2017 IEEE 1st International Conference on Cognitive Computing

An Automation Method of SLA Contract of Web APIs and
Its Platform Based on Blockchain Concept

Hiroki Nakashima*

Graduate Program of Software Engineering
Graduate School of Science and Engineering
Nanzan University
Nagoya, Japan
nakashimaorz@gmail.com

Abstract— As the number of Web APIs is rapidly increasing, it
is an urgent issue to discover qualified Web APIs and provide
value-added services by orchestrating them. However, most of
the interface descriptions of Web APIs are informal, and the
Web API SLA contracts, which are a key to quality of services
orchestration, require manual operations at the consumers.
Meanwhile, applying the blockchain, the distributed ledger
technology, to various domains beyond Fintech is attracting
attention because of its fault-tolerant and anti-tampering.
However, it isn’t applied to Web API SLA contracts, yet. In
this article, the authors propose a formal specification
description of Web APIs together with its associated SLA
specifications based on RDF, and an SLA contract method
based on the common SLA contract platform built on the
blockchain. We implemented the prototype of the SLA
contract platform, and applied it to the examples for
demonstrating its feasibility. Those experiences prove the
feasibility of the proposed Web API SLA contract method and
its supporting platform.

Keywords-Blockchin; WebAPI; SLA, RDF; Contract, Ethereum

I. INTRODUCTION

As the rapid spread of Web APIs, it is an urgent issue to
select qualified Web APIs, and orchestrate them to provide
value-added services [17]. However, most of the interface
descriptions of Web APIs are informal, and the Web API
SLA contracts, which are a key to quality of services
orchestration, require manual operations at the consumers
(Fig. 1). The manual contract is the bottleneck to the agility,
efficiency and quality of the service orchestration. The
contract, depending on the provider's contract platform,
might not be trusted.

UJ SLA Contract Platform |

L LY
5 Pravides |

Fig. 1 SLA Contract Method and Its Actors

Eoecif eation

LansL mar

* Currently with Freee K. K.

978-1-5386-2008-3/17 $31.00 © 2017 IEEE
DOI 10.1109/IEEE.ICCC.2017.12

32

Mikio Aoyama
Graduate Program of Software Engineering
Graduate School of Science and Engineering
Nanzan University
Nagoya, Japan
mikio.aoyama@nifty.com

II.

There are following two major obstacles in orchestrating
Web APIs, which are the research questions of this article.

RESEARCH QUESTIONS

(1) Informal specification descriptions of Web APIs and
their associated SLA, and
(2) The difference of SLA contract specifications and their

supporting platforms by the service providers.

III. RELATED WORKS

A. Web Service Level Agreement (WSLA)

WSLA is a specification language of SLA for Web
services requiring the obligations of each of the service
providers and the consumers for contracting the SLA [14]. It
assumes WSDL (Web Services Description Language) [4] as
the interface description, and SOAP messaging over HTTP.

B. Web API Description

Similar but different Web API description languages
have been proposed. They include API Blueprint [2], RAML
[1], and OpenAPI [16]. Development support tools are
provided for each language. However, most of the
description languages lack some formality and may cause
problems of agility, efficiency and quality in orchestrating
them [9].

C. RDF Document Verification based on the Shape

Shape is a constraint definition for RDF graph [19].
Resource Shape is one of the earliest definition languages of
a shape. The shape enables to verify properties of an RDF
graph against the constraints defined by the shape. Various
software tools have been developed to verify the RDF graphs
with RDF query language SPARQL (SPARQL Protocol and
RDF Query Language) [12]. The verification tools provide
the results of the verification and the details of the violation
parts of the RDF graph.

D. SHACL (Shapes Constraint Language)

SHACL is a definition language of the shape under
development [13]. The constraints on an RDF document
defined by SHACL can verify the document with SPARQL
queries. The specification of SHACL also includes the
definition of the output format of the verification result.

IEEE
computer
® psouety

E. Blockchain

Blockchain is the underlying technology of Bitcoin [15].
It is a distributed ledger based on the distributed database
and hash chain working on P2P network [3, 11]. It is
expected to apply to the contract conclusion and payment
from its fault-tolerant and anti-tampering [6]. However, the
SLA contract method has not been established, yet.

F. Smart Contract

Smart contract is a mechanism to digitize contracts and
record and execute them on the blockchain [5, 6, 7]. A smart
contract is defined as a program and is executed
autonomously according to its conditions. Smart contracts
enable the automation of contract conclusion that depends on
a trusted third party conventionally.

G. Ethereum

Ethereum is a decentralized application platform based
on blockchain [10]. A smart contract called contract
executes on the Virtual Machine called EVM (Ethereum
Virtual Machine). The operation is recorded in the
blockchain with the account information of the caller. The
accounts are guaranteed by a signature of public key
cryptography. With the contract, it is possible to handle
payments between users of Ether, the virtual currency on the
Ethereum.

IV. APPROACH

The proposed SLA contract is defined as a building
agreement based on an SLA specification description, and
concluding the contract.

A. RDF-Based Specification Description of Web APIs and
Associated SLA, and Verification with Shape

We propose a method of specifying Web API and
associated SLA based on RDF.

Since RDF is extensible, it is possible to describe the
specifications of the Web API and associated SLAs at the
equivalent level of conventional description methods. The
RDF graph can be verified against its shape. Therefore,
satisfaction of the SLA document against shape can
guarantee that the SLA contract satisfies the constraints.

B. SLA Contract Based on Blockchain

We propose a method of the SLA contract as an
application of Smart Contract based on blockchain.

In the conventional SLA contract method, a contract
depends on the contract platform of the service provider. On
the other hand, the proposed method together with the
common SLA contract platform operates on the P2P
environment independent of any specific platform of the
parties. A secure contract platform can be realized by the
fault-tolerance and anti-tampering of the underlying
blockchain. In addition, multiple providers can provide Web
APIs via the common SLA contract platform, and allow
consumers to use them via the common interface
specification description.

33

The proposed SLA contract can be automated as a smart
contract on the blockchain (Fig. 2).

| SLA Contract Platferm (Blockerain

i

b iy
||) {BpecHicatlen L—————
Coosumer - {HDF| i

Fig. 2 The proposed method and its actors

V. SLA SPECIFICATION DESCRIPTION OF WEB APIS

BASED ON RDF

We propose an RDF-based specification description of
both Web APIs and associated SLA. We call the
specification description as the SLA specification description
of the Web API. The RDF document of the SLA
specification description is called SLA documents.

A. Model of SLA Specification Description

We defined the SLA specification description based on
WSLA. For WSLA, the interface of Web APIs is defined by
WSDL. WSLA extends the WSDL for SLA description.

It is known that more than 90% of Web APIs is based on
REST [17]. However, WSDL description is based on SOAP
over HTTP, and does not support REST APIs. We defined a
specification description of Web APIs based on API
Blueprint [2] since it is one of a few commonly used
descriptions of Web APIs.

The specification description of API Blueprint employs
MSON (Markdown Syntax for Object Notation) as its
underlying description language. We also employ the
description of JSON and a part of JSON Schema for the
specification description.

We designed the SLA specification description of the
Web API with the following three specification descriptions.
The meta-model of the Web API SLA specification is shown
in Fig. 3.

(1) SLAMS: Specification Description of SLA
(2) APIMS: Specification Description of Web API
(3) TSON: Specification Description of JSON and a part
of JSON Schema
|$erw’ce |—)|Wet| API SLA Speciﬁcalionl
T

ll’.l

Fig. 3 Meta-model of Web API SLA Specification

B. SLAMS (SLA Metadata Specification)

We propose SLAMS as a specification description of
SLA in RDF.
1) Required Expression of SLA Specification Description
In order to contract the SLA with the specification
description, the SLA specification description requires to
express the following expression.

|5l

-

L Ydaraas I-Il::.:r:.l_l"::m: =rimLive
.

Aeomon Al

1 F T e
(B B - L

L
el el el w e

—_——

"

crmze~ix o rer
, *

has links to the APIMS resources, service
provider resources, service level resources
and Web API resources. The service level
has links to the monitor resource
(slams:SupportingParty), and a resource to

Taww evaluate the level of achievement of the

H s
- K 3 contracted service level. The Ilevel of
k = el il L achievement of service level is evaluated
Fur ey e b T TR IR Wi . : 3 1
R i ‘T"'TT‘.::#‘:"‘;.""“*"' "7t with the service level evaluation expression
Al e ol e el defined by the service level evaluation

(IS LY UL ER)
a

rprrprr—
|. EreTs .H--W:I

-~ oY

! .
e ey s i dagia s
¥ T

P A e 1
LEr S S R R HR R)

waw wcraa T ol e

LN

-,

-

v -
=

« o Mavidagdka

expression resource.

C. APIMS (API Metadata Specification)
We propose APIMS as a specification
description of Web APIs in RDF.
1) Required Expression of Web API

glumrmaeds S IR TLLE AT IEE _.';trllrl:lu.nd:h' TaslzaEnaTR . . o
Fg T gt T i Specification Description
Sy e o B s The proposed specification description of
e P T Web APIs requires to represent the
conventional specification descriptions of
Web APIs.
ey T ket
Fhile e
S | TNy P {
Ty e rmal ,-*’?—J
FRLSRRERSTIRL T | o g mna] | o0
" ._.-"' H .!._'_.--'h'\-'\.'a'..-n- -\.:I"
i rma I 1."'| “'\-\.l“'l-l-\.-r-.!_'_..-]' I-\..-|;J:u.- ! . E
E I:::.F\":.I.I'.n IM - I |.:-I:-p|: l"'"""‘i”".-t"r
A NPT T S -.._-!-I.!.I ks T P = -t
v ¥ ;, T S T P:.mr\-'u.w 4
EaTr] - 3 |<Ilj
|1. o -~ .'-\.__ = - j;\ -_.__ I
| i B T I . h.-...--rT _.r"‘. ||,."_w|,n.._t"'\-" '
. rI P | sandur _|- i :.'\-:I:l'l.
BETRe ~—] g
fimtet sy | e |
N b d | .-"'r.
'l:l-:'\:';-il--ﬂ Lagnnmma LR
-l rals by =i r .
| - Fig. 6 Data Model of TSON
T e i R 2) Data Model of APIMS
| S el * ” | We show the data model of SLAMS in
TR i S, W eu— 4 b Fig. 4. . .
- e Mmem oM The definition of APIMS is based on API
e Blueprint. The description of APIMS is
LSl — defined with an RDF whose root resource is

Fig. 5 Data Model of APIMS

apims:APIMS (2). The apims:APIMS
resource has a hierarchic structure

(1) Description of service level and its obligations
(2) Information on the parties involving in the contract
(3) Link for extending Web APIs

2) Data Model of SLAMS

We show the data model of SLAMS in Fig. 4.

Definition of SLAMS is based on WSLA. A
specification of SLA is defined by a resource that root
resource is slams:SLAMS (1). The slams:SLAMS resource

(1) slams: means the name space of SLAMS.

34

corresponding to that of API Blueprint. The apims:APIMS
has links to tson:TSON (3) resources.

D. TSON (Triple Syntax for Object Notation)
We propose TSON as a specification description of
JSON and a part of JSON Schema in RDF.
1) Required Expression of TSON

(2) apims: means the name space of APIMS.
(3) tson: means the name space of TSON.

TSON represents an orchestration between resources by
reusing Web resources. The following two characteristics are
required to TSON.

(1) Compatibility with MSON
(2) Reusing the RDF regular resource
2) Data Model of TSON

We show the data model of TSON in Fig. 6. TSON is
described as a RDF graph based on MSON and ECMA-404
[8]. The specification of TSON is defined with resources
whose root resource is tson:TSON.

E. Shape of Specification Description of Web APIs and
SLA

We defined the shape of the three specification
descriptions with using SHACL [13] since SHACL is the
most powerful shape description language under
standardization at W3C. The shape enables to verify the SLA
document. We show the part of one of a part of shape of
SLAMS in Fig. 7.

@prefix slams: <http://slams.example.org/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.example.org/> .

slams:Shape a sh:Shape ;
sh:targetClass slams:SLAMS ;

sh:property [
sh:predicate slams:activateDate ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:datatype xsd:dateTime ;
13

Fig. 7 A Part of Shape of SLAMS

F. Valiation of SLA Specification Description with Shape

We show a part of a SLAMS graph in Fig. 8. When the
shape applies to this RDF graph, the value type of
slams:activateDate constraints xsd:dateTime, but this value

@prefix xsd:
<http://www.w3.0rg/2001/XMLSchema#> .
@prefix ex: <http://example.org/> .

@prefix slams: <http://slams.example.org/> .
@prefix slams-sslap:
<http://slams.example.org/sslap/> .

ex:slams a slams:SLAMS ;
slams:activateDate
"2017-01-01T00:00:00Z" " xsd:string ;
slams:serviceProvider ex:orge ;
slams:apims ex:apims ;
slams:servicelLevel ex:slo .

ex:orgd a slams:ServiceProvider ;
slams:name "Weather Company inc." ;

Fig. 8 A Part of SLAMS graph

35

type is xsd:string. There is a violation for value type
constraint.

We show the validation result graph in Fig. 9. This graph
includes the following information of identifying constraint
violation point.

(1) sh:focusNode: subject that violation causing

(2) shiresultPath: property that violation causing

(3) sh:value: object that violation causing

(4) sh:resourceConstraintComponent: violated constraint
(5) sh:sourceShape: shape that violation causing

If there is no violation, this resource does not generate. If
SLA document has no violation when the three shape applied,
SLA document is valid for SLA contract.

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix ex: <http://example.org/> .
@prefix slams: <http://slams.example.org/> .

[a sh:validationReport ;
sh:conforms false ;
sh:result [
a sh:ValidationResult ;
sh:resultSeverity sh:Violation ;
sh:focusNode ex:slams ;
sh:resultPath slams:activateDate ;
sh:value
"2017-01-01T00:00:00Z" " xsd:string ;
resultMessage
"slams:activateDate expects a literal of
xsd:dataTime." ;
:sourceConstraintComponent
sh:DatatypeConstraintComponent ;
sourceShape slams:Shape .

sh:

datatype

sh:

Fig. 9 A Part of Validation Result Graph

VI. SLA CONTRACT METHOD BASED ON THE BLOCKCHAIN
A. SLA Contract Based on Common SLA Contract
Platform

We propose an SLA contract method based on common
SLA contract platform. The consumer can contract the Web
APIs with the common interface of the common contract
platform. The consumer can also contract all the Web APIs
registered to the platform, and reuse them with the messages
supported by the platform.

1) Actors

Fig. 10 shows the relationships between the actors and
messages exchanged on the in the SLA contract platform.

In the proposed method, we defined the three actors,
including service consumer, service provider, and SLA
contract platform. SLA contract can conclude between them.
However, to make the proposed contract method work, the
following two problems need to be solved.

S Cainws Pk
hfanias
o =l

bilmaiian
o R

Sgrym T,
E Maryrmey

— - A AL anmn F
snner b L e

E-R LRI

ETIRN E T -

. LozmHra o~ 4

5 (el

i e
| = & Mocamnerd o Aol = | Fendwn Frofmennne wierloe

Fig. 10 Messaging Structure between Actors

(1) Concluding a contract with the invalid SLA document
(2) The service provider does not meet the service level
and obligations
To solve the issues, we introduce the following two
additional actors:
a) SLA document validator, and
b) Service performance monitor.
2) SLA Document Validtor

The SLA document validator validates a SAL document
registered to the SLA contract platform, and responds to the
platform with the validation results.

A consumer can get the SLA document and associated
validation results, and confirm the validity of the SLA
document. Therefore, SLA document validator enables to
avoid a contract with invalid SLA documents.

3) Service Performance Monitor

The service performance monitor monitors the service
the performance of service provisioning based on the SLA
document. If the monitor detects any violation, it sends a
notice to the SLA platform.

4) Common SLA Contract Platform

To realize the SLA contract, the SLA contract platform

provides the following seven services.

(1) Registering the specification description of Web APIs

(2) Registering the validation result of SLA documents

(3) Providing the specification description of Web APIs,
validation result of SLA documents, and execution
information of any obligations.

(4) Paying the usage fee from consumer to provider

(5) Providing the information on contracted consumers

(6) Registering the refund request corresponding to the
service violation

(7) Accepting the refund request

B. SSLAP (Smart SLAP Platform)

We propose the SSLAP (Smart SLA Platform) as a

common SLA contract platform based on smart contract.
1) Resource identification by URI

The above mentioned services (1) and (2) of SSLAP
accepts the URI of SLA document. Then, the service (3) can
get the SLA document from the service provider.

A smart contract has a limitation of the size of data, and
refer only the URI of documents to identify the document on
the Web.

2) Contract Conclusion with Inner Currency

36

The services (4) and (7) of SSLAP need the payment
function. These functions use inner currency of the smart
contract. Sending the inner currency is programmable as a
smart contract, and assures the conclusion of SLA contract.

3) Assurance of Document Publisher Based on the
Signature

There is a risk of spoofing of the publisher, that is, a
publisher registered the SLA document which actually other
publisher published. Therefore, identifying the SLA
document with a URI is not enough to assure the identity of
the publisher. To avoid the problem, SSLAP use the
signature of the publisher.

Fig. 11 shows the messaging structure for the identify
validation of publisher of an SLA document.

| 5L
Hrrsdr Adchean | Licroa e |lamn
Farame=ad | Leds
T L
Canpin = Provaidar
Browider Fobliz oy =1 Slarium Froe, Privals Mo
. DoouTHN:)
Frormder fd s | —dazh
! LA
| Lresares] | bash |" Bavamerk

Fig. 11 Identity Validation of Publisher of an SLA Document

A provider gets a hash of an SLA document, and register
it to SSLAP with service (1). SSLAP register the publisher
address and hash of the SLA document to a storage on a
blockchain. The provider generates the signature with the
hash and its own private key, and attach it to the published
document.

A consumer gets the address of a provider, a hash of the
document, and the URI of the SLA document, and gets the
SLA document based on the URI. The consumer generates
the provider public key from the signature and hash of the
SLA document, and validates the identity of the document
publisher.

4) Assurance of Web API Request Publidsher Based on
the Signature

The provider must identify the consumer when providing
services. Fig. 12 shows the messaging structure for
validating the identity of the Web API request.

A consumer gets a hash of the SLA contract for paying
on the SSLAP with service (4). SSLAP registers the

| EELAP
I_-J_A.IL CLA llank
EExETTE
3 '
Crnaminer Forvsivlad
Ora
Lo vl 1 R R |
1 Slonuiira . H
| staren oy StHuh [| Lz, Adtkrre |
[[TR
H ks "".‘ HTTR
Rrmmins

Fig. 12 Validation of Web API Request

addresses of contract parties and hash to a storage on a
blockchain. The consumer generates the signature with the
hash, its own private key and nonce, and attach it to the Web
API request.

When a provider gets the Web API request, it gets the
address of the consumer and a hash of the contract. The
provider generates the provider public key from the signature
and hash of the contract and nonce, and validates the request
publisher.

5) Model of SSLAP Contract
Fig. 13 shows the model of SSLAP contract.

sContracts
SSLAP

o addSlaistring _endpoint)

o getSlaluint256 _id)

© SeSA0pEN(UIni256 _id)

o setSlaClose(uint256 _id)

© addPlaniuint256 _slald, uint256 _fee, uint256 _span)

o getPlan{uint2 56 _slald, wint256 _planid)

© setPlanOpen{uint2 56 _slald, uint256 _planid)

o setPlanClose{uint256 _slald, uint256 _planid)

o addValidationResultiuint256 _slald, bool _validPublisher, bool _validDocument, string _resource)
o getValidationResul{uint256 _slakd, uint256 _validationResultid)

© subscribePlan{uint256 _slakd, uint256 _planid)

o requestRefund{uint256 _slald, uint2 56 _planid, uint256 _subscribeld, uint2 56 _amount)
o getRefundRequestiuint256 _slald, uint256 _refundRequestid)

o acceptRelundiuint256 _slald, uint256 _reqid)

1
faggregation

0.

sStiures
aStruciures
Plan

O bytes32 hash 1
0 address publisher o
0 string endpoint -

0 wint fee
£3 wint span

0 bool open 0 bool open
o uint
¥ 1
1
/ \ ;)
/'aggregation |aggregation aggregation
/ \
o/ M |
U..,_/ Q. 1 o
wSEruciures K
wSIruCTures
i Resul RefundRequest T T—
o bytes32 hash O bytes32 hash Subscription
o address publisher O ackiress pablisher 0 bytes32 hash
o bool validPublisher 0. Sin 5‘:’;}:;' 0 address publisher
o boeaocumers | & 5 St e
& uint tmestam i —
a L 0 wint timestamp

Fig. 13 Model of SSLAP Contract

The SSLAP works with the following five entities for
realizing the services of the common SLA contract platform.
(1) SLA: Information on SLA document
(2) Plan: Subscribe plan of Web API
(3) Validation Result: Information of validation
(4) Subscription: Information of SLA contracting
(5) Refund Request: Information of refund

The Information of SLA, Plan, and Refund Request have
“open” property indicating the availability. The property of
SLA and Plan are updated when the functions such as
setSlaOpen are called. The property of Refund request is
updated when the consumer receives the refund payment.

The expiration time of SLA contract is set by the values
of “activate” property and “finished” property. Those values
are decided by the time of contract conclusion and duration
of activation, i.e. the value of span property.

All the contract functions have execution permission.
When the function called, its caller must be validated.

The subscribePlan function and acceptRefund function
involve a payment. When the function called, its amount
must be validated.

37

VII. IMPLEMENTATION OF SSLAP PROTOTYPE AND ITS
EVALUATION

A. SSLAP Contract

We implemented the SSLAP contract on Ethereum with
the contract definition language, Solidity, of 300 LOC.
1) Applying to The Example Case
We deployed the implemented contract to EVM emulator
on JavaScript, and applied it six use cases (Fig. 14).

SfLEl
[EHe B HS
Feokdilsl

Db i il [dares s o)
516 el S Harm |

] Pieida

-

b 1 1
A oe NedameEe| I.-"" 'ul'hlhrrl-ﬂ":rlll-ll'll
L i Fnidnr

Fig. 14 The SSLAP Contract on Ethereum

| O

We show the part of one use case scenario SLA contract
execution that includes the SLA contract conclusion and the
Web API request validation.

The Plan 0 of the SLA 0 was set the fee, 1,000,000,000
wei (4). The account that has following parameter was used
for the evaluation.

(1) Private Key:
"@x1be3fd99e9819aca25bec9383602e49fe6dfa9d6e75b1dl
16555663a7138539f"

Public Key:
"0x31800bflebed99f11977d81f6ba71lcdccO670664c7ebe7a
03ea33de0@982el5e@ebfad233d83e4al54c63157fdbb2f991f
0aPe39ff3f444f626eef762869a5e8a"

Address:

"0xb2c5a2fe26458387822481bc718a4f92f6e91ad4"

(2)

(3)

Fig.15 shows the execution result of the subscribe request
for Plan 0 of SLA 0.

> subscribe(0,0) with 1000000000 wei
Result: "0x6a696d59deaf6ad98489800e74be94b5
faaboof26ef2765e8dc835a98e65bc9f000 (...
Transaction cost: 130964 gas.
Execution cost: 109436 gas.
Decoded:
bytes32 hash: 0@x6a696d59deaf6ad98489800e7
4be94b5faab0of26ef2765e8dc835a98e65bcof
uint256 id: ©

Fig. 15 The Subscribe Request for Plan 0 of SLA 0.

The message generated from nonce 0 and the hash of an
SLA is given below:

"0x6a696d59deaf6ad98489800e74be94b5faab00f26ef2765¢e
8dc835a98e65bcof,0"

The signature generated from the message is given
below:
"0x3099eb8b5ff4a74fb9e3968ff64abd75f197d57fa526d3
59517db0d2296d8b451b9e15cb908028e4b2be99363e4c4f7
bfda77e0f42b668d041c21c834e7beac21c”

4 wei is the minimal unit of Ether, the Ethereum inner currency.

The public key generated for the signature and message
is given below:
"0x31800bf1ebed99f11977d81f6ba71cdcc0670664c7ebe7al

3ea33de0982e15e0ebfad233d83e4a154c63157fdbb2f991f0a
0e39ff3f4441626eef762869a5e8a"

The address generated from the public key is given
below:

"Oxb2c5a2fe26458387822481bc718a4f92f6e91ad4"

From the above results, the identity of the Web API

request publisher was verified.
2) Evaluation

Applying the proposed method to the example use cases
proved the concept of SLA contracting based on the common
SLA contract platform.

The restriction of the invocation of unpermitted
consumer, and operations on the unpermitted document can
be implemented with “modifier” functions.

A function shown Fig. 16 is invoked for recording an
SLA document onto the blockchain after validating the
permission of the consumer and document.

Function setSlaOpen(uint _id)
slaExsist(_id)
onlyOwner(_id) {
slas[_id].open = true;

i

Fig. 16 setSlaOpen Function

Fig. 17 shows the function of permission validation. The
variable “msg” is build-in. The message “msg.sender” has
the address of callee. This function compares the address of
SLA register and the function caller, and raises an exception
if they are not identical (Fig. 17).

If the contract function with a payment called with not
enough fee, an exception will be raised.

The function shown in Fig. 18 has a payable modifier. It
can attach an arbitrary amount of ether for function call. If
the attached amount of ether is greater than or equal to the
required fee of a subscribe plan, sla.publisher.send(plan.fee)
becomes true, and the function executes. If not, an exception
will be raised.

The validation of SLA document and Web API request
were implemented with Ethereum basic functions, ecsing
function and ecrecover function.

B. APIMS Document Genetator

The APIMS document generator generates an APIMS
document from an API Bluerpint document. It is used by
service providers.

It is implemented in Node.js of 742 LOC based on the
API Blueprin parser (Fig. 19).

Modifier onlyOwner(uint _id) {
if (slas[_id].publisher != msg.sender)
throw;

—2

}

Fig. 17 The Permission Validate Function

38

function subscribe(uint _slaIld, uint _planId)
payable slaExsist(_slaId)
planExsist(_slald, _planId)
returns (bytes32 hash, uint id) {

SLA sla = slas[_slald];

Plan plan = sla.plans[_planId];

if (sla.publisher.send(plan.fee) == false)
throw;

id

= plan.subscriptions.length++;
hash =

sha256(_slald, _planId, now);

Subscription subscription =
plan.subscriptions[id];
subscription.hash = hash;

subscription.publisher = msg.sender;

uint t = now;

subscription.activate

subscription.finished
sla.plans[_planId].span;

t;
t +

}
Fig. 18 Subscribe Function
Hl.x
R Ly
AET f |
&F1 Dhzprnl w T ARG
i draler "] AFINES Aoncruler o
ALY e P b Fona) T LS TR 1 0]

Fig. 19 APIMS Document Generator

1) Applying to the Example Use Cases
We generate the APIMS documents of 3,200 LOC from
the 20 examples in API Blueprint of 2,300 LOC [1].
2) Evaluation
We compared the number of entities in the API Blueprint
documents with the number of resources in the APIMS
documents, and verified the no missing entities in the
generated APIMS. This experiment assures the compatibility
from API Blueprint to APIMS.
Fig. 20 shows the function generating the ResourceGroup
resource.

VIII. DISCUSSION

A. Extensibility of Web API Specification

The contract based on the proposed common SLA
contract platform is driven by the consumers, and the change
history of the SLA documents should be traceable.
Furthermore, an extensibility of the SLA documents is
needed for service orchestration.

However, conventional specification descriptions of Web
APIs are based on Markdown [2] and JSON [16] [18], and
hard to extend. The proposed specification description is
based on RDF, and can be extendable by its very nature.

var getResourceGroupNode =
function(writer, resourceGroup) {
// resourceGroup Data

var triples =[{
predicate: 'rdf:type’,
object: 'apims:ResourceGroup'
Y
var name = resourceGroup.name;
if(name != "") {
triples.push({
predicate: 'apims:name',
object: '"' + name + '"'
s

¥

var resources = resourceGroup.resources;
resources.forEach(
function(resource, index, resources) {
triples.push({
predicate: "apims:resource",
object: getResourceNode(
writer, resource
)
}
)s
s

return writer.blank(triples);

s

Fig. 20 Function Generating the ResourceGroup

B. Verifiability of Web APIs

Specification descriptions of the most Web APIs are in
natural language, and can't be verified. Thus, they are error
prone. However, the proposed Web API specification
description can be verified by shape, and can assure the
quality of the specifications. Furthermore, it is possible to
mine the Web APIs with SPARQL queries based on the
shapes [1] [13]. This is particularly useful if it is required to
orchestrate a large number of Web APIs.

C. Security of SLA Contract Platform

The conventional SLA contract is concluded with the
information of a payment service, and its behavior and
security are closed under the hood of service providers. With
the proposed method, the contract is concluded with the fact
of inner currency payment with using open data.

D. Provider Evaluation Based on Performance

The open data of Web APIs may differ by providers. The
open data of the SLA contract based on SSLAP are stored on
blockchain and traceable. The quality and trust of the
providers can be evaluated with the open data.

E. On Demand Usage of Web APIs

When a consumer uses a new Web API, the deployment
and contracting of the service are required. The contract
based on the proposed common SLA platform automates that
process, and the consumer can use it on demand.

39

IX. FUTURE WORKS

We are considering the following future works.

(1) Minimize the cost of contract execution

(2) Implementing the verification method of Web API and
SLA documents with SHACL

(3) Extending the description of obligations and metrics.

X.

The service orchestration of Web APIs is increasing, but
needs painful and error prone tasks [9]. This article proposed
the specification description of Web APIs and associated
SLA based on RDF, and SLA contract platform based on the
blockchain. We applied them to example use cases, and
demonstrated the feasibility. The proposed system enables to
conclude SLA contracts based on a secure contract platform
on demand and provide services to consumers on demand.

CONCLUSION

XI.

apiaryio,apiaryio/api-blueprint/examples/,
https://github.com/apiaryio/api-blueprint/tree/master/examples,
(2017-02-02 Accessed).

API Blueprint, https://apiblueprint.org, (2017-02-02 Accessed).

M. Atzori, et al., Blockchain-Based Architectures for the Internet of
Things: A Survey, University College of London, May 2016, 8 pages.
K. Ballinger, et al., Basic Profile Version 1.0, http://www.ws-
i.org/profiles/BasicProfile-1.0-2004-04-16.html, 2004.

V. Buterin, A Next Generation Smart Contract and Decentralized
Application Platform, Ethereum White Paper, 2014, https:/
www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-
a_next_generation_smart_contract_and_decentralized_application_p
latform-vitalik-buterin.pdf (2017-2-20 Accessed).

K. Christides, et al., Blockchains and Smart Contracts for the
Internet of Things, IEEE Access, Vol. 4, 2016, pp. 2292-2303.

K. Delmolino, et al., Step by Step towards Creating a Safe Smart
Contract, Financial Cryptography and Data Security (Proc. of FC
2016), LNCS Vol. 9604, Springer, Feb. 2016, pp. 79-94.

ECMA, Standard ECMA-404 The JSON Data Interchange Format,
https://www.ecma-international.org/publications/standards/Ecma-
404.htm, (2017-02-02 Accessed).

T. Espinha, et al., Web API Growing Pains: Stories from Client
Developers and Their Code, Proc. of CSMR-WCRE 2014, IEEE
Computer Society, Feb. 2014, pp. 84-93.

Ethereum Foundation, Ethereum Project, https://www.ethereum.org,
(2017-02-02 Accessed).

A. Hari, et al.,, The Internet Blockchain: A Distributed, Tamper-
Resistant Transaction Framework for the Internet, Proc. of ACM
HotNets 2016, ACM, Nov. 2016, pp. 204-210.

S. Harris, et al., SPARQL 1.1 Query Language, Mar 2013,
https://www.w3.org/TR/sparql1 1-query/.

H. Knublauch, et al., Shapes Constraint Language (SHACL), Aug
2016, https://www.w3.org/TR/shacl/.

H. Ludwig, et al., Web Service Level Agreement (WSLA) Language
Specification, IBM, 2003.

S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System,
https://bitcoin.org/bitcoin.pdf (2017-02-02 Accessed).

OpenAPI Specification, http://swagger.io/specification/, (2017-02-02
Accessed).

ProgrammableWeb, https://www.programmableweb.com/, (2017-02-
02 Accessed).

RAML, http://raml.org, (2017-02-02 Accessed).

A. G. Ryman, Resource Shape 2.0, 2014,
http://www.w3.org/Submission/2014/SUBM-shapes-20140211/.

M. Vukovic, et al., Riding and Thriving on the API Hype Cycle,
CACM, Vol. 59, No. 3, Mar. 2016, pp. 35-37.

REFERENCES
(1]
(2]
(3]
(4]
(3]

(6]
(7]

(8]

9]

(10]
[11]

[12]
[13]
[14]
[13]
[16]
[17]

(18]
[19]

[20]

