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ABSTRACT
Smart contracts are programs that are stored and executed on the

Blockchain and can receive, manage and transfer money (cryptocur-

rency units). Two important problems regarding smart contracts

are formal analysis and compiler optimization. Formal analysis is

extremely important, because smart contracts hold funds worth

billions of dollars and their code is immutable after deployment.

Hence, an undetected bug can cause significant financial losses.

Compiler optimization is also crucial, because every action of a

smart contract has to be executed by every node in the Blockchain

network. Therefore, optimizations in compiling smart contracts

can lead to significant savings in computation, time and energy.

Two classical approaches in program analysis and compiler op-

timization are intraprocedural and interprocedural analysis. In in-

traprocedural analysis, each function is analyzed separately, while

interprocedural analysis considers the entire program. In both cases,

the analyses are usually reduced to graph problems over the control

flow graph (CFG) of the program. These graph problems are often

computationally expensive. Hence, there has been ample research

on exploiting structural properties of CFGs for efficient algorithms.

One such well-studied property is the treewidth, which is a mea-

sure of tree-likeness of graphs. It is known that intraprocedural

CFGs of structured programs have treewidth at most 6, whereas

the interprocedural treewidth cannot be bounded. This result has

been used as a basis for many efficient intraprocedural analyses.

In this paper, we explore the idea of exploiting the treewidth

of smart contracts for formal analysis and compiler optimization.

First, similar to classical programs, we show that the intraprocedu-

ral treewidth of structured Solidity and Vyper smart contracts is

at most 9. Second, for global analysis, we prove that the interpro-

cedural treewidth of structured smart contracts is bounded by 10

and, in sharp contrast with classical programs, treewidth-based al-

gorithms can be easily applied for interprocedural analysis. Finally,

we supplement our theoretical results with experiments using a

tool we implemented for computing treewidth of smart contracts

and show that the treewidth is much lower in practice. We use

36,764 real-world Ethereum smart contracts as benchmarks and

find that they have an average treewidth of at most 3.35 for the

intraprocedural case and 3.65 for the interprocedural case.
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1 INTRODUCTION
Smart Contracts. Bitcoin scripts [5] initiated the idea of encod-

ing semantics in cryptocurrency transactions. These scripts were

used to implement simple contracts, such as escrows [49]. However,

one can encode more complicated programs in a cryptocurrency

transaction, in order to implement complex financial agreements,

such as credit reporting [29] or decentralized autonomous orga-

nizations [43]. Such programs are called smart contracts. A smart

contract has its own dedicated memory and can be programmed to

receive, manage and transfer cryptocurrency units [37]. Users (and

other contracts) can interact with the contract by calling one of its

functions. Each such function call is handled in the same way as a

transaction. The Blockchain protocol provides a global consensus

about the state of each contract. This includes consensus about the

code of the contract, the state of its memory, and the results of inter-

actions with the contract. Note that after a contract’s code is stored

on the Blockchain, it is immutable, and the only way to interact

with it is to call its functions, which behave as programmed.

Value of Contracts. Smart Contracts hold and manage a con-

siderable amount of funds. At the time of writing, on Ethereum

Blockchain alone, there are over a million instances of deployed

smart contracts, holding billions of dollars of funds [44].

Importance of Formal Analysis. Given the unmalleability of data

stored on the Blockchain, a contract’s code cannot be amended after

its deployment. Similarly, all transactions stored in a Blockchain are

irreversible. On the other hand, contracts handle a huge amount of

funds. Therefore, to avoid significant financial losses, bugs in smart

contracts must be detected before deployment [4, 13, 16, 38]. For

example, in one catastrophic case, called the DAO attack [43], an

attacker stole more than 50 million dollars from a contract. There

are also a variety of proposed best-practices and design patterns

for minimizing the damages when a contract fails (e.g. see [19]).

Importance of Optimization. To achieve consensus, each time a

function is called, all nodes of the network have to verify the results
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by running the function [47]. This means that each function call is

executed and verified by tens of thousands of nodes in parallel [27].

Therefore, any optimization in the compilation process can lead to

a massive overall saving of time and energy.

Importance of Quantitative Analysis. In many scenarios, quali-

tative analysis is not enough for smart contracts [16]. For example,

absolute safety against any attacks might be impossible or very

costly. In such scenarios, one would like to find a bound on the po-

tential or expected economic consequences of an attack. Moreover,

quantitative analysis approaches, such as [18], can be used to find

the expected execution costs of a contract.

Control Flow Graphs.Many problems in program analysis, model

checking and compiler optimization can be reformulated as graph

problems [36]. In such cases, the underlying graph is usually the

Control Flow Graph (CFG) of the program that is being analyzed or

optimized [34, 36]. See Section 2.1 for a formal definition of CFGs. In

such analyses, one can either consider the problem over individual

functions and hence create a separate CFG for each function, or

attempt to solve the problem on a global control flow graph (GCFG)

of the entire program. The former approach is called intraprocedural
analysis, and the latter is interprocedural analysis.

Exploiting Structural Properties. The graph problems arising

from formal program analysis and compiler optimization are often

computationally expensive and even NP-hard in many cases. Hence,

there has been ample research on exploiting the structural prop-

erties of the underlying CFGs to obtain faster algorithms [3]. An

extensively-studied parameter that has been applied successfully

to these problems is the treewidth [8, 14, 17, 31, 35, 39, 45]. See

section 2.3 for some motivating examples.

Treewidth. Treewidth [40] is a well-studied graph parameter that

provides a measure of tree-likeness of graphs [7]. Trees and forests

are the only graphs with a treewidth of 1 and, informally, a lower

treewidth means that the graph has more resemblance to trees. The

significance of treewidth in the design of algorithms stems from

the fact that many NP-hard graph problems are fixed-parameter

tractable when parameterized by the treewidth, i.e. can be solved

efficiently on graphs that have small treewidth [6, 7, 12, 22, 23, 28,

30]. Specifically, one can apply a bottom-up dynamic programming

technique on such graphs in a manner very similar to trees [6]. For

the formal definition of treewidth, see Section 2.4.

Treewidth of Control Flow Graphs. In [45], it was established

that the intraprocedural CFGs of goto-free structured programs in

several languages, including C and Pascal, have a treewidth of at

most 6. This result provided a basis for the fast formal analysis and

compiler optimization algorithms mentioned earlier.

Our Contribution.We study the treewidth of goto-free Ethereum
smart contracts. We focus on two contract programming languages,

namely Solidity and Vyper. We obtain the following results:

(i) Theoretical Results. First, for intraprocedural analysis, we
show that CFGs of smart contracts have a treewidth of at

most 9 (Theorem 3.1). This is similar to the result for classical

programs. Second, in contrast to classical programs, for global

(interprocedural) analysis, we show that the global CFGs of

Vyper smart contracts are finite, have a treewidth of at most 10

(Theorem 4.1), and their tree decompositions can be succinctly

represented (Theorem 4.2). The same result also holds for

non-recursive Solidity smart contracts. Hence, unlike classical

programs, for smart contracts, solving global variants of many

formal analysis and compiler optimization tasks is no harder

than the local (intraprocedural) variants.

(ii) Experimental Results. On the experimental side, we imple-

mented a tool for obtaining tree decompositions of CFGs

and GCFGs of Solidity smart contracts. We analyzed 36,764

real-world Solidity smart contracts currently deployed on the

Ethereum Blockchain. The results showed that (i) no real-

world Solidity smart contract used recursion, hence all of

our theoretical results for Vyper contracts carry on to real-

world Solidity contracts, (ii) in case of CFGs, the average

treewidth was 3.35 and the bound 9 was never met, (iii) in

case of GCFGs, all analyzed contracts were shown to have

finite and succinctly-representable GCFGs. The average GCFG

treewidth was 3.65 and the bound 10 was never met in practice.

Significance of Our Results. There are two important takeaways

from our results. First, much like classical programs, the bounded

treewidth property of the CFGs of smart contracts can be exploited

for intraprocedural compiler optimization and program analysis

tasks. Second, unlike classical programs, smart contracts have suc-

cinctly representable GCFGs with small treewidth. This means that

treewidth can be exploited for the same optimization and formal

analysis problems in an interprocedural setting, rather than just

intraprocedural analysis. This can potentially lead to much more

powerful algorithms and tools for the analysis of smart contracts.

Note that, while exploiting treewidth in general programs is well-

studied and supported by tools such as [15], current approaches for

analyzing smart contracts, such as [16, 38, 46], do not exploit the

treewidth or any other structural property.

2 PRELIMINARIES AND MODELING
In this section, we provide some basic definitions, define an abstract

programming language that we are going to use in the rest of the

paper, and review previously-known results.

2.1 Programs and Graphs

Control Flow Graphs (CFGs). The Control Flow Graph (CFG) of a

program is a directed graph whose paths model the execution traces

of the program [1]. There are many slightly different variations

of CFGs. The nodes of a CFG can correspond to statements in the

program, or basic blocks, or other subdivisions of the code. We will

follow the node structure used in [45] (explained below).

Abstract Programming Language.We define an extension of the

STRUCTURED programming language [45] to capture the general

properties of goto-free programs, abstract away the details that

are not relevant to the treewidth of the CFG, and obtain general

results that will then be instantiated for specific programming

languages. We call this extension ES (Extended STRUCTURED).

The differences between ES and STRUCTURED are that (i) to enable

interprocedural analysis, ES does not abstract away function calls,

and (ii) ES allows several exit types for every function. Informally,

each function in ES is like a program in STRUCTURED.
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ES. A program in ES is a set of functions. Each function starts

with the keyword function, followed by its name, followed by a

sequence of statements in the function, and finally ends with the

keyword endfunction. The statements are of these types:

• Conditional statements, if-then-endif and

if-then-else-endif,
• A general loop structure loop-endloop that does not nor-

mally end on its own,

• A break statement, ending the innermost surrounding loop,

• A continue statement that goes to the next iteration of the

innermost surrounding loop,

• A return statement that terminates the current function

and returns control to the parent function,

• Several types of exit statements, exit1, exit2, . . . , exitk ,
each of which terminates the program,

• Function call statements call <function-name>, and
• Atomic statements shown by the keyword atomic. By an

atomic, we mean a statement that does not affect the flow of

the program and can be abstracted away, e.g. an assignment.

All statements that lack an “end” in their structure must be followed

by a semicolon. Intuitively, the different types of exit statements

correspond to the different types of termination that can happen

in a smart contract (see Section 2.2). We assume that a break or

continue that is not surrounded by a loop acts as a return. As
in STRUCTURED, the conditions of if statements can be boolean

expressions consisting of atomic boolean variables a, b, . . . , and the

operators and and or. We also assume short-circuit evaluation.

Nodes of a CFG.We construct the CFG for each function separately.

In the CFG, we put one vertex for each exit type and one for every

word of the ES code, except for function names
1
. Note that this

includes semicolons. There is an edge between two vertices, if their

corresponding words are in the same function and can be visited

consecutively in some execution of the ES program, i.e. in CFGs we

treat call statements in the same manner as atomic statements.

Figure 1 shows an example ES program together with its CFG. The

nodes corresponding to exit types are shown by hexagons. We will

refer to them as hexagonal nodes in the sequel.

Call Graphs and Recursive Functions. The call graph [41, 42]

of a program is a directed graph, in which there is one vertex

corresponding to each function, and there is a directed edge from a

vertex u to a vertex v , if the function corresponding to u, at some

point, calls the function corresponding to v . For example, the call

graph of the program in Figure 1 has a single edge f1 → f2. If the
call graph contains a cycle, we say that the program is recursive [25].
Otherwise, the program is said to be nonrecursive or simple.

CFGs are usually sufficient for intraprocedural analysis. However,

in order to perform interprocedural analysis the data encoded by the

call graph becomes necessary, too. This complicates the situation,

given that the analysis problems are now reduced to graph problems

over two graphs with nontrivial interactions. We can mitigate this

problem by using a Global (interprocedural) CFG. Intuitively, the

process for obtaining the GCFG is similar to repeated inlining [10].

Global Control-Flow Graphs (GCFGs). The GCFG of a program

is obtained from its CFG by repeatedly expanding the function call

1
This definition of nodes is very fine-grained. However, Lemma 2.2 shows that one

can contract any two vertices to get a coarser CFG, without increasing the treewidth.

function f1

if a or b then

atomic;

return;

else

call f2;

endif

endfunction

function f2

loop

if c then

break;

endif

atomic;

if d then

continue;

endif

if e then

exit_1;

endif

endloop

endfunction

function

if a

atomic ;

;

return ;

else call endif endfunction

or b then

CFG(f1)

function

loop

break

if

endif

exit_1 ; endif endloop endfunction

if e then

d then continue ;

; endif atomic ;

if c then

1

CFG(f2)

Figure 1: An ES program (top) consisting of two functions
f1, f2 and the CFG of f1 (middle) and that of f2 (bottom).
Exit nodes are shown by hexagons.

nodes with copies of the CFG of the function that is being called

at that point. This process is continued as long as there are unex-

panded function call nodes remaining in the graph. Concretely,

in case of ES programs, a function call call f; is expanded by

putting a copy of the CFG of f between the call node and its corre-
sponding semicolon. Specifically, the edge between the call node

and its semicolon node is removed, the call node is connected to

the function node of the copy and the endfunction node is con-
nected to the semicolon. This is illustrated in Figure 2. Intuitively,

each node of the GCFG encodes not only a point of the code, but

also the functions that are on the stack when reaching that point.

So, the GCFG of a program is finite iff the program is simple.

2.2 Ethereum
Ethereum [9] is a cryptocurrency platform that allows smart con-

tracts of arbitrary, i.e. Turing-complete, complexity. Smart contracts
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function

if a

atomic ;

;

return ;

else call endif endfunction

or b then

function

endfunction
1

function

endfunction
1

Figure 2: The GCFG of the program in Figure 1.

are fundamental to Ethereum, to the extent that Ethereum creators

often call it a distributed computing platform [9], considering smart

contracts as “decentralized applications” and the currency, Ether,

as a mechanism of payment in exchange for consensus and compu-

tation. Therefore, it is of paramount importance that every node in

the Ethereum network has the exact same understanding about the

meaning (semantics) of any piece of smart contract code. This is

achieved by means of a virtual machine.

Ethereum Virtual Machine (EVM). The EVM is the runtime en-

vironment for Ethereum programs (smart contracts). It is a Turing-

complete stack machine programmable with a formally defined

Bytecode format [47]. Every node in the Ethereum network runs an

instance of the EVM. This ensures that all nodes are in consensus

about the results of any transaction (function call). However, the

downside is that every function call has to be executed by every

node. Therefore, there are considerable costs associated with com-

putations in smart contracts and the network might be attacked by

spammers who intend to drain its computational power. Ethereum

addresses this problem using the concept of Gas.

Gas. Every operation in the EVM has an associated cost, in Ether,

which is roughly correlated with the amount of computational

power it uses [47]. This cost is called gas. When a user calls a func-

tion of a smart contract, she has to pay the total gas cost associated

with the operations executed by the contract. The user includes a

prepayment (deposit) of gas with her transaction. If the paid deposit

is insufficient, the transaction will be rejected and reverted [9, 47].

Attacks on Ethereum Contracts. There are a variety of security

vulnerabilities and possible attacks on Ethereum contracts [2]. A

well-known family of these attacks are called gas limit attacks. Ev-

ery Ethereum block is limited to handling at most a specific amount

of computation, known as the gas limit. If a function call consumes

more gas than the gas limit, it will fail and the consequences are of-

ten mishandled by smart contract programs [20]. Hence, a common

best-practice is to avoid writing codes that can have an unbounded

runtime. In practice, given the cost of gas, one should aim to de-

velop smart contracts that execute as little computation as possible.

Many real-world smart contracts do not even have loops [20].

Solidity. Solidity is a programming language for writing Ethereum

smart contracts [48]. It was developed by the Ethereum team in 2014

and is currently the most widely-used smart contract programming

language. Solidity aims to provide the programmer with all the

usual functionality of a general-purpose language like C++.

Vyper. Vyper is the newest language of the Ethereum founda-

tion [26]. It is a python-like scripting language whose goal is to

provide a simple way of writing secure real-world smart contracts,

by disallowing vulnerable functionality, and hence losing Turing-

completeness, in exchange for more security [26]. One of the deci-

sions by the designers of Vyper was to disallow the rarely-used func-

tionality of infinite loops and recursion, in order to avoid gas limit

attacks. Hence, all Vyper smart contracts are simple programs [26].

Types of Termination. A function in a smart contract can termi-

nate in a number of ways. On Ethereum, the possibilities are [9, 47]:

(i) Return: As in classical programs, the function can terminate

by returning control to its parent function.

(ii) Revert: The function can terminate by canceling the entirety

of the current transaction, e.g. when an error occurs and the

whole transaction must be rolled back. In this case, all the

changes made by the current transaction, including those

made by other functions, possibly even by other contracts,

will be reverted. There are essentially two types of reversion:

the programmer can choose to either refund the remaining gas

after reversion or to burn it. These correspond to the require
and assert keywords in Solidity.

(iii) Self-destruct: Finally, a function can terminate by destructing

the current contract, making it unusable in the future, i.e. the

functions of the contract will no longer be callable by anyone.

Self-destruction is usually used when a contract reaches its

expiration and is no longer useful, or when serious errors

or security problems happen and it is necessary to stop any

further interaction with the contract. In this case, the balance

of the contract will be transferred to a predefined recipient.

Modeling Vyper and Solidity Contracts in ES. In our language,

ES, we use return to model termination by returning and exit1,
exit2 and exit3 to model the other types of termination. A Solidity

or Vyper while(ϕ) loop can simply be modeled by an ES loop
whose body begins with if(!ϕ) then break; endif. Other types
of loops, such as for can be modeled similarly. Hence, to prove

that Solidity and Vyper smart contracts have CFGs (or GCFGs) of

bounded treewidth, it suffices to show the same fact for ES.

Remark. In this work, we are considering structured, i.e. goto-free,
programs. Therefore, we do not consider Solidity programs that in-

clude the so-called Solidity assembly code. It is well-known that one

can write assembly codes that have arbitrarily large treewidth [31].

2.3 Motivating Examples
Tree decompositions and treewidth are formally defined in the next

section. In this section, we provide some motivating examples to

illustrate the importance of treewidth boundedness.
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Formal Analysis. Exploiting graph structures for obtaining faster

analysis algorithms is a well-studied field [3]. Bounded treewidth is

one of the most widely-used structures and leads to efficient algo-

rithms for many formal analysis problems [28]. The usual approach

to formal program analysis is to write the desired property of the

program in a specification language or logic. For example, in case of

smart contracts, a desired property might be that one party cannot

cause a self-destruction of the contract if another party opposes it.

As another example, to avoid the DAO attack, we can specify the

property of avoiding the reentrancy vulnerability over all runs of

the contract. Two of the most commonly-used formal languages for

specifying desired properties are the µ-calculus and the Monadic

Second Order Logic (MSO). There is no known polynomial-time

algorithm for the problem of µ-calculus model checking, i.e. check-

ing whether a given program/contract satisfies a property specified

in µ-calculus, but the problem can be solved in linear time if the

CFG has constant treewidth [39]. Similarly, model checking MSO

properties is NP-hard in general, but can be done in linear time if

the underlying graph has constant treewidth [35].

Compiler Optimization. A classical and well-studied problem in

compiler optimization is that of register allocation [33], i.e. assign-

ing program variables to a limited number of registers in an optimal

manner. Register allocation is one of the most important stages for

optimizing several typical goals, such as energy efficiency, code

size and execution speed [33]. This problem is usually reduced to

graph coloring, which is NP-hard even for 3 colors (equivalent to 3

registers) [45]. However, if the CFG has constant treewidth, then

register allocation can be solved in polynomial time [32, 45]. In

case of smart contracts, such optimizations at compile time can

significantly reduce the gas costs and the overall energy that is

used by the network to run a contract.

Quantitative Analysis. In contrast with classical verification,

which classifies a program as either correct or incorrect, quan-

titative analysis assigns a value to every run of the program that

quantifies the cost/revenue generated by that run [18]. In case of

smart contracts, this value can naturally model financial gains or

losses of a party in the contract, or the amount of gas/energy used

by the contract. Hence, quantitative analysis of smart contracts is

a natural and important problem [16]. In [18], it was shown that

treewidth can help significantly in speeding up several quantita-

tive analyses. Hence, treewidth boundedness leads to much faster

algorithms for analyzing the economic effects of a smart contract.

2.4 Tree Decompositions and Treewidth
In this section, we succinctly review the notions of treewidth and

tree decomposition. For a more in-depth treatment see [22].

Tree Decompositions. Consider a graphG = (V ,E). A tree decom-

position of G is a pair (T , {Xt |t ∈ T }) where T is a tree and every

node t ofT is labeled by a subset Xt ⊆ V of vertices ofG , such that

the following conditions are satisfied:

• Every vertex v ∈ V must appear in at least one Xt ,
i.e. ∪t ∈TXt = V ;

• For every edge {u,v} ∈ E, there must exist an Xt containing
both u and v , i.e. ∀e ∈ E ∃t ∈ T e ⊆ Xt ;

• For each vertex v ∈ V , the set Tv = {t ∈ T |t ∈ Xt } must

be a connected subtree of T . Note that Tv is the set of all

a

b

c

d

e

f

{a,b, c}

{a,b, f }{b,d, e}

Figure 3: A graph G (left) and one of its optimal tree decom-
positions (T , {Xt }) (right).

nodes of T that contain v in their corresponding Xt . Hence,
this condition means that every vertex should appear in a

connected subtree of T .
We reserve the word “vertex” for vertices of G and use the word

“node” to refer to vertices of the treeT . Also, we call eachXt a “bag”.

Treewidth. The width of a tree decomposition (T , {Xt }) is de-

fined as the size of the largest bag minus 1, i.e. w(T , {Xt }) :=

maxt ∈T |Xt | − 1. The treewidth tw(G) of a graph G is defined as

the smallest width among all tree decompositions of G.

Example. Figure 3 shows a graph G and one of its tree decomposi-

tions. This decomposition has a width of 2. It is easy to verify that

G cannot have a tree decomposition of width 1. Hence, this tree

decomposition is optimal and the treewidth of G is 2.

Dynamic Programming Algorithms. The significance of

treewidth and tree decompositions in algorithm design stems from

the fact that many hard graph problems can be solved in polynomial

(often linear) time by performing a bottom-up dynamic program-

ming on the tree decomposition, in essentially the same manner

that is employed for solving problem on trees [6, 7, 22, 23]. A main

concept in these algorithms is that one can associate a subgraph

of G to every node of T . To do so, we fix an arbitrary node r as

the root of T . Then, for each node t ∈ T , we let its corresponding
subgraph Gt consist of all the vertices that appear in the bags of

the subtree of T rooted at t , i.e. either in Xt or in the bags of its

descendant nodes. Similarly, the edges of Gt are those edges of G
that have both their endpoints appearing together in some bag in

the subtree rooted at t . Hence, Gr = G and if a node t has children
t1, t2, . . . , tk , then for all ti , we have Gti ⊆ Gt . The basic idea is

then to compute the answer(s) to the problem at Gt by means of

divide-and-conquer based on the answer(s) at Gti ’s.

We now provide a different but equivalent formulation of the no-

tion of treewidth as in [45]. We will make use of both formulations

in our proofs in Sections 3 and 4.

Listings. Given a graphG = (V ,E), a listing L is simply a permuta-

tion of the vertices of G, i.e. a sequence of elements of V in which

every v ∈ V appears exactly once.

Separators. Given a graph G = (V ,E), a listing L and a vertex

v ∈ V , let l(v) be the set of all vertices that appear before v in the

listing L and r (v) be the set of all vertices that appear after v . Then
the separator ofv is the set of all vertices in l(v) that can be reached

from v using a path whose internal vertices are all in r (v). We use

the notation SLv , or simply Sv when L is clear from the context, to

denote the separator of v .

Complexity of Listings andGraphs. The complexity of a listing L
is defined as the size of its largest separator, i.e. c(L) := maxv ∈V |SLv |.
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The complexity c(G) of a graph G is defined as the minimum com-

plexity among all its listings.

Example. Consider the graph in Figure 3 together with the listing

L = ⟨a,b, c,d, e, f ⟩. We have the following separators: Sa = ∅, Sb =
{a}, Sc = {a,b}, Sd = {b}, Se = {b,d}, Sf = {a,b}. Hence, L has

complexity 2. One can also verify that G has no listing of a lower

complexity, hence c(G) = 2.

We now review some previous lemmas and results.

Lemma 2.1. For every graph G, we have c(G) = tw(G), i.e. the
complexity of a graph is the same as its treewidth [24]. Moreover,
there is an algorithm to obtain a tree decomposition of width k from
a listing of complexity k in linear time [45].

Lemma 2.2. [Contraction Lemma] Consider a graph G = (V ,E)
of treewidth k and an edge {u,v} ∈ E. Let G ′ be the graph obtained
by contracting {u,v} in G. Then tw(G ′) ≤ tw(G). Moreover, there is
a linear-time algorithm that given a listing of G with complexity k ,
produces a listing of G ′ with complexity at most k [45].

Treewidth of Control Flow Graphs. In [45], it was shown that

CFGs of goto-free Algol, Pascal and C programs have a treewidth

of at most 6. In [31] it was shown that there are Java programs with

arbitrarily large treewidth, but real-world Java codes typically have

a treewidth of 2 or 3. In [8] a similar result was obtained for Ada

programs.

3 INTRAPROCEDURAL TREEWIDTH OF
SMART CONTRACTS

In this section, we consider the CFGs of ES programs and show

that they always have bounded treewidth. As argued in Section 2.2,

Solidity and Vyper programs can be modeled in ES and hence a

treewidth boundedness result for ES naturally extends to contracts

written in these languages. We closely follow the construction

in [45], with modifications for hexagonal nodes, and provide a

natural way of obtaining a listing from an ES program. Finally, we

compute an upperbound for the complexity of this listing, hence

bounding the treewidth using Lemma 2.1.

Notation. Consider the CFG Gf of an ES function f and let v be

a vertex in Gf . We use v− (resp. v+) to denote the predecessor

(resp. successor) of v in Gf . If there are more than one successor

or predecessor, we will take the one that is not inside the block of

v . So, a return+ is the semicolon following a return and a loop−

is the vertex before that loop (and not the last vertex inside the

block of the loop). Moreover, ifv corresponds to an atomic boolean

variable, then we use Tv (resp. Fv ) to denote the vertex of the CFG

that will be visited after v if its value is True (resp. False). See [11]

for a list of potential neighbors vertices based on their type.

Canonical Listing of an ES Function. Given an ES function f
and its CFG Gf , the canonical listing CL(f ) is a listing that visits

the vertices of Gf in the following recursive manner:

• If the function is of the form function f A endfunction, we
first visit endfunction, followed by function, the hexago-
nal nodes 1, . . .k , and finally a recursive visiting of A.

• IfA is of the form B ; C , we first visit the semicolon, followed

by a recursive visit of B and then a recursive visit of C .

• If A is of the form B C , where B is a statement that has an

“end” vertex, i.e. if B is either an if-then(-else)-endif
statement or a loop-endloop statement, we first visit B and

then C , both recursively
2
.

• If A is of the form if B then C else D endif, we visit it in
this order: endif, if, then, else, B, C , D. Where the visits

to B, C and D are recursive. Similarly, if A is of the form

if B then C endif, the visiting order would be endif, if,
then, B, C .

• If A is of the form loop B endloop, we first visit endloop,
followed by loop and a recursive visit of B.

• If A is a boolean expression of the form B orC , we first visit
or and then visit B and C recursively. We do the same for

B and C .
• If A is an atomic boolean variable or statement, we just visit

it, i.e. add it to the listing.

Intuitively, we visit the parts of the program in a top-down fashion.

Separators. We now find the separators of every vertex in the

CFG Gf with respect to the canonial listing CL(f ). The ver-

tex endfunction appears in the beginning of the listing, so

Sendfunction = ∅. Given that endfunction is the only vertex ap-

pearing before function, we have Sfunction ⊆ {endfunction}.
For a word (vertex) v , we use v (resp. v) to denote the word preced-

ing (resp. succeeding) v in the ES program
3
. Similarly, if X is a set

of consecutive words of the program, we use X (resp. X ) to denote

the word exactly before (resp. after) X . Now consider a vertex v ,
• Ifv is an if, then the separator ofv can includev and endif
because they are connected tov in the CFG and appear before

v in the listing. However, if v is inside a loop, the separator

can also contain loop and endloop due to the possibility of

existence of continue and break statements in the blocks

ofv . Similarly, exit and return statements make it possible

for the separator to contain the hexagonal nodes 1, 2, . . . ,k
and the vertex endfunction. Hence we have |Sv | ≤ k + 5.
Recall that k is the number of different exit types.

• The words then, else and endif have al-

most the same situation. If v is a vertex cor-

responding to the word then, we have Sv ⊆

{if, endif, loop, endloop, endfunction, 1, . . . ,k}. Also, if
v is a vertex corresponding to the word else, then Sv ⊆

{if, then, endif, loop, endloop, endfunction, 1, . . . ,k}.
For the case of endif, we have Sv ⊆

{if, loop, endloop, endfunction, 1, . . . ,k}.
• If v is a loop, then v = v−, hence v is a neighbor of v in the

CFG and appears beforev in the listing. Thereforev is in the

separator. So Sv ⊆ {v, endloop, endfunction, 1, . . . ,k}.
• If v is an endloop and u is the corresponding loop,
then u ∈ Su and hence u ∈ Sv . So we have

Sv ⊆ {u, loop’, endloop’, endfunction, 1, . . . ,k}. Here,
loop’-endloop’ is the higher level loop containing u and

v (if such a loop exists).

2
If there are several ways of writing A as B ; C or B C , we choose the shortest B .

3
Note that these are not necessarily the same as v−

and v+ which are defined using

the CFG, not the order of the words in the ES program
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• Ifv corresponds to either of atomic, break, continue, call
or return, it is easy to see that v+ = v and v− = v and they

are both visited before v . Hence, Sv = {v+,v−}.
• If v is a break+, i.e. the semicolon after a break ver-

tex v−, then v−− appears before v in the listing and the

path v → v− → v−− exists in the CFG. So if v−−

exists, then v−− ∈ Sv . Hence, Sv ⊆ {v−−, endloop},
because in the CFG we jump straight to endloop after

v . Similarly, we have Sv ⊆ {v−−, loop} (resp. Sv ⊆

{v−−, endfunction}) if v is a continue+ (resp return+).
However, if v is atomic+ or call+, then the execution

of the function continues as usual after v , so Sv ⊆

{v−−, loop, endloop, endfunction, 1, . . . ,k}.
• If v is an and vertex in A and B, then it is easy to check that

Sv ⊆ {if, then, else, endif,A,B}. The same holds if v is

an or vertex. Similarly, if v is an atomic boolean variable,

then Sv ⊆ {Tv , Fv ,v,v}.
• Finally, if i is a hexagonal exit node, then Si ⊆

{function, endfunction, 1, 2, . . . ,k}.
Hence, we have the following lemma and corollary:

Lemma 3.1. For every ES function f withk exit types, the canonical
listing CL(f ) of the CFG Gf has a complexity of at most k + 6.

Corollary 3.1. The CFG of any ES function f with k exit types
has a treewidth of at most k + 6.

Remark 1 (Sharpness). The bound obtained in Corollary 3.1 is
sharp, i.e. for every k , one can obtain an ES programs with k exit
types and a treewidth of exactly k + 6, by ensuring that for any vertex
type, there is a vertex v in the CFG whose separator Sv includes all
the possible cases enumerated above.

We are now ready for the main theorem of this section.

Theorem 3.1. The CFG of every Solidity or Vyper smart contract
has a treewidth of at most 9.

Proof. We use corollary 3.1. As shown in Section 2.2, Solid-

ity and Vyper programs can be modeled in ES with 3 exit types,

i.e. revert with/without gas refund and self-destruct. □

Remark. Note that our approach is constructive and we provided

a linear-time algorithm for obtaining a 9-complex listing by one

pass over the code of the smart contract. This, together with the

algorithm of Lemma 2.1, ensure that one can obtain a tree decom-

position of width 9 from the contract code in linear time.

4 INTERPROCEDURAL TREEWIDTH OF
SMART CONTRACTS

In this section, we consider the treewidth of GCFGs of smart con-

tracts. If we are given a constant-width tree decomposition of the

GCFG of a contract, then we can naturally apply dynamic program-

ming algorithms for solving interprocedural (global) problems. Intu-

itively, given that CFGs of smart contracts have constant treewidth

and GCFGs are obtained by piecing copies of CFGs together in a

structured manner, it should come as no surprise that GCFGs have

constant treewidth, too. We formally prove this in Theorem 4.1.

Given this treewidth boundedness result, the only remaining

challenge for applying dynamic programming algorithms is the

size of the GCFG and the resulting tree decomposition. For recur-

sive programs, the GCFG is infinite. Fortunately, as mentioned in

Section 2.2, all Vyper smart contracts are simple programs. On the

other hand, while recursion is possible in Solidity, our experimental

results (Section 5) show that real-world Solidity contracts are sim-

ple programs as well. Unfortunately, even for simple programs, the

GCFG, and hence its tree decompositions, can have exponential size

with respect to the length of the program. We overcome this diffi-

culty by designing a succinct representation of tree decompositions

that (i) can be directly computed from the program code in linear

time, and (ii) is compatible with bottom-up dynamic programming

algorithms, allowing them to run in polynomial time (with respect

to the length of the program, rather than the size of the GCFG) by

eliminating unnecessary repeated computations. We now prove

interprocedural treewidth boundedness.

Theorem 4.1. The GCFG of every Solidity or Vyper smart contract
has a treewidth of at most 10.

Proof. Let C be a Solidity or Vyper smart contract with func-

tions f1, f2, . . . , fn . Also, let G be the GCFG of C and Gi be the

CFG of the function fi . Theorem 3.1 guarantees that every Gi has

a treewidth of at most 9. Let τi = (Ti , {Xt |t ∈ Ti }) be a tree decom-

position ofGi with width at most 9 and τ+i be a tree decomposition

of Gi , obtained by adding the endfunction vertex to every bag,

i.e. τ+i = (Ti , {Yt |t ∈ T }) where Yt = Xt ∪ {endfunction}. We

show how to create a tree decomposition τ = (T , {Xt |t ∈ T }) of
width at most 10 of G using the τi ’s and τ+i ’s. The process mim-

ics the procedure for creating G using the Gi ’s. We start with an

unexpanded graph G0
and a tree decomposition τ 0 of G0

. In each

step, we expand the call vertices in Gk
to obtain Gk+1

. We also

create a new tree decomposition τk+1. The invariant satisfied by

the algorithm is that for every k , the obtained τk is always a tree

decomposition of Gk
of width at most 10.

(1) Let G0 =
⋃n
i=1Gi and τ

0 =
⋃n
i=1 τi . Also, set an arbitrary

node in every connected component of τ 0 as the root.

(2) While there is an unexpanded call vertex in Gk
:

• Let Gk+1 = Gk
.

• For every unexpanded call vertex of Gk
of the form

call fi; appearing in the function fj :

– Expand the call in Gk+1
.

– Let t be a node in τk such that the bag Xt contains both
the call and the semicolon following it. Note that such

a node must exist because the call and the semicolon

are neighbors in Gk
and τk is a tree decomposition of

Gk
. Also, Let s be a node in τ+i whose bag Xs contains

the vertex function.
– Create a new node t ′ in τk+1, connect it to t as a child,
and let Xt ′ = {call, ;, function, endfunction}. This
bag contains two elements from Xt and two from Xs .
We call t ′ an intermediary node.

– Add a copy of τ+i (rooted at s) to τk+1, i.e. let τk+1 =

τk+1⊔τ+i , and connect t
′
to the node s in this copy such

that t ′ is the parent and s is the child.
It is easy to check that the procedure above satisfies the invariant.

Clearly, τ 0 is a tree decomposition ofG0
with width at most 9. In the

process of expanding a function call in Gk+1
, all the new vertices
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and edges between them are covered in τk+1 by the new copy of τ+i ,
which has a width of at most 10. The edges from call to function
and from endfunction to the semicolon appear in Xt ′ .

Finally, in case of simple programs, the process ends at some

point. Hence there is aGk
such thatGk = G . So τk is the desired τ .

In case of recursive programs, we haveG =
⋃∞
i=0G

i
and can hence

define τ :=
⋃∞
i=0 τ

i
. This completes the proof. □

Succinct Representation of Interprocedural Tree Decomposi-
tions.We now consider simple programs only. Note that the tree

decomposition τ created in the process above has a lot of redun-

dancy. Basically, τ is obtained by piecing together the τi ’s, which
are tree decompositions of the CFGs of the functions fi , with many

copies of the τ+i ’s and intermediary nodes (the t ′ nodes in the

proof above). We can eliminate this redundant copying without

affecting the results of dynamic programming algorithms. Formally,

let t be a node in τ+i (or an intermediary node), then it is easy

to verify that, by construction, every copy of t in τ has the same

associated subgraph Gt ⊆ G (up to the natural isomorphism) and

the same bag Xt . Therefore, in a dynamic programming scheme,

we can only compute the answers in one of the copies of Gt , and

reuse them for all other copies. Equivalently, we can represent the

rooted tree decomposition τ = (T , {Xt |t ∈ T }) in a succinct manner

τ ∗ = (T ∗, {Xt ∗ |t
∗ ∈ T ∗}) by merging all copies of the same τ+i (or

intermediary node) into one. This of course means that the same

node can now have several parents and T ∗
is a DAG, i.e. directed

acyclic graph, instead of a rooted tree. However, the dynamic pro-

gramming algorithms can be applied to τ ∗ in the same manner as in

τ , i.e. in bottom-up order
4
. This automatically avoids the redundant

and repetitive computations at every copy of τ+i .

Theorem 4.2. The GCFG of every simple Vyper or Solidity smart
contract has a tree decomposition of width at most 10 that is compat-
ible with bottom-up dynamic programming algorithms and can be
succinctly represented in linear size, with respect to the length of the
contract. Moreover, this succinct representation can be obtained from
the contract code in linear time.

Proof. We take the tree decomposition τ and its succinct repre-

sentation τ ∗ as described above. We have already shown the width

and compatibility with bottom-up dynamic programming. We just

need to prove that τ ∗ has linear size and can be obtained in linear

time. Each of the one-function tree decompositions τi and τ
+
i ap-

pear exactly once in τ ∗ and there are at most as many intermediary

nodes as the number of call operations in the code. Hence, τ ∗ has
linear size. Also, the same process that was used for obtaining τ in

the proof of Theorem 4.1 can be applied to obtain τ ∗, except that
every call site should be expanded only once. Hence, τ ∗ can be

computed in linear time. □

5 EXPERIMENTAL RESULTS
Our Tool. We implemented a tool in Python/C++ that gets a Solid-

ity smart contract as input and outputs its canonical listing, tree

decompositions of its intraprocedural CFGs (with width at most 9)

4
Note that the simplicity assumption is indeed necessary. If the program is recursive,

thenT ∗
contains a cycle and is no longer a DAG. Hence, there is no bottom-up ordering

of the nodes and dynamic programming algorithms cannot be applied.

and the succinctly-represented tree decomposition τ ∗ of its inter-
procedural GCFG (with width at most 10). Our tool works in linear

time and is very efficient in practice. We use the ConsenSys Solidity

parser [21] to obtain the CFGs.

Benchmarks.We used the contracts listed in the Etherscan data-

base of verified Solidity source codes [44] as our benchmarks.

Ethereum contracts are saved on the Blockchain in Bytecode format,

but many users like to see the actual Solidity code of the contract.

Hence, Etherscan allows programmers to publish the original So-

lidity code, then compiles it and verifies that the resulting bytecode

is the same as the one published on the Blockchain. Hence, all of

our benchmarks are real-world smart contracts that are currently

deployed on the Ethereum Blockchain.

Number of Benchmarks. At the time of writing, there are just

below 40,000 smart contracts listed in the Etherscan database. Of

these, we ignored contracts that include assembly code and hence

can have arbitrarily large treewidth, and the ones that produced

compilation errors. This left us with 36,764 benchmarks.

Runtime and Machine.We used an Intel Core i5-7200U 2.5GHz

Processor running Ubuntu 18.04. We ran our approach on all 36,764

benchmarks. In all cases, our runtime was less than 0.1 seconds.

Intraprocedural Results. We found that for CFGs of real-world

smart contracts, the treewidth bound 9 is never met. The highest

width among the obtained tree decompositions was 6 and the av-

erage was 3.35. Figure 4 shows the number of contracts with each

width. Note that the y-axis is in log scale and a vast majority of

obtained tree decompositions have a width of 3 or 4.
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Figure 4: Widths of tree decompositions of CFGs
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Figure 5: Widths of tree decompositions of GCFGs.

Interprocedural Results. We found that all our benchmarks are

simple programs and recursion is not used in real-world Solidity

smart contracts. Similar to the previous case, the bound 10 was

never met in practice. The highest width of a GCFG tree decompo-

sition in our benchmarks was 7 and the average width was 3.65.

Figure 5 shows the number of contracts with each interprocedural

width. Note that the y-axis is in log scale and a vast majority of
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contracts have an interprocedural tree decomposition of width 3 or

4. However, note that in our construction of τ (Theorem 4.1), the

intermediary nodes have a bag of size 4, so the tree decompositions

have a width of at least 3. See [11] for more detailed experimental

results.

6 CONCLUSION
In this paper, we showed that Ethereum smart contracts written in

Solidity and Vyper have small treewidth. We obtained a theoretical

bound of 9 for the intraprocedural treewidth and 10 for the inter-

procedural case. We also reported on a tool we implemented for

computing treewidth of Solidity contracts and provided experimen-

tal results that showed the treewidth of real-world contracts is often

much smaller. We argued that the treewidth boundedness result can

be exploited to obtain much faster algorithms for program analysis,

model checking, compiler optimization and quantitative analysis

of contracts. A natural next step would be to develop analysis and

optimization tools for smart contracts using the currently-known

faster algorithms that exploit treewidth.
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