
On Building Efficient Temporal Indexes on
Hyperledger Fabric

Himanshu Gupta, Sandeep Hans, Sameep Mehta, Praveen Jayachandran

IBM Research, India
higupta8@in.ibm.com, shans001@in.ibm.com, sameepmehta@in.ibm.com, praveen.j@in.ibm.com

Abstract—We discuss the problem of constructing efficient
temporal indexes on Hyperledger Fabric, a popular Blockchain
platform. The temporal nature of the data inserted by Fabric
transactions can be leveraged to support various use-cases. This
requires that temporal queries be processed efficiently on this
data. Currently this presents significant challenges as this data
is organized on file-system, is exposed via limited API and does
not support temporal indexes.

In a prior work [1], we presented two models for creating
temporal indexes on Fabric which overcome these limitations
and improve the performance of temporal queries on Fabric.
The first model creates a copy of each event inserted and stores
temporally close events together on Fabric. The second model
keeps the event count intact but tags metadata to each event s.t.
temporally close events share the same metadata.

In this paper, we present variants on these two models which
are better able to handle the skew present in Fabric data. We
discuss the details and show that these variants significantly
outperform the approaches presented in [1] when Fabric data
contains skew. We also discuss the performance tradeoffs among
these variants across various dimensions - data storage, query
performance, event insertion time etc.

I. INTRODUCTION

A blockchain is a distributed, shared ledger that records

transactions between multiple and often mutually distrust-

ing parties in a verifiable and permanent way. Popularity

of this technology has led to the development of a num-

ber of blockchain platforms e.g., Hyperledger Fabric [2],

Ethereum [3], Parity [4] etc. As more and more transactions

happen, the data on the blockchain systems may grow to a

large volume. This data is inherently temporal in nature and

analytics of this data can generate valuable business insights

and support various use-cases e.g., lineage, visualization, re-

porting, compliance etc.

The Hyperledger Fabric and many other blockchain systems

make a distinction between current and historical states of the

data. Data pertaining to various events is ingested on these

systems in form of key-value pairs. For a key k, the latest

pair is called the current state of the key k while all the pairs

including the latest pair form the historical states of key k. The

collection of current states for all keys is termed as state-db

while the collection of the historical states is termed as history-

db. The state-db data hence is a snapshot of the history-db data

at the latest timestamp. Fabric houses the state-db data in a

database while the history-db data is distributed across a set

of blocks on file-system. Each block contains the details of a

set of transactions and a link to the previous block.

This paper concerns with the temporal analytics of data

stored on Hyperledger Fabric [2] history-db. Currently any

temporal analytics on Fabric history-db data is costly as Fabric

exposes this data using a limited API and does not support any

temporal indexing. We discuss the Fabric architecture and the

API it exposes in section II in detail. Efficient processing of

temporal queries requires quick retrieval of the events within

any duration [t1,t2]. However, this operation is costly on

Fabric. On Fabric, retrieval of key-value pairs which belong

to key k and which describe events within duration [t1,t2],

requires deserialization of those blocks which satisfy the

following two conditions - (a) the block contains a transaction

which ingested a key-value pair with key k and (b) this pair

describes an event which happened before or at t2 i.e., within

duration [0,t2]. Since we can’t get the relevant events by

accessing only those blocks containing events ingested within

duration [t1,t2] and we need to access all blocks containing

events within duration [0,t2], this operation incurs significant

cost on Fabric.
In a previous paper [1], we proposed two indexing models

- M1 and M2, to mitigate this problem. The first model

presented a paradigm wherein we collect events within suitably

chosen intervals and ingest them on Fabric as part of additional

key-value pairs. This data is then used to accelerate the

processing of temporal queries. The second model presented a

paradigm wherein we don’t ingest additional pairs but tag suit-

ably chosen intervals as metadata to the events being ingested

on Fabric. Using experiments on uniformly distributed data,

we discussed how these two models simulate the construction

of temporal indexes on Fabric , allow faster retrieval of Fabric

history-db data in any query interval [t1,t2] and hence allow

efficient execution of temporal queries on Fabric.
In this paper, we build on this work and investigate the per-

formance of models M1 and M2 when the data contains skew

and is not uniformly distributed. We propose new variants

which provide better performance on datasets containing skew.

These variants concern with how to choose indexing intervals

while building model M1 and M2 indexes. The contributions

of this paper are hence as follows.

• We review and summarize the models M1 and M2 de-

veloped in our previous work [1]. We further benchmark

the performance of the models M1 and M2 on data which

contains skew and is not uniformly distributed. We also

discuss the challenges, models M1 and M2 face while

indexing the skewed data (Section V, VI, VII)

294

2018 IEEE 11th International Conference on Cloud Computing

2159-6190/18/$31.00 ©2018 IEEE
DOI 10.1109/CLOUD.2018.00044



• In [1], we discuss a variant of model M1 and M2 wherein

index intervals of equal length are created. In this paper,

we present two new variants for models M1 and M2.

The first variant creates indexing interval in a way so

as the number of events in each index interval are more

than or equal to a threshold. The second variant takes

both interval-length and event-count into account. We

discuss the details, how these variants construct indexes

(Section VI, VIII-A).

• Using experiments on synthetically generated data, we

show that the index performance is better when we take

both index interval length and the event count in account.

We also discuss trade-offs among the three variants

across various dimensions - storage, query performance,

data ingestion on Fabric, index construction time etc

(Section VI, VIII-A).

• For model M2, the proposed variants take a long time

to build indexes. We next discuss a probabilistic version

of these variants which builds the indexes much faster

on Fabric history-db data while providing only a little

degradation in the temporal query execution times. We

also discuss its performance and the trade-offs involved

(Section IX).

II. THE HYPERLEDGER FABRIC ARCHITECTURE

The Hyperledger Fabric is a permissioned blockchain plat-

form. The business logic that governs how different parties

interact or transact with each other is encoded as a chaincode.

A chaincode executes transactions which ingest events on

Fabric in form of key-value pairs. A chaincode can insert any

number of key-value pairs on Fabric as well as read the current

states of any number of keys. For a key, a Fabric transaction

persists only one state on the ledger. If a transaction ingests

two pairs with the same key, only the latest state is persisted

on the ledger and the earlier state will not be recorded as part

of history-db data.

The details of a set of transactions are stored together to

form a block. Transaction details include the key-value pairs

ingested, commit time, response status etc. Fabric enforces

read-write conflicts on the transactions being part of the same

block i.e., if a transaction modifies the state of key k, no other

following transaction in the same block can read the state

of key k as well as modify the state of key k. However a

following transaction in the same block can modify the state

of key k if it does not read the state of key k.

A. State-db and History-db

The ingested key-value pairs are stored on state-db and

history-db. For each key k, the state-db stores its current state

i.e., the latest key-value pair with key k. The history-db records

all the states (i.e., all pairs ingested on Fabric) including the

current states. The state-db is located on a database (LevelDB

or CouchDB) but the history-db data is distributed across a

set of blocks on file-system.

The state-db contains the current states which Fabric trans-

actions potentially modify. Smart contracts also access these

states to make business decisions. Past states are neither mod-

ified by transactions nor accessed to make business decisions.

The Fabric hence keeps the current states separate from past

states so that the current states can be efficiently accessed and

modified. This separation of past and current states helps in

improving Fabric latency and throughput.

B. Accessing Fabric States

Fabric exposes the following API to access the states.

• GetState(k): This call returns the current state of key k.

• GetHistoryForKey(k) (GHFK): For key k, this call

returns all the past states of key k in the history.

• GetStateByRange(k1,k2): The state-db data is sorted on

keys. Given a range, we can retrieve the list of keys in

state-db which are within this range and their current

states. We also call this a range scan query.

For each key k, the Fabric maintains a mapping of the

blocks which contain the details of at least one transaction

which ingested a key-value pair with key k. Thus given a

key k, the Fabric knows the set of block-ids which together

contain the details of all transactions which ingested a key-

value pair with key k. To process a GHFK call, the Fabric

first retrieves the list of these block-ids. It then deserializes the

content of these blocks and extracts out the values inserted.

These blocks are deserialized lazily i.e., a GHFK call returns

an iterator and as more and more values are accessed through

this iterator, more and more blocks are deserialized. If we

stop accessing the iterator at a certain point, the blocks

with the remaining values are not deserialized. A GHFK call

retrieves the historical states from the blocks which have been

committed. A GHFK call does not retrieve past states ingested

by transactions which are part of the current block which is

being formed and hence is yet to be committed.

C. Why temporal analytics is inefficient on Fabric history-db?

The Fabric does not provide any indexing capability on

the history-db data. There is hence no generic call to retrieve

those historical values for a key which were ingested between

two timestamps t1 and t2. To retrieve such values, one needs

to execute a GHFK call which as discussed above requires

scanning all states for key k between timestamps 0 and t2.

We need to then filter all those states which were ingested

between t1 and t2. Larger the value of t1, the more inefficient

this operation gets as more and more redundant states in range

[0,t1] need to be retrieved.

III. RELATED WORK

Efficient handling of temporal queries has been a very well

researched topic in data management community [5], [6], [7].

In this paper, we look at how we can improve the processing

of temporal queries on-chain on Fabric. Blockchain analytics

is an emerging area and only a few studies have looked at

the issues concerning analytics of blockchain data. Recently

the BLOCKBENCH system [8] benchmarked the popular

blockchain implementations - Fabric [2], Ethereum [3] and

Parity [4] against a set of database workloads. Similar efforts

295



include - benchmarking Fabric and Ethereum against transac-

tional workloads [9], Bitcoin performance measurements [10]

etc. The focus of this paper is on temporal analytics of Fabric

history-db data.

An alternative paradigm “off-chain analytics” has also been

investigated wherein blockchain data is taken out, stored and

analyzed using a database. For example - blockchain data

analytics using Memsql [11], Bitcoin data analytics using

databases [12], [13]. The off-chain analytics allows for an

efficient processing of the data but has privact issues and an

additional overhead of transferring the data from blockchain

platform to an external database. The focus of this paper is

on-chain temporal analytics of Fabric history-db data.

IV. EXPERIMENTAL EVALUATION SETUP

A. The Use-Case

We adopt the blockchain supported supply chain scenario

as discussed in [1] wherein a set of shipments are placed in

containers and the containers are ferried by trucks. Whenever

a shipment s is placed in a container c at time t, a key-value

pair 〈s, (c, t, “l”)〉 is inserted on blockchain. When shipment

s is taken out of container c at time t, the pair 〈s, (c, t, “ul”)〉
is inserted. The symbols l and ul denote load and unload

events. Similarly the events 〈c, (tr, t, “l”)〉 and 〈c, (tr, t, “ul”)〉
denote the events when a container c is loaded on/unloaded

from a truck tr at time t. The state-db here hence contains

the current state of each shipment and container i.e., the

container containing the shipment and the truck ferrying the

container. The history-db data contains all the past states of

the shipments and containers i.e, for each shipment, the set of

containers it has been contained in and for each container, the

set of trucks which ferried it at some point in time. This use-

case models various abstractions needed to investigate various

issues concerning temporal analytics on Fabric.

B. The Temporal Analytics Query

We consider the following temporal join query Q. Given

a duration τ : [ts, te], for each shipment s, we want to find

out the trucks which have ferried the shipment s during this

duration and the associated time-intervals. This query requires

retrieving events of interest within a duration [ts, te] and also

involves a join operation which is costly to execute.

C. Synthetic Workloads

We carry out our experimental evaluation using synthetically

generated data. We write a synthetic data generator which gen-

erates a set of shipment load/unload events on/from containers

and container load/unload events from trucks. The parameters

are: (a) Number of shipments, containers and trucks, (b) Num-

ber of events for each shipment and container (c) Distribution

of load events, (d) Total time length within which all events

lie (tmax). Given a load event ev, the corresponding unload

event is randomly chosen at any point before the start of

the next load event. In this paper, we use the following two

synthetically generated datasets containing skew.

• SD1: (a) Number of shipments, containers and trucks are

400, 100 and 20 respectively. Total time length is 150K.

Number of events for each key are 2K. Total number

of events hence are 1M. Events for each keys are zipf

distributed over this temporal range. For each key, the

zipf parameter is chosen randomly between 0 and 1.

• SD2: (a) Same as SD1 but the number of shipments, con-

tainers and trucks are 15, 5 and 2 respectively. Number

of events for each key are 2K. Total number of events

hence are 40K.

Presence of zipf distribution implies that more events arrive

in the start and the data gets more and more sparse as time

progresses. This hence allows us to study how various models

(and their variants) handle the skew. For both datasets, half of

the events arrive within first 10K timestamps.

D. Fabric instance

We use Hyperledger Fabric release v1.0, single peer setup

running on a Lenovo T430 machine with 4GB RAM, dual core

Intel i5 processor. We hence use a single peer but we keep

the consensus mechanism turned on. We use all the default

configuration settings to run our experiments.

E. The event insertion scheme

We first sort all the load/unload events on time in a dataset

and then execute transactions to sequentially insert these

events. We ingest the data in two following ways.
1) Single Event (SE): We ingest one event in one transac-

tion. Dataset SD2 is ingested using this scheme.
2) Multiple Events (ME): We ingest multiple events in

one transaction. Dataset SD1 is ingested using this scheme.

For each transaction, we choose a batch of events to ingest

with each batch being a maximal set of consecutive events

s.t. in this set no two events share the same key. Different

transactions hence insert different number of events but for

each shipment and container, one transaction ingests at most

one event. We do not include two events with the same

key because as discussed in section II, one transaction on

Fabric only persists one state for a key. For dataset SD1, each

transaction ingests an average of 38 events. Total number of

transaction are ∼25K with 1193 transaction ingesting more

than 100 events and 2154 transactions ingesting less than 10

events.

F. Metrics for Measuring the Performance of a Model

In this paper, we measure the performance of a model using

the following three metrics - (a) Query execution times - time

taken to execute the temporal query. (b) Ingestion times - time

taken to ingest data on Fabric and (c) State access times - time

taken to execute GetState and GHFK calls.

V. TEMPORAL JOIN PERFORMANCE ON FABRIC

In this section, we discuss how we execute temporal join

query Q (section IV-B) on Fabric and discuss the performance

on datasets SD1 and SD2. We first look at the state-db and

retrieve the list of all shipments and containers using a range-

scan query. For each shipment and container, we issue a GHFK

296



call on the history-db. We scan each iterator returned by the

GHFK calls and retain only those states (i.e., pairs/events)

which fall within duration [ts,te]. We load this data into

memory and compute the temporal join. We call this method

TQF. Table I presents the performance numbers.

Consider the query interval τ=(0-10K]. This requires 500

GHFK calls as there are 400 shipments and 100 containers.

The join time is 75s and the GHFK calls take up the majority

of this time (71s). As mentioned in section IV-C, more than

50% of the events in dataset SD1 are within duration (0-10K]

and it hence requires deserialization of lot of blocks to load

all relevant events. These GHFK calls deserialize all blocks

containing an event within duration (0-10K].

When the query interval is (10K-20K], we need to deseri-

alize all blocks which contain the details of any transaction

ingesting an event within duration (0-20K]. As discussed in

section II, Fabric does not support any temporal indexes and

hence we do not know which blocks specifically contain the

details of events ingested between (10K-20K]. The join time

hence increases and we need 95.3s to compute the join. In

general, to retrieve events within query interval (ts,te], we

need to deserialize blocks containing events within duration

(0,te]. Larger the value of ts, worse is hence the performance.

The join time hence steadily rises and the query interval moves

right. When the query interval is (140K-150K], we require

120.8s to compute the join even though there are only ∼9K

events within this interval. In prior work [1], we proposed two

indexing models to mitigate these issues, which we discuss

next.

VI. MODEL M1

In this section, we first summarize the model M1 proposed

in [1] for creating temporal indexes on Fabric. We then

benchmark its performance on skewed datasets SD1 and SD2,

and present new variants of this model which are better able

to handle the skew present in datasets SD1 and SD2.

A. Index Construction Process

Let E(k, θ) represent the set of events which (1) belong

to key k and (2) happen during time-interval θ. Let (0,t] be

the time duration within which all events arrive. For each key

k (i.e., each shipment and container), the indexing process

divides the time-interval (0, t] in a set of disjoint indexing

intervals Θ(k)={θ1,θ2,...,θm}. The number m and the intervals

Θ(k) can be different for each key. For each key k, the

indexing process executes a transaction which (a) first executes

a GHFK call on key k, (b) constructs the set Θ(k) and (c) for

each indexing interval θ in Θ(k), constructs the set E(k, θ)
and ingests the pair 〈(k, θ), E(k, θ)〉 on Fabric.

The indexing process then executes a second transaction

which ingests the pair 〈(k, θ), “”〉. This changes the current

state of the “newly formed key” (k, θ) from E(k, θ) to null.

This operation hence removes the set E(k, θ) from state-db.

The set E(k, θ) hence remains accessible only from history-db.

Secondly, these two pairs are ingested only if the set E(k, θ)
is not empty. We remove the set E(k, θ) from state-db so that

state-db size remains minimal. Otherwise, the state-db will

contain all the states and its size will hence blow up. We

hence design our indexing models s.t., the content added on

state-db for indexing purposes is minimal.

B. Temporal Analytics using M1 Indexes
Temporal queries can now be efficiently executed using

these model M1 indexes. Consider we want to retrieve events

within a query-interval τ for key k i.e., the set E(k, τ). We

first find out from state-db, the index intervals created for key

k i.e., Θ(k). We next find out index intervals in Θ(k) which

overlap with query-interval τ . For each overlapping indexing

interval θ, we execute a GHFK(k,θ) call, collect the events

from all these GHFK calls and remove those events which do

not fall within the query-interval τ .
Note that each GHFK(k,θ) call deserializes only one block

as the indexing process has collected all events in set E(k, θ)
together and stored them in a single key-value pair. In absence

of model M1 indexes, the events in set E(k, θ) are scattered

across many blocks and hence construction of set E(k, θ) re-

quires deserialization of many blocks. This hence significantly

speeds up the processing of temporal queries.

C. Variants for M1 Indexes
We next discuss three variants of model M1 indexes. These

variants concern with different mechanisms for creating index

intervals Θ(k) for key k. Out of these three, FL variant was

discussed in [1]. In this section, we discuss the performance of

FL variant on skewed datasets SD1 and SD2. We also propose

two new variants - FC and ALC which improve on FL variant

on skewed datasets.

• Fixed-Interval-Length (FL): This partitions the range

(0, t] into disjoint index intervals of fixed length u. Each

interval hence contains different number of events.

• Fixed-Event-Count (FC): This scheme partitions the

range (0, t] into disjoint index intervals s.t., each interval

contains a fixed number of events v. Each such index

interval is hence of different length.

• Adaptive-Length-Count (ALC): Given an interval

length u and an event count v, this scheme partitions

the range (0, t] s.t. each interval satisfies one of the two

conditions - (a) Index interval is of length u but the event

count within this interval is greater than or equal to v
and (b) The event count within this interval is v but the

interval length is greater than or equal to u.

D. Experimental Evaluation
Table I benchmarks the performance of these indexing

mechanisms and TQF on dataset SD1 (section IV-C). We

ingest the data using ME scheme (section IV-E). We take a

10K sized query interval and vary its start and end points as

shown in Table I. For FL and ALC scheme, we set the interval

length parameter u to 2K. Assuming the event distribution was

uniform, this would have implied 27 events within each index

interval. For FC and ALC scheme, we therefore set the event

count parameter v to 27. The indexes are built once when all

the events have been ingested.

297



TABLE I
PERFORMANCE COMPARISON - MODEL M1 VS TQF VS MODEL M2

Dataset SD1, Ingestion with ME Dataset SD2 with SE
Model M1 (u=2K, v=27) Hyperledger Fabric Model M2 (u=2K, 50K) Model M1 (u=2K, v=27)

Query Interval
Join Time (s) GHFK Time (s) and Calls

Join GHFK Time (s) Join GHFK Time (s)
Join Time (s)

Time (s) and Calls Time(s) and Calls
FL FC ALC FL FC ALC TQF TQF FL (2K) FL (50K) FL (2K) FL (50K) FL FC ALC TQF

1-10K 6.4 15.4 6.3 3.6 (2500) 12.7 (10401) 3.7 (3000) 75.7 71 (500) 72.5 68.4 69.3 (2.5K) 65.3 (500) 0.32 1.11 0.33 1.93
10K-20K 4.6 12.0 4.9 3.5 (2500) 10.9 (7488) 3.9 (3440) 95.3 91 (500) 21.5 86.3 20.2 (2.5K) 85.2 (500) 0.18 0.4 0.25 2.63
20K-30K 4.2 5.3 4.1 3.5 (2500) 4.8 (3881) 3.6 (3180) 103.6 100 (500) 10.5 88.0 9.7 (2.5K) 87.5 (500) 0.14 0.22 0.23 2.70
60K-70K 3.8 2.2 2.0 3.4 (2499) 2.0 (1643) 1.9 (1639) 115.2 111 (500) 4.0 4.9 3.5 (2.5K) 4.8 (500) 0.15 0.09 0.12 3.04
70K-80K 3.8 2.0 1.9 3.4 (2481) 1.9 (1507) 1.8 (1500) 116.5 112 (500) 3.6 5.8 3.2 (2.5K) 5.6 (500) 0.12 0.08 0.08 3.13
80K-90K 3.6 1.9 1.7 3.3 (2450) 1.8 (1423) 1.6 (1416) 116.4 111 (500) 3.5 6.5 3.0 (2.5K) 6.3 (500) 0.11 0.75 0.10 3.25

120K-130K 3.3 1.5 1.4 3.0 (2150) 1.4 (1158) 1.3 (1160) 121.4 117 (500) 3.1 3.7 2.5 (2.5K) 3.5 (500) 0.11 0.06 0.05 3.39
130K-140K 3.0 1.4 1.3 2.8 (1998) 1.3 (1076) 1.2 (1060) 122.1 117 (500) 2.9 4.1 2.5 (2.5K) 3.9 (500) 0.1 0.07 0.08 3.20
140K-150K 2.7 1.1 1.0 2.5 (1731) 1.0 (833) 0.9 (838) 120.8 116 (500) 2.7 4.4 2.3 (2.5K) 4.3 (500) 0.12 0.04 0.05 3.43

1) FL Performance: We first look at the results for FL

indexing scheme. The index length parameter u is 2K. For

each key k, the FL variant hence ingests key-value pairs of

form 〈(k, θ), E(k, θ)〉 wherein θ takes values in {(0-2K], (2K-

4K], ..., (148K-150K]}. For any query interval τ of length

10K, the FL method needs to hence make 5 GHFK calls over

these indexes which result in deserialization of 5 blocks. This

hence results in a significant improvement vis-a-vis TQF and

we needed 6.4s to compute the temporal join for query inteval

(0-10K].

For τ=(10K-20K], FL can get all relevant events by making

5 GHFK calls on indexes. As query interval τ shifts right, we

get lesser and less events due to zipf distributed data. For

this reason, the join time decreases. This is in contrast with

TQF where we need full scan to retrieve the relevant events

and the join time hence steadily increases. The performance

gap between FL and TQF hence widens as the query interval

moves right. This shows the efficacy of FL approach.

2) FC Performance: We next look at the results for FC

indexing scheme. The FC variant keeps the event count within

each indexing interval constant. As there are more events at

the start due to the zipfian nature of the data, FC creates more

indexing intervals at the start. As we move right, lesser events

are encountered and lesser indexing intervals are created. The

length of the index intervals hence increases as we move right.

An analysis of the index-intervals created revealed that the FC

scheme created 10401 index intervals (for all keys combined)

within (0-10K] duration while it created 833 intervals within

(140K-150K]. The join time hence decreases steadily from

∼15s for τ=(0-10K] to ∼1.1s for τ=(140K-150K]. In com-

parison, FL scheme created 2500 and 1731 index intervals

within (0-10K] and (140K-150K] ranges respectively. Due to

this reason, FC performs better than FL when the data is sparse

(i.e., when τ is at the right end) and is worse then FL when

the data is bursty (i.e., when τ is at the start of the temporal

range). Table I also presents the number of index intervals

created for each variant (numbers within braces)

3) ALC Performance: Finally we look at the ALC perfor-

mance. The ALC scheme creates an index interval when both

the FL and FC criteria are first met. This hence takes the

best of both the FL and FC scheme. In the beginning, when

the number of events are high, it creates indexes based on

interval length and its performance is hence FL like. Towards

the end, when the number of events are very small, it creates

the indexes based on event count and its performance is hence

FC like. Overall, its performance is hence better than FL and

FC at all times as shown in Table I.

These results show that the ALC variant handles the data

skew better then FL and FC variants. We obtain similar trends

on dataset SD2 however the individual query times are lower

as the data volume is smaller in SD2. If we use uniform

distribution instead of zipf distribution in SD1 and SD2, the

three variants perform equally well. We do not discuss these

results due to lack of space.

E. The cost of Model M1 Indexes

Broadly, there are two costs associated with model M1

indexes. First, the number of key-value pairs on state-db

increase and hence the storage cost increases. However ALC

creates least number of index intervals and hence the ALC

storage cost is smaller than FL and FC variants. On dataset

SD1, FL. FC and ALC variants created ∼35K, ∼36K, ∼14K

number of additional states respectively. On dataset SD2, these

numbers are ∼14K, ∼14K, ∼6K respectively.

The second cost is index construction time. As the model

M1 includes a separate indexing phase, this increases the over-

all data ingestion time. Each invocation of indexing process

executes one GHFK call for each key k. For each key, it further

executes two transactions to ingest the index. On dataset SD1,

FL, FC and ALC index construction took ∼10, ∼13 and ∼12

mins respectively. The data ingestion time excepting index

construction was ∼109mins. The index construction time for

the three variants is similar as they execute same number of

transactions as well as GHFK calls to construct the indexes.

Note that unlike our experiments, the data may be contin-

uously streaming on Fabric and there is hence no one time

when we can build the indexes in one go. The indexing

process hence needs to happen periodically. For example,

we can choose to build model M1 indexes after each 25K

timestamps and each time, we index the data that arrives in

previous 25K timestamps. Note that, each invocation of index

construction process is costlier than the previous one. This is

298



because for each invocation we need to issue a full GHFK

scan for each key and the GHFK cost keeps increasing with

time. We built ALC indexes for dataset SD1 after each 25K

timestamps. There were hence a total of 6 invocations and

these 6 invocations took a total of 38mins. This is a big

bottleneck. We next discuss the second model M2 proposed in

[1] which does not have a seperate indexing phase and hence

improves on this aspect.

VII. MODEL M2

In this section, we first review model M2 proposed in [1],

for creating temporal indexes on Fabric. We then discuss its

performance on skewed datasets SD1 and SD2.

A. Index Construction Process

In this model, we store the indexing interval information

along-with each key-value pair being ingested on Fabric.

An incoming key-value pair 〈k, (v, t)〉 is transformed to

〈(k, θ), (v, t)〉 wherein θ is an indexing interval s.t. the time-

stamp t lies within index interval θ. We discard the incoming

pair 〈k, (v, t)〉 and only store the transformed pair. This way,

the indexing information gets stored on Fabric history-db and

unlike model M1, we do not need to create additional key-

value pairs for creating temporal indexes. Model M2 hence

does not require a separate indexing phase and rather embeds

the indexing information during event ingestion itself. Note

than unlike model M1, we do not store events within an index

interval together as part of a single key-value pair. Events in

model M2 are still distributed across multiple blocks. However

model M2 introduces a mechanism whereby to retrieve events

within a query interval, we do not need to scan all events from

t=0.
1) FL Approach: Similar to model M1 - FL approach, we

choose intervals of fixed size u. For an incoming key-value

pair 〈k, (v, t)〉, we associate the index interval [� t
u� ∗u, � t

u	 ∗
u]. Each indexing interval of length u will hence have different

number of events.

B. Temporal Analytics using Model M2 Indexes

We use the following approach to retrieve the events for

key k, which lie within a query interval τ i.e., the set E(k, τ).
From the state-db, we find out all indexing intervals for key k
which overlap with τ i.e., all intervals θ s.t. there is a state for

key (k,θ). This is done using a range-scan query on state-db.

For each such interval θ, we execute a GHFK call for (k,θ).

We collect the events from these GHFK calls and remove the

events which do not fall within query interval τ .

C. Experimental Evaluation

Table I presents the performance of model M2. We try the

FL scheme with two different index interval lengths (u) - 2K

and 50K. We first discuss the results with u=2K. When query

interval τ is (0-10K], the model 2 takes ∼72 s which is the

same time taken by TQF. This is because both approaches

deserialize similar number of blocks. When the query interval

is (10-20K], TQF needs to scan all events within duration (0-

20K]. While in model M2, we need to deserialize only blocks

containing events within (10K-20K]. The model M2 hence

deserializes fewer blocks then TQF and this manifests itself

in significantly improved timings of model M2 vis-a-vis TQF.

We are able to achieve this improvement because with

model M2 indexes, we exactly know which set of blocks are

going to contain events within interval (10K-20K]. Specifi-

cally, we retrieve the history of keys (k,(10K-12K]), (k,(12K-

14K]), (k,(14K-16K]), (k,(16K-18K]) and (k,(18K-20K]).

With TQF, we do not have this information and we need to

resort to a full GHFK call. This effect becomes more severe

as the index interval τ moves right. Due to zipfian data, the

model M2 join time steadily decreases however the TQF time

steadily goes up. For τ=(140K-150K], model M2 takes only

2.7s to compute the join while TQF requires 120s.

We next look at the results with u=50K. For τ=(0-10K], the

TQF and model M2 times are similar. Same is the case for

query intervals (10K-20K], ..., (40K-50K]. However when the

query interval is (60K-70K], the model M2 needs to deserialize

blocks with events within (60K-70K] only while TQF needs to

deserialize blocks with events within (0-70K]. There is hence

a significant difference in the performance.

VIII. MODEL M2 - MINCOUNT AND ADAPTIVE VARIANTS

Similar to model M1, we outline the Min-Count (MC) and

Adaptive-Length-Count (ALC) variants for model M2 which

are better able to handle skew in the data.

1) MinCount(MC): This variant creates a new index-

interval when the event-count within the current index-interval

excluding events which are part of the current block being

formed, is greater than or equal to a threshold v.

2) Adaptive-Length-Count(ALC): Given an interval length

u and an event count v, this variant creates a new index-

interval when one of the following two conditions is satisfied

- (a) The interval-length is greater or equal to u , and (b)

The event-count within the current indexing interval excluding

events which are part of the current block being formed, is

greater than or equal to v.

A. Implementation of M2 Variants

Note that to count the number of events within an interval,

we need to issue a GHFK call. As discussed in section II-B, a

GHFK call returns the events which are part of the committed

blocks. Due to this reason, the MC and ALC variants are

designed so as not to take into account the events which are

part of the block currently being formed. We implement the

MC variant as follows.

For each key k, we create a new state (k,“index”). This

state tracks, how many index intervals have been created

for key k and the start-point of the current index interval.

Let IC(k,t) represent the index-counter for key k at time t.
The index-counter IC(k,t) starts with 0 for each key k and

keeps getting incremented by 1 with the creation of each

new index-interval for key k. Let S(k,t) represent the start-

point of the index-interval at timestamp t for key k i.e., the

interval represented by IC(k,t). Whenever a new index-interval

299



is created for key k at time t, the variant MC ingests a key-

value pair ((k,“index”),(IC(k,t),S(k,t)).
The variant MC transforms each incoming pair (k,(v,t))

to the form ((k, IC(k,t)), (v,t)). All events in the same

index-interval hence share the same index-counter. For each

incoming pair (k,(v,t)), MC executes the following sequence

of operations.

1) MC executes a GHFK call on (k,“index”) and obtains

the current index-counter for key k. This is obtained

from the last state of the result returned by GHFK call.

Let this counter be ic.
2) MC then executes a GHFK call on (k, ic) and counts

the number of events in the current index-interval.

3) If this count is less than v, MC ingests the pair ((k, ic),
(v,t)). Note that this event shares the same index-counter

i.e., ic.
4) If this count is greater or equal to v, MC creates a new

index-interval, increments the value of index-counter and

ingests two pairs - ((k,“index”),(ic+1,t)) and ((k, ic+1),

(v,t)). Note that a new index-interval starts at time-stamp

t and hence S(k,t)=t and IC(k,t)=ic+1.

Following points need to be noted so as the above details

are clear.

• Unlike FL scheme, we can’t know apriori the end point

of an index interval when it is formed. We therefore

represent an index-interval using a counter and store the

start-point as separate states (i.e., (k,“index”)). The end

point of an index interval is specified as the start point

of the next index-interval minus 1.

• In step 1 above, we do not execute a GetState call to

retrieve the index-counter for key k. This is because

as mentioned in section II-B, Fabric enforces read-write

conflict among the transactions in a block. A Fabric

transaction hence is not allowed to read the current state

for a key k if this state has been earlier modified by a

transaction in the same block.

1) ALC Variant: The ALC variant is identical to the MC

variant except in step 4 above, the ALC conditions (sec-

tion VIII-2) are checked.

B. Temporal Analytics using MC and ALC variants

We use the following approach to retrieve the events for key

k which lie within a query interval τ i.e., the set E(k, τ). We

execute a GHFK call on (k,“index”) and obtain the index-

counter of all index-intervals which overlap with the query

interval τ . For each such counter ic, we execute a GHFK call

for (k,ic). We collect the events from these GHFK calls and

remove the events which do not fall within the interval τ . Note

that each such GHFK call takes much smaller time vis-a-vis

GHFK call for key k in TQF.

C. Experimental Evaluation

We next evaluate the performance of MC and ALC vari-

ants and compare the performance with FL variant. Table II

presents the results. We again see the same trend that the ALC

TABLE II
PERFORMANCE COMPARISON FOR MODEL M2 VARIANTS - FL VS MC VS

ALC VS P-ALC

Index interval length u=50K, Event Count v=667, Time in seconds
Dataset SD1, Ingestion with ME Dataset SD2, Ingestion with SE

Query
FL MC ALC

p-ALC p-ALC
FL MC ALC

p-ALC p-ALC
Interval p=0.1 p=0.01 p=0.1 p=0.01
1-10K 68.4 73.3 76.7 69.8 66.7 2.1 2.4 2.8 2.0 2.1

10K-20K 86.7 49.0 57.5 54.4 49.3 2.5 3.6 3.3 1.6 1.4
20K-30K 88.1 26.3 36.9 30.3 32.7 2.8 1.6 1.9 0.9 1.1
60K-70K 4.9 25.9 27.7 29.9 25.0 0.2 1.0 1.3 1.0 0.7
70K-80K 5.8 26.2 9.9 16.5 22.1 0.2 0.9 0.30 0.7 0.6
80K-90K 6.5 25.9 7.5 11.5 19.7 0.3 0.9 0.3 0.4 0.6

120K-130K 3.6 25.9 5.5 6.9 14.2 0.17 0.87 0.25 0.2 0.5
130K-140K 4.0 24.7 4.8 6.3 12.6 0.18 0.97 0.22 0.2 0.5
140K-150K 4.4 22.3 4.2 4.8 9.9 0.24 0.99 0.17 0.2 0.4

variant handles the data skew much better than the variants FL

and MC. Consider the query interval τ=(10K-20K]. The FL

variant has three index-intervals for all keys, all of length 50K,

first of which is (0-50K]. FL variant hence needs to deserialize

all blocks with events in range (0-20K]. The variant MC

creates index-intervals based on event-count. As this dataset

contains half the events within (0-10K], mostly the first index-

interval created by MC for each key ends before the timestamp

10K. The variant MC hence does not need to deserialize many

blocks with events in range (0-10K].

We analyzed the index-intervals created for each key, found

out the first index-interval for each key which overlaps with the

range (10K-20K] and computed the average of the start-point

of all such index-intervals. This turned out to be ∼5K. Hence

on average MC needed to deserialize all blocks with events

in range (5K-20K]. This manifests itself in much improved

performance of variant MC. Variant MC hence handles the

bursts in data better then FL.

Consider next the query interval τ=(130K-140K]. Due

to zipfian nature of the data, there are lesser number of

events in this range. The FL variant works better then MC

variant for this case. When the data is sparse, MC creates

lengthier index-intervals vis-a-vis FL. As a result, MC needs

to deserialize larger number of blocks. This manifests in

the better performance of FL. Here, FL and MC needed to

deserialize all blocks with events in range (100K-140K] and

(22K-140K] respectively. For MC, on average, the first index-

interval overlapping with range (130K-140K] started at ∼22K.

The ALC variant takes the best of both the variants. When

the data arrives in burst, it creates index-intervals based on

fixed event-count and hence index-intervals of shorter length

are created. When the data is sparse, index-intervals of fixed

length are created and hence containing smaller number of

events. As a result, its performance is competitive throughout.

Table II presents the results for dataset SD2 as well and this

presents similar trends.

D. The Cost of MC and ALC Variants

Similar to model M1, one of the cost is state-db storage. The

three variants FL, MC and ALC created ∼1.5K, ∼1.5K and

∼2.5K states for dataset SD1. For dataset SD2, these numbers

300



are 56, 55 and 92 respectively. ALC in model 2, creates larger

number of states vis-a-vis FL and MC variants. The second

cost associated with MC and ALC variants is that the data

ingestion becomes slow. This is because for each incoming

pair, the MC and ALC variants issue 2 GHFK calls - one to

retrieve the current index-interval for each key and one to get

the count of events in the current index-interval for each key.

These two GHFK calls incur significantly additional cost.

TABLE III
INGESTION TIME (MINS)

DataSet SD1 DataSet SD2

FL MC ALC TQF
p-ALC p-ALC

FL MC ALC TQF
p-ALC p-ALC

p=0.1 p=0.01 p=0.1 p=0.01
105 664 616 121 183 129 170 191 191 156 172 171

Table III presents the ingestion times. As mentioned in

section IV-C, for dataset SD1, an average of 39 events are

ingested in each transaction. Each transaction on average

hence executes 78 GHFK calls which adds up to a significant

overhead. As a result, MC and ALC variant take much larger

time to ingest the data on Fabric. For dataset SD2 run,

we ingest only one event per transaction and hence each

transaction executes 2 GHFK calls. The relative overhead is

ALC variant is hence much smaller (∼21mins) vis-a-vis FL.

These observations suggest that ALC variant is a good

option for the case when each transaction ingests one or small

number of events but its performance degrades as the number

of events ingested per transaction increase. We next present

a probabilistic version of ALC variant which significantly

improves the ingestion time at the cost of a little degradation

in the query performance.

IX. PROBABILISTIC ALC VARIANT (P-ALC)

The p-ALC variant checks the ALC condition only with

a probability p. Whenever a key-value pair (k,(v,t)) arrives,

the p-ALC variant generates a random number. If this number

is greater than p, p-ALC finds out the current index-counter

ic for key k and ingests the pair ((k,ic),(v,t)). If the random

number is less than p, only then it checks the ALC condition

(section VIII-2) and creates a new index-interval if the ALC

condition is satisfied. This way, p-ALC avoids executing costly

GHFK calls to find out the event count in the current index-

interval for the instances when the generated random number

is greater than p.

Table III presents the data ingestion times. We tried p-

ALC variants with p=0.1 and 0.01. On dataset SD1, the data

ingestion times for these two variants are 183 and 129 mins

which are significantly improved on ALC time of 616 mins.

On dataset SD2, these times are 172 and 171 mins which are

equal to time taken by FL variant.

We next discuss the query performance of p-ALC variant.

Table II presents the results. For dataset SD1, p-ALC variants

perform better than MC variant for most query intervals. The

p-ALC variants perform better than FL when the data is bursty

and perform worse when the data is sparse. In general, the

performance will degrade as the value of p goes down. We

obtain similar trends for dataset SD2 as well.

X. CONCLUSIONS

In this paper, we discussed multiple approaches to index

Fabric history-db data. We benchmarked these variants and

analyzed the performance tradeoffs involved. The obtained

insights can be summarized as follows.

1) For both models M1 and M2, the ALC variant provides

best query performance. For model M1, FL works better

than FC when the data is bursty while FC works better

than FL when the data is sparse. For model M2, the MC

variant works better than FL when the data is bursty

while FL works better when the data is sparse. All

variants however significantly outperform the TQF case,

where no indexes are built.

2) The data ingestion times are minimum for model M2-

FL variant. Model M2 - MC and ALC variants have

large index construction overheads but these overheads

can be significantly reduced by using their probabilistic

variants. The performance of the probabilistic variant

degrades as the value of parameter p goes down.

3) If the data volume on Fabric is small or the data arrives

at a low enough rate, we can prefer model M1 indexes.

If the data volume is large, model M2 indexes should

be used. For model M2, FL or p-ALC variant can be

chosen, depending on the data volume and arrival rate.

We next plan to study how temporal analytics can be

efficiently carried out on other blockchain platforms e.g.,

Ethereum, TenderMint etc.

REFERENCES

[1] H. Gupta and et al., “Efficiently processing temporal queries on hyper-
ledger fabric,” in ICDE, 2018.

[2] “HyperLedger Fabric. https://www.hyperledger.org/projects/fabric.”
[3] “Ethereum Blockchain App Platform. https://www.ethereum.org/.”
[4] “Ethcore. Parity: next generation ethereum browse.

https://ethcore.io/parity.html.”
[5] D. Gao and et. al., “Join operations in temporal databases,” VLDB J.,

vol. 14, no. 1, pp. 2–29, 2005.
[6] M. F. Mokbel and et al., “Spatio-temporal access methods,” IEEE Data

Eng. Bull., vol. 26, no. 2, pp. 40–49, 2003.
[7] B. Chawda and et al., “Processing interval joins on map-reduce,” in

EDBT, 2014, pp. 463–474.
[8] T. T. A. Dinh and et al., “BLOCKBENCH: A framework for analyzing

private blockchains,” in SIGMOD 2017, 2017, pp. 1085–1100.
[9] P. Suporn and et al., “Performance analysis of private blockchain

platforms in varying workloads,” in ICDCN, 07 2017, pp. 1–6.
[10] “Satoshi Nakamoto. bitcoin: A peer-to-peer electronic cash system.”
[11] “Coinalytics https://www.crunchbase.com/organization/ coinalytics-co.”
[12] “BlockParser. https://github.com/mcdee/blockparser.”
[13] D. Ron and et al., “Quantitative analysis of the full bitcoin transaction

graph,” in Financial Cryptography and Data Security, 2013, pp. 6–24.

301


