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Abstract

As a popular consortium blockchain platform, Hyperledger Fabric has received increas-
ing attention recently. When executing transactions on such platform, it usually costs a lot
of time and hardly to achieve high efficiency. Although efficiently handling transactions
can be leveraged to support various use-cases, it presents significant challenges as data on
Hyperledger Fabric is organized on file-system and exposed via limited API. We tackle the
problem in two ways: conditional queries and data storage. In this paper, we propose the fol-
lowing novel methods. To improve the performance of conditional queries on Hyperledger
Fabric, we use all attributes of the query to create composite keys before executing it. In
order to achieve further performance improvements, we build an index called AUP in the
second method, where we also study the update of AUP during transactions. To speed up
data storage on Hyperledger Fabric, We create a cache for the data in the block header. The
extensive experiments conducted on the real-world dataset demonstrate that the proposed
methods can achieve high performance in terms of efficiency and memory cost. Finally, We
implement a prototype system.

Keywords Hyperledger Fabric - Conditional queries - Data storage

1 Introduction

In recent years, blockchain technologies have attracted wide attention as they get rid of the
centralized storage and can guarantee the data security. As a result, blockchain has been
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widely used in many real applications. A blockchain is a shared, distributed ledger that
records transactions between different nodes in a verifiable and permanent way where nodes
do not trust each other [24]. Each node in the blockchain network holds the same ledger
which contains multiple blocks. A block usually has a list of transactions and encloses the
hash of its immediate previous block, where a transaction can be saved in a ledger only
after it has passed a series of validations. Note that, blockchain network can be divided
into three categories, namely private network, public network and consortium network. In a
public network, everyone can join the network to perform transaction. In a private network,
there are only a limited range of participating nodes. The access of data has strict right
management, where only participants have the write permission. The consortium chain is
only for participants of a specific group. It internally specifies multiple pre-selected nodes
as billers, and the generation of each block is determined by all pre-selected nodes. The
consortium network is suitable for enterprise applications, each node in the network can
be owned by different organizations, and enterprises can integrate the values of multiple
systems without having to bring in a trusted third-party.

Hyperledger Fabric [14] is an enterprise-grade and open-source consortium blockchain
platform. Like many other blockchain systems (e.g., Ethereum [7], Parity [20]), it divides
data into two states: current and historical states. Data in this system is stored in the form of
key-value pairs. For a given key, the latest pair is called current state and others are called
historical state. Two typical databases in the system are StateDB [23] and HistoryDB [13].
StateDB includes the collection of current states for all keys. HistoryDB includes the collec-
tion of historical states for all keys, and each key in it contains the number of a block and the
number of a transaction, which can be used to quickly locate the position of data in ledger.
The historical data is distributed across a large number of blocks on file-system, which leads
to the low efficiency of a query with multiple conditions(We refer to it as conditional query
in this work, which is specifically defined in Definition 1). This is because, given a key,
the Hyperledger Fabric will return all historical data of it, based on which we can get the
results meeting the given conditions, during an API call. During the process of data storage,
it performs multiple verifications, such as: MVCC and VSCC. The explanations of MVCC
and VSCC are dispayed in Section 3.3. When performing these verifications, it needs to
fetch the data in the block header by deserializing the block. Repeated deserialization of
blocks results in a lot of time overhead. So it is significant for us to reduce the number of
deserialized blocks.

Obviously, to achieve the widespread use of blockchain-based applications, it is neces-
sary to improve the efficiency of conditional queries for historical data and increase the
speed of data storage. Note that, existing studies have made great contibutions in the per-
formance of blockchain. In terms of conditional queries, there are two main techniques:
granular access control and indexes constructed based on StateDB. However, they cannot
be directly used to efficiently handle conditional queries on Hyperledger Fabric. This is
because, on the one hand, nodes are authorized to join in the Hyperledger Fabric network,
then there is no need to create additional granular access control for it; on the other hand, it
is time consuming to query the whole ledger data before updating the index. Assuming that
a user executes a conditional query containing multiple conditions, the conventional query
methods need to return all data meeting the first condition and then filter the data according
to other conditions, which leads to large time cost. Additionally, conventional methods usu-
ally bring a lot of data redundancy, which is demonstrated in Section 6. Having observed
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these weaknesses, we propose the following novel methods: CCK and AIM. In the CCK, we
create a composite key for the given query based on the associated conditions of it. Then,
we use the composite key to create a new key-value pair before executing data insertion,
which can avoid the filtration of historical data. In the AIM, to solve the data redundancy
problem brought by CCK, we build an index called AUP for HistoryDB based on LevelDB
[16], and the value of each key in AUP consists of corresponding keys of current states. In
terms of data storage, most contributions focus on using different consensus. However, they
have not addressed the problem of repeatedly deserializing blocks. In this paper, we pro-
pose a novel method CAM. In this method, we create a cache for the data, which need to be
validated during data storage, in block header. Then, we can obtain the data in block header
through cache directly, without deserializing blocks repeatedly.

Considering a use-case, an author « publishes a publication p in a venue v, a key-value
pair < «, (v,0) > is inserted into the blockchain ledger, and o denotes the informa-
tion of the publication, such as titile, time and URL. We are interested in querying all
publications that are published in the venue v and belonging to the author «. Firstly, we
need to query all publications belonging to the given author. During this process, we need
to deserialize multiple blocks. Then we still need to filter publications according to the
venue. Therefore, some deserialized blocks are useless. In addition, if we create a key-
value pair for each author of a publication, it will lead to a large number of redundancy,
since a publication usually has multiple authors and Fabric does not provide any index-
ing capability on the data in HistoryDB. Specifically, if an publication has n authors, then
the publication needs to be stored n times. As a result, a publication is stored multiple
times, which causes a lot of redundancy. When the amount of data is large, this redundancy
is not negligible. Due to the redundancy, it takes a lot of time to ingest the publica-
tion on the ledger. However, if we do not create the key-value for each author, we can
not get all information of the publication with multiple authors, when we only know an
author.

To tackle these challenges, we porpose two methods. In the first method CCK, we use o
and v to create a composite key(«, v). By this way, we convert the above key-value pair to
<(«, v),0 >. Based on this method, the processing of filtering publications that belong to «
but are not published in v can be avoided. However, we need to create multiple key-value
pairs for the publication with mutiple authors in this method, which leads to the problem of
data redundancy. To solve it, in the second method AIM, we build an index called AUP to
record all authors having relationships with the publication to be stored. The key-value pairs
in AUP are in the form of <(«, v),e(s¢) >, where s, represents all authors of the publication
p, and &(sy) denotes all authors that have co-authored with « in history. While inserting a
new key-value pair <(«, v),0 > into blockchain, it inserts < sy, “”” > into HistoryDB firstly,
and then creates <(«, v),6(Sy) > in AUP for each author in S,.

In this paper, we add more delicate processing. Compared with [26], we make the
following improvements:

—  To make the proposed conditional query methods more versatile, we explain them in a
general way instead of the previous specific cases.

— To reduce the number of block deserializations, we develop a novel method CAM,
where a cache is created to store data that need to be validated in MVCC and VSCC.
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—  Since Hyperledger Fabric mainly implements functions through chaincode, we intro-
duce the design of chaincode and present the interfaces of the system we implement.

Generally, in this study, we have designed novel methods to conduct transactions on Hy-
perledger Fabric with high performance. To sum up, we make the following contributions.

(1) We are the first to propose methods to process conditional queries on Hyperledger
Fabric historical data.

(2) To avoid the process of removing unrelated results, we propose a method—CCK
to execute conditional queries on Hyperledger Fabric by creating composite key. To
tackle the data redundancy problem, we design a method—AIM to build an index—
AUP for HistoryDB. Furthermore, in order to achieve timely requeries, we update
AUP during transactions.

(3) To speed up data storage, we create a cache for data in block header to avoid repeated
deserialization of blocks. In addition, we conduct extensive experiments on a real-
world dataset DBLP, and the results demonstrate that the proposed approach can
achieve high performance in multiple dimensions.

(4) Finally, we implement a prototype system on Hyperledger Fabric to efficiently handle
transactions.

The rest of this paper is organized as follows. In Section 2, we brefily view existing work
related to the research of blockchain. Section 3 presents the background of Hyperledger
Fabric. In Section 4, we formulate the problem and define notations used in this work. We
introduce the methods and algorithms proposed in this paper in Section 5. In Section 6, we
conduct extensive experiments on a real-world dataset. In Section 7, we show the arichi-
tecture of our chaincode and the client interface of the system. This paper is concluded in
Section 8.

2 Related work

Though blockchain is an emerging area, it has received significant attentions. There is
a large number of work focuses on it. These studies are mainly divided into two cate-
gories: security and performance. In terms of security, [17] makes a survey of blockchain
security issues and challenges. Lin et al. [18] discusses the applicability of blockchain to
intrusion detection, and identify open challenges. Kang et al. [15] provides APIs to eas-
ily enable data privacy in both client code and chaincode. It also supports on-demand,
automated auditing based on encrypted data. There is also a lot of work focuses on the per-
formance of blockchain, including [9, 21, 24, 25]. They mainly concentrate on realizing
higher throughputs and lower latencies by using different consensus algorithms, encryption
methods etc.. In [4], authors analyze how fundamental and circumstantial bottlenecks in
Bitcoin limit the ability of its current peer-to-peer overlay network to support substantially
higher throughputs and lower latencies.

2.1 Performance modeling of blockchain networks

The authors of [25] constrast POW-based blockchains to those BFT-based state machine
replication and discuss proposals to overcome scalability limits and outline key outstanding
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open problems in the quest for the “ultimate” blockchain fabric(s). In [5], authors first
describle BLOCKBENCH, which is the first evaluation framework for analyzing private
blockchains and serves as a fair means of comparsion for different platforms and enables
deeper understanding of different system design choices, and then they use BLOCKBENCH
to conduct comprehensive evaluation of three major private blockchain: Ethereum, Parity
and Hyperledger Fabric. They measure the overall performance of the platforms and draw
conclusions across the three platforms. The problem investigated in [6] is similar to [5],
both of them discuss several research directions for bringing blockchain performance closer
to the realm of databases. Zheng et al. [29] provide an overview of blockchain architecture
firstly and compare some typical consensus algorithms used in different blockchains.

2.2 Performance evaluation of hyperledger fabric

In existing work, [1] introduces the design and the architecture of Hyperledger Fabric, and
presents the performance of a single Bitcoin like crypto currency application on Fabric,
called Fabcoin, which uses CLI command to emulate client instead of using a SDK. Gupta
et al. [11, 12], Zhang and Poslad [27], Zhang et al. [28] pay more attention to how to effi-
ciently handle queries in the blockchain platform. [27, 28] handle the problem of flexible
queries by using granular access control, both of them improve performance by optimizing
encryption methods. Gupta et al. [11, 12] are the most similar work to our methods, they
both propose two methods to process temporal queries on Fabric. However, they need an
extra phase to updata index. Androulaki [1] introduces the impact of block size, CPU, SSD,
and RAM disk on blockchain latency and throughput. Arati [2] puts Fabric through differ-
ent workload sets to study Fabric’s throughput and latency characteristics, and customizes
a set of benchmark tests for Fabric to adjust different transaction and smart contract param-
eters and study how they Affects transaction latency. Ankur [22] discusses Fabric from the
perspective of database research, and have observed the weakness in the trading channel.
Then, the easy-to-understand database concept is transitioned to Fabric. Compared with the
original version, the improved version of Fabric significantly increases the throughput of
successful transactions. Gao et al. [8] propose the establishment of a Hyperledger-based
food trade and traceability system, called Hyper-FTT. By bringing all providers including
food storage companies, food processors, and food retailers together to reach an agreement
and reach a commercial transaction on the chain. Then, an uninterrupted food supply that
can form a chain to provide reliable food tracking, and implementations and experiments
have been conducted to evaluate the performance of the proposed demonstration system.
Gorenflo et al. [10] is similar to our method CAM, it also uses cache to store data, but it
does not implement the whole transaction process.

In spite of the great contributions made by the aforementioned studies, none of them
consider conditional queries on Fabric. To tackle the problem, we propose two methods in
this paper, i.e., composite key based method CCK and AUP index based method AIM, and
details are presented in Section 5. To speed up data storage, we propose the CAM method.

3 Background

A Hyperledger Fabric network contains peer nodes, ordering service nodes and clients. A
peer node in the network of Fabric is divided into an endorsing node, a committing node
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and an orderering node. The orderering node is responsible for creating blocks. The endors-
ing node executes the chaincode logic [19]). Although they are different in this point, both of
them maintain the ledger in a file system. An ordering service node participates in the con-
sensus protocol to invoke a chaincode function, which can perform read and write operations
on shared ledger data by defining ledger APIs. Further, the transaction flow in Hyperledger
Fabric consists of 4 phases, (1) Endorsement Phase—simulating the transaction on endorser
nodes and collecting the state changes; (2) Orderering Phase—ordering transactions through
a consesus protocol; (3) Validation Phase—verifying the block signature and all transactions
in a block; (4) Commitment Phase—committing valid transaction data to the ledger.

3.1 Data storage structure

In Fabric, all valid transactions are stored in blocks, and all blocks are stored in the file
system. A simple structure of single-chain data storage is presented in Figure 1. It contains
StateDB, HistoryDB and block index. The StateDB stores the current state of each key and
supports Level DB and CouchDB [3]. The HistoryDB stores the historical state of each key.
It records the change of each key in StateDB, which is based on LevelDB. In fact, it does not
store the real value of each key and can be used to quickly locate the position of transaction
in the block. Hyperledger Fabric provides a varity of block indexing methods. The content
of the block index is the file location pointer, which consists of three parts: the file number,
the offset within the file, and the number of bytes occupied by the block. The block index
can be used to quickly find the position of blocks.

Ledger

Block Header(i) Block Header(i+1) Block Header(i+2)

Transactions Transactions Transactions

Block Metadata Block Metadata Block Metadata

Figure 1 The architecture of ledger
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If we want to add a new state or change the current state of a key, we need to initiate a
transaction proposal. When executing sucessfully, a new key-value pair will be added to a
block. The value of the key in StateDB is changed, but the previous key-value pair is still
stored in the ledger if it had the value of the key before. Additionally, a new key-value pair
will also be inserted into the HistoryDB.

3.2 Accessing historical states

Hyperledger Fabric provides specific APIs, such as GHFK and CK, which are used in our
proposed methods CCK and AIM.

GetHistoryForKey(k) (GHFK [12]): This is an API provided by Hyperledger Fabric to
access the historical state in ledger. For a given key £, this call returns all the past states
of key k in the history.

CreateCompositeKey(ob, ks) (CK): This is an API provided by Fabric to combine the
given attributes ks and object type ob to form a composite key, which can be used as a
key to access historical states.

Specifically, when initiating a transaction proposal to get historical states of a given key
k, we need to execute a GHFK call. During the execution of the GHFK call, it retrieves all
keys in HistoryDB firstly. Then it analyses all these keys to get the list of block numbers and
transaction numbers. Next, it queries the block index to get the location of blocks and then
deserializes all blocks to access transaction data accroding to transaction numbers. Finally,
it extracts out all the values. That is to say, the GHFK call needs to retrieve the historical data
from multiple blocks and returns an iterator in the end. The more values accessed through
this iterator, the larger the number of blocks that need to be deserialized.

3.3 Validating block information

In Fabric, when a new block is created, it needs to be broadcasted to other peers and those
peers will validate the block. During the validation phase, peers will validate the ordering
node’s signature on the new block firstly. Next, peers will deserialized the block to get all
transactions. Finally, each transaction in the new block will go through VSCC validation
and MVCC validation.

During VSCC(Validation System Chaincode) validation phase, peers will validate if the
endorsement in the transaction is consistent with the endorsement policy. If they are con-
sistent, the verification is passed and the transaction is valid, otherwise the transaction is
invalid.

During MVCC(Multi-Version Concurrency Control)validation phase, peers will validate
if the version of the key in the endorsement phase is consistent with the version of the
key in the current state database. The difference of these two versions means the previous
transaction has been modified and is invalid.

The data in the block is encapsulated layer by layer. In order to obtain the data that
needs to be verified, the block needs to be deserialized multiple times, which takes a lot of
time.
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4 Problem statement

In this section, we present all the notations used throughout the paper in Table 1. After that,
we formulate the problem.

Definition 1 Conditional Query. Given a query ¢ with multiple query conditions S.=
(c1...cp)(n > 1), suppose the attribute ¢ corresponding to condition ¢ has multiple values,
our goal is to obtain values that satisfy all conditions.

4.1 Problem formulation

In Fabric, handling conditional queries require to deserialize blocks that satisfy all query
conditions. For example, in DBLP, given an author « and a venue v, when we want to get
all publications that belong to the author « and published in venue v, we need to deserialize
blocks that satisfy these two conditions: (1) the block contains a transaction which ingests
a key-value pair with key «, and (2) this pair describes a publication which is published
in a given venue v. As we can see from the example, the value of the author attribute is a
collection. This is because, an article usually has multiple authors. To get this kind of data,
we also need to store it into ledger efficiently firstly.

Currently, when we want to initiate a transaction to store data in the block ledger, during
validation phase, it needs to deserialize block repeatedly, which will cost a large number
of time. In addition, abovementioned conditional query is time-consuming on Fabric, since
Hyperledger Fabric only provides restricted APIs, and does not directly support this oper-
ation. Besides, in the process of conditional query, it is necessary to deserialize blocks
multiple times, and then filter the data. It is hard to directly obtain the data that meets all the
conditions.

Problem Formulation. Given a conditional query, we can obtain values that satisfy all
conditions by conducting the query with the proposed methods on Fabric. To obtain the

Table 1 Definitions of notations

Notation Definition

q A given conditional query.

ci The i-th query condition.

S¢; Set of values of the attribute corresponding to the query condition c;
r The result of the given conditional query

e Conditional query results that satisfy condition c;

Se The set of conditions in a conditional query

P The collection of data records

sf.j The set of values corresponding to the jth condition of the ith data record
Sy A data collection formed by splitting the original data

ck Composite key formed after CK is called

Sckvp The collection of key-value pairs consisting of ck and p
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values, we need to store the value in advance. By using the method we proposed, we can
also speed up data storage.

5 Proposed methods

From Section 4 we know that, the conditional query is to obtain all historical values that
satisfy all conditions. Besides, to better realize conditional queries, we propose a novel
method to speed up data storage. Since this paper is the first to study efficient conditional
queries based on Fabric, so in order to solve this problem, we have given three specific
solutions, the first of which is the original basic method of designed as a baseline. The
second method CCK is designed based on composite keys to avoid filtration process and
the third method AIM can reduce redundancy by creating index. In addition, to speed up
data storage, we designs method CAM. In this section, we present proposed methods and
describe problems encountered during execution.

5.1 Baseline method

Given a datarecord p, we split the set of attribute values S, =(c{ ...cT)(m > 1)corresponding
to c1. We divide the set into several parts equaling to the number of elements contained in the
set. We can split the set into m parts if it has m elements, but the other attribute values of the
data record p are unchanged. Then we use each value split by s¢, as the key, record p as the
value, form key-value pairs. Finally, we form m key-value pairs Sg,,=(kvi...kv;,), and ini-
tiate transactions to save the m key-value pairs in the Fabric’s block, and the corresponding
data are also saved in the state database and the historical database.

When executing query ¢, we first use ¢ as the key to call GHFK to execute the query.
After obtaining a data result set r,, we then use the other query conditions in s to filter the
data, delete the data records that do not meet the conditions, and finally obtain the result r
that meets all query conditions.

However, this method requires a data filtering process. The more query conditions that
need to be met, the more filtering is required, it also leads to the missing of data obtained
by access in the final result. Then with the increase of query conditions, the more blocks
are accessed and the more data needs to be filtered, eventually the conditional query needs
to take a lot of time to return results.

5.2 Composite key based method CCK

To address the problem of the baseline method, we design a novel method CCK, Algorithm
1 introduces the method and the detailed explanations are as follows.

In the storage phase, given a set of data records p = (p1...p;)(t > 1), for each data
record p;(1 < i < t), as in the first step in the baseline method, we split the attribute
value set si,l = (c%...c’l”) (m > 1) into m parts, and the other attribute values of the data

record p; remain unchanged firstly. Then, we use each value split in sél =(c} ...c") and the

attributes corresponding to the query conditions other than c{ (1 < j < m) to construct
a composite key by calling CK, which finally constitutes a set of composite keys with m
elements s, =(ckj...cky). Next, we use each element in s¢; as a key, and record p; as a
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value to create a key-value pair. Then, the key-value pairs constructed in the baseline method
becomes sckyp = (c,]w...ckmv), and we initiate m transactions to save the m key-value pairs in
the block ledger. Fianlly, we repeat the above steps ¢ times to save all collections to the block
ledger.

Algorithm 1: The method of creating compiste key CCK.

Input: A collection of data records p, which contains # elements(t < 1). A query ¢
contains n query conditions(cy...c,)(n < 1)
Output: Query result r

1 The stage of data storage;
2 Access the collection of data records p;
3fori=1tr1tdo
4 Extract and split the attribute value corresponding to the query condition ¢; in the
data record p;. The result after splitting is (c} s
5 for j =1tomdo
6 Use c{ and other attribute values corresponding to the query conditions as ks,
and call CK to create composite key ck ;
7 Use the created composite key ck; as the key and p; as the value to form the
key-value pair ckv;
8 Initiate a transaction proposal and save the key-value pair ckv; to the block
ledger;
9 end
10 end

11 The stage of condition query;

12 Get conditional query ¢;

13 Set all query conditions (c% ...c") in conditional query ¢ as ks, and call CK to create
composite key ck;

14 Use ck as key and call GHFK to access data in block. The result returned is r;

15 return r

In the query phase, when executing conditional query g, firstly we use all conditions in g
to create composite key ck by calling CK. Then, we call GHFK(ck) to execute conditional
query to get the result r. The returned set » meeting all query conditions is the final result.

Although the result r obtained by calling GHFK(ck) meets all conditions and CCK can
avoid the data filtration, both baseline method and CCK have a common problem. Since the
attribute value corresponding to condition c; is a collection of data, in order to achieve the
flexibility to execute a query according to the corresponding key, the record p needs to be
stored multiple times. As many elements in the attribute set corresponds to c¢j, we need to
save the record p many times, such a storage method brings a lot of data redundancy.
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Algorithm 2: The method of building index.
Input: The collection of data records p, which contians ¢ element(r > 1). A
conditional query ¢, which contains n query conditions (cj...c)
Output: The query result r
1 The stage of data storage;
2 Access the collection of data records;
3fori=1t1tdo
4 Extract and split the attribute value ¢’ , corresponding to the query condition ¢ in

the data record p;, and the result after the split is (c} e

5 for j = 1tomdo

6 Use c{ and other attribute values corresponding to the query conditions as ks,
and then call CK to create the composite key;

7 if the value of the key ck; does not exist in the AUP then

8 | Save ck; as key and sf.l as values in AUP;

9 end

10 if the value of the key ck; exists in the AUP then

11 Query the AUP to obtain the value corresponding to c;, and combine this

value with s’ , to form a new value nsgl by calling algorithm 3;

12 Use ck; and nscj1 to create key-value pairs and save them in AUP;

13 end

14 Use sél as a key, record p; as a value to form a key-value pair, and then
initiate a transaction proposal to save it to the block ledger;

15 end

16 end

17 The stage of conditional query ;

18 Access conditional queries ;

19 Use query conditions as parameter to call CCK to create composite key ck;

20 Use ck as key to query AUP, and obtain the corresponding value v;

21 Use v as parameter to call algorithm 4 to split it, and obtain the splitted collection of
values sy;

22 Call GHFK with the elements in s, as keys in order to get the result r ;

23 return r;

5.3 AUP index based method AIM

Since both baseline method and CCK bring a lot of data redundancy, in order to solve
this problem, we design a novel method AIM. In Fabric, HistoryDB itself is not indexed
and it is implemented by LevelDB. Therefore, it is necessary to follow a specific format
when querying historical data, and flexible data query cannot be implemented well. In this
method, we build an index for HistoryDB, which solves the problem of data redundancy
well and make the overall data storage time greatly reduced. The implementation steps of
AIM are shown in Algorithm 2 and the explanations are as follows.
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During the data storage phase, given the data record p=(pi...p/)(t = 1), just like the
method CCK, for each record p; (1 < i < t), we firstly spilt the collection sél to get
each element (c{ ... c"), and then we use each element and other query conditions to create
composite key by calling CK. We create the collection s£k=(ck1 ...ck;,) which contians m

composite keys in the end. Nextly, we use each element in sék askey and s/, (1 < j <m)
as value to create key-value pairs. All those key-value pairs are stored in AUP, which is
implemented with LevelDB. Note that, if the value corresponding to the key does not exist
in the AUP, we can insert it directly; if it does, we need to update the AUP. During the
updating phase, we extract the original value, and then use it with s, as a parameter to call
Algorithm 3 to create the new value nsZ-l. Nextly, we insert the new value nsg1 into AUP
and the index database AUP is created. This update method is to solve the problem that the
constructed composite key ck; is same, but the corresponding value le is different. Then

we use le as the key, record p; as the value to construct a new key-value pair and initiate
transactions to store p; in block ledger. Finally, we repeat the above steps ¢ times to save all
data records p into the ledger.

Algorithm 3: The process of data connection.

Input: The collection of data s, which contains n elements
Output: A value consisting of elements in the data set v
Get the collection of data;
Set ”# as delimiter;
Set v to be empty;
fori=1ton do
if The ith element in the set s does not contain a ”’#” then
| Combine ith element with v via "#” ;
end
end
return v;

LIRS - Y N I S

During the data query phase, given a conditional query g, we use all query conditions
as parameters to create a composite key ck, and then we use it as key to query AUP to
get the value v. Nextly, we use v as a parameter to call Algorithm 4 and get the result
collection s, = (v1...vy). Fianlly, we use each element in s, as key to call GHFK and get the
result r.

In the Algorithm 3, we use “#” to join the data sets and combine them into a value for
return. In the Algorithm 4, we use “#” to split the value and return a data collection.

5.4 Data storage method CAM

As we can see from Section 3.3, the process of data validation requires us to repeatedly dese-
rialize blocks, which cost a large number of time. To solve the problem, we propose to create
a cache for the data that needs to be validated. Block signature, transaction endorsements
and transaction version information in the block are stored in the cache. When executing
validation, we can get data directly by accessing the cache without deserializing blocks.
If the data that need to be validated can not be obtained by accessing cache, for exam-
ple, the cache is crashed and the data in it is lost, we can also obtain it by deserializing
blocks.
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Algorithm 4: The process of data separation.

Input: A data character v whose length is L
Output: A collection of data s
Access data v;
Set “#” as delimiter;
Set comp to be empty;
Set index to 0;
for i=0to L do
if v[i]=="“#" then
Use v from index to ith characters to form an element and add it to comp;
index++;
end
Add comp to the data set s;
end
return s

o e N A T R W N -

e~
N = 2

6 Experiment
6.1 Fabricinstance

We use Hyperledger Fabric v1.3 and the implemented network consists of a single organiza-
tion. The organization contains three nodes, a CA node, an endorsing node and an ordering
service node with one public channel available for communication. The endorsing node is
configured to use CouchDB as the StateDB. We use Fabric SDK to emulate clients and run
the entire system by using docker containers on a server. The server is equipped with 24
Intel(R) Xeon(R) CPU E5-2630 v2 processors at 2.60GHz, for a total 256 GB of RAM. We
keep all nodes turned on and use all default configuration settings to run our experiments.

6.2 System workload

We carry out our experiment evaluation using the DBLP data. The total number of publica-
tions in DBLP is 4146645. As each publication in DBLP always has multiple authors, we
create a record with the same publication for those authors respectively. Finally, the total
number of records is 12508891, in which 8362245 records are redundant. The total num-
ber of different authors publishing publications in different venues is 7843756. We divide
all these data into 7 groups according to the ratio r(r = j/i, i represents the number of
publications belonging to «, j represents the number of publications belonging to « and
published in v). Groups are shown in Table 2. In this paper, we measure the performance of
conditional query methods using the following metrics—(1) Query execution times—time

Table 2 Grouping by proportion

Group 1 2 3 4 5 6 7

(%) 100-18 18-15 15-12 12-9 9-6 6-3 3-0
Total number 3218585 274878 421421 512382 612054 1034199 1770226
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Table 3 Grouping by data size

Group 1 2 3 4 5 6 7

Size(byte) 0-600 600-650 650-700 700-750 750-800 800-900 > 900
Total Number 268127 758668 1225755 1047611 530999 270709 44778

taken to execute the conditional queries. (2) Insertion times—time taken to insert data into
Fabric ledger. (3) Memory cost—memory size occupied by all data.

Because the size of the data affects the speed of storage, in order to better highlight the
experimental results, we group the data in DBLP according to size. The grouping results
are shown in Table 3. In this experiment, different transaction data sizes are controlled
to compare the original Fabric and CID, and the comparison mainly compares the time
required to complete these transactions.

6.3 Experimental evaluation

Table 4 shows the performance of three methods:baseline, CCK and AIM. In order to show
the result vividly, we have drawn Figure 2. We randomly select 1000 records from each
group to execute 1000 queries at a time. We execute each query 1000 times and take the
average query time as the result. The query time is calculated from the time when the query
transaction proposal is initiated until the response information is received. Table 6 shows
the performance of CAM. We use 4000 go routines to submit transaction data, and the
experiment is divided into 10 groups. Each group randomly selects 10000 data from each
group in the data set to invoke transactions, and then uses the average result of these 10
groups of experiments as the final result.

6.4 Time cost of baseline

As we can see from the Table 4, with the ratio r decreases, the baseline method takes more
time. This is because as the ratio r decreases, the author we used to query has more publi-
cations. When we want to get all publications that meet the conditions, we need to call the
GHFK. The Fabric firstly queries the HistoryDB to get all keys that satisfy the conditions.
The key in HistoryDB consists of the key of a current data, block numbers and transaction
numbers. Then it uses block numbers to query block index to get all blocks and deserializes
the content of these blocks. Next, it uses transaction numbers to get transactions and extracts

Table 4 Query time of each method

Group Ratio Query time of baseline Query time of CCK Query time of CI
1 100-18 29.03(s) 12.77(s) 9.57(s)
2 18-15 50.14(s) 12.31(s) 9.52(s)
3 15-12 55.44(s) 11.73(s) 8.51(s)
4 12-9 70.84(s) 11.70(s) 8.27(s)
5 9-6 80.92(s) 11.46(s) 7.93(s)
6 6-3 109.20(s) 10.85(s) 7.29(s)
7 3-0 174.74(s) 9.87(s) 6.07(s)
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Figure 2 Histogram of query time of three methods

out the values inserted. Finally, the GHFK call returns an iterator and we get values from
the iterator. The more values are accessed through this iterator, the more blocks are deseri-
alized. Therefore, given an author, the more publications belonging to the authors, the more
blocks need to be deserialized, the more time it will take to execute a query transaction.

Consider the query in baseline method, it needs to get all blocks that contain publications
that belong to author «. It deserializes all these blocks and needs to remove publications
that are not published in venue v. As the number of publications that are not published
in venue v increases, it needs to deserialize more and more blocks and removes more and
more publications that do not satisfy the conditions. The bottleneck of the first method is to
retrieve publications belonging to author « and published in venue v, we need to deserialize
all blocks containing publications belonging to author «. Larger the number of publications
that are not published in venue v, worse is the performance of baseline.

6.5 Time cost of CCK

The third column of Table 4 presents the performance of CCK. When we execute queries in
group 1, CCK takes 12.77s which takes 16.26s less time than the baseline method. When we
execute queries in group 3, CCK takes 11.73s which takes 43.71s less time than baseline. As
the ratio decreases, the performance of CCK method becomes better. This is because with
the decrease of ratio, the number of publications belonging to the author « and published in
venue v becomes smaller, and the block number that we need to deserialize is smaller. We are
able to achieve this improvement by using CCK because we can exactly know which block
contains publications belonging to author « and published in venue v. That is to say, we just
need to get blocks that contain publications belonging to author « and published in venue
v. This effect becomes more severe, when we execute queries in group 7. Considering the
case when an author has total x publications, in which y publications published in venue v
and the data of each publication is stored in different blocks. When we execute queries with
the baseline method, we need to deserialize x blocks and remove x-y(x > y) publications
from the result. However, if we use CCK, we only need to deserialize y blocks. The larger
x-y, the higher the performance of CCK. This is equivalent to the smaller ratio, the better
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the performance of CCK. The time-cost by using CCK is much smaller than that by using
baseline method.

6.6 Time cost of AIM

We next analyze the time-cost of using AIM to execute conditional queries, it is similar to
CCK. This is because in AIM, we also create composite key and we exactly know which
block contains the data that meet our conditions. So the number of block we need to dese-
rialize is same. However, CCK has a big problem, it brings a lot of redundancy. We need
to use each author in a publication and the venue of it to create composite key («,p), and
we need to take («,p) and other information o as a key-value pair to insert into the ledger.
So if a publication has n (n > 1) authors, it will generate n key-value pairs and wherein
n-1 are duplicates, which leads to the size of ledger created by using CCK is larger than
the ledger created by using AIM and the cardinality of the ledger data that performs condi-
tional queries becomes larger. That is why AIM is better than CCK in query performance.
Besides, the redundancy makes us to spend a lot of time inserting these key-value pairs into
ledger. In our experiment, we ingest a publication in one transaction. So the total number
of transaction is 12508891 by using CCK and baseline method, and we execute these trans-
actions with 4000 goroutines. Both baseline method and CCK cost more than 13h to finish
these transactions. However, when we use AIM, the total number of transactions is 4146646
and it costs 5h29m to finish these transactions. By using AIM, we save more than 2 times
running time, which we can see from Table 5. We build the index during the process of a
transaction. In fact, the data is continuously streaming in. If we do not build the index dur-
ing the process of a transaction, when we execute queries, we may cannot get the new data
immdiately because it has not yet been saved to the index. Besides, without this method, we
need to spend a lot time querying the ledger first if we want to construct an index.

6.7 Memory cost of the tree methods

In addition, with the use of index, we also save data storage space. Specifically, let us use
|P| and |I| to denote the average size of a transaction data in block and the key-value pair in
AUP (|P| > |I]). In baseline and CCK, the total size of all data is 12508891|P|. In CI, the
total size of all data is 4146646|P| + 2234392|1|. The difference between these two values is
8362245|P|-2234392|1|, and 8362245|P|—2234392|1| > 0. Therefore, CI saves more data
storage space than baseline and CCK.

6.8 Time cost of CAM

As we can see from Table 6, with the increase of transaction data, the time spent on the over-
all transactions also increases. This is because the transaction data increases, the data needs
to spend more time in data transmission during the communication process, as presented in
Figure 3.

Table 5 The data ingestion time

for different methods Methods Method 1 Method 2 Method 3
Transaction Number 12508891 12508891 4146646
Data Ingestion Time 13h8m 13h12m 5h29m
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Table 6 Insertion time of fabric and CAM

Group 1 2 3 4 5 6 7

Size(byte) 0-600 600-650 650-700 700-750 750-800 800-900 >900
Fabric(s) 40.1 48.4 50.2 59.4 70.1 89.1 100.2
CAMC(s) 30.2 353 40.2 46.6 59.1 67.2 80.1

Comparing Fabric with CAM, it can be seen that no matter how large the transaction
data is, CAM takes less time than Fabric. By using the CAM method, the process of block
deserialization is omitted in the transaction process, so it saves some time. When the block
size continues to increase, the time spent on Fabric and CAM transactions continues to
improve, but the speed of CAM improvement is slower than that of Fabric. Although it takes
some time to build the cache, compared to the time to deserialize the block, this is trivial
and can be ignored. Therefore, the speed of saving blocks to the file system is improved.

7 System implementation

We design a prototype system by using the proposed method. In the following, we present
the design of chaincode and the interface of the system.

7.1 Chaincode design

In Fabric, chaincodes are divided into two categories, system chaincodes and user-defined
chaincodes. User-defined chaincodes are important part in Fabric, and users can use it to
implement custom system functions. So, in our system, we use user-defined chaincodes to
achieve the required functions. In our system, we use Go to implement chaincode. Functions
that chaincodes can implement include data storage, query of world state data and query of
historical data. Figure 4 shows the structure of chaincode.

100 { WEE Fabric
CAM
80
g
= 60
[
S
5
o
£ 40 -
w
20 4
0 B
1 2 3 4 5 6 7

Group

Figure 3 Histogram of execution time of fabric and CAM
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ReadRecord
MyChaincode +stub: shim.ChaincodeStubInterface
+key: string <>—+args: [lstring
+value: string +GetState(): []byte
+Init(): peer.response =
+Invoke(): peer.response GetHistoryRecords
? +stub: shim.ChaincodeStubInterface
+args: []string
+GetHistoryForKey(): HistoryQueryIteratorInterface

InsertData
+stub: shim.ChaincodeStubInterface
+args: []string

+Marshal(): [lbyte
+PutState(): error

Figure4 Chaincode design structure diagram

7.2 System interface

Figure 5 shows the interface of query, users can obtain related information by giving the
name of an author and the name of a venue. System will show the information related to the
given author and venue. When a user wants to inert data into ledger, he can enter the author,
journal name and other information, then click the submit button, the system will store the
data in the system. If the data is successfully stored in the system, the system will return a
transaction id to user. Figure 6 is the interface of data storage.

8 Analysis

From the above three conditional query methods, we can see that the AIM has the best
performance. It solves the problem of redundancy, improves the efficiency a query and
data insertion. We get two conclusions. Firstly, when we execute conditional query, and
the key which we want to use has a large number of unrelated values need to be removed,

Handling Conditional Queries and Data Storage on Hyperledger Fabric

Welcome back Mike

Venue:

.

Himanshu Gupta

IEEE
Efficiently processing temporal queries on hyperledger fabric

On Building Efficient Temporal Indexes on Hyperledger Fabric

Figure 5 The interface of conditional query
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Figure 6 The interface of data storage

the best method is to use all conditions to create composite key. Then we can use this
composite key to execute queries, which can help deserialize a small number of blocks and
directly find blocks containing values that we want to get without the process of filtration.
Secondly, when multiple keys have a same value, we can create index to reduce the time
of data insertion and reduce redundancy. Just like the use-case in our experiment, multiple
authors have a same publication, we reduce the time of inserting the publication into the
ledger by creating an index AUP. By combining the method of creating composite key
and building index, the performance of both queries and ingestion data have a significant
improvement.

From the method CAM, we can see that the speed of data storage has been accelerated.
This is because, by using cache, we reduce number of blocks to be deserialized and we can
obatin data directly by accessing cache.

In addition, methods presented in this paper can also be generalized to other conditional
queries. For example, we can use the proposed methods to get the medical history of a
patient in a certain department.

9 Conclusions

In this paper, we present three conditional query methods to handle the request of execut-
ing conditional queries on Hyperledger Fabric. We use the first method as our baseline,
both CCK and AIM easily outperform the baseline. We benchmark these three methods
and conduct a comprehensive study to understand and analyse the conditional query perfor-
mance of Hyperledger Fabric by creating composite keys and building an index. Besides,
the process of building index is included in an transaction. Not only does it saves more
time during the process of insertion data, but also we can get data in a timely manner. In
addition, to efficiently handle data storage, we use cache to store data that need to be vali-
dated during MVCC validation and VSCC validation. It can effectively save the time of data
storage.
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