
Towards A Unified Programming Model for
Blockchain Smart Contract dApp Systems

Joshua Ellul

Centre for Distributed Ledger Technologies
University of Malta

Msida, Malta

joshua.ellul@um.edu.mt

Gordon J. Pace

Centre for Distributed Ledger Technologies
University of Malta

Msida, Malta

gordon.pace@um.edu.mt

Abstract—Developing smart contract decentralised application
based systems typically involves writing code for various plat-
forms, from the smart contract code residing on the underlying
distributed ledger technology implementation to back end oracles
and front end websites or mobile apps. In addition to the different
technologies used for the different parts, the programmer is also
burdened with implementing communication channels between
the various parts. In this paper we propose a unified program-
ming model allowing for developers to build such systems through
a single code artifact, using a macroprogramming approach.

Keywords-Blockchain, Smart Contracts, Programming

I. INTRODUCTION

Smart contracts executing on top of a blockchain system

allows for a decentralised trustless execution environment

amongst involved parties. However, due to operational de-

centralisation, frequently the underlying instruction set or its

execution model is constrained, with some platforms limit-

ing computational expressivity e.g. Bitcoin script [3], and

Findel [2] are not Turing-complete languages, whilst others

limit the execution cost (in terms of time, space or both)

e.g. the underlying Ethereum Virtual Machine [7] execu-

tion model requires payment of gas for execution resources.

Due to these constraints, it is desirable, if not necessary,

to delegate some of the execution off-chain. However, this

comes with its challenges — when writing systems which

straddle heterogeneous platforms, one requires (i) to identify

which parts of the logic and data are to reside on which

platform; (ii) to identify means of communication between

the platforms, possibly using different modalities for different

communication lines (e.g. triggering some logic on the other

platform whose outcome is required to continue on the current

platform may require a synchronous message and response

to be sent, whilst asynchronous communication would suffice

for logging information on the other platform); (iii) handling

data conversion between the two platforms whenever data from

one side is to be used by the other; and (iv) programming the

different parts, possibly using different technologies. These re-

quirements make the development of such systems challenging

and error prone, and requires different expertise.

This scenario of requiring development of a single appli-

cation working across heterogeneous platforms is not new or

unique and similar challenges arose in other domains, most no-

tably: (i) with the appearance of affordable programmable and

reconfigurable hardware in the 80s and 90s, the development

of systems which were to be partly deployed in software and

partly in hardware gave rise to software-hardware codesign

techniques e.g. [4]; (ii) wireless sensor networks are comprised

of many resource constrained devices equipped with various

sensors and actuators, giving rise to macroprogramming of

systems in a manner which automatically deploys different

parts of the code and data to different sensor nodes e.g. [1].

The standard approach in addressing this recurring challenge is

that of designing a programming formalism to enable a mono-

lithic source to be compiled seamlessly to different targets,

and abstracting away communication between the platforms,

including data conversion. Unless the different platforms are

sufficiently different so as to enable automated partitioning,

the only additional information a developer must include in a

system to be split across different platforms, are annotations

identifying where data and computation is to be located. This

reduces complexity overheads when developing such systems

and thus reducing potential for bugs and errors.

In this paper we propose a framework for a unified program-

ming model for systems which allow for the specification of

applications with data and computation which may be partially

but not completely decentralised on a blockchain platform.

II. RELATED WORK

In earlier work, we have looked at related aspects of the

challenge. In [6], we looked at macroprogramming devices

on the internet-of-things together with blockchain platforms.

However, the work presented there was limited to trigger-

ing individual transactions based on the computation with

little computation performed on the blockchain systems. We

have extended this work in [5], in which we proposed a

programming language, Porthos, intended to program smart

contracts which span across different blockchain platforms.

In contrast with the platform and language proposed in this

paper, Porthos is not Turing complete, thus limiting the class

of systems which can be programmed. Furthermore, in our

previous work, we adopted an implicit partitioning approach

to splitting a Porthos specification to different blockchain

platforms. This was largely possible thanks to (i) tagging of

55

2019 38th International Symposium on Reliable Distributed Systems Workshops (SRDSW)

978-1-7281-4255-5/19/$31.00 ©2019 IEEE
DOI 10.1109/SRDSW49218.2019.00017

Unified and
Interweaved

Smart Contract
and System

Source Smart Contract Code

System Code
dApp

Source
Generator

Fig. 1. Framework Overview

resources with the blockchain/DLT where they are stored;

and (ii) the simpler processchain-like structure of Porthos

programs. The framework we propose in this paper takes a

more general approach, and also allows partitioning between

on-chain and off-chain code at both data and control-flow

level.

III. A UNIFIED PROGRAMMING MODEL FOR DAPPS

Decentralised application systems (dApps) are typically

comprised of decentralised smart contract logic deployed on a

blockchain with other centralised logic coded into a website or

desktop system. dApps require developers to code the various

system components separately which implicitly requires that

the various components communicate with each other using

well defined application programming interfaces (APIs). Such

communication often involves specifying function signatures,

including parameter and return types, which are often commu-

nicated using character strings – which results in the various

compilers and development infrastructure being unable to

ascertain whether such communication was correctly coded.

A unified programming model for dApps is proposed herein.

Figure 1 depicts an overview of the framework. Source

code for the decentralised smart contract and centralised

components are coded within a single source base. The unified

source is passed through the dApp Source Generator which

produces the smart contract and system code to be deployed.

In the unified source the developer should provide anno-

tations for code in respect to where various code fragments

should be placed. Consider unified source for a simple prop-

erty purchase dApp with functionality for purchasing of a

property as follows:

1 @XOn(MainSystem) function buyProperty () {
2 p = selectedProperty;
3 @XOn(Chain) {
4 Assert(p.isForSale);
5 Assert(Tx.user.balance >= p.salePrice);
6 p.owner = Tx.user;
7 p.isForSale = false;
8 Tx.user.balance -= p.salePrice;
9 }

10 displayPurchaseSuccess ();
11 }

The @XOn(MainSystem) annotation defines that the function

buyProperty should be generated to execute on the main sys-

tem, whilst the internal code block annotated by @XOn(Chain)
should execute in the decentralised smart contract — in which

the main system will wait for the decentralised execution

to complete before continuing execution. The smart contract

code generated will almost be exactly as defined in the code

above. However, to support seamless communication between

the systems, the main system code generated would require

changes as follows:

1 function buyProperty () {
2 p = selectedProperty;
3 XCall(Chain , "buyProperty", p);
4 displayPurchaseSuccess ();
5 }

The XCall function is a runtime library function that will

support the cross-platform call to the buyProperty smart

contract function (and will pass the parameter p).

Developers must consider not only locality of computation,

but also locality of data. Therefore data fields can be marked

up in a similar manner, and the code generator and runtime

libraries support for automatic placement and communication

of data values as required. Consider the following unified

source:

1 @XAll () class User extends XDataObject {
2 public XID id;
3 @XOnlyOn(MainSystem) public String name;
4 @XOnlyOn(Chain) public int balance;
5 }

The XAll annotation defines that the User class object will

be stored on all platforms, whilst the use of the XOnlyOn
annotation defines that the name field will only be available

on the main system, whilst the balance field will only be

available within the smart contract. As an example consider

the generated smart contract code as follows:

1 class User {
2 public GUID Chain_id;
3 public int balance;
4 }

IV. CONCLUSIONS

In this paper we propose a unfied programming model for

smart contract dApp based systems and demonstrate various

annotations for computation and data locality definition. We

are working on different implementations for various platforms

to further demonstrate the usefulness of this framework.

REFERENCES

[1] Asad Awan, Suresh Jagannathan, and Ananth Grama. Macroprogramming
heterogeneous sensor networks using cosmos. In ACM SIGOPS Operating
Systems Review, volume 41, pages 159–172. ACM, 2007.

[2] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. Findel:
Secure derivative contracts for ethereum. In International Conference
on Financial Cryptography and Data Security, pages 453–467. Springer,
2017.

[3] bitcoin.org.
[4] CAR Hoare and Ian Page. Hardware and software: The closing gap.

In Programming Languages and System Architectures, pages 49–68.
Springer, 1994.

[5] Adrian Mizzi, Joshua Ellul, and Gordon Pace. Technical report: Porthos
macroprogramming blockchain systems. 2019.

[6] Adrian Mizzi, Joshua Ellul, and Gordon J Pace. Macroprogramming the
blockchain of things. In 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), pages 1673–1678. IEEE, 2018.

[7] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 2014.

56

