
Smart contracts using Blockly
Representing a purchase agreement using a graphical programming language

Tim Weingärtner
School of Information Technology

Lucerne University of Applied Sciences & Arts
Suurstoffi 41b, CH 6343 Rotkreuz

tim.weingaertner@hslu.ch

Jasmin Ettlin
Suva Head Office

Fluhmattstrasse 1, CH 6002 Lucerne
jasmin.ettlin@stud.hslu.ch

Rahul Rao
CSS Versicherungen AG

Tribschenstrasse 21, CH 6005 Lucerne
rahul.rao@stud.hslu.ch

Patrick Suter
Satisloh AG

Neuhofstrasse 12, CH 6340 Baar
patrick.suter@stud.hslu.ch

Philipp Dublanc
Lucerne Cantonal Hospital

Spitalstrasse, CH 6000 Lucerne
philipp.dublanc@stud.hslu.ch

Abstract— This research addresses the issue that in-depth
programming knowhow is needed to read and write smart
contracts. The goal was making the creation of smart contracts
accessible to non-computer experts by the use of a graphical
programming language (Blockly). We used modularization to
capture the complexity of legal contracts and developed a
mapping process to transform the graphical representation to
the smart contract programming language Solidity. We
applied our approach to legal purchase agreements and proved
the practicality of our solution and explored its limitations. A
prototype was built to show the feasibility of our approach.
Our industry partner challenged the prototype by applying it
to the contract creation process. We consider our work as the
first step towards an application of smart contracts in the non-
IT world and outside the today’s expert shaped ecosystem of
blockchain specialists. Several continuative research questions
have been derived from our finding and are listed at the end of
this paper.

Keywords: blockchain; smart contracts; solidity; blockly;
modularization

I. INTRODUCTION
Blockchain is considered a new, promising and versatile

technology ([1]). In 2017 it gained broad attention due to the
Bitcoin price rise and countless news articles describing its
potential. Beside crypto currencies, smart contracts are a
promising and powerful way to leverage blockchain
technology. They allow two or more parties to agree on a
contract with guaranteed execution upon the occurrence of
predetermined events and direct access to a crypto currency.

Szabo defined smart contracts as computer programs that
replicate predefined contracts ([2]). Ethereum implements
smart contracts with its own programming language Solidity.
The program code is stored and executed on the Ethereum
Blockchain using the Ethereum Virtual Machine (EVM).

Recent years have shown that using smart contracts by a
wider user group hold different kinds of challenges:

• To implement a smart contract, profound
programming knowledge and skills in the
programming language is required. In the case
of Ethereum this is Solidity. Non-computer
specialists or untrained users with little
programming knowledge have a hard time
comprehending the contracts, interpreting their
meaning and predicting the automated actions.

• Code errors or uncaught cases can lead to
unforeseen executions and sometimes to the loss
of large amounts of money. Once agreed upon a
smart contract nobody can alter its execution.
The DAO case has shown this in a dramatic way
([3]).

• Since the contracts are executed automatically
and without enforcement through a third party,
interactions with persons have to be incentivized
and retained in the protocol used. Otherwise
there might be deadlocks or endless waiting
cycles. For example: Why should a buyer
confirm the reception and thus execute the

55

2018 Crypto Valley Conference on Blockchain Technology

978-1-5386-7204-4/18/$31.00 ©2018 IEEE
DOI 10.1109/CVCBT.2018.00012

payment if he already has received the goods?
Therefore conventional legal contracts and their
“execution protocols” cannot be transferred
directly into smart contracts.

• The reuse of contractual code strongly depends
on the structure of the smart contract and its
level of generalization.

The aforementioned challenges have to be overcome to
reach the goal of using the full potential of smart contracts
for a broad application and outside the domain of
information technology. With our research we investigated a
possible solution for these problems using modularization
and simplification: applying a graphical programming
language to provide the access for non-computer specialists,
modularization of proven code for reuse and addressing error
susceptibility and predefined procedures to supply best
practices in state protocols. As a development environment
for the modularized code, the Blockly Framework from
Google and its graphical programming language has been
chosen ([4]).

Besides these technological challenges there are several
legal as well as sociolegal questions, which we will also
briefly touch in this paper.

This paper is structured as follows: First we describe our
research process by explaining the underlying research
question and sub-questions as well as the research design.
We give a summary of existing approaches to modularize
purchase agreements and provide a syntactical analysis of
existing legal contracts. Than we describe the
implementation of our proof of concept. This section is
divided into a closer look in the modularization of the
Solidity code and an explanation of the Blockly part. The
conducted evaluation and their results round off the practical
part. The conclusion summarizes the results and the future
work gives an outlook to the next steps to be examined.

II. RESEARCH METHOD

A. Research Question
Based on the above identified problems, our research

aims to answer the following question:

RQ: Can a legal contract be modularized in a
syntactically and semantically correct way so that a Solidity
smart contract can be created automatically using building
blocks and is the usage of such a procedure appropriate for
non-computer specialists?

This leads us to the following sub-questions which have
been used to answer the research question RQ:

• SQ1: How does a legal contract have to be
structured in order to be transformed into
Solidity code?

• SQ2: How can the individual components of a
contract be mapped into Blockly templates as
building blocks for smart contracts?

• SQ3: Is it possible for a non-computer
specialist to handle a smart contract using
such a framework?

Since there are a broad variety of contracts, this research
focused on purchase agreements. They are well known and
one of the major types of contracts. Our approach can be
easily applied to other kinds of contracts like lending
agreements or service agreements by adapting the code
templates and their mapping to the graphical building blocks.

B. Research Design
This research is based on the design science paradigm

presented by Hevner et al. in [5]. Design science stands for
constructing and evaluating artifacts to solve research
questions. In information technology (IT) design science is a
commonly used research methodology since explicitly
applicable results are produced (programs). Therefore this
method fits very well in our context. According to [6] design
science includes the following six steps: problem
identification, definition of the objectives for the solution,
development, demonstration, evaluation, and
communication.

During our research project two artifacts were developed:
the design of Blockly templates to represent a purchase
agreement and the concept for modularization of Solidity
source code.

The evaluation of the artifacts is used to determine
whether the research hypotheses derived from the research
question can be confirmed ([7]). The metric we are using in
this first attempt is a qualitative metric since we are
evaluating our results with test persons picked from the
target group of non-computer specialists but having legal
background knowledge.

III. CONTRACT ANALYSIS

A. Related Work
Smith has described modularization of legal contracts in

[8]. The concepts in his research have been derived from
information technology and object oriented programming.
Smith justifies the need for modularization in legal contracts
with the reduction of complexity. High complexity in legal
agreements today is a major drawback. Those contracts are
modularized by using contractual boilerplate, which means
the reuse of textual components. In [8] a variety of modular
operators like: splitting, substitution, augmentation,
exclusion, inversion and porting are described. Some of these
operators are used in our research for modularization of the
Solidity code as we will show later on.

Smart contracts are much more complex than legal
agreements. While executing a purchase agreement the
transaction of a physical object or commodity almost always
has to be notified by humans. In the context of smart
contract, this is a weak spot since each interaction between
the blockchain and another system or person is a possible
threat which cannot be covered by blockchain security.

56

There exist several concepts to implement a fair
exchange protocol for the exchange or purchase of electronic
data. Research is focusing on the question how a fair
exchange can be realized without requiring a trusted third
party (TTP). A general summary of those attempts can be
found in [9] and [10]. Delgado-Segura et al. describe in [10]
a fair exchange protocol based on the Bitcoin blockchain
without the need of a TTP using smart contracts. All these
approaches focus on electronic commerce (e-commerce)
where the goods are data that can be delivered gradually or
can be encrypted.

Approaches where physical goods are traded using smart
contracts are rare. OpenBazaar1 is such a platform. Outside
the blockchain world ebay comes close to this kind of
trading. Both platforms offer a TTP in case of a dispute.

Research in the legal domain concerning smart contracts
have been conducted e.g. in [11] or [12]. Both articles focus
on the problems using smart contracts in an existing legal
area and the conflicts between legal practice and
technological possibilities. In our research we encountered
some of the conflicts described in the articles above like
missing international acceptance or possible conflicts with
applicable law. These are fundamental legal problems, which
cannot be solved by science. To solve them a political and
legal discussion is needed.

A specific examination in replacing paper contracts by
smart contracts can be found in [13]. Egbertsen et al. come to
the conclusion that it is possible to transform paper contracts
into smart contracts. At the same time they highlight some
weak spots which are mainly addressing privacy issues and
the existing complexity in contractual clauses.

B. Purchase Agreement
As a starting point for our research we analyzed several

purchasing contracts ([14], [15], [16], [17], [18]) to
distinguish the relevant elements for modularization of a
legal and written purchase agreements (see Table I)

Since for a smart contract there is no TTP like a court,
jurisdiction in the common sense does not apply to it. It is
rather inherent in the system. Including a TTP would only
apply if a special condition would be implemented like
transforming special rights in the case of a dispute. In a first
version (V1) we modeled a simple contract without payment
details, warranty, jurisdiction and special agreements. We
introduced financial incentives in order to guarantee
satisfaction for the two involved parties. These incentives are
represented by the fact that both parties pay twice the
purchase amount as a deposit in the form of Ether in the
smart contract. As a result, both parties have the same
incentive to abide by the contract. This money deposit
implements an approach, which Szabo proposes in 1994 in
his Digital Cash Concept [2]. He describes the possibility of
a token, which can serve as a digital currency, comparable to
today's crypto-currencies. Szabo explains that this token

1 http://www.openbazaar.org

alone is not enough to secure a transaction. There is a need
for further mechanisms, for which the above-mentioned
protocol, with the monetary deposit as an incentive, can
serve as an example. The disadvantage when both parties
have to pay double the purchase price as a deposit is that
depending on the purchase price very large sums must be
available and are bound during the transaction.

TABLE I: CONTRACTUAL ELEMENTS

Contractual
Element Description

Contracting parties Mostly there are two contractors,
buyer and seller.

Purchase item The item offered for sale.

Purchase price The amount to pay for the item of
purchase.

Payment Payment details.

Delivery Information about the delivery of
the object of purchase.

Warranty Warranty information in the event
of damage or wrong orders.

Special agreements Free text for the capture of any
additions.

Jurisdiction Information about the court in case
of disputes.

Signatures
Signatures of the contracting
parties, respectively of the
guardian.

In a second version (V2) we modeled a more complex
contract with payment details and predefined special
agreements. V2 is based on a sales contract of Satisloh AG.
Satisloh AG is one of the leading machine manufacturers for
ophthalmic and precision optics manufacturing. This contract
has special payment conditions, delivery and installation
options.

Depending on the customer, Satisloh can decide which
payment option to choose. The customer can either pay in
three payment rates, upfront or after the delivery has been
carried out. It is also possible that the customer decides to
pick up the machine himself or have his own carrier of
choice pick it up. Besides that it is possible for Satisloh to
abort the contract if required. Therefore the corresponding
contract option has to be added to the smart contract.
Another option that can be added to the contract is the
possibility that a Satisloh expert installs the machine for the
customer.

Two parties apply as contractors for both versions (V1
and V2). Swiss law does not require a written signature for a
so-called “Fahrniskauf”, a purchase other than property
purchase. Legal details can be found in [19]. The contract is
concluded by the acceptance of the buyer and becomes valid
in the blockchain. A special process is needed for delivery.
There is a significant difference between a pick up by the
buyer and a delivery by a carrier. Figure 1 shows the state
chart for V1 with a carrier. Figure 2 shows the extended state
chart for V2, the Satisloh machine contract with a carrier.

57

The carrier introduces another player into the process. This
new player is a potential risk that has to be considered.

IV. IMPLEMENTATION
As described in the research design the research question

(RQ) is addressed with a software artifact. Therefore to
prove the research hypotheses derived from RQ and to verify
the usability of the concept, a contract development
environment (CDE) has been developed. The realized CDE
is running in a browser environment using the Blockly
Framework embedded into HTML and Javascript code. For
our implementation, the following concepts and decisions
apply:

• The foundation for our contracts is the Safe
Remote Purchase from the Solidity website
[20]. Of central interest was the concept of using
incentives to get both parties to stick to the
contract.

• The different components of the Solidity
contract have been transformed directly into
Blockly. This keeps the programming effort for

the Blockly generator as low as possible.

• In Blockly and Solidity, not all the attributes
from Table I are used, since it is technically not
necessary. The more data there is in the smart
contract, the more transaction costs (gas) has to
be paid for each function call. This reduction
can potentially be a risk, since anything not
included in the smart contract and therefore not
inserted into the blockchain cannot be protected
against malicious changes.

• For simplicity, we chose the crypto-currency
Ether for payments. It would be possible to use
state-issued currencies (Fiat money) such as
Swiss francs too. This can be integrated into the
entire system with the help of Oracles, which
are services submitting information about real-
world events to a blockchain to be used by
smart contracts. Details can be found in [21].

• For the first implementation the value of an
object is stored as an integer in the smart
contract since doubles are not fully supported by

Figure 1: State chart of V1 with carrier

Figure 2: State chart of V2 with carrier

58

Solidity. In consequence, in Blockly you can
only use integers for the price. Currently we are
using Ether as currency but the extension of the
prototype with sub-currencies of Ether like Wei,
Kwei or Szabo is trivial.

• The ID of the purchased item or good is stored
as a comment in the smart contract, since this ID
does not have a contribution to the process.

• We use events to alert the carrier to the order.
How these are intercepted in real world cases
and further processed by the carrier is not part of
this work.

A. Modularization in Solidity
This section shows how the smart contract in Solidity has

been modularized. As mentioned the Safe Remote Purchase
contract was derived from the Solidity website [20]. The
contract is called “Safe Remote Purchase” as it not only
covers the steps of entering a purchase agreement, but it also
ensures by means of financial incentives that the buyer pays
the goods and the seller really hands over the goods. The
deposit is refunded at the end of the contractual process.

The class diagram in Figure 3 shows the modularization
of the Solidity code of V1. On the one hand we work with
abstraction, on the other hand with typing. Abstraction is
used for the delivery variants: with and without a carrier.
Both contractual types have certain functions in common.
The two child classes “DeliveryContract” and
“PickupContract” inherit from the superclass
“BaseContract”. In the legal context this is called substitution
by Smith ([8]). The two classes also use enumerations to
represent their status. In Solidity, enumerations defined in a
superclass cannot be overridden or augmented by a derived
class. For this reason, the status is defined in the child
classes. As an additional case, a class “Options” was
introduced. As an example the functionality of the
cancellation of the sales was modeled as optional. The
abortion of the agreement results in the cancelation of the
whole smart contract.

Version V2 implementing the Satisloh purchase
agreement is designed accordingly. The super class
“SatislohBaseContract” is extended by three child classes
“ThreeInstallmentPaymentContract”, “Upfront
PaymentContract” and “AtEndPaymentContract” to
represent the possible payment conditions. In addition, there
is again the class “Options”. This class defines additional

Figure 3: Class diagram for modularization of contract V1

59

functions that can be used. In case of V2 on the one hand,
there is the function of the contract abortion and on the other
hand, the decision whether Satisloh is the installer or not. At
last there are the two enumerations, which represent the
available states. The class diagram is shown in Figure 4.

B. Modularization using Blockly
The Blockly framework was chosen as development

environment since it is used in several cases to introduce
non-computer specialists to a programming language. MITs
Scratch language is one example of this. Here children learn
to program without the need of first learning the syntax of a
programming language. In [22] the advantages of using this
kind of programming language are explained. Our research

hypothesis derived from SQ3 is, that using a Blockly based
framework will make it possible for people without an IT
background to understand smart contracts and define own
agreements.

The class diagram in Figure 3 forms the foundation of the
modularity in Solidity and therefore the blocks in Blockly. It
was explicitly ensured that no Solidity knowledge must be
present in order to create a smart contract with Blockly.
Furthermore, some contractual attributes, such as name, first
name, address or detailed description of the purchased item
were intentionally omitted since this information was not
necessary for the smart contract. This information is profile
information that belongs on the website of the sales platform
and not necessarily in the smart contract. It was decided that

Figure 4: Class diagram for modularization of contract V1

60

only the ID of the buyer and seller, the price, as well as the
ID of the purchased item should be stored in the smart
contract and thus stored in the blockchain. All necessary
information can be derived from these IDs.

The smart contracts are assembled in Blockly with the
help of three component groups: the types, the delivery
options and the contractual options. A type consists of
exactly one delivery option and several optional contractual
options.

1) Types represent the shell of the smart contract and
provide the source code for the BaseContract. For V1 the
type of a “Sales contract” has been defined as block with two
attributes: an editable field for the name or the ID of the
purchased item as well as an editable field for the selling
price in Ether (see Figure 5).

2) Delivery options depict the ways the item reaches the
buyer. On the one hand the object can be picked up (block
“pick up”) and on the other hand it can be delivered (block
“deliver”). It is up to the seller to define which option is
chosen since only one per contract is possible. At the same
time, the choice of the delivery option determines which
source code is generated for a “DeliveryContract” or a
“PickupContract” (see Figure 5). Using the block “deliver”,
the seller can define which carrier should be chosen for
delivery. Two examples have been implemented: “Post” or
“DHL”.

3) Contractual options offer the creator of the smart
contract the opportunity to expand the functionality. Several
options can be defined and combined per smart contract. For
a first proof of concept the option “is abortable by seller”
was created (see Figure 5).

Figure 6 shows an example of V2, the Satisloh machine
contract. The offer ID is for documentation purposes only.
The three payment options have been realized as blocks
symbolizing the payment milestones: 30/60/10 for the
“ThreeInstallment PaymentContract”, 100/0/0 for the
“UpfrontPayment Contract” and 0/0/100 for
“AtEndPaymentContract”. V2 also shows the combination of
two contractual options. The order is not relevant for the
correctness of the resulting Solidity code.

Figure 6: Example contract V2

Figure 5: Example contract V1 in the Blockly environment

61

V. EVALUATION

A. Evaluation setup
As a test environment for the Solidity code the integrated

development environment (IDE) Remix 2 was used. The
Remix IDE provides a blockchain in a sandbox to perform
simple functional tests.

The research team tested version V1 as a proof of
concept. The aim was to make corrections of technical errors
and reasoning errors that were not recognized before the
concrete implementation of the Solidity code of a class.

The evaluation of V2 first was conducted with a graduate
of the master's degree in law. The evaluation was conducted
as follows: firstly she was introduced to the use case, as well
as the principles of smart contracts and Blockly.
Subsequently, she was encouraged to use the application as
described. Afterwards she was interviewed using a
questionnaire.

As a second test person for V2 the internal lawyer of
Satisloh was selected. The system had to meet higher
requirements since, as a lawyer he knew all elements of the
Satisloh contract in detail. He knew which functionalities
had to be covered in order for the use case to correspond to
the real world conditions. Therefore, more critical feedback
was expected in this case. The evaluation procedure was
identical to the previous one, whereby the focus was clearly
placed on the criterion usability and correctness from a legal
perspective.

B. Evaluation results in detail
Table II at the end of this paper shows the results of the

empirical questions in a summarized version for both test
persons. Several aspects have been covered by the evaluation
procedure:

• Usability aspects from the view of non-
computer specialists.

• Completion of given tasks.

• Assessment from a legal perspective which has
been especially valuable since the test persons
both have a legal education background.

• Overall evaluation of the CDE.

• Assessment of the practicability for Satisloh
which could only be answered by the internal
lawyer.

C. Summary of the evaluation
In summary, the following findings can be drawn from

the evaluation:

All test persons found their way around the solution very
quickly. The design and intuitive handling in Blockly is easy

2 http://remix.ethereum.org

to grasp and a welcome support for non-computer specialists.
In addition, the solution can cover the minimum
requirements, which are needed for the implementation of a
legally valid purchase agreement.

On the other hand the evaluation has also shown some
drawbacks. The practical suitability is not quite given by the
internationally different legal situation and the current lack
of recognition of digital documents. Furthermore, the
handling of crypto-currencies as a means of payment is not a
viable option for many companies, so that conventional
currencies are still the standard. The lack of integration of
individual adjustments in the current solution has been
perceived as an obstacle. Attributes such as liability,
warranty and warranty processing are not yet offered by the
current solution. We are confident that this drawback can be
addressed by our further research.

VI. CONCLUSION
Our research has shown the high potential of a graphical

programming language like Blockly for the implementation
of smart contracts. From a legal perspective there remain
limitations and restrictions.

However the research sub-questions formulated in
chapter II could all be answered:

SQ1: The class design in Figure 3 and 4 show a
possible structure of the Solidity code to represent a legal
contract.

SQ2: The mapping between the Solidity code and the
Blockly objects is part of our CDE. A complete description
of the mapping had to be omitted due to the limitations of
space.

SQ3: The conducted evaluation and the following
interviews show the practicability of the CDE and the
complete solution.

In summary the research question RQ can be answered as
follows:

Yes, a legal contract can be modularized in a
syntactically and semantically correct way so that the
building blocks can be transformed into a Solidity smart
contract. The only limitations are complex, non-
standardized contract conditions.

Yes, non-computer specialists can handle such a
system. Blockly has proven its worth and is a great way to
bring smart contracts closer to non-computer specialists.

The blockchain technology and crypto-currencies are still
far from being trusted and accepted in a business
environment. First approaches like this research exist and
once the legal hurdles are taken, solutions will come into
production very fast. All eyes are on first movers who can
prove that this could be a viable option for the future of law.

62

VII. FUTURE WORK
Our first implementation and tests have shown the high

potential for further research in this area. The following
questions have been identified:

1) Exchange and return: The blockchain stores
transaction data irreversibly in a database. In the Swiss Law
(OR, Article 40a ff.) the right of withdrawal is clearly
regulated. It is also a service of many companies to increase
customer satisfaction. Smart contracts have to address this
right.

2) Dunning process: In case of late delivery a dunning
process has to be installed. A dunning for the payment is not
needed since the money is reserved from both partners by
entering the contract. Moreover a dunning process for
conferment and delivery has to be installed.

3) Oracles: Oracles offer a link to functionality outside
the blockchain. They can be used for the integration of
banking service providers or credit card companies.
However, through this integration an advantage of the
blockchain is lost as there is a third party, which interacts
between the end user and the blockchain.

4) Contract elements: It has been decided for the
presented implementation that due to the increasing
transaction costs, not all attributes of the contract are mapped
in the smart contract. However, as this extension would be
closer to practice, this could be further elaborated in another
work.

5) Crypto-currencies: As long as crypto-currencies are
not officially recognized on the market, an intermediate
solution with Fiat money should be made possible in order to
promote the use of smart contracts. The actual volatility of
crypto-currencies is another obstacle for legal contracts.

6) International acceptance: Digitalization progress
varies from country to country. It will take some time before
a smart contract is internationally accepted. This is a research
task for the legal domain.

ACKNOWLEDGMENT
The authors would like to thank Satisloh AG for the

support during creation and evaluation of contract V2 as well
as for the valuable feedback. Especially the two test persons
have given extremely valuable inputs and impulses for our
research.

REFERENCES
[1] A. Rosic. “5 Blockchain Applications That Are Shaping Your

Future”. Retrieved from <https://www.huffingtonpost.com/ameer-
rosic-/5-blockchain-applications_b_13279010.html> (2016,
November 28) Date accessed: 02/10/2018

[2] N. Szabo. “Smart Contracts”, Retrieved from
<http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDR
OM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contr
acts.html> (1994) Date accessed: 10/22/2017.

[3] V. Buterin: “Critical update re: DAO vulnerability”. Retrieved from
<https://blog.ethereum.org/2016/06/17/critical-update-re-dao-
vulnerability/> (2016, November 17) Date accessed: 02/10/2018.

[4] Google Developers. “Introduction to Blockly”.
<https://developers.google.com/blockly/guides/overview> (2016,
June 23). Date accessed: 12/27/2017.

[5] A. R. Hevner, S. T. March, J. Jinsoo, S. Ram. (2004). “Desicn
Science in Information Systems Research”.MIS Quaterly, 28(1), pp.
75–105, March 2004.

[6] K. Peffers , T. Tuunanen , M. A. Rothenberger, S. Chatterjee. “A
Design Science Research Methodology for Information Systems
Research”, Journal of Management Information Systems, 24:3
(2007), pp. 45-77

[7] S. T. March, G. F. Smith. “Design and natural science research on
information technology.” Decision support systems 15.4 (1995), pp.
251-266.

[8] H. E. Smith. “Modularity in Contracts: Boilerplate and Information
Flow”. 104 University of Michigan Law Review 1175, 2006.

[9] H. Pagnia, H. Vogt, F. C. Gärtner. “Fair Exchange”. The Computer
Journal, Volume 46, Issue 1, pp. 55–75, January 2003.

[10] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, J. Herrera-
Joancomartí. «A fair protocol for data trading based on Bitcoin
transactions”. Future Generation Computer Systems, 2017, in press.

[11] M. Giancaspro. “Is a ‘smart contract’ really a smart idea? Insights
from a legal perspective”. Computer Law & Security Review, vol. 33,
no. 6, December 2017, pp. 825-835, Elsevier.

[12] K. E. C: Levy. “Book-smart, not street-smart: blockchain-based smart
contracts and the social workings of law.” Engaging Science,
Technology, and Society 3 (2017) pp. 1-15.

[13] W. Egbertsen, G. Hardeman, M. van den Hoven, G. van der Kold, A.
van Rijsewijk. “Replacing Paper Contracts With Ethereum Smart
Contracts.” (2016).

[14] TCS. “Kaufvertrag”. Retrieved from
<https://www.tcs.ch/mam/DigitalMedia/PDF/Booklets/Kaufvertrag.p
df>. Date accessed: 10/24/2017.

[15] Comparis. “Auto-Kaufvertrag”. Retrieved from:
https://www.comparis.ch/carfinder/info/glossar/kaufvertrag>, Date
accessed: 10/24/2017.

[16] büez web services GmbH. “Kaufvertrag Vorlage Gratis Muster“.
Retrieved from: <http://www.conviva-plus.ch/?page=906>, Date
accessed: 10/24/2017.

[17] Muster-Vorlage.ch. “Kaufvertrag Vorlage Schweiz“. Retrieved from:
<https://mustervorlage.ch/kaufvertrag-vorlage/>, Date accessed:
10/24/2017.

[18] Anwaltsbüro Schmid Heinzen Humbert. “Tierkauf“. Retrieved from:
<http://www.tierrecht.ch/tierkauf.html>, Date accessed: 10/24/2017.

[19] Bundesversammlung der Schweizerischen Eidgenossenschaft. “OR
Art. 11.” (1911, March 30). Retrieved from
<https://or.gesetzestext.ch/artikel.cfm?key=12&art=Die_Entstehung_
der_Obligationen>, Date accessed: 10/15/2017.

[20] Solidity. “Safe Remote Purchase”. Retrieved from
<https://solidity.readthedocs.io/en/develop/solidityby-
example.html#safe-remote-purchase>, Date accessed: 11/23/2017.

[21] P. Zhang, J. White, D. C. Schmidt. “Design of Blockchain-Based
Apps Using Familiar Software Patterns to Address Interoperability
Challenges in Healthcare.” Vanderbilt University, Nashville, TN.
Retrieved from <http://www.dre.vanderbilt.edu/~schmidt/PDF/PLoP-
2017-blockchain.pdf>, Date accessed: 02/02/2018

[22] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E.
Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B.
Silverman, Y. Kafai. “Scratch: Programming for All”.
Communications of the ACM. vol. 51, no. 11, November 2009.

63

TABLE II: EVALUATION RESULTS

Test Aspect Test person 1 Test person 2
Finding the
required
blocks and
their meaning.

Since the blocks are highly aggregated
there was no problem in finding the
needed building blocks.

After a short introduction the legal counselor
succeeded in finding all necessary blocks.
He criticized that the blocks are all arranged at
the same level in Blockly. It would be more
logical if the contract type would be located at
a higher level and the contract components as a
subgroup of the respective contract type
The individual blocks are understandable and
fit to the standard contract according to the
terms and conditions of Satisloh AG.

Handling of
the blocks.

The handling was very intuitive. Wrong
positioning is technically prohibited.

The handling was intuitive.

Assemble a
given test
contract.

A given testcase was completed without
error on the first attempt.

A given testcase was completed without error
on the first attempt.

Correctness
from a legal
perspective.

To be valid, the contract must make it
clear that both parties give their mutual
consent. The object of purchase must
also be specified.
Willingness comes from the seller by the
placement of the offer and by the buyer
upon acceptance of the offer. Another
criterion is that the price is determinable.
In the solution, this is fulfilled by
explicitly defining the price in ether. The
contract would therefore be legally
binding.

The smart contract ensures contract execution,
especially the cash flow. However, the cash
flow is only a small part of a contract.
Currently the smart contract is not seen as a
substitute for a legal contract. A legal contract
will also cover issues such as liability,
warranty, guarantee processing, etc. which is
not part of the smart contract.

General
evaluation of
the solution
and the CDE.

The solution is easy to handle and is well
structured from a design perspective. A
potential user of this system does not
need an intense training.
It is questionable if more complicated
types of contracts including several
specific agreements (e.g. guarantee,
special conditions) can be handled in a
similar easy way.

The smart contract might be suitable for highly
standardized contracts and their settlement.
This is probably more likely the case for large
companies or machine-to-machine contracts. If
smart contracts become practicable, a solution
for easy creation of these contracts is needed,
since lawyers do not usually have the
necessary skills to program a contract. The
presented solution using Blockly is a valid
variant to generate the necessary code.

Evaluation of
the added
value for
Satisloh.

 The practical benefit for Satisloh AG is rather
low. The main reason for this is that the
standard contract is the exception. Most often
the standard contract is used and then heavily
modified in order to satisfy the customer needs.
In addition, neither Satisloh nor its customers
use crypto currencies.
The international legal situation is considered
problematic. The authorities of many states do
not even accept electronic documents as legally
binding. It will take some time until a smart
contract is accepted internationally, which is
essential for an international company like
Satisloh AG.

64

