of the Proxy is to reduce the compute power

and bandwidth consumed by blockchain transactions on an

IoT device. To assess the potential savings conservatively we

compare individual transactions sent using the regular SDK

against the same transactions sent via the Proxy SDK. This

means the measurements include the full set-up overhead

with no amortization over multiple transactions. The SDK

code has not yet been slimmed down at all. The blockchain

setup features only a single endorsing peer, which represents

the lower bound of the bandwidth saved by offloading the

communication with the endorsers to the Proxy (proposal

broadcast, endorsement collection).

As the regular SDK is not available for lightweight IoT

devices we used a laptop with an Intel Core i7-4770HQ CPU

clocked with 2.20 GHz, assuming the results will scale roughly

linearly to the weaker processors found in IoT devices. We

used Go’s pprof package to measure CPU time and the

nload shell tool for the network bandwidth consumed.

TABLE I
PRELIMINARY MEASUREMENTS FOR AN INDIVIDUAL TRANSACTION.

metric regular SDK Proxy SDK savings
CPU time 130 ms 80 ms 38%
data sent 14 KB 11 KB 21%
data received 90 KB 17 KB 81%

Table I presents the results. In spite of the conservative setup

and the lack of optimization there are significant savings for

the IoT device in CPU time as well as data sent and received.

Further studies will have to corroborate those findings and

explain the savings in detail.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a blockchain proxy as

a service for lightweight IoT devices to offload commu-

nication with a blockchain while retaining full control of

all transactions committed to the shared ledger. We have

argued that the approach is robust against tampering with the

device data in transit and delivers trustworthy readings to the

blockchain. Preliminary results of a proxy for Hyperledger

Fabric demonstrate the potential for the IoT device to save

significant CPU time and communication bandwidth using the

proxy.

We are currently working on a Proxy SDK in C to support

the most common programming language for truly lightweight

IoT devices such as Arduinos. As a truly minimum imple-

mentation this SDK will provide savings in memory size as

well. As future work we plan to support subscribing to Fabric

events via the Proxy to harden the system against DoS attacks.

Events also provide a channel back from the blockchain to the

device that can be used to control the device and trigger actions

there. Having transactions write sequence numbers to a shared-

ledger variable would protect the system against DoS attacks,

malicious reordering and selective dropping of transactions.

ACKNOWLEDGMENTS

The authors would like to thank Thanos Amoutzias for the

performance measurements, Björn Tackmann for conceptual

advice, and Alessandro Sorniotti for technical education and

feedback.

REFERENCES

[1] H. Liu, S. Saroiu, A. Wolman, and H. Raj, “Software abstractions for
trusted sensors,” in Proceedings of MobiSys ’12. ACM, June 2012, pp.
365–378.

[2] G. Prophet. (2017, March) Certificate authority solution for IoT
manufacturers. Smart2Zero. [Online]. Available: https://www.smart2zero.
com/news/certificate-authority-solution-iot-manufacturers

[3] H. Janjua, W. Joosen, S. Michiels, and D. Hughes, “Trusted operations
on sensor data,” Sensors, vol. 18, no. 5, May 2018.

[4] T. Ide, “Collaborative anomaly detection on blockchain from noisy sensor
data,” in Proceedings of ICDMW; Workshop on Blockchain Systems for
Decentralized Mining (BSDM). IEEE, November 2018, pp. 120–127.

[5] M. Raciti and S. Nadjm-Tehrani, “Embedded cyber-physical anomaly
detection in smart meters,” in Proceedings of Critical Information Infras-
tructures Security (CRITIS ’12). Springer, September 2012, pp. 34–45.

[6] K. Parmar and D. C. Jinwala, “Malleable cryptosystems and their appli-
cations in wireless sensor networks,” in Computer and Network Security
Essentials. Springer, August 2017, pp. 97–111.

[7] Hyperledger Fabric Client SDK for Go. [Online]. Available: https:
//github.com/hyperledger/fabric-sdk-go

[8] MQTT. [Online]. Available: https://mqtt.org/

85

