
Formal Modeling and Verification of Smart Contracts
Xiaomin BAI

State Key Laboratory of Software
Development Environment, Beihang

University, Beijing 100191, China
(86)13051386669

baixiaomin@buaa.edu.cn

Kai HU
State Key Laboratory of Software

Development Environment, Beihang
University, Beijing 100191, China

(86)010-82339460

hukai@buaa.edu.cn

Zijing CHENG
State Key Laboratory of Space-
Ground Integrated Information
Technology, Beijing Institute of

Satellite Information Engineering,
Beijing 100191, China

linuxdemo@126.com

Zhangbo DUAN
State Key Laboratory of Software

Development Environment, Beihang
University, Beijing 100191, China

(86)18610613100

duan.z@qq.com

ABSTRACT

Smart contracts can automatically perform the contract terms

according to the received information, and it is one of the most

important research fields in digital society. The core of smart

contracts is algorithm contract, that is, the parties reach an

agreement on the contents of the contract and perform the

contracts according to the behaviors written in certain computer

algorithms. It not only needs to make sure about the correctness of

smart contracts code, but also should provide a credible contract

code execution environment. Blockchain provides a trusted

execution and storage environment for smart contracts by the

distributed secure storage, consistency verification and encryption

technology. Current challenge is how to assure that smart contract

can be executed as the parties’ willingness. This paper introduces

formal modeling and verification in formal methods to make smart

contract model and verify the properties of smart contracts.

Formal methods combined with smart contracts aim to reduce the

potential errors and cost during contract development process. The

description of a general and formal smart contract template is

provided. The tool of model checking, SPIN, is used to verify the

correctness and necessary properties for a smart contract template.

The research shows model checking will be useful and necessary

for smart contracts.

CCS Concepts
• Software and its engineering →Formal methods

• Software and its engineering → Model checking

Keywords
Smart contracts; Formal methods; Model checking; Modeling;

Formal Verification; SPIN.

1. INTRODUCTION

On June 17, 2016, the DAO[1][2] smart contract running on

Ethereum's public chain was attacked, and the public funds raised

by smart contract were continually being recused by a function to

its subcontracts. This attack involved more than 300 thousand

dollars, and how to avoid being attacked is a serious challenge for

smart contracts. The DAO is essentially a VC (venture capital

fund) and funds raised through Ethereum[3] are locked in a smart

contract and no one can spend the money alone. The incident was

caused by the exploitation of a bug in The DAO's smart contract

itself. Therefore, the security and trustworthiness issue of smart

contracts arouse people's attention. How to write smart contracts

with high reliability and high security has become an urgent

problem to be solved.

Smart contract (or contract for short) is one of the basic concepts

to solve the code contract proposed by Nick Szabo in 1994in the

paper "Formalizing and Securing Relationships on Public

Networks"[4]. He gave a car deal scene: a car loan, if the lender

does not repay, the car smart contract would automatically

withdraw the digital car key. There is no doubt that car dealers

will find this automatic contract attractive. Smart contracts utilize

protocols and user interfaces to facilitate all steps of the

contracting process and obviate the ambiguity of the contractual

clauses. Smart contracts aim to reduce mental and computational

transaction costs imposed by either principal, third parties, or their

tools, it is one of the necessary conditions to build the digital

society.

Smart contracts, as a new technology in computational law[5], has

a very important feature: when certain conditions are met,

contracts would execute appropriate actions automatically.

However, this feature has been applied in similar technology in

other applications. For example, knowledge-based systems had

this feature in 1980s. The first one is rule-based systems. When

certain conditions are met, the corresponding rule will be triggered.

If several rules are triggered at the same time, there will be a

corresponding resolution mechanism to coordinate execution of

these rules. The second one is blackboard architecture. There are

multiple agents monitoring simultaneously. When a certain

condition is met, the corresponding agent will active its own rule

and execute corresponding process. The different point from rule-

based system is that these agents can be grouped, and these agents

those are in the same group will be in the same platform and share

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICSCA 2018, February 8–10, 2018, Kuantan, Malaysia
© 2018 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.

ACM ISBN 978-1-4503-5414-1/18/02…$15.00

https://doi.org/10.1145/3185089.3185138 322

mailto:baixiaomin@buaa.edu.cn
mailto:baixiaomin@buaa.edu.cn

the same information. The third one is the database trigger. When

a change in the data in the database satisfies the conditions for the

database trigger, the corresponding program will be activated to

perform. The last one is service-oriented system. When the service

caller meets the certain condition, system will provide

corresponding service to the service caller.

Szabo's smart contracts theory and the Internet (World Wide Web)

appeared almost at the same time, but the application has been far

behind the theory, there is no clear idea to make it true. There are

two problems mainly. Firstly, there is no way to control the

physical property effectively. Vending machines can control the

ownership of goods by storing goods in the boxes, but the

computer program is difficult to control real-world assets, such as

cash, shares. Secondly, there is no trusty execution environment

for smart contracts, where the contractors can observe and verify

the performances of other contractors. The blockchain[6] is one

way to solve these problems, it is not only a safe distributed ledger

to store the contract code, but also a distribution execution

environment to control the digital assert directly. The blockchain

nodes will execute the contract code in a distributed way, which is

like the law and regulation executor of commercial transactions,

supervision and management, and it reduces plenty of cost of

escrow. Today, many blockchain systems, such as Ethereum[3],

not only provide the blockchain platforms, but also have the

contract programming language with it.

Contract states in blockchain cannot be changed without correct

transactions, and each change of state on it needs to go through the

blockchain’s consistency algorithm. Ethereum stores the contract

itself and its state in the blockchain, when the terms and

conditions of the contract are met, the contract code stored in the

blockchain will be executed. Since the execution of smart

contracts in Ethereum is completed by distributed nodes, so there

is no single point failure, and the smart contracts' execution will be

immutable and verifiable. Therefore, there is much room for the

development to combine smart contracts and blockchain, many

companies focus on the research on blockchain and smart

contracts, such as Codius, SmartContract, IBM[7] and Eris, etc.

But the development of smart contract exists many critical

problems. For example, how do people trust smart contracts is fair

for every parity in smart contracts? Is there no bug in the program?

If the contract is in favor of the one contract party obviously, how

to fix? How to verify the logic of contract is correct and how to

eliminate the loopholes in the contract?

Smart contracts must meet at least the following two conditions,

so that people can trust and use smart contracts: 1) Smart contracts

is executable code, it cannot have any grammar errors and sematic

errors; 2) Smart contracts have higher requirements for the

correctness and several related properties to make sure safety of

the asserts, so it needs a way to generate the credible contract code.

Formal methods[8] are mathematical-based techniques that

describe the attributes of the system for the specification,

development and validation of computer software. Using formal

methods for software design is expected to be able to use the

appropriate mathematical analysis to enhance the reliability and

robustness of the design, as in other engineering disciplines.

Among them, a very important step for formal methods is formal

verification. Formal verification can be a more formal way to

produce procedures. For example, you can go from specification

to program properties or tessellation.

In this paper, we introduced formal modeling and verification[9],

which aims to assure the correct and the security of smart

contracts, so that users can trust smart contracts code.

The main contributions of this paper are as follows:

● Formal methods are applied to smart contract for the

correctness and security;

● A general description of smart contracts template is given,

and it can be represented by tuple and finite state machine;

● The PROMELA[10] model of smart contract will be made.

And we can verify the whole properties of shopping smart

contract.

2. RELATED WORK

2.1 Smart Contract
The premise of modeling is that the properties of model must be

understood clearly. We can learn more characters and working

principle about smart contracts from the following papers.

Ethereum is the earliest platform to use smart contracts combined

with electronic coin. [11] proposed Ethereum including a new

protocol and a new coin based on bitcoin. Ethereum is focused on

smart contracts. Ethereum put forward decentralized autonomous

organizations(DAOs) and a Turing-complete programming

language to encode smart contract.

[12] described how a distributed peer-to-peer network works and

also researched smart contracts-scripts that reside on the

blockchain in Internet of Things(IoT). The paper provided several

issues when blockchain-smart contracts are combined with IoT,

and made a conclusion that blockchain-smart contract-IoT

combination is powerful and can cause significant transformations

across several industries.

Through observing the security when Ethereum smart contracts

are running in an open distributed network. [13] proposed some

new security problems in which an adversary can manipulate

smart contract execution to gain profit. And it proposed ways to

enhance the operational semantics of Ethereum to make contracts

less vulnerable.

2.2 The Correctness and Safety Research in

Smart Contract
In the field of smart contract, correctness and security are the most

important factors to determine whether smart contract can be used

in specific application scenarios. Some security researches have

been proposed several times, but formal methods and available

implementations are still few.

Writing trustworthy smart contracts can be extremely difficult due

to the intricate semantics of EVM and its openness. [14] outlined a

framework to analyze and verify both the runtime safety and the

functional correctness of Solidity contracts in F*, a functional

programming language aimed at program verification.

Numerous common pitfalls are exposed in designing safe and

secure smart contracts. [15] documented several typical classes

and provided some suggestions to fix or avoid them, and advocate

best practices for programming smart contracts. It also resulted in

online open course materials to program smart contracts.

Decentralized smart contracts is the next step to development of

protocol. The validation of such an early developing technology is

as necessary as it is complex. [16] combined theory and formal

methods to tackle the new challenges posed by the validation of

such systems.

323

Therefore, smart contract language and its executing process may

have potential safety problems. Although formal methods are

applied to smart contracts, it is only a framework. A specific

model and verification methods have not been given yet.

3. SMART CONTRACTS DESCRIPTION

3.1 Formal Description of Smart Contracts
The execution of smart contracts is from one state to other state, so

we can use contract state machine to represents smart contracts.

Contract automata is a quintuple:

Among them:

 {𝑞1
 𝑞2

 ⋯ 𝑞𝑚
 }. 𝑄 is the set about all states of contract

execution automata, 𝑞𝑖
 is contained in the state set of

contract party, 𝑞𝑖
 ∈ 𝑞𝑖 𝑖 1 ⋯ 𝑚 ;

 is the set of all input events;

 is the set of all the transit functions, : 𝑄 × → ;

 is the initial state, ∈ 𝑄;

 is the set of termination states, ⊂ 𝑄.

3.2 General Smart Contract Template
Here is a general and simplified template of a smart contract. The

contract parties are Contract party A and Contract party B. The

basic functions include: initiated, accepted, interrupted or finished

the transaction.

We can describe the contract content in Table 1.

Table 1. General Contract Template

General Contract Template ()

Begin

IF Contract party A initiates a transaction AND

condition(i) is met

Set timestamp OR trigger event

ELSE

transaction failed, Contract party A and Contract

party B state regressed and ended the transaction

IF condition(j) is met AND no timeout

Contract party B confirmed the transaction AND quit

IF TIMEOUT

transaction failed, Contract party A and Contract

party B state regressed and ended the transaction

END
This is only a smart contract template. The parties in smart

contracts can add the contract terms and set parameters on the

template according to their own needs.

The symbols M1 and M2 are used to represent the state machine, as

Table 2.

Table 2. the contract contents

Contract State Machine M*

The parties’ executing

State Machine

Contract party A, represented by M1

Contract party B, represented by M2

The state machine M1 is a quintuple 𝑞1 1 1 1 . 𝑞1 is the

executing state of Contract party A, as Table 3. is the set of

input events. 1 is the set of the transit functions, 1: 𝑞1 × → 𝑞1;

 1 is the initial state, 1 ∈ 𝑞1; 1 is the set of termination states,

 1 ⊂ 𝑞1, 1 { .

Table 3. the set of

State Description by natural language

s1 the initial state

A Contract party A waited for the response of Contract

party B

B Contract party A set timestamp or trigger event to

Contract party B

C Contract party A finished the transaction

D Transaction interrupted

E Contract party A state regressed

The state machine M2 is a quintuple 𝑞2 2 2 2 . 𝑞2 is the

executing state of Contract party B, as Table 4. is the set of

input events, as Table 5. 2 is the set of the transit functions,

 2: 𝑞2 × → 𝑞2 ; 2 is the initial state, 2 ∈ 𝑞2 ; 2 is the set of

termination states, 2 ⊂ 𝑞2, 2 { .

Table 4. the set of

State Description by natural language

s2 the initial state

1 Contract party B accepted order requests

2 Contract party B accepted the timestamp or trigger event

3 Transaction interrupted

4 Contract party B finished the transaction

5 Contract party B state regressed

Table 5. contract events

Events Σ a Contract party A initiates a transaction to

Contract party B

b1 Transaction interrupted

b2 Contract party A and Contract party B

responded the transaction

b3 Contract party B refused the request from

Contract party A

c1 Contract party A and Contract party B

finished the transaction

c2 Contract party A and Contract party B

state regressed

(All events would be recorded in smart contracts)

The contract state machine of Contract party A and the contract

state machine of Contract party B can be combined to the whole

contract state machine, as Figure 1.

S1

B

A

D

C

E 5

a S2

3

1

2 4

a

a

State Machine M1 of Contract party A State Machine M2 of Contract party B

Contract state machine M*

(S1, S2)

(A, 1)

(B, 2) (C, 4)

(E, 5)(D, 3)

c2

c1

c1

c2

Figure 1. The general smart contract state machine

324

4. MODELINGAND VERIFICATION

4.1 Formal Description Language and Tool
SPIN[10] is a general tool to verify the correctness of distributed

software models in a rigorous and mostly automated fashion. It

was written by Gerard J. Holzmann and others in the original Unix

group of the Computing Sciences Research Center at Bell Labs,

beginning in 1980. The software has been available freely since

1991 and continues to evolve to keep pace with new development

in the field.

Systems to be verified are described in PROMELA (Process Meta

Language), which supports modeling of asynchronous distributed

algorithms as non-deterministic automata (SPIN stands for

"Simple PROMELA Interpreter"). Properties to be verified are

expressed as Linear Temporal Logic (LTL) formulas, which are

negated and then converted into Büchi automata as part of the

model-checking algorithm[17]. In addition to model checking,

SPIN can also operate as a simulator, following one possible

execution path through the system and presenting the resulting

execution trace to the user.

4.2 Shopping Smart Contract Model
We provided a shopping smart contract (SSC) and it simplified an

internet shopping process. A SSC description is as flows: when the

user launches a shopping order, he needs to submit the funds that

the shopping needs to the SSC, the SSC keeps the funds. At the

same time the SSC starts the two sub processes, the user process

and the shop process. User process, if Merchant does not deliver

the goods within certain days, the user will cancel the transaction,

the SSC will return the funds to the user, the user process timing

cycle detection delivery status; the shop process: after receiving

the order, firstly the SSC judges whether the order is over, if the

order is not overtime, then the shop delivers goods, if Customer

can receive the goods within the stipulated time, Merchant would

receive the payment. The SSC needs to ensure the security of the

funds and the transaction process of the various states of the

reachability.

The PROMELA model of SSC is built as Table 6:user_money

represents the user’s money, its initial value is 100; shop_money

represents the shop’s money, its initial value is 0; and money

represents smart contract that is used to save money temporarily.

max_day represents the maximum number of days allowed for a

transaction; day represents the current number of day for a

transaction.

Table 6. Main PROMELA Model of the SSC

active proctype user() {

 do

 :: isSend -> atomic{

 shop_money=price;

 money=0;

 break;}

 :: (day>max_day)->{

 user_money=price;

 money=0;

 break;

}

 :: else -> day=day+1;

 od

}

active proctype shop() {

 do

 ::(day<max_day-1)->isSend=true;

 ::break;

 od

}

4.3 Formal Verification
The spin tool is used to detect the SSC model, the simulation

results for the model is shown in the Figure 2~Figure 5. From

these figures, we can verify the state accessibility, no deadlock

and no livelock. The two typical verification results including

transaction finished and transaction timeout are shown.

Figure 2. Model verification result

Figure 2 shows the verification result of SSC model. There are 0

errors and the modelgenerates343 transition results including 115

matched state and 228 stored state.

Figure 3. Model simulation results (timeout refund)

In Figure 3, when day equals 8th day, the user did not receive the

goods, so user_money=100 and money=0.The model represents

that transaction failed.

325

Figure 4. Model simulation results (finish)

In Figure 4, the user received the goods in the first day(day=1), so

shop_money=100 and money=0. The model represents that

transaction succeed.

Figure 5 shows the state transition of one smart contract running.

The number in the circle corresponds to the number of rows in the

SSC model. The row represents state transition.

Figure 5. Spin Spider

From these model simulation results, we can verify that SSC is no

deadlock, and it only has one state at a moment. It can run as the

theoretical state machine. SSC is fair to customer and merchant.

The contract state machine is triggered only if time or events meet

the condition.

5. CONCLUSION
This paper introduces the application of smart contracts and some

critical issues in smart contracts. It proposed to apply formal

methods to smart contracts and gave the description of a general

smart contract template. Smart contracts will be an important

technology in the future to promote our lives, so the security of

smart contract must be assured. Model checking in formal

methods can be used for model checking to make smart contracts

correct, we can use a model verification tool to verify the

correctness and important properties of smart contracts. A case

study is verified by a famous model checking tool SPIN to

illustrate the verification process and effects. It shows that formal

methods can be applied to verify many properties. It will be

widely used for the design and development of smart contracts in

the future.

6. ACKNOWLEDGMENTS
This work was partially supported by the National Natural Science

Foundation of China under Grant 61672074 and 91538202,

Funding of Ministry of Education and China Mobile

MCM20160203, Project of the State Key Laboratory of Software

Development Environment of China under Grant SKLSDE-

2016ZX-16.

7. REFERENCES
[1] Decentralized autonomous organization: The DAO[EB/OL].

(2016-06-17).

https://en.wikipedia.org/wiki/Decentralized_autonomous_org

anization.

[2] DAO Attack[EB/OL]. 2016. http://www.coindesk.com/the-

dao-just-raised-50-million-but-what-is-it/.

[3] Ethereum[EB/OL].http://www.ethereum.org/, 2017.

[4] Szabo N. Formalizing and securing relationships on public

networks[J]. First Monday, 1997, 2(9).

[5] Lessig L. Code is law[J]. The Industry Standard, 1999, 18.

[6] Blockchain. URL

https://en.wikipedia.org/wiki/Block_chain_(database), 2016

[7] Hyperledger[EB/OL]. https://www.hyperledger.org/, 2017.

[8] Formal Methods. [URL]

http://en.wikipedia.orgi/Formal_methods.

[9] Sanghavi, Alok (21 May 2010). "What is formal

verification?". EE Times-Asia.

[10] Mikk E, Lakhnech Y, Siegel M, et al. Implementing

statecharts in PROMELA/SPIN[C]//Industrial Strength

Formal Specification Techniques, 1998. Proceedings. 2nd

IEEE Workshop on. IEEE, 1998: 90-101.

[11] Buterin V. Ethereum white paper: a next generation smart

contract & decentralized application platform[J]. 2013.

[12] Christidis K, Devetsikiotis M. Blockchains and smart

contracts for the internet of things[J]. IEEE Access, 2016, 4:

2292-2303.

[13] Luu L, Chu D H, Olickel H, et al. Making smart contracts

smarter[C]//Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security.

ACM, 2016: 254-269.

[14] Bhargavan K, Delignat-Lavaud A, Fournet C, et al. Short

Paper: Formal Verification of Smart Contracts[J].

[15] Delmolino K, Arnett M, Kosba A, et al. Step by step towards

creating a safe smart contract: Lessons and insights from a

cryptocurrency lab[C]//International Conference on Financial

Cryptography and Data Security. Springer Berlin Heidelberg,

2016: 79-94.

[16] Bigi G, Bracciali A, Meacci G, et al. Validation of

Decentralised Smart Contracts Through Game Theory and

Formal Methods[M]//Programming Languages with

Applications to Biology and Security. Springer International

Publishing, 2015: 142-161.

[17] Katoen, Joost-Pieter. Principles of model checking, The MIT

Press, 2008.The Spin Model Checker — Primer and

Reference Manual, Addison-Wesley, 2003. ISBN 0-321-

22862-6.

326

http://www.ethereum.org/

