
Authenticated Range Query Using SGX
for Blockchain Light Clients

Qifeng Shao1,2, Shuaifeng Pang1, Zhao Zhang1(B), and Cheqing Jing1

1 School of Data Science and Engineering, East China Normal University,
Shanghai, China

{shao,sfpang}@stu.ecnu.edu.cn, {zhzhang,cqjin}@dase.ecnu.edu.cn
2 School of Software, Zhongyuan University of Technology, Zhengzhou, China

Abstract. Due to limited computing and storage resources, light clients
and full nodes coexist in a typical blockchain system. Any query from
light clients must be forwarded to full nodes for execution, and light
clients verify the integrity of query results returned. Since existing
authenticated query based on Authenticated Data Structure (ADS) suf-
fers from significant network, storage and computing overheads by virtue
of Verification Objects (VO), an alternative way turns to Trust Execu-
tion Environment (TEE), with which light clients have no need to receive
or verify any VO. However, state-of-the-art TEE cannot deal with large-
scale application conveniently due to limited secure memory space (i.e,
the size of enclave in Intel SGX is only 128MB). Hence, we organize data
hierarchically in both trusted (enclave) and untrusted memory and only
buffer hot data in enclave to reduce page swapping overhead between
two kinds of memory. Security analysis and empirical study validate the
effectiveness of our proposed solutions.

Keywords: Blockchain · Authenticated query · MB-tree · Intel SGX

1 Introduction

Blockchain, the core technology of Bitcoin [9], is a decentralized, trustless,
tamper-proof and traceable distributed ledger managed by multiple participants.
Specifically, by integrating P2P protocol, asymmetric cryptography, consensus
algorithm, hash chain structure and so forth, blockchain can achieve trusted
data sharing among untrusted parties without the coordination of any central
authority.

All nodes of blockchain are usually classified as full node and light node.
Full node holds a complete copy of block data, while the light node (also called
light client) only stores block header or other verification information due to
limited storage resource. Queries from a light node are forwarded to full nodes
for execution, but the integrity of query results returned from full node needs to
be authenticated by light client itself.

Current blockchain systems have limited ability to support authenticated
queries of light clients. Most of them are merely suitable for digital currency field,
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12114, pp. 306–321, 2020.
https://doi.org/10.1007/978-3-030-59419-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59419-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-59419-0_19

Authenticated Range Query Using SGX for Blockchain Light Clients 307

e.g., Simple Payment Verification (SPV) in Bitcoin can only answer queries of
transaction existence. To the best of our knowledge, no present system is able to
handle range query and verification accordingly, like selecting transactions satis-
fying “2019-11 ≤ Timestamp ≤ 2019-12”. With the popularization of blockchain
technology among traditional industries, the desire to support various authenti-
cated queries becomes stronger.

In this study, we focus on authenticated range query, a representative task.
The authenticated range query can be tracked back to outsourcing databases,
where clients delegate data to remote database servers and initiate database
query. Although the signature chaining [10] and Authenticated Data Structure
(ADS), e.g., Merkle Hash Tree (MHT) [8] and Merkle B-tree (MB-tree)[3], are
widely adopted to guarantee the correctness and completeness of query results,
neither fits for blockchain since the former triggers tremendous signature com-
puting cost and the latter raises the cost of VO, e.g., Merkle cryptographic
proofs. Since computational cost of signature chain is determined by hardware
and may not diminish in a short time, we propose a solution of blockchain based
on ADS. Nevertheless, applying existing ADS to blockchain is quite challenging.

– The full node returns query results along with cryptographic proofs, known
as VO. On the client side, the splicing and authentication of these VO require
significant network and computing resources.

– As updates lead to hash computing and signature costs, traditional ADS solu-
tions assume that the databases they’re serving have fixed or fewer updates,
which is not applicable to the case of blockchain since blocks are appended
to the blockchain periodically.

Consequently, a new solution that assures the integrity of query results and
further effectively reduces the costs of verification and maintenance needs to be
devised.

Recently, the emergance of trusted hardware (Trusted Execution Environ-
ment, TEE) that supports secure data accessing offers a promising direction
of designing range query authentication schemes. For example, Intel Software
Guard Extensions (SGX) [7] can protect code and data from disclosure or mod-
ification, and enforce the security level of application. SGX allows to create one
or more isolated contexts, named enclaves, which contain segments of trusted
memory. Hence, to guarantee integrity and confidentiality, sensitive codes are
installed in enclave and run on untrusted machines.

The special region of isolated memory reserved for enclave is called Enclave
Page Cache (EPC). Currently, EPC has a maximal size of 128 MB, of which
only 93 MB are utilizable for applications. EPC page faults occur when the
code accesses the pages outside of enclave. Page swapping is expensive, because
enclave memory is fully encrypted and its integrity also needs to be protected.
Two built-in wrapper codes, ecall and ocall, respectively invoke enter and exit
instructions to switch the execution context. These two codes add overhead of
approximately 8,000 CPU cycles, compared to 150 cycles of a regular OS system
call [12]. Though the emergence of SGX solves the secure remote computing

308 Q. Shao et al.

problem of sensitive data on untrusted servers, the performance implications of
SGX remain an open question. When applying Intel SGX to blockchain, effective
optimization strategies must be considered.

In summary, this paper proposes an efficient query authentication scheme
for blockchain by combining ADS-based MB-tree with Intel SGX. To the best
of our knowledge, it is the first step toward investigating the problem of query
authentication with SGX over blockchain. Our main contributions are as follows.

– An efficient SGX-based query authentication scheme for blockchain is pro-
posed, with which light clients have no need to receive or verify any VO.

– A solution of integrating MB-tree with SGX is devised in view of the space
limitation of enclave memory. Only frequently-used MB-tree nodes are cached
in enclave.

– To reduce the cascading hash computing cost brought by item-by-item
updates on MB-tree, a hybrid index consisting of an MB-tree and a skip
list in enclave is provided.

– We conduct empirical study to evaluate the proposed techniques. Experimen-
tal results show that the efficacy of the proposed methods.

The rest of the paper is organized as follows. Section 2 reviews existing
works. Section 3 introduces the problem formulation. Section 4 presents our solu-
tion of authenticated range query with SGX. The batch update is discussed in
Sect. 5. The security analysis is presented in Sect. 6. The experimental results
are reported in Sect. 7. Section 8 concludes this paper.

2 Related Work

To the best of our knowledge, no existing work explores authenticated range
queries using SGX for blockchain. In the following, we briefly review related
studies and discuss relevant techniques.

Query Authentication over Traditional Database. Query authentication
has been extensively studied to guarantee the results’ integrity against untrusted
service providers. There are two basic solutions to ensure correctness and com-
pleteness, signature chaining [10] and ADS. For signature chaining, requiring
every tuple being signed, the servers using aggregated signatures always return
only one signature regardless of the result set size, and the client can process
aggregate verification. Signature chaining features small VO size and commu-
nication cost, but it cannot scale up to large data sets because of high cost
of signing all tuples. For ADS, MHT [8] and MB-tree [3] are widely adopted.
MHT solves the authentication problem for point queries. MB-tree combines
MHT with B+-tree to support authenticated range queries. As MB-tree enables
efficient search as B+-tree and query authentication as MHT, our proposed solu-
tion uses this approach. MB-tree has also been studied to support authenticated
join [14] and aggregation queries [4]. These works are more about outsource
databases, insufficient for the case of blockchain.

Authenticated Range Query Using SGX for Blockchain Light Clients 309

Query Authentication over Blockchain. SPV, introduced by Satoshi
Nakamoto [9], can only verify if a transaction exists in the blockchain or
not. Hu et al. [2] leverage smart contract for trusted query processing over
blockchain, focusing on file-level keyword searching without investigating the
indexing issue. To support verifiable query over blockchain, Xu et al. [13] propose
an accumulator-based ADS scheme for dynamic data aggregation over arbitrary
query attribute, but blockchain clients need to receive and verify VO. Zhang et
al. [15] present a gas-efficient scheme to support authenticated range query by
utilizing multiple MB-trees.

Blockchain with Intel SGX. Present blockchain systems mainly perform
software-based cryptographic algorithms to ensure the trusty of data. The
appearance of trusted hardware, Intel SGX, opens up new possibility to enhance
integrity and confidentiality of blockchain. Town Crier [16], an authenticated
data feed system between existing web sites and smart contracts, employs
SGX to furnish data to Ethereum. Ekiden [1] enables efficient SGX-backed
confidentiality-preserving smart contracts and high scalability. BITE [6] lever-
ages SGX on full nodes, and serves privacy-preserving requests from light clients
of Bitcoin. Although these existing studies harmonize blockchain and SGX, none
of them explore query authentication with SGX.

3 System Overview

Architecture. Figure 1 elucidates our system model that consists of a full node
and a light client. The queries from the light client are forwarded to the full
node for processing. The full node must prove it executes queries faithfully and
returns all valid results, since query results may be maliciously tampered with.
Traditional solutions organize data with MB-tree, and provide light clients with
both query results and cryptographic proofs (VO) for further authentication. In
our case, however, a big VO, especially when processing range queries, may be
beyond the processing capacity of light clients like mobile devices. Consequently,
our system is equipped with Intel SGX, providing integrity and confidentiality
guarantees on untrusted full nodes. The query results are returned to clients
through a secure channel. Clients can trust these query results without receiving
or verifying any VO. Considering limited enclave memory, we organize data
hierarchically in trusted memory (enclave) and untrusted memory, where skip list
and MB-tree are adopted in trusted memory and untrusted memory respectively.
Skip list in enclave buffers appended blocks. It merges block data into MB-tree
periodically once exceeding the predefined threshold. It is worthy to note that a
hot cache, residing in enclave, caches the frequently-used MB-tree nodes. These
nodes will no longer be verified in future queries. More details are discussed in
Sects. 4 and 5.

Adversary Model. In this study, we assume that there is no specific affiliation
between light clients and full nodes. The full node is treated as a potential adver-
sary since no participant in the blockchain network trust others. To address such

310 Q. Shao et al.

Fig. 1. System architecture.

a threat and free the clients from trivial verification process, we apply TEE-based
Intel SGX to process query with integrity assurance. Since enclave memory is
limited, we employ an authenticated index structure, MB-tree, outside of enclave
to guarantee data integrity. Even though an adversary may compromise OS and
other privileged softwares on a full node, it cannot break the hardware security
enforcement of Intel SGX. With our hardware-based model, clients can trust the
correctness and the completeness of query results under the following criteria.

– Correctness. All results that satisfy the query conditions haven’t been tam-
pered with.

– Completeness. No valid result is omitted regarding the range query.

4 Authenticated Range Query with SGX

SGX can protect code and data from disclosure or modification. Hence, an ideal
solution to guarantee query results’ integrity is to install the entire storage engine
and execute all queries in enclave, which eliminates computing and network over-
heads induced by VO in traditional solutions. However, the memory limitation
of enclave makes it inadequate to handle large scale applications. In this study,
we design a mechanism to organize data hierarchically in untrusted and trusted
memory. Meanwhile, the data in untrusted memory is organized as MB-tree and
the frequently-accessed internal nodes are cached in enclave as trusted check-
points. A skip list, maintained in trusted memory, buffers newly appended block
data. Once the capacity of the skip list reaches a threshold, a merge operation
is launched from skip list to MB-tree.

4.1 MB-tree in SGX

In this solution, the root node of MB-tree is always resident in enclave, and
the rest are loaded into enclave according to the query request during runtime.
After verifying the Merkle proofs of a node, it is believed to be trusted and used
for searching. The frequently-used nodes are cached in enclave to implement
authenticated query cheaply, and the rest nodes are outside enclave to alleviate
the size limitation of enclave.

Authenticated Range Query Using SGX for Blockchain Light Clients 311

Enclave
Memory Root

Verify

Query

...

Blockchain

(a) Point query with SGX.

Enclave
Memory Root

...

Blockchain

Query1

Verify1 Verify2 Verify3

Query2

(b) Range query with SGX.

Fig. 2. Query and verify on MB-tree with SGX.

In MB-tree, each node contains f − 1 index keys and f pointers to the child
nodes, where f is the fanout. Like MHT, each pointer is augmented with a
corresponding digest. In the leaf node, each digest is a hash value h = H(r),
where r is the record pointed by pointer entry. In the internal node, each digest
is a hash value h = H(h1||...||hf), where h1, ..., hf are the hash values of the child
nodes. Then, recursively up to the root node, the contents of all nodes in the
entire tree are reflected to the root node by hash. Since the root node involves
digest about every node, the entire tree data can be verified based on the root
node. Therefore, attackers cannot modify or replay any value in the tree. MB-
tree can be created either from scratch or based on existing data. The enclave
on an untrusted full node is firstly authenticated through remote attestation of
Intel SGX. Once passing the remote attestation, we provision the root node into
the enclave through a secure channel. When the MB-tree maintaining thread
in enclave receives a new block, transactions are extracted and verified based
on the verification rules of blockchain before updating the corresponding index
items.

We now illustrate the query and authentication process on an MB-tree
with SGX. Figure 2(a) demonstrates authenticated point queries on MB-tree
in enclave. The query process is the same as the traditional one, during which,
accessing nodes from root to leaf, appending hashes of sibling nodes to VO and
returning the query results. SGX can perform all the authentication works, so
light clients don’t have to receive or verify any VO. Since enclave may cache
previously verified nodes, when computing Merkle proofs from bottom to up,
i.e., verification path, the authenticating process can be early terminated once
encountering a node located in enclave, as Fig. 2(a) illustrates (the red dashed
arrow).

Different from point queries, authenticated range queries ensure the correct-
ness and completeness of results at the same time. Thus, the left and right
boundaries of results should also be included in VO for further completeness
authentication. As demonstrated by red dash arrows in Fig. 2(b), the results of
range query involve multiple consecutive leaf nodes, i.e., a number of verification
paths. The authenticating process goes like this: the leftmost and rightmost leaf
nodes are responsible for computing the node digest by considering query results,

312 Q. Shao et al.

Main
Memory

Query
Processor

Request
Handler

Blockchain
Light Client

Blockchain
Full Node

Encrypted
Query & Result

freq>=2

freq<2

Cold CacheHot Cache
(Verified)

Enclave
Memory

Fig. 3. Cache architecture of query processing.

sibling hashes and boundaries synthetically, while the leaf nodes located between
them only compute the digest based on all results in the node. Same as point
query, a verified node in enclave can cut short the verification path and further
reduce the computational cost. Specifically, when all the leaf nodes covered by
the results are in enclave, there is no need to perform any verification. Thus,
SGX simplifies and improves the query authentication.

4.2 Cache Architecture of Query Processing

To improve accessing efficiency of MB-tree, we design three-level storage archi-
tecture, including disk storage, cold cache and hot cache. Figure 3 details the
cache architecture. Disk storage at the lowest level persists the entire MB-tree.
Cold cache, on untrusted memory, caches the MB-tree nodes to reduce I/O cost.
Hot cache, on trusted enclave memory, only caches frequently-used and verified
MB-tree nodes to alleviate verifying cost. We integrate these two types of caches
and design an efficient cache replacement strategy.

When applying simple and efficient LRU cache replacement algorithm to
MB-tree in enclave, burst accesses and sequential scans will make enclave read
in nodes only accessed once. These nodes will not be swapped out of enclave
in a short time, which lowers the utilization of the enclave memory. Motivated
by the LRU-2 cache replacement algorithm [11] that keeps around the last 2
reference times for each page to estimate evicted page, we propose a replacement
algorithm, Hierarchical Least Recently Used (H-LRU), for the two-level cache
architecture composed of hot cache and cold cache. H-LRU considers more of
the reference history besides the recent access for each node and addresses the
problems of correlated references.

As shown in Algorithm 1, when a node of MB-tree is accessed for the first
time, it’s read out from the disk and buffered in the cold cache, thus avoiding
the I/O cost in the subsequent accesses. When such node is accessed again, if
that’s been quite a while since the last access, i.e., uncorrelated reference, it
is promoted to the hot cache, thus eliminating the verifying cost in the future
queries. Algorithm 1 uses the following data structure.

– HIST(n,t) denotes the history of reference times of node n, discounting
correlated references. HIST (n, 1) denotes the last reference, HIST (n, 2) the
second to the last reference.

Authenticated Range Query Using SGX for Blockchain Light Clients 313

Algorithm 1: H-LRU
Input: Node n, Time t /* n is referenced at time t */

1 if n ∈ HotCache then
2 if isUncorrelated(n, t) then
3 move n to the head of HotCache;

4 else if n ∈ ColdCache then
5 if isUncorrelated(n, t) then
6 if HotCache.isFull() then
7 move the tail out of HotCache;

8 add n to the head of HotCache;

9 else /* n is not in memory */

10 if ColdCache.isFull() then /* select replacement victim */

11 min ← t;
12 foreach Node i ∈ ColdCache do
13 if t − LAST (i) > CR Period&&HIST (i, 2) < min then

/* CR Period: Correlated Reference Period */

14 victim ← i; /* eligible for replacement */

15 min ← HIST (i, 2);

16 move victim out of ColdCache;

17 add n to ColdCache;
18 HIST (n, 2) ← HIST (n, 1);
19 HIST (n, 1) ← t;
20 LAST (n) ← t;

21 function IsUncorrelated(n, t)
22 flag ← FALSE;
23 if t − LAST (n) > CR Period then /* an uncorrelated reference */

24 HIST (n, 2) ← LAST (n);
25 HIST (n, 1) ← t;
26 LAST (n) ← t;
27 flag ← TRUE;

28 else /* a correlated reference */

29 LAST (n) ← t;

30 return flag;

– LAST(n) denotes the time of the last reference to node n, which may be a
correlated reference or not.

Simple LRU may replace frequently referenced pages with pages unlikely to
be referenced again. H-LRU moves hot nodes to the enclave memory and permits
less referenced nodes to stay in normal memory only. When hot cache is full, it
evicts the least recently used node. When cold cache is full, it evicts the node
whose second-most recent reference is furthest in the past. Our algorithm takes
both the recentness and frequency into consideration and avoids the interference

314 Q. Shao et al.

of related references, so as to improve the utilization of the enclave memory and
achieve better performance.

5 Batch Updates

For MB-tree, whichever leaf node is updated, its digest will be propagated up to
the root node, which incurs significant computational cost. If the entire subtree
to be updated is cached in enclave, and after a certain period, the digest changes
caused by multiple updates are merged and written back to the root node for
one time, the update cost of MB-tree will be significantly reduced. In addition,
different from traditional databases that are randomly updated at any time, the
characteristic of blockchain that periodically submits transactions by block is
very suitable for the scenario of batch updates undoubtedly.

Since only the signed root node is trusted in traditional MB-tree, its digest
changes must be propagated to the root node immediately when any leaf node
is updated. When dealing with frequent updates, such a pattern will surely
downgrade system performance. With SGX, all nodes cached by enclave are
verified and trusted as mentioned before. The propagation of digest changes can
end at an internal node located in enclave memory.

As shown in Fig. 4(a), Update1, Update2, and Update3 respectively represent
three update operations on different leaf nodes. When combined with SGX,
the parent node of three updates is verified and trusted, so they just need to
propagate the digest to the parent node. When the parent node is swapped out
by the replace algorithm, or its structure changes due to splitting or merging,
the updated digest reflecting three changes will be propagated to the root node.

5.1 Batch Updates with Hybrid Index

In addition to the cost of propagating digest, if the updated MB-tree occurs node
splitting and merging, it will further amplify the update cost. The lock operation
for updating node will block the query and limit concurrency. To alleviate the
cost of MB-tree update, previous works generally adopt batch update that defers
the installation of a single update and waits for a batch of updates to process at
specific time intervals. For blockchain, it accumulates multiple update transac-
tions to a block according to the time interval or the number of transactions and
submits them by blocks, so the blockchain is more suitable for batch update.

This paper presents a dual-stage hybrid index architecture. As shown in
Fig. 4(b), it allocates additional trusted space in enclave to create a skip list
buffering the incoming new blocks. Compared to B+-tree, red-black tree and
other balanced trees, skip list is more suitable for memory index and has no
additional rebalancing cost. Our hybrid index is composed of skip list and MB-
tree, where the skip list located in enclave, is used to index newly appended
block, and the MB-tree, located in disk, is used to index historical block. Query
processor searches the skip list and MB-tree at the same time, and then merges
the results returned by skip list and MB-tree to get the full results. A bloom
filter atop of the skip list is added to improve query efficiency.

Authenticated Range Query Using SGX for Blockchain Light Clients 315

5.2 Merge

Enclave
Memory Root

...

Blockchain

Update3Update2Update1

Deferred Update

(a) Deferring digest updates.

SkipList
Enclave
Memory

Untrusted
Disk

MB-tree

Merge

QueryNew Block

Indexing

Indexing

Bloom
Filter

(b) Dual-stage hybrid index.

Fig. 4. Batch update and merge.

The main purpose of applying merge mechanism in this paper is to utilize batch
updates to alleviate the cost of the digest propagation in MB-tree. Blockchain
updates data by block periodically, which is different from existing databases, so
its merging algorithm and merging strategy are different from previous designs.

There are two solutions for batch updates in MB-tree: full rebuild and delta
update. Full rebuild merges and reorders existing leaf nodes of MB-tree with
new data and rebuilds the entire MB-tree. Delta update adds new sorted data
to the MB-tree in batch. When full rebuild is applied to MB-tree, it will incur
considerable cost to recompute the digest of the entire MB-tree and block queries
for a long time. Therefore, delta update is selected as our merging algorithm, as
shown in Algorithm2.

The batch update algorithm is efficient because it performs searching and
propagates digest updates only once for all keys belonging to the same leaf.
When advancing down the tree, the algorithm applies the lock-coupling strategy
of nodes, which means only the leaf node and its parent are locked exclusively.
The parent is kept locked until all child nodes have been updated and the digest
changes from them have been applied.

To find the leaf for a search key, the procedure Search starts from the root
and advances down along a path by using search key. If an internal node is full
or half full, the split or merge operation is triggered accordingly.

Since our system has hot and cold caches for query processing, and updates
are processed in batch to reduce MB-tree update cost, we treat the skip list as
a write buffer that continuously accumulates new blocks from the blockchain
network and move the entire data out of skip list at one time.

Further, it is necessary to determine the specific threshold about how many
blocks are buffered for one merge. If the number of buffered blocks is too small
to form a considerable sequence length, the MB-tree update cost will not be
effectively reduced. Considering the query time in skip list, too many buffered
blocks will take longer to query and process the merge.

316 Q. Shao et al.

Algorithm 2: Batch Updates
Input: Node root, Transaction[] txs /* txs is sorted in skip list */

1 i ← 1;
2 parent ← root; /* searching from root */

3 X-LOCK(parent);
4 while i ≤ txs.length do
5 leaf ← Search(parent, txs[i].key);
6 repeat
7 if txs[i].op = INSERT then
8 insert (txs[i].key, txs[i].poniter, txs[i].digest) into leaf;
9 else

10 delete (txs[i].key, txs[i].pointer, txs[i].digest) from leaf;

11 i ← i + 1;

12 until all txs belonging to leaf have been inserted/deleted OR parent has
either n − 1 children when deleting or 2n children when inserting ;

13 if parent is not in enclave then
14 verify parent and move it into enclave;

15 updateDigest(leaf, parent); /* propagating digests to parent only */

16 UNLOCK(leaf);
17 if txs[i].key is in the range of parent and parent has either n − 1 or 2n

children OR txs[i].key is not in the range of parent then
18 updateDigest(parent, root); /* propagating digests to root */

19 UNLOCK(parent);
20 parent ← root; /* re-searching from root */

21 X-LOCK(parent);

22 UNLOCK(parent);

23 function Search(parent, k)
24 node ← getChildNode(parent, k); /* node is the child of parent */

25 X-LOCK(node);
26 while node is not a leaf node do
27 if node contains 2n keys then
28 split(parent, node);
29 else if node contains n − 1 keys then
30 merge(parent, node);

31 UNLOCK(parent);
32 parent ← node; /* making node as new parent */

33 node ← getChildNode(parent, k);
34 X-LOCK(node);

35 return node;

Authenticated Range Query Using SGX for Blockchain Light Clients 317

6 Security Analysis

In this section, we perform security analysis. Our basic security model of range
query authentication is secure, if the underlying hash function is collision-
resistant and security enforcement of SGX cannot be broken.

Tampering Attack. As the frequently-accessed nodes of MB-tree and the entire
skip list are resident in enclave, attackers cannot tamper with them. Although,
the other nodes of MB-tree located in normal memory can be tampered by
adversaries, the integrity of query results returned can been authenticated by
the verified nodes in enclave. Using the query results and VO, query processor
reconstructs the digests up to the root, and compares the root digest against that
in enclave. Considering a node being successfully tampered with, there exist two
MB-trees with different nodes but the same root digest. This implies a successful
collision of the underlying hash function, which leads to contradiction.

Rollback Attack. In rollback attack, the untrusted node can replace the MB-
tree with an old version, which makes the clients read stale results. A trusted
monotonic counter can protect the latest version of MB-tree. To detect and
defend the rollback attack, we use SGX monotonic counter service or rollback-
protection system such as ROTE [5] to guarantee the freshness of query results.

Untrusted Blockchain Data. In our solution, the SGX on an untrusted full
node performs all verification for clients, yet the untrusted full node can deliver
incorrect or incomplete blocks, even not send the latest block to the enclave. To
protect against such compromise, a client needs to acquire the latest block hash
from other sources, compares the block hash to that from the SGX, and deduces
if the results are integrity or not.

7 Implementation and Evaluation

In this section, we evaluate the performance of our proposed scheme that inte-
grates MB-tree and Intel SGX, including authenticated query, cache architecture
and batch updates.

7.1 Experimental Setup

We use BChainBench [17], a mini benchmark for blockchain database, to gener-
ate synthetic blockchain dataset that consists of 1 million transactions, of which
each key has 8 bytes and value has 500 bytes. We implement and construct an
MB-tree with 2 KByte page size. For each node of MB-tree, both the key and
pointer occupy 8 bytes and the digest uses 20 bytes, which makes each node
index 56 entries (�(2048 − (8 + 20))/(8 + 8 + 20)�=56). Initially, our MB-tree
is stored on disk, except that a copy of the root node is located in enclave. All
experiments were conducted on a server, which is equipped with a 32 GB RAM
and an Intel Core i7-8700k CPU @2.70Hz, and runs Ubuntu 16.04 OS with Intel
SGX Linux SDK and SGXSSL library.

318 Q. Shao et al.

(a) Point query. (b) VO size of point query.

(c) Range query. (d) VO size of range query.

Fig. 5. Query performance and VO size.

7.2 Query Performance

Figure 5(a) manifests the performance of point query in Zipfian distribution.
With the increment of skew parameter, the throughput of MB-tree in SGX is
about 1.6 times more than traditional MB-tree, because the frequently-used MB-
tree nodes in enclave cut short the verification path. In Fig. 5(b), the VO size of
MB-tree in SGX decreases by one or two order of magnitude. For traditional MB-
tree, the query authentication is evaluated on the server, so the performance of
light clients on mobile devices becomes worse when the verification is performed
locally. For MB-tree in SGX, the verification is accomplished by SGX on full
node, so that light clients avoid receiving and processing VO.

Figure 5(c) demonstrates the performance of range query in Zipfian distribu-
tions. The executing time of MB-tree in SGX is merely 60% of the traditional
MB-tree when the selectivity is set to 50%. In Fig. 5(d), the reduction of VO size
is more remarkable, since range query owns much more verification information
than point query. Tens of kilobytes VO exhibit significant network overhead for
lights clients, especially for mobile devices.

Authenticated Range Query Using SGX for Blockchain Light Clients 319

7.3 Cache Performance

Figure 6(a) reports the performance of H-LRU and LRU. We run 100,000 point
queries, and report cache hit rate, i.e., the number of accessing MB-tree nodes
located in hot cache to the number of accessing all nodes. We change the cache
size from 5% to 40% of the cache size of the highest hit rate. H-LRU provides
about 10% improvement over traditional LRU. The performance boost is higher
with smaller cache size.

In Fig. 6(b), we randomly mix some range queries in point queries, which
will start scan operations occasionally. We set the probability of starting a range
query to 0.1, i.e., one-tenth of the generated queries are range queries. We vary
the selectivity based on the cache size of the highest hit rate. The experiments
confirm that H-LRU is more adaptable than LRU.

(a) Hit rate vs. cache size. (b) Hit rate vs. selectivity.

Fig. 6. The effect of the H-LRU.

7.4 Update Performance

(a) Total update time. (b) Total I/O. (c) Number of re-hashing

Fig. 7. Update performance.

320 Q. Shao et al.

Figure 7 presents the performance of batch update. Due to insufficient space,
batch update only consists of a number of uniform insertions, ranging from
1% to 50% of the total blockchain data size. When the insertion ratio reaches
50%, the update time and the number of re-hashing are diminished by about 4
times, and I/O cost is reduced by about 6 times. It is because MB-tree is bulk-
loaded with 70% utilization, and batch insertions quickly lead to many split
operations, which creates a lot of new nodes. Although most of improvements
are contributed by reducing of I/O cost, our batch update algorithm avoids hash
computing being propagated to the root node and reduces the lock operations.
Traditional MB-tree requires one expensive signature re-computation for every
update. In order to show only the update performance of the tree, we did not
consider that factor.

8 Conclusion

We explore the problem of authenticated range queries using Intel SGX for
blockchain light clients. The main challenge lies in how to design an authen-
ticated query scheme with memory-limited enclave. We propose a solution by
integrating MB-tree with SGX, which caches frequently-used MB-tree nodes
in trusted enclave and the rest nodes in untrusted memory. An efficient cache
replacement algorithm, H-LRU, is devised for the two-level cache architecture,
which considers more of the reference history to improve enclave memory utiliza-
tion. To reduce the cascading hash computing brought by updates on MB-tree,
we provide a hybrid index consisting of an MB-tree and a skip list in enclave,
which buffers multiple new blocks in skip list and regularly merges them to MB-
tree in batch. Security analysis and empirical results substantiate the robustness
and efficiency of our proposed solution. In future, we plan to extend our idea to
process other authenticated queries, such as join and aggregation.

Acknowledgment. This research is supported in part by National Science Founda-
tion of China under grant number U1811264, U1911203, 61972152 and 61532021.

References

1. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy,
and performant smart contracts. In: 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 185–200. IEEE (2019)

2. Hu, S., Cai, C., Wang, Q., Wang, C., Luo, X., Ren, K.: Searching an encrypted
cloud meets blockchain: A decentralized, reliable and fair realization. In: IEEE
INFOCOM 2018-IEEE Conference on Computer Communications, pp. 792–800.
IEEE (2018)

3. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: Proceedings of the 2006 International Con-
ference on Management of Data, pp. 121–132. ACM (2006)

4. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Authenticated index structures
for aggregation queries. ACM Trans. Inf. Syst. Secur. (TISSEC) 13(4), 32 (2010)

Authenticated Range Query Using SGX for Blockchain Light Clients 321

5. Matetic, S., et al.: ROTE: rollback protection for trusted execution. In: 26th
USENIX Security Symposium (USENIX Security 17), pp. 1289–1306 (2017)

6. Matetic, S., Wüst, K., Schneider, M., Kostiainen, K., Karame, G., Capkun, S.:
BITE: bitcoin lightweight client privacy using trusted execution. In: 28th USENIX
Security Symposium (USENIX Security 19), pp. 783–800 (2019)

7. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. HASP@ISCA 10(1) (2013)

8. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

9. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
10. Pang, H., Tan, K.L.: Authenticating query results in edge computing. In: Proceed-

ings of the 20th International Conference on Data Engineering, pp. 560–571. IEEE
(2004)

11. Robinson, J.T., Devarakonda, M.V.: Data cache management using frequency-
based replacement, vol. 18. ACM (1990)

12. Weisse, O., Bertacco, V., Austin, T.: Regaining lost cycles with hotcalls: a fast
interface for SGX secure enclaves. ACM SIGARCH Comput. Archit. News 45(2),
81–93 (2017)

13. Xu, C., Zhang, C., Xu, J.: vChain: enabling verifiable Boolean range queries over
blockchain databases. In: Proceedings of the 2019 International Conference on
Management of Data, pp. 141–158. ACM (2019)

14. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing
in outsourced databases. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pp. 5–18. ACM (2009)

15. Zhang, C., Xu, C., Xu, J., Tang, Y., Choi, B.: Gem̂ 2-tree: a gas-efficient structure
for authenticated range queries in blockchain. In: 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pp. 842–853. IEEE (2019)

16. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authen-
ticated data feed for smart contracts. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 270–282. ACM (2016)

17. Zhu, Y., Zhang, Z., Jin, C., Zhou, A., Yan, Y.: SEBDB: semantics empowered
blockchain database. In: 2019 IEEE 35th International Conference on Data Engi-
neering (ICDE), pp. 1820–1831. IEEE (2019)

https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21

	Authenticated Range Query Using SGX for Blockchain Light Clients
	1 Introduction
	2 Related Work
	3 System Overview
	4 Authenticated Range Query with SGX
	4.1 MB-tree in SGX
	4.2 Cache Architecture of Query Processing

	5 Batch Updates
	5.1 Batch Updates with Hybrid Index
	5.2 Merge

	6 Security Analysis
	7 Implementation and Evaluation
	7.1 Experimental Setup
	7.2 Query Performance
	7.3 Cache Performance
	7.4 Update Performance

	8 Conclusion
	References

