
Porosity: A Decompiler For Blockchain-Based
Smart Contracts Bytecode

Matt Suiche
Comae Technologies

m@comae.io

July 7, 2017

Abstract

Ethereum is gaining a significant popularity in the blockchain com-
munity, mainly due to fact that it is design in a way that enables devel-
opers to write decentralized applications (Dapps) and smart-contract
using blockchain technology. This new paradigm of applications opens
the door to many possibilities and opportunities. Blockchain is often
referred as secure by design, but now that blockchains can embed ap-
plications this raise multiple questions regarding architecture, design,
attack vectors and patch deployments. In this paper I will discuss the
architecture of the core component of Ethereum (Ethereum Virtual
Machine), its vulnerabilities as well as my open-source tool “Poros-
ity”. A decompiler for EVM bytecode that generates readable Solid-
ity syntax contracts. Enabling static and dynamic analysis of such
compiled contracts.

Contents

1 Ethereum Virtual Machines (EVM) 5

2 Memory Management 5
2.1 Stack . 5
2.2 Storage (Persistent) . 5
2.3 Memory (Volatile) . 6

3 Addresses 7

4 Call Types 7
4.1 EVM . 7

4.1.1 Basic Blocks . 7
4.1.2 EVM functions . 8
4.1.3 EVM Call . 9

4.2 User-defined functions (Solidity) 10

5 Type Discovery 11
5.1 Address . 11

5.1.1 Non-optimized Address Mask 11
5.1.2 Optimized Address Mask 11
5.1.3 Parameter Address Mask 13

6 Smart-Contract 13
6.1 Pre-Loader . 13
6.2 Runtime Dispatcher . 14

6.2.1 Function Hashes . 15
6.2.2 Dispatcher . 16

7 Code Analysis 21
7.1 Vulnerable Contract . 21

7.1.1 Solidity source code . 22
7.1.2 Runtime Bytecode . 23
7.1.3 ABI Definition . 24
7.1.4 Decompiled version . 25

1

8 Bugs 25
8.1 Reentrant Vulnerability / Race Condition 25
8.2 Call Stack Vulnerability . 26
8.3 Time Dependance Vulnerability 26

9 Future 26

10 Acknowledgments 27

2

List of Figures

1 Static CFG . 20
2 Enulated CFG . 20

3

List of Listings

1 Storage (Persistent) Exmaple 6
2 EVM Parameter/Return Stack Location Example 8
3 call Proto-type Declaration . 9
4 Pre-compiled Contracts . 10
5 CALLDATALOAD Example 10
6 CALLDATALOAD EVM Pseudo-code 11
7 Non-optimized Assembly Code Example 11
8 Optimized Assembly Code Example 12
9 msg.sender EVM Bytecode Example 12
10 Parameter Address Mask Example 13
11 Porosity Pre-loader Disassembly Output 14
12 ABI Definition . 15
13 double Function Declaration 15
14 double/triple Function Hashes 16
15 EVM Runtime Bytecode Example 16
16 Runtime Bytecode Porosity Disassembly 18
17 dispdisasm . 19
18 EVM Emulator . 19
19 Static/Dynamic Graph Pseudo-C Code 20
20 Decompiled Pseudo-C code . 21
21 Vulnerable Smart Contract . 22
22 Vulnerable Smart Contract Runtime Bytecode 23
23 Vulnerable Smart Contract ABI Definition 24
24 Vulnerable Smart Contract Decompilation 25

4

1 Ethereum Virtual Machines (EVM)

The Ethereum Virtual Machine (EVM) is the runtime environment for smart
contracts in Ethereum. The EVM runs smart-contracts that are built up
from bytecodes. Bytecodes are identified by a 160-bit address, and stored in
the blockchain, which is also known as “accounts”. The EVM operates on
256-bit pseudo registers. Which means that the EVM does not operate via
registers. But, through an expandable stack which is used to pass parameters
not only to functions/instructions, but also for memory and other algorithmic
operations.

The following excerpt is taken from the Solidity documentation, and it is
also worth mentioning:

There are two kinds of accounts in Ethereum which share
the same address space: External accounts that are controlled
by public-private key pairs (i.e. humans) and contract accounts
which are controlled by the code stored together with the account.

The address of an external account is determined from the
public key while the address of a contract is determined at the
time the contract is created (it is derived from the creator address
and the number of transactions sent from that address, the so-
called “nonce”).

Regardless of whether or not the account stores code, the two
types are treated equally by the EVM.

2 Memory Management

2.1 Stack

It does not have the concept of registers. A virtual stack is being used instead
for operations such as parameters for the opcodes. The EVM uses 256-bit
values from that virtual stack. It has a maximum size of 1024 elements.

2.2 Storage (Persistent)

The Storage is a persistent key-value storage mapping (256-to-256-bit inte-
gers). And is documented as below:

5

Every account has a persistent key-value store mapping 256-
bit words to 256-bit words called storage. Furthermore, every
account has a balance which can be modified by sending transac-
tions.

Each account has a persistent memory area which is called
storage. Storage is a key-value store that maps 256-bit words to
256-bit words. It is not possible to enumerate storage from within
a contract and it is comparatively costly to read and even more
so, to modify storage. A contract can neither read nor write to
any storage apart from its own.

The storage memory is the memory declared outside of the user-defined
functions and within the Contract context. For instance, in listing 1, the
userBalances and withdrawn will be in the memory storage. This can also
be identified by the SSTORE / SLOAD instructions.

1 contract SendBalance {

2 mapping (address => uint) userBalances;

3 bool withdrawn = false;

4 (...)

5 }

Listing 1: Storage (Persistent) Exmaple

2.3 Memory (Volatile)

This memory is mainly used when calling functions or for regular memory op-
erations. The official documentation explicitly indicates that the EVM does
not have traditional registers. Which means that the virtual stack previously
discussed will be used primarily to push arguments to the instructions. The
following is the excerpt explaining such behavior:

The second memory area is called memory, of which a contract
obtains a freshly cleared instance for each message call. Memory
is linear and can be addressed at byte level, but reads are limited
to a width of 256 bits, while writes can be either 8 bits or 256 bits
wide. Memory is expanded by a word (256-bit), when accessing

6

(either reading or writing) a previously untouched memory word
(ie. any offset within a word). At the time of expansion, the cost
in gas must be paid. Memory is more costly the larger it grows
(it scales quadratically).

Traditionally the MSTORE instruction is what we would generally consider
to be the instruction responsible for adding data to the stack in any typ-
ical x86/x64 system. Therefore, the instructions MSTORE / MLOAD could be
identified as such with respect to the x86/x64 system. Consequently, both
mstore(where, what) and mload(where) are frequently used.

3 Addresses

EVM uses 160-bit addresses. It is extremely crucial to understand that
fact when one has to deal with type discovery. As we often see the mask
0xff being applied for optimiza-
tion purposes either on code or on the EVM registers.

4 Call Types

There are two types of functions to differentiate when working with the EVM.
The first type is the EVM functions (or EVM instructions), while the second
type is the user-defined function when creating the smart-contract.

4.1 EVM

4.1.1 Basic Blocks

Basic Blocks usually starts with the instruction JUMPDEST , with the exception
of very few exception cases. Most of the conditional and unconditional jumps
have a PUSH instruction preceding them in order to push the destination offset
into the stack. Although, in some cases we would also notice that the PUSH

instruction containing the offset can be executed way before the actual JUMP

instruction, and retrieved using stack manipulation instructions such as DUP ,
SWAP or POP . Those cases require dynamic execution of the code to record
the stack for each JUMP instruction, as we are going to discuss this later on
in sub-section 6.2.2.

7

4.1.2 EVM functions

EVM functions and/or instructions includes, but are not limited to, some of
the the following:

� Arithmetic Operations.

� Comparison & Bitwise Logic Operations.

� SHA3.

� Environmental Information.

� Block Information.

� Stack, Memory, Storage and Flow Operations.

� Push/Duplication/Pop/Exchange Operations.

� Logging Operations.

� System Operations.

Since the EVM does not have registers, therefore all instructions invoca-
tion are done through the EVM stack. For example, an instruction taking
two parameters such as an addition or a subtraction, would use the stack
entries index 0 and 1. And the return value would be stored in the stack
entry index 0. In listing 2, we can see more clearly how it looks like under
the hood.

1 PUSH1 0x1 ==> {stack[0x0] = 0x1}

2 PUSH2 0x2 ==> {stack[0x0] = 0x2, stack[0x1] = 0x1}

3 ADD ==> {stack[0x0] = 0x3}

Listing 2: EVM Parameter/Return Stack Location Example

The above EVM assembly snippet would translate to the EVM pseudo-
code add(0x2, 0x1) and returns 0x3 in the stack entry 0. The EVM stack
model follows the standard last-in, first-out (LIFO) algorithm.

8

4.1.3 EVM Call

There are two possible types of external EVM function calls. They can be
identified with the CALL instruction. However, this is not necessarily always
a concrete identifier to the call being external.

Some mathematical and cryptographic functions have to be called through
external contracts such as sha256 or ripemd160 using the call function. De-
spite the fact of having an explicitly defined instruction for the sha3 function.
Which is due to the frequent usage, especially with mapping arrays such as
mapping(address => uint256) balances . Where the sha3 function is used to
compute the index.

The function call is where the dispatching magic happens. Listing 3
shows the proper proto-type declaration for such function.

1 call(

2 gasLimit,

3 to,

4 value,

5 inputOffset,

6 inputSize,

7 outputOffset,

8 outputSize

9)

Listing 3: call Proto-type Declaration

There are four ‘pre-compiled’ contracts that are present as extensions of
the current design. The four contracts in addresses 1, 2, 3 and 4 executes the
elliptic curve public key recovery function, the SHA2 256-bit hash scheme,
the RIPEMD 160-bit hash scheme and the identity function respectively.
Listing 4 shows such contracts, obtained from the EVM source code.

9

1 precompiled.insert(

2 make_pair(Address(1), PrecompiledContract(3000, 0,

3 PrecompiledRegistrar::executor("ecrecover"))));

4

5 precompiled.insert(

6 make_pair(

7 Address(2),

8 PrecompiledContract(

9 60,

10 12,

11 PrecompiledRegistrar::executor("sha256"))));

12

13 precompiled.insert(

14 make_pair(Address(3), PrecompiledContract(600, 120,

15 PrecompiledRegistrar::executor("ripemd160"))));

16

17 precompiled.insert(

18 make_pair(Address(4), PrecompiledContract(15, 3,

19 PrecompiledRegistrar::executor("identity"))));

Listing 4: Pre-compiled Contracts

4.2 User-defined functions (Solidity)

In order to call user-defined functions, another level of abstraction is managed
by the instruction CALLDATALOAD . The first parameter for that instruction is
the offset in the current environment block.

The first 4-bytes indicates the 32-bit hash of the called function. Then
the input parameters follows next. Listing 5, shows an example of such case.

1 function foo(int a, int b) {

2 return a + b;

3 }

Listing 5: CALLDATALOAD Example

In the previous example, the outcome of such code snippet would be
a = calldataload(0x4) and b = calldataload(0x24) . Its imperative to re-
member that by default “registers” are 256-bits. Since the first 4 bytes are

10

pre-allocated for the function’s hash value, therefore the first parameter will
be at the offset 0x4, followed by the second parameter at offset 0x24. This is
derived mathematically by simply calculating the number of bytes added to
the previous number of bytes taken by the first parameter. So in short words,
4 + (256/8) = 0x24 . We can then conclude the EVM pseudo-code shown in
listing 6.

1 return(add(calldataload(0x4), calldataload(0x24))

Listing 6: CALLDATALOAD EVM Pseudo-code

5 Type Discovery

5.1 Address

Addresses can be identified by their sources such as specific instruction such
as caller but in most of cases we can proceed to better results by identifying
mask applied to those values.

5.1.1 Non-optimized Address Mask

In listing 7, the 0x16 bytes EVM assembly code would translate to reg256

and 0xff.

1 00000188 73ffffffff + PUSH20 ff

2 0000019d 16 AND

Listing 7: Non-optimized Assembly Code Example

5.1.2 Optimized Address Mask

Listing 8 shows the optimized 0x9 bytes EVM assembly code, which also
yields the same operation as shown previously in listing 7.

11

1 00000043 6001 PUSH1 0x01

2 00000045 60A0 PUSH1 0xA0

3 00000047 6002 PUSH1 0x02

4 00000049 0A EXP

5 0000004A 03 SUB

6 0000004B 16 AND

Listing 8: Optimized Assembly Code Example

We can then translate the EVM assembly code shown in listing 8 to the
following 3 items:

� and(reg256, sub(exp(2, 0xa0), 1)) (EVM)

� reg256 & (2 ** 0xA0) - 1) (Intermediate)

� address (Solidity)

With that being said, in listing 9 For instance, the following EVM byte-
code would simply yield as the equivalence of msg.sender variable in Solidity
format.

1 CALLER

2 PUSH1 0x01

3 PUSH 0xA0

4 PUSH1 0x02

5 EXP

6 SUB

7 AND

Listing 9: msg.sender EVM Bytecode Example

12

5.1.3 Parameter Address Mask

1 0000003a 6004 PUSH1 04

2 0000003e 35 CALLDATALOAD

3 ...

4 00000058 73ffffffff + PUSH20 ff

5 0000006d 16 AND

6 0000006e 6c00000000 + PUSH13 00000000000000000000000001

7 0000007c 02 MUL

Listing 10: Parameter Address Mask Example

In listing 10, we can see that the EVM assembly code for what would
translate to mul(and(arg_4, 0xff), 0x

1000000000000000000000000) , which is in fact an optimization to mask the ad-
dresses as parameters before storing them in memory.

6 Smart-Contract

When compiling a new smart-contract with Solidity, you will be asked to
choose between two options to retrieve the bytecode as shown below.

� –bin

� –bin-runtime

The first one will output the binary of the entire contract, which includes
its pre-loader. While the second one will output the binary of the runtime
part of the contract which is the part we are interested in for analysis.

6.1 Pre-Loader

Listing 11 is a copy of the output from the porosity disassembler representing
the pre-loader.

The instruction CODECOPY is used to copy the runtime part of the contract
in EVM’s memory. The offset 0x002b is the runtime part, while 0x00 is the
destination address.

13

Note that in Ethereum assembly, PUSH / RETURN means the value pushed
will be the returned value from the function and won’t affect the execution
address.

1 00000000 6060 PUSH1 60

2 00000002 6040 PUSH1 40

3 00000004 52 MSTORE

4 00000005 6000 PUSH1 00

5 00000007 6001 PUSH1 01

6 00000009 6000 PUSH1 00

7 0000000b 610001 PUSH2 0001

8 0000000e 0a EXP

9 0000000f 81 DUP2

10 00000010 54 SLOAD

11 00000011 81 DUP2

12 00000012 60ff PUSH1 ff

13 00000014 02 MUL

14 00000015 19 NOT

15 00000016 16 AND

16 00000017 90 SWAP1

17 00000018 83 DUP4

18 00000019 02 MUL

19 0000001a 17 OR

20 0000001b 90 SWAP1

21 0000001c 55 SSTORE

22 0000001d 50 POP

23 0000001e 61bb01 PUSH2 bb01

24 00000021 80 DUP1

25 00000022 612b00 PUSH2 2b00

26 00000025 6000 PUSH1 00

27 00000027 39 CODECOPY

28 00000028 6000 PUSH1 00

29 0000002a f3 RETURN

Listing 11: Porosity Pre-loader Disassembly Output

6.2 Runtime Dispatcher

At the beginning of each runtime part of contracts, we find a dispatcher that
branches to the right function to be called when invoking the contract.

14

6.2.1 Function Hashes

As we discussed earlier in the user-defined function section, the first 4 bytes
of the environment block are used to pass the function hash to the runtime
dispatcher that we will describe shortly. The function hash itself is generated
from the ABI definition of the function using the logic presented in listing 12.

1 [

2 {

3 "constant":false,

4 "inputs":[{ "name":"a", "type":"uint256" }],

5 "name":"double",

6 "outputs":[{ "name":"", "type":"uint256" }],

7 "type":"function"

8 },

9 {

10 "constant":false,

11 "inputs":[{ "name":"a", "type":"uint256" }],

12 "name":"triple",

13 "outputs":[{ "name":"", "type":"uint256" }],

14 "type":"function"

15 }

16]

Listing 12: ABI Definition

We take the first 4 bytes of the sha3 (keccak256) value for the string
functionName(param1Type, param2Type, etc) . For instance, if we consider the
above function to be declared as double then we also need to consider the
string double(uint256) as illustrated below in listing 13:

1 keccak256("double(uint256)") =>

2 eee972066698d890c32fec0edb38a360c32b71d0a29ffc75b6ab6d2774ec9901

Listing 13: double Function Declaration

This means that the function signature/hash is 0xeee97206 as extracted
from the return value shown above in listing 13. If we repeat the same

15

operation for the triple(uint256) function then we will get the values shown
in listing 14.

1 Contract::setABI: Name: double(uint256)

2 Contract::setABI: signature: 0xeee97206

3

4 Contract::setABI: Name: triple(uint256)

5 Contract::setABI: signature: 0xf40a049d

Listing 14: double/triple Function Hashes

6.2.2 Dispatcher

Using the --disassm parameter of Porosity and by providing the --abi def-
inition as well, Porosity will then generate a readable disassembly output
resolving the symbols based on the ABI definition. Not only that, but also
isolate each basic block which will help a lot in the explanation of this section.
We can go ahead and examine the runtime bytecode shown in listing 15.

1 606060405260e06 \

2 0020a6000350463 \

3 eee972068114602 \

4 4578063f40a049d \

5 146035575b005b6 \

6 045600435600060 \

7 4f8260025b02905 \

8 65b604560043560 \

9 00604f826003603 \

10 1565b6060908152 \

11 602090f35b92915 \

12 05056

Listing 15: EVM Runtime Bytecode Example

Porosity will generate the following disassembly for the previously men-
tioned runtime bytecode which was obtained from the EVM itself as being
shown in listing 16.

16

1 loc_00000000:

2 0x00000000 6060 PUSH1 60

3 0x00000002 6040 PUSH1 40

4 0x00000004 52 MSTORE

5 0x00000005 60e0 PUSH1 e0

6 0x00000007 60 02 PUSH1 02

7 0x00000009 0a EXP

8 0x0000000a 6000 PUSH1 00

9 0x0000000c 35 CALLDATALOAD

10 0x0000000d 04 DIV

11 0x0000000e 630672e9ee PUSH4 0672e9ee

12 0x00000013 81 DUP2

13 0x00000014 14 EQ

14 0x00000015 6024 PUSH1 24

15 0x00000017 57 JUMPI

16

17 loc_00000018:

18 0x00000018 80 DUP1

19 0x00000019 639d040af4 PUSH4 9d040af4

20 0x0000001e 14 EQ

21 0x0000001f 6035 PUSH1 35

22 0x00000021 57 JUMPI

23

24 loc_00000022:

25 0x00000022 5b JUMPDEST

26 0x00000023 00 STOP

27

28 double(uint256):

29 0x00000024 5b JUMPDEST

30 0x00000025 6045 PUSH1 45

31 0x00000027 6004 PUSH1 04

32 0x00000029 35 CALLDATALOAD

33 0x0000002a 6000 PUSH1 00

34 0x0000002c 604f PUSH1 4f

35 0x0000002e 82 DUP3

36 0x0000002f 6002 PUSH1 02

37

38 loc_00000031:

39 0x00000031 5b JUMPDEST

40 0x00000032 02 MUL

41 0x00000033 90 SWAP1

42 0x00000034 56 JUMP

17

43 triple(uint256):

44 0x00000035 5b JUMPDEST

45 0x00000036 6045 PUSH1 45

46 0x00000038 6004 PUSH1 04

47 0x0000003a 35 CALLDATALOAD

48 0x0000003b 6000 PUSH1 00

49 0x0000003d 604f PUSH1 4f

50 0x0000003f 82 DUP3

51 0x00000040 6003 PUSH1 03

52 0x00000042 6031 PUSH1 31

53 0x00000044 56 JUMP

54

55 loc_00000045:

56 0x00000045 5b JUMPDEST

57 0x00000046 6060 PUSH1 60

58 0x00000048 90 SWAP1

59 0x00000049 81 DUP2

60 0x0000004a 52 MSTORE

61 0x0000004b 6020 PUSH1 20

62 0x0000004d 90 SWAP1

63 0x0000004e f3 RETURN

64

65 loc_0000004f:

66 0x0000004f 5b JUMPDEST

67 0x00000050 92 SWAP3

68 0x00000051 91 SWAP2

69 0x00000052 50 POP

70 0x00000053 50 POP

71 0x00000054 56 JUMP

Listing 16: Runtime Bytecode Porosity Disassembly

First, the dispatcher reads the 4 bytes function hash from the envi-
ronment block by calling calldataload(0x0) / exp(0x2, 0xe0) . Since the
CALLDATALOAD instruction reads a 256-bit integer by default, therefore it is
followed by a division to filter the first 32-bits out.

18

1 (0x12345678aaaaaaaabbbbbbbbccccccccdddddddd000000000000000000000000 /

2 0x0000000100)

3 = 0x12345678

Listing 17: dispdisasm

We can try and emulate the code using the EVM emulator or using poros-
ity as long as Ethereum is used in the following manner as illustrated in
listing 18.

1 PS C:\Program Files\Geth> .\evm.exe \

2 --code 60e060020a6000350463deadbabe \

3 --debug \

4 --input 12345678aaaaaaaabbbbbbbbccccccccdddddddd

5 PC 00000014: STOP GAS: 9999999920 COST: 0

6 STACK = 2

7 0000: 00deadbabe

8 0001: 0012345678

9 MEM = 0

10 STORAGE = 0

Listing 18: EVM Emulator

We can notice there are two PUSH4 instructions that corresponds to the
function hashes we previously computed.

In the above scenario the equivalent EVM code would translate to the
pseudo-code jumpi(eq(calldataload(0x0) / exp(0x2, 0xe0), 0xeee97206)) . Us-
ing Control Flow Graph (CFG) feature of Porosity, we can generate a static
CFG or a dynamic CFG. Both graphs will be generated in GraphViz format.

Static CFG often contains orphan basic blocks, due to the fact that some
destination addresses are computed at runtime. While the dynamic CFG
resolves those orphan basic blocks by emulating the code as we can see in
the output of both fig. 1 and fig. 2.

19

Figure 1: Static CFG Figure 2: Enulated CFG

This helps us to translate such graph to the following pseudo like C code,
as shown in listing 19.

1 hash = calldataload(0x0) / exp(0x2, 0xe0);

2 switch (hash) {

3 case 0xeee97206: // double(uint256)

4 memory[0x60] = calldataload(0x4) * 2;

5 return memory[0x60];

6 break;

7 case 0xf40a049d: // triple(uint256)

8 memory[0x60] = calldataload(0x4) * 3;

9 return memory[0x60];

10 break;

11 default:

12 // STOP

13 break;

14 }

Listing 19: Static/Dynamic Graph Pseudo-C Code

As we can notice from the above pseudo code. Each runtime code has a
dispatcher for each user-defined function. Once it is decompiled we get the
following output shown in listing 20.

20

1 contract C {

2 function double(int arg_4) {

3 return arg_4 * 2;

4 }

5

6 function triple(int arg_4) {

7 return arg_4 * 3;

8 }

9 }

Listing 20: Decompiled Pseudo-C code

7 Code Analysis

7.1 Vulnerable Contract

Let’s take a simple vulnerable smart contract such as the one shown in list-
ing 21. The detailed analysis of the vulnerability has already been published
by Abhiroop Sarkar in his blog and can be thoroughly read there.

21

7.1.1 Solidity source code

1 contract SendBalance {

2 mapping (address => uint) userBalances ;

3 bool withdrawn = false ;

4

5 function getBalance (address u) constant returns (uint){

6 return userBalances [u];

7 }

8

9 function addToBalance () {

10 userBalances[msg.sender] += msg.value ;

11 }

12

13 function withdrawBalance (){

14 if (!(msg.sender.call.value (

15 userBalances [msg . sender])())) { throw ; }

16 userBalances [msg.sender] = 0;

17 }

18 }

Listing 21: Vulnerable Smart Contract

22

7.1.2 Runtime Bytecode

1 60606040526000357c01000000000000000000000000000000 \

2 00000000000000000000000000900480635fd8c7101461004f \

3 578063c0e317fb1461005e578063f8b2cb4f1461006d576100 \

4 4d565b005b61005c6004805050610099565b005b61006b6004 \

5 80505061013e565b005b610083600480803590602001909190 \

6 505061017d565b604051808281526020019150506040518091 \

7 0390f35b3373ffffffffffffffffffffffffffffffffffffff \

8 ff16600060005060003373ffffffffffffffffffffffffffff \

9 ffffffffffff16815260200190815260200160002060005054 \

10 60405180905060006040518083038185876185025a03f19250 \

11 5050151561010657610002565b6000600060005060003373ff \

12 ffffffffffffffffffffffffffffffffffffff168152602001 \

13 908152602001600020600050819055505b565b346000600050 \

14 60003373ff16 \

15 81526020019081526020016000206000828282505401925050 \

16 819055505b565b6000600060005060008373ffffffffffffff \

17 ffffffffffffffffffffffffff168152602001908152602001 \

18 6000206000505490506101b6565b91905056

Listing 22: Vulnerable Smart Contract Runtime Bytecode

23

7.1.3 ABI Definition

1 [

2 {

3 "constant": false,

4 "inputs": [],

5 "name": "withdrawBalance",

6 "outputs": [],

7 "type": "function"

8 },

9 {

10 "constant": false,

11 "inputs": [],

12 "name": "addToBalance",

13 "outputs": [],

14 "type": "function"

15 },

16 {

17 "constant": true,

18 "inputs": [

19 {

20 "name": "u",

21 "type": "address"

22 }

23],

24 "name": "getBalance",

25 "outputs": [

26 {

27 "name": "",

28 "type": "uint256"

29 }

30],

31 "type": "function"

32 }

33]

Listing 23: Vulnerable Smart Contract ABI Definition

24

7.1.4 Decompiled version

1 function getBalance(address) {

2 return store[arg_4];

3 }

4

5 function addToBalance() {

6 store[msg.sender] = store[msg.sender];

7 return;

8 }

9

10 function withdrawBalance() {

11 if (msg.sender.call.value(store[msg.sender])()) {

12 store[msg.sender] = 0x0;

13 }

14 }

15

16 **L12 (D8193): Potential reentrant vulnerability found.**

Listing 24: Vulnerable Smart Contract Decompilation

8 Bugs

Keeping an eye on Solidity Compiler Bugs is one of the important notes one
would consider.

8.1 Reentrant Vulnerability / Race Condition

Also known as the DAO vulnerability. similar to the SendBalance contract
from above. In the meantime significant changes have been made to the
EVM which includes the introduction of a REVERT instruction to restore a
given state. An excerpt of the explanation is as follows:

call the function to execute a split before that withdrawal
finishes. The function will start running without updating your
balance, and the line we marked above as ”the attacker wants to
run more than once” will run more than once.

25

8.2 Call Stack Vulnerability

Call stack attack, explained by Least Authority[14] takes advantage of the
fact that a CALL operation will fail if it causes the stack depth to exceed 1024
frames. Which happens to also be the current limit of the stack as previously
described earlier. It will ultimately fail and not cause an exception. Unlike
stack underflow which happens when frames are not present on the stack
during the invocation of a specific instruction. This is a known problem that
indicates an error instead of reverting back to the state to the caller. There
are often a lack of assert checks in Solidity contracts, due to the poor support
for actual unit testing. Given the special condition requiring to trigger this
problem, which is an environment specific problem then we cannot easily spot
it through static analysis. One potential mitigation would be for the EVM
to implement integrity checks before executing a contract that would ensure
the state of the stack, and the depth required by the contract (computed
either dynamically or statically by the compiler) are met.

8.3 Time Dependance Vulnerability

TIMESTAMP returns the current blockchain timestamp and should not be used.
As the timestamp of the block can be predicted or manipulated by the miner,
which is something that the developers must keep in mind when implementing
routines that depend on such variable. Because of this, developers must be
extremely careful with time dependency. This was well explained by the case
study from @mhswende with the Ethereum Roulette[12] that shows how an
implementation of Ethereum Roulette was abused.

9 Future

As contracts are embedded in blockchain, there is no easy way to deploy
updates to patch existing contracts like we would do with any regular soft-
ware. This is an implementation limitation to understand. Regular softwares
development has seen the integration and the raise of Security Development
Lifecycle (SDL) as part of its development lifecycle, this is a process which
has became increasingly popular that also includes models such as threat
modeling which has yet to be seen within the smart-contract World regard-
less of the platform itself.

26

There is also a growing community that aims at raising awareness for
writing secure solidity code, such as the ”Underhanded Solidity Coding Con-
test” [15] announced early July for the first time that aims at judging code
containing hidden vulnerabilities that can be interpreted as backdoors. Such
vulnerabilities/backdoors that aren’t obvious during the code auditing pro-
cess, and can easily be misinterpreted and dismissed as coder error(s). USCC
first contest is around the theme of Initial Coins Offering (ICOs), and includes
Solidity Lead Developer, Christian Reitwiessner, in its jury. In addition of
that, some forks such as Quorum [16] are rising interest by adding an privacy
layer on top of the smart-contract blockchain, often required and currently
missing with the actual Ethereum implementation.

In March 2017[17], Martin Becze, the Ethereum Foundation’s JavaScript
client developer, outlined the next stages of the eWASM initiative[18] which
aims at entirely replacing the Ethereum Virtual Machine with Webassembly.
Since most of browser JavaScript engines (Google’s V8, Microsoft’s Chakra,
Mozilla’s Spidermonkey etc.) will have native support for WebAssembly - this
will definitely enlarge the landscape of softwares/applications development
on Ethereum and blockchain - including its future attack surface.

10 Acknowledgments

� Mohamed Saher

� Halvar Flake

� DEFCON Review Board Team

� Max Vorobjov & Andrey Bazhan

� Gavin Wood

� Andreas Olofsson

27

References

[1] Suiche, Matt. ”Porosity: Ethereum Smart-Contract Decompiler” N.p.,
n.d. Web. https://github.com/comaeio/porosity

[2] Woods, Gavin. ”Ethereum: A Secure Decentralised Generalised Transac-
tion Ledger.” N.p., n.d. Web. https://github.com/ethereum/yellowpaper.

[3] Olofsson, Andreas. ”Solidity Workshop.” N.p., n.d. Web.
https://github.com/androlo/solidity-workshop.

[4] Olofsson, Andreas. ”Solidity Contracts.” N.p., n.d. Web.
https://github.com/androlo/standard-contracts.

[5] Velner, Yarn, Jason Teutsch, and Loi Luu. ”Smart Con-
tracts Make Bitcoin Mining Pools Vulnerable.” N.p., n.d. Web.
https://eprint.iacr.org/2017/230.pdf.

[6] Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Aquinas Hobor. ”Making Smart
Contracts Smarter.” N.p., n.d. Web. https://www.comp.nus.edu.sg/%7
Ehobor/Publications/2016/Making%20Smart%20Contracts%20Smarter.
pdf.

[7] Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. ” A Sur-
vey of Attacks on Ethereum Smart Contracts.” N.p., n.d. Web.
https://eprint.iacr.org/2016/1007.pdf.

[8] Sarkar, Abhiroop. ”Understanding the Transactional Nature of Smart
Contracts.” N.p., n.d. Web. https://abhiroop.github.io/Exceptions-and-
Transactions.

[9] Siegel, David. ”Understanding The DAO Attack.” N.p., n.d. Web.
http://www.coindesk.com/understanding-dao-hack-journalists.

[10] Blockchain software for asset management. ”OYENTE:
An Analysis Tool for Smart Contracts.” N.p., n.d. Web.
https://github.com/melonproject/oyente.

[11] Holst Swende, Martin. ”Devcon1 and Ethereum Contract Security.”
N.p., n.d. Web. http://martin.swende.se/blog/Devcon1-and-contract-
security.html.

28

[12] Holst Swende, Martin. ”Breaking the House”, N.p.,n.d. Web.
http://martin.swende.se/blog/Breaking the house.html.

[13] Buterin, Vitalik. ”Thinking About Smart Contract Security.”
N.p., n.d. Web. https://blog.ethereum.org/2016/06/19/thinking-smart-
contract-security.

[14] Least Authority. ”Gas Economics: Call Stack Depth Limit Er-
rors.” N.p., n.d. Web. https://github.com/LeastAuthority/ethereum-
analyses/blob/master/GasEcon.md#callstack-depth-limit-errors.

[15] Underhanded Solidity Coding Contest, Web. http://u.solidity.cc/.

[16] Quorum. ”A permissioned implementation of Ethereum supporting data
privacy.” N.p., n.d. Web. https://github.com/jpmorganchase/quorum.

[17] Ethereum. ”Ethereum JS Ecosystem Updates.” N.p., n.d. Web.
https://blog.ethereum.org/2017/03/21/ethereum-js-ecosystem-
updates/.

[18] eWASM. ”eWASM Design Overview and Specification.” N.p., n.d. Web.
https://github.com/ewasm/design.

29

