
FruitChains: A Fair Blockchain
Rafael Pass

CornellTech

New York, NY

rafael@cs.cornell.edu

Elaine Shi

Cornell

Ithaca, NY

elaine@cs.cornell.edu

ABSTRACT
Nakamoto’s famous blockchain protocol enables achieving consen-

sus in a so-called permissionless setting—anyone can join (or leave)

the protocol execution, and the protocol instructions do not depend

on the identities of the players. His ingenious protocol prevents

“sybil attacks” (where an adversary spawns any number of new

players) by relying on computational puzzles (a.k.a. “moderately

hard functions”) introduced by Dwork and Naor (Crypto’92). Re-

cent work by Garay et al (EuroCrypt’15) and Pass et al (manuscript,

2016) demonstrate that this protocol provably achieves consistency
and liveness assuming a) honest players control a majority of the

computational power in the network, b) the puzzle-hardness is ap-

propriately set as a function of the maximum network delay and

the total computational power of the network, and c) the compu-

tational puzzle is modeled as a random oracle. Assuming honest

participation, however, is a strong assumption, especially in a set-

ting where honest players are expected to perform a lot of work

(to solve the computational puzzles). In Nakamoto’s Bitcoin appli-

cation of the blockchain protocol, players are incentivized to solve

these puzzles by receiving rewards for every “block” (of transac-

tions) they contribute to the blockchain. An elegant work by Eyal

and Sirer (FinancialCrypt’14), strengthening and formalizing an

earlier attack discussed on the Bitcoin forum, demonstrates that a

coalition controlling even a minority fraction of the computational

power in the network can gain (close to) 2 times its “fair share” of

the rewards (and transaction fees) by deviating from the protocol

instructions. In contrast, in a fair protocol, one would expect that

players controlling a ϕ fraction of the computational resources to

reap a ϕ fraction of the rewards.

We present a new blockchain protocol—the FruitChain protocol—
which satisfies the same consistency and liveness properties as

Nakamoto’s protocol (assuming an honest majority of the com-

puting power), and additionally is δ -approximately fair : with over-

whelming probability, any honest set of players controlling a ϕ
fraction of computational power is guaranteed to get at least a frac-

tion (1 − δ)ϕ of the blocks (and thus rewards) in any Ω(κδ) length
segment of the chain (where κ is the security parameter). Conse-

quently, if this blockchain protocol is used as the ledger underlying

a cryptocurrency system, where rewards and transaction fees are

evenly distributed among the miners of blocks in a length κ segment

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’17, July 25-27, 2017, Washington, DC, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4992-5/17/07. . . $15.00

https://doi.org/10.1145/3087801.3087809

of the chain, no coalition controlling less than a majority of the

computing power can gain more than a factor (1+ 3δ) by deviating
from the protocol (i.e., honest participation is an

n
2
-coalition-safe

3δ -Nash equilibrium). Finally, the FruitChain protocol enables de-

creasing the variance of mining rewards and as such significantly

lessens (or even obliterates) the need for mining pools.

CCS CONCEPTS
• Security and privacy → Distributed systems security;

KEYWORDS
Distributed consensus; blockchains; fairness; Nash equilibrium

1 INTRODUCTION
Distributed systems have been historically analyzed in a closed
setting—a.k.a. the permissioned setting—in which the number of

participants in the system, as well as their identities, are com-

mon knowledge. In 2008, Nakamoto [16] proposed his celebrated

“blockchain protocol” which attempts to achieve consensus in a per-
missionless setting: anyone can join (or leave) the protocol execution
(without getting permission from a centralized or distributed author-

ity), and the protocol instructions do not depend on the identities of

the players. The core blockchain protocol (a.k.a. “Nakamoto consen-

sus”, or the “Bare-bones blockchain protocol”), roughly speaking,

is a method for maintaining a public, immutable and ordered ledger

of records (for instance, in the Bitcoin application, these records

are simply transactions); that is, records can be added to the end of

the ledger at any time (but only to the end of it); additionally, we

are guaranteed that records previously added cannot be removed

or reordered and that all honest users have a consistent view of

the ledger—we refer to this as consistency. Additionally, the proto-
col should satify a liveness property: transactions submitted by an

honest user get incorporated into the ledger sufficiently fast.

The key challenge with the permissionless setting is that an

attacker can trivially mount a so-called “sybil attack”—it simply

spawns lots of players (that it controls) and can thus easily ensure

that it controls a majority of all the players. Indeed, Barak et al [3]

proved that this is a fundamental problem with the permissionless

model. Nakamoto blockchain protocol overcomes this issue by rely-

ing on “computational puzzles”—a.k.a. moderately hard functions or
proofs of work—put forth by Dwork and Naor [6]: roughly speaking,

the participants are required to solve the computational puzzle of

some well-defined diffulty in order to confirm transactions—this

is referred to as mining. Next, rather than attempting to provide

robustness whenever the majority of the participants are honest

(since participants can be easily spawned in the permissionless

setting), Nakamoto’s goal was to provide robustness of the protocol

under the assumption that amajority of the computing power is held

Session 7 PODC’17, July 25-27, 2017, Washington, DC, USA

315

https://doi.org/10.1145/3087801.3087809

by honest participants. Indeed, recent works by Garay et al. [8]

and Pass et al. [18] formally proved that Nakamoto’s blockchain

protocol satisfies the above-mentioned consistency and liveness

under different network assumptions, as long as the puzzle diffi-

culty (referred to as the mining hardness) is apporpriately set as a

function of the maxiumum delay in the network.

Nakamoto’s blockchain represents an exciting breakthrough: it

demonstrated that distributed consensus is possible on an Inter-

net scale. The above analyses, however, assume that a majority

of the computing power is controlled by honest players, and that

honest players correctly execute the protocol. Assuming such hon-

est participation is a strong assumption, especially in a setting

where honest players are expected to perform a lot of work (to

solve the computational puzzles)—why would we expect players

to want to participate if it is costly! (This can be formalized in

the Game-Theory with Costly computation framework of Halpern

and Pass [9]). In Nakamoto’s ingenious Bitcoin application of the

blockchain protocol, players are thus incentivized to solve these

puzzles by receiving, so-called, block rewards for every “blocks” (of

transactions) they contribute to the blockchain; additionally, the

miners also receive transaction fees for all the transactions that are
confirmed in the block. The hope is that these reward mechanism

(block rewards and transaction fees) properly incentivize honest

participation. Unfortunately, as shown by several recent work, this

is not the case:

• Selfish mining undermines incentive compatibility. Nakamoto’s

blockchain suffers from a so-called selfish-mining attack, where
even a minority coalition that controls network delivery can

manage to reap close to twice its fair share of block rewards [4,

7, 15, 17, 21] — in particular, if the adversary wields close to a

half of the computational power, it can reap almost all of the

rewards, thus denying honest players of (almost) any reward!

(More specifically, whenever the adversary mines a new block,

it simply withholds it (not sharing it with the honest players),

and only releases it when some honest player mines a new

block—if the adversary controls the network it can ensure that

all honest players receive the adversarial block before the block

mined by the honest players, and as such, it effectively “erases”

the honest player’s block replacing it with its own block.) This

selfish mining attack was first observed in discussions on the

Bitcoin forum [15]; the first analytical study provided by Eyal

and Sirer [7], and subsequently improved by Sapirshtein et

al. [21] and Nayak et al. [17].

• Transaction fees exacerbate instability. Due to Bitcoin’s partic-

ular coin minting schedule, the block reward is scheduled to

decrease over time and miners are expected to obtain rewards

increasingly more from transaction fees. A recent work by

Carlsten et al. [4] (concurrent to ours) demonstrates that the

situation gets even worse once we take into account the transac-

tion fees: as a simplest example, if a block contains transactions

with large fees, miners will be incentivized to create a “fork”

and attempt to confirm the transaction themselves.

• Mining pools harm decentralization. Finally, to maintain con-

sistency of the blockchain, the puzzle difficulty is (and by the

analysis of [18] need to be set) so that thewholeworld combined

mines a block (i.e., solves a computational puzzle) roughly ev-

ery 10 minutes. Consequently, an individual “solo miner” with

state-of-the-art equimentmust wait on average, roughly, 2 years

before it gets any rewards [2]. This has led to the formation of

“mining pools” where miners are coordinated by a pool operator

and share the rewards to reduce the variance of their gains. In

essence, the decentralized nature of the blockchain is lost.

1.1 Our Results
In this work, we introduce a notion of fairness for blockchain pro-

tocols: Roughly speaking, we say that a blockchain protocol that

is fair if honest players that wield ϕ fraction of the computational

resources will reap at least ϕ fraction of the blocks in any suffi-

ciently long window of the chain. (This notion of fairness can be

viewed as a strengthen form of the notion of “ideal chain quality”

considered, but not acheived, in [8, 18]) More precisely, we say that

a blockchain protocol is δ -approximately fair w.r.t. ρ attackers if,

with overwhelming probability, any ϕ fraction coalition of honest
users is guaranteed to get at least a (1−δ)ϕ fraction of the blocks in

every sufficiently long window of the chain, even in the presence of

an adversary controlling up to a ρ fraction of the computing power.

Our main theorem shows how to acheive a blockchain which satis-

fies the same consistency and liveness properties as Nakamoto’s

one, as well as fairness:

Theorem 1.1 (Informally stated). Let ρ < 1

2
be a constant.

Then, for every constant δ > 0, there exists a blockchain protocol that
satisfies consistency, liveness and δ -approximate fairness.

Note that approximate fairness directly implies that an attacker

cannot get “much” more than its fair share of the block rewards

(and thus it disincentivizes selfish mining). But the instability issue

with transaction fees still remains, and so does the mining pool

issue. We finally demonstrate that our protocol provides a solution

to both these issues as well:

• Regarding transaction fees: we suggest a method for spread-

ing out the transaction fees of a block over the miners of

a sequence of blocks preceeding it. As we show, any fair

blockchain protocol can be used to disincentivize deviation

even in the presence of transaction fee under this new reward

rule. More precisely, we show that no coalition controlling

less than a majority of the computing power can gain more

than a factor (1 + 3δ) of the block rewards and transaction

fees by deviating from the protocol—that is, honest partici-

pation is an
n
2
-coalition-safe 3δ -Nash equilibrium.

• Regarding mining pools, we demonstrate that the block (i.e.,

fruit) mining difficulty in our protocol can be made almost

arbitrarily small, and as a consequence, miners can get paid

much more often. Indeed, experimental results implenting

our new blockchain [1] show that with Bitcoin current block

size of 1MB, by sacrificing 8% to 10% of the block to newmeta

data, we can ensure that miners get paid 1000x more often

(and thus on average, roughly, twice per day). Consequently,

there is no longer a need for pooled mining.

Session 7 PODC’17, July 25-27, 2017, Washington, DC, USA

316

1.2 Protocol Overview
To explain our protocol, let us first recall Nakamoto’s blockchain

protocol as we will make use of it.

Nakamoto’s protocol in a nutshell. Roughly speaking, players

“confirm” records/transactions by “mining blocks of transactions”

through solving some computational puzzle that is a function of the

transactions and the history so far. More precisely, each participant

maintains its own local “chain” of “blocks” of records —called the

blockchain. Each block consists of a triple (h−1,η,m) where h−1 is a
pointer to the previous block in chain,m is the record component of

the block, and η is a “proof-of-work”—a solution to a computational

puzzle that is derived from the pair (h−1,m). The proof of work
can be thought of as a “key-less digital signature” on the whole

blockchain up until this point.

Concretely, Nakamoto’s protocol is parametrized by a parameter

p—which we refer to as themining hardness parameter, and a proof-
of-work is deemed valid if η is a string such thatH(h−1,η,m) < Dp ,

where H is a hash function (modeled as a random oracle) and Dp
is set so that the probability that an input satisfies the relation is

less than p. At any point of the protocol execution, each participant

attempts to increase the length of its own chain by “mining” for a

new block: upon receiving some record m, it picks a random η and

checks whether η is a valid proof of work w.r.t. m and h−1, where
h−1 is a pointer to the last block of its current chain; if so, it extends
is own local chain and broadcast it to the all the other participants.

Whenever a participant receives a chain that is longer than its own

local chain, it replaces its own chain with the longer one.

The FruitChain protocol. Roughly speaking, our FruitChain pro-

tocol will be running an instance of Nakamoto’s blockchain proto-

col, but instead of directly storing the recordsm inside the blockchain,

the records are put inside “fruits” denoted f ; these fruits themselves

require solving some proof of work, with a different hardness param-
eter pf ; additionally, we require the fruits to “hang” from a block

in the chain which is not too “far” from the block which records

the fruit—more specifically, the fruit needs to “point” to an earlier

block in the chain which is not too far from the block containing it

(and thus, the fruit could not have been mined “too” long ago)—we

refer to such a fruit as being recent. In this new protocol, the fruits

play the roles of “blocks”—i.e., “orange is the new block”1—and chain
quality is thus defined in terms of fruits.

In each round, honest players simultaneously mine for a fruit

and a block (for Nakamoto’s blockchain) by making one invocation

of the hash function—this follows the 2-for-1 trick of [8] where,

say, the prefix of the output of H determines whether fruit mining

is successful, and the suffix is used to determine whether block

mining is successful. Whenever a player successfully mines a fruit

it broadcasts it to all other players; fruits that have not yet been

recorded in the blockchain (and are still recent) are stored in a buffer

and all honest players next attempt to add them to the blockchain.

Intuitively, the reason why “selfish mining” fails is that even

if an adversary tries to “erase” some block mined by an honest

player (which contains some honest fruits), by the chain growth and

chain quality properties of the underlying blockchain, eventually

an honest player will mine a new block which is stable and this

1
We thank Hugo Krawczyk for this phrase!

honest player will include the fruits in it—in fact, the time before

such an “honest block” arrives is short enough for the fruit to still

be “recent” at the time of the honest block arriving.

Intuitively, the reason why we require fruits to be recent is to

prevent a different kind of attack: without it, an attacker could

withhold fruits, and suddenly release lots of them at the same time,

thereby creating an very high fraction of adversarial fruits in some

segment of the (fruit) chain. By requiring the fruits to be recent, we

prevent the adversary from squirreling away (too many of) its fruits:

since the underlying blockchain has a guaranteed liveness, we can

upperbound the extra amount of time the attacker can withhold

fruits and thus upperbound the number of extra fruits it can release

in any window.

1.3 Related Work
Comparison with GHOST, the Inclusive Blockchain, and [8]. Al-

though our approach of including fruits in a main blockchain take

inspiration from to the earlier elegant works on GHOST [22] and

inclusive blockchains [14], we stress that these earlier works do

not attain our goals of providing a provably secure, fair blockchain.

GHOST [22] is a mechanism such that forking blocks not on the

main chain will affect the chain selection rule— however, as the

subsequent work by Kiayias and Panagiotakos [12] shows, GHOST

actually worsens “chain quality” (i.e., the fraction of honest blocks

in the chain) whereas our goal is to improve chain quality and

fairness. The inclusive blockchain work proposes to maintain a

direct acyclic graph rather than a chain, such that forking subtrees

may be included in the linearized transaction log — despite the

superficial resemblance at first sight, the mechanisms employed

by the inclusive blockchain is actually quit different from how we

include fruits in the main blockchain.

As mentionned above, our protocol borrows the 2-for-1 trick

from the work Garay et al [8] which also relied on a separate

“mining process” to acheive a different goal (namely, to implement

a broadcast channel from a blockchain).

Subsequent works. In both Nakamoto’s blockchain and ours, the

time needed to confirm transactions grows with the worst-case
upper-bound on the network delay [18, 20]. In contrast, in a respon-
sive protocol, we require the confirmation time to only be a function

of the actual network delay, which may be a lot smaller than the

worst-case one. In a companion paper called hybrid consensus [20],
we show how to combine any blockchain protocol with classical

asynchronous consensus to improve the latency of the blockchain

protocol and achieve responsiveness. Roughly speaking, hybrid

consensus makes use of a blockchain to elect a committee—more

specifically, the miners of blocks in a sufficiently long segment of

the chain are elected as the committee—and then this committee

executes the classical consensus protocol. The chain quality of the

blockchain determines the fraction of honest players in the commit-

tee: if we employ Nakamoto’s blockchain, we would need to require

that
3

4
of the computing power is controlled by honest player to

ensure a chain quality of
2

3
and thus a fraction

2

3
honest committee

members (which is required by the consensus protocol). In contrast,

by relying on our new FruitChain protocol, it suffices to assume

that
2

3
of the computing power is controlled by honest players. We

highlight that, as shown in [20], achieving a responsive protocol

Session 7 PODC’17, July 25-27, 2017, Washington, DC, USA

317

also requires assuming that
2

3
of the computing is held by honest

parties, and as such relying on our FruitChain protocol enables

achieving an optimal resilience for low-latency blockchains.

Besides hybrid consensus, other subsequent works have also

employed ideas from FruitChain to achieve incentive compatibility

in blockchain style protocols. Notably, recent provably secure proof-

of-stake protocols, including Snow White [5] and Ouroboros [13],

argue that the idea from FruitChain is applicable to non-proof-of-

work blockchains as well.

Other related works. Kiayias et al. [10] model Bitcoin mining

as a game, where nodes decide on which blocks to extend and

whether to release a mined block. They show that for small players

controlling less than
1

3
of the resources, following Bitcoin’s protocol

specification is a Nash equilibrium. Their results, however, only

apply to a rather constrained idealistic model where all honest

miners can communicate with 0 latency, and the adversary cannot

perform form any network level attacks (such as rushing). As we

mentionned in the introduction, in our model where the adversary

can control the delivery of messages, the bitcoin protocol is not

incentive compatible even for players controlling less than a
1

3
of

the computational resources—there is a selfish mining attack which

enables an attacker to gain
1

2
of the block rewards.

2 PRELIMINARIES AND DEFINITIONS
2.1 Protocol Execution Model and Notations
A protocol refers to an algorithm for a set of interactive Turing

Machines (also called nodes) to interact with each other. The ex-

ecution of a protocol Π that is directed by an environment Z (1κ)
(where κ is a security parameter), which activates a number of

parties 1, 2, . . . ,n as either “honest" or corrupted parties. Honest

parties would faithfully follow the protocol’s prescription, whereas

corrupt parties are controlled by an adversary A which reads all

their inputs/message and sets their outputs/messages to be sent.

The environment Z is a terminology often used in protocol com-

position in the cryptography literature — one can regard the envi-

ronment Z a catch-all term that encompasses everything that lives

outside the “box” defined by the protocol. For example, as men-

tioned later, part of the environment Z ’s job is to provide inputs

to honest nodes and receive outputs from them. This models the

fact that the inputs to the protocol may originate from external

applications and the protocol’s outputs can be consumed by exter-

nal applications where any external application or other protocols

running in the system are viewed as part of Z .

• A protocol’s execution proceeds in rounds that model atomic

time steps. At the beginning of every round, honest nodes

receive inputs from an environment Z ; at the end of every

round, honest nodes send outputs to the environment Z .
• A is responsible for delivering all messages sent by parties

(honest or corrupted) to all other parties. A cannot modify the

content of messages broadcast by honest players, but it may
delay or reorder the delivery of a message as long as it eventually
delivers all messages. (Later, we shall consider restrictions on

the delivery time.) The identity of the sender is not known to

the recipient.
2

• At any point, Z can corrupt an honest party j which means

that A gets access to its local state and subsequently, A controls

party j. (In particular, this means we consider a model with

“erasures”; random coin tosses that are no longer stored in the

local state of j are not visible to A.)3

• At any point,Z can uncorrupt a corrupted player j , whichmeans

that A no longer controls j . A player that becomes uncorrupt is

treated in the same way as a newly spawning player, i.e., the

player’s internal state is re-initialized and then the player starts

executing the honest protocol no longer controlled by A.

Notations for randomized execution. A protocol’s execution is

randomized, where the randomness comes from honest players as

well as the adversary denotedA that controls all corrupt nodes, and

the environment Z that sends inputs to honest nodes during the

protocol execution. We use the notation view
$

←EXECΠ (A,Z ,κ) to
denote a randomly sampled execution trace, and |view| denotes the
number of rounds in the execution trace view. More specifically,

view is a random variable denoting the joint view of all parties (i.e.,

all their inputs, random coins and messages received, including

those from the random oracle) in the above execution; note that

this joint view fully determines the execution.

Constraints on (A,Z). The environment Z and the adversary A
must respect certain constraints. We say that a p.p.t. pair (A,Z) is
(n, ρ,∆)-respecting w.r.t. Π, iff for every κ ∈ N , every view view in

the support of EXECΠ (A,Z ,κ), the following holds:

(1) Z activates n parties in view;
(2) For any message broadcast by an honest player at any time t in

view, any player that is honest at time t + ∆ or later must have

received the message (including those that might have newly

spawned). As long as this ∆ contraint is respected, A is allowed

to delay or reorder honest players’ messages arbitrarily.

(3) at any round r in view, A controls at most ρ · n parties; and

Let Γ(·, ·, ·) be a boolean predicate. We say that a p.p.t. pair (A,Z)
is Γ-compliant w.r.t. protocol π iff

• (A,Z) is (n, ρ,∆)-respecting w.r.t. π ; and
• Γ(n, ρ,∆) = 1.

In other words Γ is a predicate that places constraints on additional

constraints on the parameter (n, ρ,∆) that (A,Z) must respect.

When the context is clear, we often say that (A,Z) is Γ-compliant

while omitting to specify w.r.t. which protocol.

2.2 Conventions
Variables that are functions of the security parameter. Unless oth-

erwise noted, by default we assume that all variables are a function

of the security parameter κ. If any variable is not a function of κ,
we shall explicitly note that the variable is a constant. Variables
may also be functions of each other as defined later by relations

2
We could also consider a seemingly weaker model where messages sent by corrupted

parties need not be delivered to all honest players. We can easily convert the weaker

model to the stronger model by having honest parties “gossip” all messages they

receive.

3
Our proof actually extends also to the model “without erasures”.

Session 7 PODC’17, July 25-27, 2017, Washington, DC, USA

318

that (A,Z) must additionally satisfy for our blockchain protocol to

be secure.

For two variables that by default are functions of κ, we say that

var1 < var2 iff for every κ ∈ N, var1 (κ) < var2 (κ). Similarly, if

we say that var is positive, we mean that var(κ) is positive for any
κ ∈ N.

Other conventions. Throughout this paper, whenever we refer to
p.p.t. machines, we mean that the machine is non-uniform proba-

bilistic polynomial-time.

2.3 Blockchain Protocols
In this section, we recall the abstract model for blockchain proto-

cols from [18] and a provide a description of Nakamoto’s original

blockchain protocol which we will heavily make use of.

In a blockchain protocol Π, nodes receive input records from
an environment Z , and nodes interact with each other to agree

on a linearly ordered log of transactions in a way that achieves

consistency and liveness.

Inputs and outputs of a blockchain protocol. At the beginning of
each time step, the environment Z inputs a recordm to each honest

player. At the end of each time step, each honest player outputs

a chain to the environment Z , where chain denotes an ordered

sequence of records (also referred to as blocks). Each record (or

block) may in turn contain an ordered sequence of transactions.

Henceforth we use the notation

output of node i in round t : chainti (view)

to denote the output of node i in round t to Z in a given execution

trace view.

Modeling proofs-of-work. Tomodel Nakamoto’s blockchain proto-

col, we need to extend the protocol execution model with a random

oracle. In an execution with security parameter κ, we assume all

parties have access to a random function H : {0, 1}∗ → {0, 1}κ

which they can access through two oracles: H(x) simply outputs

H (x) and H.ver(x ,y) output 1 iff H (x) = y and 0 otherwise. In any

round r , the players (as well asA) may make any number of queries

to H.ver. On the other hand, in each round r , honest players can
make only a single query to H, and an adversary A controlling q
parties, can make q sequential queries toH. (This modeling is meant

to capture the assumption that we only “charge” for the effort of

finding a solution to a “proof of work” [6], but checking the validity

of a solution is cheap. We discuss this further after introducing

Nakamoto’s protocol.) We emphasize that the environment Z does

not get direct access to the random oracle (but can instruct A to

make queries).

2.4 Nakamoto’s Blockchain Protocol
Wedescribe Nakamoto’s protocol [16] referred to asΠ

nak
(p).Π

nak
(p)

takes in a puzzle difficulty parameter p that denotes the probability

that each player mines a block in a single round.

Protocol overview. In Π
nak

, each honest node maintains an in-

ternal state chain at any point of time. Each chain[i] is referred to

as a (mined) block and is of the format chain[i] := (h−1,η,m,h),
containing the hash of the previous block denoted h−1, a nonce η,

a record m, and a hash h 4
Let chain := extract(chain) be the se-

quence of records contained in the sequence of blocks chain. chain
is the version that honest nodes output to the environment.

The Π
nak

works as follows:

• Nodes that are newly spawned or that have been become un-

corrupt start with initial chain containing only a special genesis

block: chain := (0, 0,⊥,H(0, 0,⊥)).
• In every round: a node reads all incoming messages (delivered by

A). If any incoming message chain′ is a valid sequence of blocks

that is longer than its local state chain, replace chain by chain′.
We define what it means for a chain to be valid later. Checking

the validity of chain′ can be done using only H.ver queries.
• Read an input record m from the environment Z . Now parse

chain[−1] := (_, _, _,h−1), pick a random nonce η ∈ {0, 1}κ , and
issue query h = H(h−1,η,m). If h < Dp , then append the newly
mined block (h−1,η,b,h) to chain and broadcasts the updated

chain. More specifically, Dp = p (κ) · 2κ such that for all (h,m),
Prn[H(h,η,m) < Dp] = p. In other words, Dp is appropriately

parameterized such that the probability that any player mines a

block in a round is p.
• Output chain := extract(chain) to the environment Z . Note that
the notation chain extracts only the sequence of records from

chain removing all othermetadata that are not needed by external

applications.

Valid chain. We say a block chain[i] = (h−1,η,m,h) is valid with
respect to (a predecessor block) chain[i − 1] = (h′

−1
,n′,m′,h′) if two

conditions hold: h−1 = h′, h = H(h−1,η,m), and h < Dp . A chain

of blocks chain is valid if a) chain[0] = (0, 0,⊥,H(0, 0,⊥)) is the
genesis block, and b) for all i ∈ [ℓ], chain[i] is valid with respect to

chain[i − 1].

Remark: on our use of the random oracle. Recall that in our model,

we restrict players to a single evaluation query H per round, but

allow them any number of verification queries H.ver in the same

round. We do this to model the fact that checking the validity of

mined blocks is “cheap” whereas the mining process is expensive.

(To enable this, we have included a pointer h to the current record

in every mined block in the description of Nakamoto).

In practice, the cost of evaluating a hash function (which is used

to instantiate the random oracle) is the same as verifying its outputs,

but our modeling attempts to capture the phenomena that a miner

typically use various heuristics (such as black lists of IP addresses

that have sent invalid blocks) and different hardware to check the

validity of a mined block versus to mine a new block.

2.5 Security of Blockchain Protocols
We recall the security properties of blockchains from [18], which in

turn are based on earlier definitions from [8, 11] For our purposes,

we slightly generalize the properties from [18] (see below for a

discussion of this generalization), but point out that our generalized

definitions suffice for all known applications of them; see [18] for

more discussion (and historical remarks) on these definitions.

4
In reality (as well as in the description in the introduction), h is not included in the

block (as it can be easily determined from the remaining elements); we include it to

ensure that we can verify validity of a block using only H.ver.

Session 7 PODC’17, July 25-27, 2017, Washington, DC, USA

319

Negligible functions. A function ϵ (·) is said to be negligible if for
every polynomial p (·), there exists some κ0 such that ϵ (κ) ≤ 1

p (κ)
for all κ ≥ κ0.

We now define three useful properties, referred to as chain

growth, chain quality, and consistency respectively. Note that all

properties are defined over honest nodes’ outputs to the environ-

ment that are visible at the abstraction level (rather than over nodes’

internal states chain).

2.5.1 Chain Growth. The first desideratum is that the chain

grows proportionally with the number of time steps. Let,

min-chain-increaset,t ′ (view) = min

i, j
|chaint+t

′

j (view) |−|chainti (view) |

max-chain-increaset,t ′ (view) = max

i, j
|chaint+t

′

j (view) |−|chainti (view) |

where we quantify over nodes i, j such that i is honest at round t
and j is honest at round t + t ′ in view.

Let growtht0,t1 (view,∆,T) = 1 iff the following properties hold:

• (consistent length) for all time steps t ≤ |view| − ∆, t + ∆ ≤
t ′ ≤ |view|, for every two players i, j such that in view i is

honest at t and j is honest at t ′, we have that |chaint
′

j (view) | ≥

|chainti (view) |
• (chain growth lower bound) for every time step t ≤ |view| −
t0, we have min-chain-increaset,t0 (view) ≥ T .
• (chain growth upper bound) for every time step t ≤ |view| −
t1, we have max-chain-increaset,t1 (view) ≤ T .

In other words, growtht0,t1 is a predicate which tests that a) honest

parties have chains of roughly the same length, and b) during any

t0 time steps in the execution, all honest parties’ chains increase by

at least T , and c) during any t1 time steps in the execution, honest

parties’ chains increase by at most T .

Definition 2.1 (Chain growth). A blockchain protocol Π satisfies

(T0,д0,д1)-chain growth in Γ-environments, if for all Γ-compliant

p.p.t. pair (A,Z), there exists some negligible function negl such
that for every κ ∈ N, T ≥ T0, t0 ≥

T
д0 and t1 ≤

T
д1 ,

Pr

[
view← EXECΠ (A,Z ,κ) : growtht0,t1 (view,∆,κ) = 1

]
≥ 1−negl(κ)

2.5.2 ChainQuality. The second desideratum is that the number

of blocks contributed by the adversary is not too large.

Given a chain, we say that a block B := chain[j] is honest w.r.t.
view and prefix chain[: j ′] where j ′ < j if in view there exists some

node i honest at some time t ≤ |view|, such that 1) chain[: j ′] ≺
chainti (view) where ≺ denotes “is a prefix of” and 2) Z input B to

node i at time t . Informally, for an honest node’s chain denoted

chain, a block B := chain[j] is honest w.r.t. a prefix chain[: j ′]
where j ′ < j, if earlier there is some honest node who received B
as input when its local chain contains the prefix chain[: j ′].

Let qualityT (view, µ) = 1 iff for every time t and every player i
such that i is honest at t in view, among any consecutive sequence

ofT blocks chain[j+1..j+T] ⊆ chainti (view), the fraction of blocks
that are honest w.r.t. view and chain[: j] is at least µ.

Definition 2.2 (Chain quality). A blockchain protocol Π satisfies

(T0, µ)−chain quality, in Γ-environments if for all Γ-compliant p.p.t.

pair (A,Z), there exists some negligible function negl such that for

every κ ∈ N and every T ≥ T0 the following holds:

Pr

[
view← EXECΠ (A,Z ,κ) : qualityT (view, µ) = 1

]
≥ 1−negl(κ)

2.5.3 Consistency. Roughly speaking, consistency stipulates

common prefix and future self-consistency. Common prefix requires

that all honest nodes’ chains, except for roughly O (κ) number of

trailing blocks that have not stabilized, must all agree. Future self-

consistency requires that an honest node’s present chain, except

for roughlyO (κ) number of trailing blocks that have not stabilized,

should persist into its own future. These properties can be unified

in the following formal definition (which additionally requires that

at any time, two honest nodes’ chains must be of similar length).

Let consistentT (view) = 1 iff for all times t ≤ t ′, and all players

i, j (potentially the same) such that i is honest at t and j is honest at t ′

in view, we have that the prefixes of chainti (view) and chain
t ′
j (view)

consisting of the first ℓ = |chainti (view) | −T records are identical —

this also implies that the following must be true: chaint
′

j (view) > ℓ,

i.e., chaint
′

j (view) cannot be too much shorter than chainti (view)
given that t ′ ≥ t .

Definition 2.3 (Consistency). A blockchain protocol Π satisfies

T0-consistency, in Γ-environments if for all Γ-compliant p.p.t. pair

(A,Z), there exists some negligible function negl such that for every
κ ∈ N and every T ≥ T0 the following holds:

Pr

[
view← EXECΠ (A,Z ,κ) : consistentT (view) = 1

]
≥ 1−negl(κ)

Note that a direct consequence of consistency is that at any time,

the chain lengths of any two honest players can differ by at most T
(except with negligible probability).

2.6 Security of Nakamoto’s Blockchain
The results from [18] (and as we shall shortly see, also ours) are

parametrized by the following quantities (which are defined for

some fixed mining hardness function p (·); recall that Nakamoto’s

protocol is parametrized a single hardness parameter p):

• let α := 1 − (1 − p) (1−ρ)n . That is, α is the probability that

some honest player succeeds in mining a block in a round;

• let β := ρnp. That is β is the expected number blocks that an

attacker can mine in a round.

• let γ := α
1+∆α . γ is a “discounted” version of α which takes

into account the fact that messages sent by honest parties

can be delayed by ∆ rounds and this may lead to honest

players “redoing work”; γ corresponds to their “effective”

mining power.

In essence, the quantities capture the per round expected “chain

length increase” by the honest parties and the adversary; the reason

that α , β are defined differently is that we assume that the adversary

can sequentialize its queries in a round, whereas honest players

make a single parallel query (they each act independently), and thus

even if they manage to mine several blocks, the longest chain held

by honest players can increase by at most 1. Note, however, that

when p is small (in comparison to 1/n), which is case for the Bitcoin

protocol, α is well approximated by (1 − ρ)np and thus
α
β ≈

1−ρ
ρ ,

so this difference is minor; additionally, when p is small, γ ≈ α and

thus
γ
β ≈

1−ρ
ρ .

Session 7 PODC’17, July 25-27, 2017, Washington, DC, USA

320

Compliant executions for Nakamoto’s blockchain. We now specify

the compliance predicate Γ
p
nak

(·, ·, ·) for the Nakamoto blockchain.

We say that Γ
p
nak

(·, ·, ·) = 1 iff there is a constant λ > 1 such that

α (1 − 2(∆ + 1)α) ≥ λβ

where α and β are functions of the parameters n, ρ,∆ and κ as

defined above.

Formal guarantees of Nakamoto’s blockchain. The following the-

orem was proven in [18].

Theorem 2.4 (Security of Nakamoto [18]). For any constant
δ > 0, any 0 < p < 1, any superlogarithmic function T0 = ω (logκ)
Nakamoto’s blockchain protocol Π

nak
(p) satisfies the following prop-

erties in Γ
p
nak

-environments:

• T0-consistency;
• chain growth rate (T0,д0,д1) where д0 = (1 − δ)γ , д1 = (1 + δ)np

• chain quality (T0, µ) where µ = 1 − (1 + δ)
β
γ

Remark 2.5 (Blockchain qality and consistency). The con-
sistency property proven in [18] is actually a bit stronger than stated.
Not only it shows that players agree on the records contained in their
blockchains, but also that the actual blockchains agree except for
potentially the last κ blocks. We refer to this property as blockchain
consistency, and will rely on it in the sequel.

Additionally, the chain quality property is also stronger in that not
only the records of honest blocks are contributed by honest players,
but also the actual blocks are mined by honest players. We refer to
this property as blockchain quality, and will rely on it in the sequel.

2.6.1 Liveness. The liveness property from [18] (which gener-

alized the one from [8]), stipulates that from any given round r , if
a sufficiently long period of time t elapses—we refer to this time

as the wait-time of the blockchain—every honest player will have

a record m sufficiently “deep” in their chain (technically, κ blocks

from the end of the chain), where m was provided as an input to

some honest player between rounds r and r + t5 More precisely,

let live(view, t) = 1 iff for any t consecutive rounds r , . . . , r + t in
view there exists some round r ′ s.t. r ≤ r ′ ≤ r + t and player i such
that in view, 1) i is honest at r ′, 2) i received a record m as input

at round r ′, and 3) for every player j that is honest at r + t in view,
m ∈ chainr+tj (view)[: −κ].

Definition 2.6. We say that blockchain (Π, chain) satisfies liveness
with wait-timew in Γ-environments if for all Γ-compliant p.p.t. pair

(A,Z), there exists a negligible function ϵ in the security parameter

κ ∈ N, such that

Pr

[
view← EXECΠ (A,Z ,κ) : live(view,w) = 1

]
≥ 1 − ϵ (κ)

The following theorem was shown in the prior work [18].

Theorem 2.7 ([18]). For any boolean predicate Γ(·, ·, ·), let Π be a
blockchain protocol satisfying chain growth (T0,д0,д1), chain quality
(T0, µ) and T0-chain consistency in Γ-environments where µ and д0

5
The weaker liveness property from [8] only requires this is all honest players have
m as their input; this weaker property is not enough for our purposes.

are strictly positive, and T0 is sublinear.6 Then, Π satisfies liveness
with wait-timew = (1 + δ) κд0 against in Γ-environments

As a direct corollary of 2.7 and 2.4, we get:

Corollary 2.8 ([18]). For any constant δ > 0, and any 0 < p < 1,
Π
nak

(p) satisfies liveness with wait-time

w = (1 + δ)
κ

γ

in Γ
p
nak

-environments.

3 DEFINING FAIRNESS
We turn to defining our notion of fairness. Roughly speaking, a

blockchain protocol is δ -approximately fair w.r.t. ρ attackers if, with
overwhelming probability, any honest subset controlling ϕ fraction

of the compute power is guaranteed to get at least a (1−δ)ϕ fraction

of the blocks in every sufficiently long window, even in the presence

of an adversary controlling a ρ fraction of the computation power.

Note that this condition trivially implies (1−δ) (1−ρ) chain quality

(by considering ϕ = 1 − ρ, that is, the full set of honest players).
Consequently, to formally define this notion, we first generalize

the definition of quality (used in the definition of chain quality,

see Definition 2.2) to consider “quality” w.r.t to any subset S of the

honest players.

Warmup: fairness definition for static corruption. As a warmup,

let us consider how to define (approximate) fairness in a static

corruption model where the adversary must declare corrupt nodes

upfront — once we show how to do this, we then discuss how to

extend the definition to an adaptive corruption model. Under a

static corruption model, we say that a blockchain protocol satisfies

(T ,δ)-approximate fairness, iff the following holds except with

negligible probability over the protocol’s execution: for any honest

node’s chain during the protocol execution, for any constant ϕ > 0,

for any subset S of honest users such that |S | = ϕ · n where n
denotes the total number of users, for any T consecutive blocks

chain[j + 1..j +T] in chain, it holds that the fraction of blocks in

chain[j + 1..j +T] contributed by nodes in S is at least (1 − δ)ϕ.

Fairness definition for adaptive corruption. In general, the corrup-

tions can be declared in an adaptive fashion, therefore nodes in

any subset S may become corrupt during the course of the window

we care about. To define (approximate) fairness with adaptive cor-

ruptions, we need to allow the subset S to change over time. We

formalize the definition below.

• Let a player subset selection, S (view, r), be a function that given

(view, r) outputs a subset of the players that are honest at round
r in view.
• We say that S is a ϕ-fraction player subset selection if S (view, r)
always outputs a set of size ϕn (rounded upwards) where n is

the number of players in view.
• Given a player subset selection S , we say that a record m is
S-compatible w.r.t. view and prefix chain if there exists a player j

6
[18] only explicitly considered the case when T0 is some slightly super-logarithmic

function, but their proof actually only assumes thatT0 is sublinear. We also remark that

any blockchain protocol which satisfies the security properties w.r.t. to a polynomial

T0 which potentially is super-linear can always be modified to satisfy security w.r.t. a

sublinear T0 by redefining the security parameter.

Session 7 PODC’17, July 25-27, 2017, Washington, DC, USA

321

and round r ′ such that j is in S (view, r ′), the environment pro-

videdm as an input to j at round r ′, and chain ≺ chainr
′

i (view)
where ≺ denotes “is a prefix of”;

• Let qualityT ,S (view, µ) = 1 iff for every round r and every

player i such that i is honest in round r of view, we have that
among any consecutive sequence ofT records chainri (view)[j+
1 : j + T], the fraction of records that are S-compatible w.r.t.

view and prefix chainri (view)[: j] is at least µ.

We now define fairness analogously to chain quality.

Definition 3.1. A blockchain protocol Π has (approximate) fair-
ness (T0,δ) in Γ-environments, if for all Γ-compliant p.p.t. (A,Z),
every positive constant ϕ ≤ 1− ρ, every ϕ-fraction subset selection

S , there exists some negligible function ϵ such that for every κ ∈ N
and every T ≥ T0 the following holds:

Pr

[
view← EXECΠ (A,Z ,κ) : qualityT ,S (view, (1 − δ)ϕ)) = 1

]
≥ 1−ϵ (κ)

As a sanity check, note that the definition of qualityT ,S (view, µ)
collapses down to qualityT (view, µ) if S is the full set of the honest

players. As a consequence, (T0,δ)-fairness trivially implies (T0, (1−
δ) (1 − ρ))-chain quality (by considering ϕ = 1 − ρ). Additionally,
when ρ ≤ 1

2
which is the case we consider in this paper,

(1 − δ) (1 − ρ) = 1 − δ − ρ + δρ = 1 − [δ + (1 − δ)ρ]
≥ 1 − [2δρ + (1 − δ)ρ] = 1 − (1 + δ)ρ

Thus, no ρ-size coalition can get more than a factor (1 + δ) more

than its “fair” share of blocks.

Fact 3.2. If a blockchain protocol Π satisfies (T0,δ)-fairness in
Γ-environments, then it satisfies (T0, µ)-chain quality where µ =
(1 − δ) (1 − ρ) ≥ 1 − (1 + δ)ρ in Γ-environments.

4 THE FRUITCHAIN PROTOCOL
We now turn to formally defining our FruitChain protocol. Roughly

speaking, the FruitChain protocol will be running an instance of

Π
nak

(p) but instead of directly putting the records m inside the

blockchain, the records are put inside “fruits” denoted f ; these
fruits themselves requires solving some proof of work—with a

different hardness parameter pf ; additionally, we require a fruit to
“hang” from a block which isn’t too far from from the block which

records the fruit—more specifically, the fruit needs to “point” to

an earlier block in the chain which is not too far from the block

containing it (and thus, the fruit could not have been mined “too”

long ago); the recency parameter R will be used to specify how far

back a fruit is allowed to hang.

4.1 Valid Blocks, Fruits, and Blockchain
Towards formalizing the protocol, we first introduce some notation:

• We assume that the random oracle H outputs strings of length

at least 2κ. Let d be a collision-resistant hash-function (techni-

cally, it is a family of functions, and the instance from the family

is selected as a public-parameter; in the sequel we ignore this

selection and simply treat it as a single function (for instance,

selected using randomness H (0).)
• Our protocol is parametrized by two “hardness” parameters p =
p,pf = pf , and a recency parameter R. (p is the mining hardness

parameter for the underlying Nakamoto blockchain, and pf is

the “fruit mining” hardness parameter, as mentioned above, the

recency parameter will specify how far back a fruit is allowed to

“hang”); the quantity q =
pf
p will be useful in our analysis.

Valid fruits. A fruit is of the format f = (h−1;h
′
;η, digest;m;h)

where each entry means the following:

• h−1 points to the previous block’s reference — this entry is an

artifact of the fruit mining and block mining piggybacked on

top of each other; a fruit actually does not care about this entry

(but a block does). However the value still needs to be included

for the fruit to be verified;

• h′ points to a (recently stablized) block that the fruit is hanging

from — we call h′ the pointer of the fruit f ;
• η is a random nonce denoting the puzzle solution;

• digest is the digest of some fruit-set F — this is an artifact since

the fruit mining and block mining are piggybacked on top of

each other. The block must contain a set of fruits denoted F ,
but the fruit does not care about the fruit-set, and therefore we

include only its d that is necessary for checking that the fruit

is correct;

• m is the record to be contained in the fruit; and

• h is the hash or reference of the fruit.

We say that a fruit denoted f = (h−1;h
′
;η, digest;m;h) is valid

iff

(i) H (h−1;h
′
;η; digest;m) = h;

(ii) [h]−κ : < Dpf where [h]−κ : denotes the last κ bits of h.

We say that F is a valid fruit-set if either F = ∅ or F is a set of valid

fruits.

Valid blocks. Since the block mining and the fruit mining are

piggybacked on top of each other, a block looks very much like

a fruit, except that a block must additionally include the actual

fruit-set F . More specifically, a block is of the following format b =
((h−1;h

′
;η; digest;m;h), F) where each entry means the following:

• h−1 points to the previous block’s reference, this represents the
chain that the block extends from;

• h′ is an artifact of the fruit mining and block mining piggy-

backed atop each other; a block actually does not care about

this field (but a fruit does), but it still needs to be included for

block verification;

• η is a random nonce denoting the puzzle solution;

• digest is the digest of some fruit-set F to be included in the

block later;

• m is a record — the block also does not care about this field,

and this is an artifact of the two piggybacked mining processes;

• h is called the reference of the block, which is a hash of the

previous fields; and

• F is a fruit-set to be included in the block.

We say that a block denoted b = ((h−1;h
′
;η; digest;m;h), F), is

valid iff

(i) digest = d(F) where d is a collision-resistant hash function

as mentioned earlier;

(ii) F is a valid fruit-set;

(iii) H (h−1;h
′
;η, d(F);m) = h;

(iv) [h]:κ < Dp1 where [h]:κ denotes the first κ bits of h.

Session 7 PODC’17, July 25-27, 2017, Washington, DC, USA

322

Valid blockchain. We say that a chain is valid iff

• chain[0] = дenesis whereдenesis := ((0; 0; 0; 0;⊥;H(0; 0; 0; 0,⊥)), ∅)
is the “genesis” block;

• for all i ∈ [ℓ], chain[i].h−1 = chain[i − 1].h, i.e., each block refers

to the previous block’s reference;
• for all i ∈ [ℓ], all f ∈ chain[i].F , there exists some j ≥ i − Rκ
such that the pointer of f is chain[j].h.

Recency of fruits. Finally, we say that the fruit f is recent w.r.t.
chain if the pointer of f is the reference of a block in chain[−Rκ :]

(i.e., one of the last Rκ blocks in chain).

4.2 The FruitChain Protocol and Main Theorem
The FruitChain protocol denoted Π

fruit
is described in Figure 1.

Henceforth, we say that Γ
p,pf ,R
fruit

(n, ρ,∆) = 1 iff Γ
p
nak

(n, ρ,∆) =
1. Moreover, we assume the following quantities are constants

throughout this paper:

q :=
pf

p
= Θ(1), R = Θ(1)

We are now ready to state our main theorem.

Theorem 4.1 (Security of FruitChain). For any constant 0 <
δ < 1, and any p,pf , let R = 17, κf = 2qRκ, andT0 = 5

κf
δ . Then the

FruitChain protocol denoted Π
fruit

(p,pf ,R) satisfies
• κf -consistency;
• chain growth rate (T0,д0,д1) where д0 = (1 − δ) (1 − ρ)npf , and
д1 = (1 + δ)npf .
• fairness (T0,δ).

in Γ
p,pf ,R
fruit

-environments.

Proof of the main theorem. In the interest of space, we provide

the proof of our main theorem in our online full version [19].

5 FROM FAIRNESS TO INCENTIVE
COMPATIBILITY

We remark that any secure blockchain protocol that satisfies δ -
approximate fairness (where δ < 0.3) w.r.t T (κ) length windows

can be used as the ledger underlying a cryptocurrency system while

ensuring 3δ -incentive compatibility if players (i.e. miners) only care

about how much money they receive—that is, a miner’s utility is

the sum of the rewards and transaction fees it receives (potentially

times some constant).
7

Consider a crypto-currency which uses a blockchain protocol

as the underlying ledger; we omit a formalization of what this

means, but have in mind a system such as Bitcoin where rewards

and transaction fees are somehow distributed among the miners

of blocks—for instance, recall that in Bitcoin, the miner of a block

receives amining reward aswell as all the transaction fees contained

in the block it mined.

We say that honest mining is a ρ-coalition-safe ϵ-Nash equilibrium
if, with overwhelming probability, no ρ ′ < ρ fraction coalition can

gain more than a multiplicative factor (1 + ϵ) in utility, no matter

7
This may not always be a realistic assumption. For instance, a miner can care about

what transactions get added into the blockchain etc, but following earlier approaches

to modeling incentives in blockchains (e.g., [7]), we focus only on miners’ monetary

rewards.

what transactions are being processed—formally, consider some

environment providing transactions into the system. We restrict to

a setting where the total rewards and transaction fees during the

run of the system is some fixed constant V 8
.

We now remark that if rewards and transaction fees are evenly
distributed among the (miners of the) blocks in the T (κ)-length
segment of the chain preceeding the block (and in the initial phase,

before the chain is of lengthT (κ), simply the firstT (κ) blocks) then
it follows that honest mining is a ρ-coalition-safe 3δ -Nash equilib-

rium as long as the underlying blockchain satisfies δ -approximate

fairness w.r.t. ρ attackers: as noted above, fairness implies that no

matter what deviation the coalition performs, with overwhelming

probability, the fraction of adversarial blocks in any T (κ)-length
window of the chain is upperbounded by (1+δ)ρ and thus the total

amount of compensation received by the attacker is bounded by

(1 + δ)ρ ·V ; in contrast, by fairness, if the coalition had been fol-

lowing the honest protocol, they are guaranteed to receive at least

(1−δ)ρ ·V ; thus, the multiplicative increase in utility is
1+δ
1−δ ≤ 1+3δ

when δ < 0.3.9

To see why the “standard” bitcoin approach of giving all rewards

and fees to the miner of the block does not work, consider an freshly

mined (honest) block containing a transaction with a very high

transaction fee. A coalition controlling a constant fraction of the

computing power would have a huge incentive to “drop” this block

and instead try to mine a new block which contains it. Fairness

does not prevent such an attack, and indeed, even in our protocol

such an attack will be successful with constant probability. (In-

deed, it has been informally conjectured in the bitcoin community

that ϵ-incentive compatibility is impossible to achieve in the pres-

ence of transaction fees, due to exactly this reason. Our method of

distributing the fees over a segment overcomes this “barrier”.)

6 DISINCENTIVIZING POOLED MINING
An issue with the Bitcoin protocol (which relies on Nakamoto’s

blockchain protocol) is that the mining hardness is set so that the

world (combined) finds a new block every 10 minutes—as shown

in [18], the mining hardness needs to be set in such a way to en-

sure consistency. This not only leads to a long latency (which can

be remedied by the Hybrid Consensus approach discussed above),

but also leads to the issue that it may take a very long time for

an individual miner to be successful in mining a block and conse-

quently reap a reward for its work. In other words, the payments

received by miners has a very high variance. This has lead to the

creation of mining pools, where miners come together and pool

their work and then share the reward once someone in the pool

mines a block—such pooling decreases the variance. To prevent

free-riding, miners submit “partial proofs of work” (that is, “near”

solutions to the mining puzzles) that are significantly easier to find,

and rewards are distributed (according to some distribution rule)

among the contributors of the partial proofs-of-work.

8
The analysis directly extends to a setting where the total rewards and fees are only

guaranteed to be withing some multiplicative factor (1 + δ ′) of V at the cost of a

degradation of the quality of the Nash equilibrium (i.e., increasing the ϵ).
9
Let us remark that an alternative approach would be to give the whole mining reward

to the miner of a block (as in Bitcoin) but still distribute the transaction fees among

the group of miners in aT (κ)-segment of the chain. This approach works by the same

analysis as long as mining rewards are fixed throughout the experiment (which is not

the case for e.g., Bitcoin where mining rewards decrease over time).

Session 7 PODC’17, July 25-27, 2017, Washington, DC, USA

323

Π
fruit

(p,pf ,R): FruitChain protocol
Initialize: chain := genesis, F = ∅

Upon receiving a valid fruit: let F := F ∪ {fruit}

Upon receiving a valid chain′, if |chain′ | > |chain|: let chain := chain′

Every time step, upon receiving input m from the environment:

• let F ′ be all fruits f ∈ F that are recent w.r.t. chain and not already in chain;
• let h′ be the reference of chain[pos] where pos =max (1, |chain | − κ);
• let h−1 be the reference of chain[−1];
• Pick random η ∈ {0, 1}κ and let h := H(h−1;h

′
;η; d(F ′);m)

• If [h]−κ : < Dpf (i.e., we “mined a fruit"): let fruit := (h−1;h
′
;η; d(F ′);m,h), F := F ∪ {fruit}, and broadcast fruit

• If [h]:κ < Dp (i.e., we “mined a block"): let chain := chain| |((h−1;h′;η, d(F ′);m,h), F ′), and broadcast chain
• Output extract

fruit
(chain) to Z , where extract

fruit
(·) is defined as below:

extract
fruit

(chain):

On input a valid chain,

• first extract a sequence of distinct fruits from chain, where if the same fruit is included multiple times, only the first occurrence is

included. The extracted fruits are ordered by the first block that contains the fruit; and for fruits in the same block, follow the order in

which the fruits are serialized within the block.

• then, output the sequence of records m contained in the extracted sequence of fruits, where records contained in earlier fruits are

extracted earlier.

Figure 1: The FruitChain protocol. Nodes not onlymine for blocks, but also fruits. Blocks confirm “recent” fruits; whereas fruits
confirm transactions.

An undesirable effect of such pools is that the pool operator

effectively controls a large number of participants and potentially

could get them to deviate; in a sense, the decentralized nature of

the system gets lost.

We note that since the FruitChain protocol is parametrized by

twomining hardnesses—the block hardnessp, and the fruit hardness
pf —which are independent of each other, we can setp appropriately
to ensure consistency, but pf can be set to be much larger—for

instance, as large as the probability of find a partial proof-of-work

in mining pools—and consequently, we would reduce the variance

of the rewards received by miners in exactly the same way as in

mining pool, but now in a fully decentralized way.

Today, a solo miner (assuming one unit of typical commodity

mining ASIC) would take 2 to 5 years to obtain its first reward [2].

With FruitChain, suppose we allocate space for 1000 fruits per

block where each fruit is 80 bytes (same size as a Bitcoin puzzle

solution), this would occupy roughly 8% of a 1MB block — however,

this would allow a solo miner to get its first rewards 1000x faster,

roughly on the order of a day (or days) rather than years.

Acknowledgments. This work is supported in part by NSF grants

CNS-1217821, CNS-1314857, CNS-1514261, CNS-1544613, CNS-1561209,

CNS-1601879, CNS-1617676, AFOSR Award FA9550-15-1-0262, an

Office of Naval Research Young Investigator Program Award, a

Microsoft Faculty Fellowship, a Packard Fellowship, a Sloan Fellow-

ship, Google Faculty Research Awards, a VMWare Research Award,

and a Baidu Research Award.

REFERENCES
[1] 2016. Personal Communication with Iddo Bentov and Yuncong Hu and Siqiu Yao.

(2016).

[2] 2017. http://www.coinwarz.com/calculators/bitcoin-mining-calculator. (2017).

[3] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. 2005. Secure

Computation Without Authentication. In CRYPTO’05.
[4] Miles Carlsten, Harry A. Kalodner, S. MatthewWeinberg, and Arvind Narayanan.

2016. On the Instability of Bitcoin Without the Block Reward. In CCS. 154–167.
[5] Phil Daian, Rafael Pass, and Elaine Shi. 2016. Snow White: Provably Secure

Proofs of Stake. Cryptology ePrint Archive, Report 2016/919. (2016).

[6] Cynthia Dwork and Moni Naor. 1992. Pricing via processing or combatting junk

mail. In CRYPTO’92. 139–147.
[7] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not enough: Bitcoin mining is

vulnerable. In Financial Cryptography and Data Security. Springer, 436–454.
[8] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin backbone

protocol: Analysis and applications. In EUROCRYPT.
[9] Joseph Y. Halpern and Rafael Pass. 2015. Algorithmic rationality: Game theory

with costly computation. J. Economic Theory 156 (2015), 246–268.

[10] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis.

2016. Blockchain Mining Games. In EC. 365–382.
[11] Aggelos Kiayias and Giorgos Panagiotakos. 2015. Speed-Security Tradeoffs in

Blockchain Protocols. (2015).

[12] Aggelos Kiayias and Giorgos Panagiotakos. 2016. On Trees, Chains and Fast

Transactions in the Blockchain. IACR Cryptology ePrint Archive 2016 (2016), 545.
[13] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2016.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. Cryptology

ePrint Archive, Report 2016/889. (2016). http://eprint.iacr.org/2016/889.

[14] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclusive Block

Chain Protocols. In Financial Crypto’15.
[15] mtgox. 2010. https://bitcointalk.org/index.php?topic=2227. (2010).

[16] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[17] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2016. Stubborn

Mining: Generalizing Selfish Mining and Combining with an Eclipse Attack. In

EuroS&P.
[18] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the Blockchain

Protocol in Asynchronous Networks. In Eurocrypt.
[19] Rafael Pass and Elaine Shi. 2016. Fruitchains: A Fair Blockchain. Online Technical

Report, https://eprint.iacr.org/2016/916.pdf. (2016).

[20] Rafael Pass and Elaine Shi. 2016. Hybrid Consensus. http://eprint.iacr.org/2016/

917. (2016).

[21] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal Selfish

Mining Strategies in Bitcoin. In Financial Crypto’16.
[22] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Transaction

Processing in Bitcoin. In FC. 507–527.

Session 7 PODC’17, July 25-27, 2017, Washington, DC, USA

324

http://www.coinwarz.com/calculators/bitcoin-mining-calculator
http://eprint.iacr.org/2016/889
https://bitcointalk.org/index.php?topic=2227
https://eprint.iacr.org/2016/916.pdf
http://eprint.iacr.org/2016/917
http://eprint.iacr.org/2016/917

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Protocol Overview
	1.3 Related Work

	2 Preliminaries and Definitions
	2.1 Protocol Execution Model and Notations
	2.2 Conventions
	2.3 Blockchain Protocols
	2.4 Nakamoto's Blockchain Protocol
	2.5 Security of Blockchain Protocols
	2.6 Security of Nakamoto's Blockchain

	3 Defining Fairness
	4 The FruitChain Protocol
	4.1 Valid Blocks, Fruits, and Blockchain
	4.2 The FruitChain Protocol and Main Theorem

	5 From Fairness to Incentive Compatibility
	6 Disincentivizing Pooled Mining
	References

