

Fuse: An Architecture for Smart Contract Fuzz Testing Service †

W.K. Chan
Department of Computer Science

City University of Hong Kong
Hong Kong

wkchan@cityu.edu.hk

Bo Jiang
School of Computer Science and Engineering

Beihang University
Beijing, China

jiangbo@buaa.edu.cn

Abstract—In this paper, we report our project Fuse, which is
a fuzz testing service. It presents the Fuse architecture and
discusses the progress and technical issues to be addressed to
fuzz-test smart contracts and support fuzz-testing of Dapps.

Keywords—blockchain, fuzz testing, Dapps, architecture,
security vulnerability, smart contract, Ethereum

I. INTRODUCTION
Testing is vital to software development projects.

Ethereum smart contracts [3] are a kind of program running
on Ethereum Virtual Machine (EVM). They are deployed
on top of the blockchain technology stack, making each
smart contract in production immutable in the long run and
smart contracts’ transactions in each valid block at each
blockchain node to be executed locally.

A decentralized application (Dapp) contains a set of
smart contracts and other components. Like any kind of
applications, a smart contract in a Dapp may contain bugs
or require enhancement such as handling missed cases with
or without changes in functional signatures of the functions
in smart contracts. Popular de facto approaches to updating
a version of a smart contract to a newer version are to either
de-construct that smart contract and deploy a new one or
incorporate an address diversion facility such as a proxy
pattern implementation through the system call deletecall()
to forward each called function at the present contract
address to a new contract address. A development project of
a Dapp may thus include not only many rounds of evolution
of its smart contracts but also transactions at the production
blockchain network to update various such addresses. The
combinations of deletecall() and changes in functional
signature and the values concatenated as a byte array may
further increase the security vulnerability potentials of the
corresponding Dapps.

In this paper, we present the progress of building a new
kind of testing service called Fuse to support the fuzz
testing of smart contracts and explain how it can support
fuzz testing of Dapps.

Section II outlines the architecture of Fuse, and
discusses the challenges. Section III concludes this paper.

II. FUSE

A. Architecture
Figure 1 depicts the overall architecture of Fuse. We use

the following scenario to illustrate how Fuse works.

Scenario: A developer has a smart contract usually
ready for testing and unavailable to the public. S/he first
submits an encrypted binary of the smart contract to be
tested or the URL of a deployed smart contract (denoted as
smart contract A in the figure) via a web portal to Fuse.
Then, the Smart Contract Acquisition module decrypts the
received submission to extract contract A, and passes
contract A to the Smart Contract Preparation module. The
Smart Contract Preparation module extracts all the function
signatures of contract A and passes the functional signatures
to the Fuzz Test Generation module, and deploys contract
A to a testnet within Fuse. The Fuzz Test Generation
module then generates fuzz test cases to test the smart
contract A together with a set of other smart contracts
already deployed on the same testnet. In the course of
execution of these smart contracts, the Execution Profiling
module profiles their control flow information, the
interactions between smart contracts’ transactions and
messages and program states, and passes these information
to the Vulnerability Detection module as well as the Fuzz
Test Generation module. The Vulnerability Detection
module checks whether some blockchain accounts or
messages or transactions result in violation of the
predefined test oracles. It marks the execution points for
those detected vulnerability (i.e., a violation of any test
oracle defined in Fuse).

The detected vulnerability and the execution scenario
leading to the vulnerability are then passed to the Test
Scenario Encoding module. This module encode the test
scenario in a static form, which is further passed to the Test
Report Generation module. The Test Report Generation
module then combines the fuzz testing profile received from
the Smart Contract Preparation module and the test scenario
from the Test Scenario Encoding module to generate an
encrypted test report for contract A. The encrypted test
report will send via a web portal back to the developer.

The developer decrypts the test report using a computer
in his/her space and watches the test scenario through the
Test Scenario Visualization module (e.g., in the user’ web
browser). The module is designed to be executable without
network connectivity, and thus users may use a standalone
machine without networking connectivity to go through the
visualization of the test report.

B. Progress
We [1] have made research progress for the Fuzz Test

Generation module, the Execution Profiling module, and
Vulnerability Detection module as follows. We have
defined the first set of test oracle definitions with respect
to seven classes of vulnerability patterns but realized as an
offline analysis. To facilitate these offline analyses, we
have profiled the caller-callee relations, input and output
values of the called functions as well as the executed

† This research is supported in part by NSFC (project no. 61772056), the
Research Fund of the MIIT of China (project no. MJ-Y-2012-07), the GRF
of Research Grants Council (project no. 11214116, 11200015, and
11201114), and the State Key Laboratory of Virtual Reality Technology and
Systems.

707

2018 25th Asia-Pacific Software Engineering Conference (APSEC)

978-1-7281-1970-0/18/$31.00 ©2018 IEEE
DOI 10.1109/APSEC.2018.00099

opcode in each called function and the gas stipend allowed
for that call. We have proposed a novel form of fuzz testing
with constant seeding as the strategy to generate test
transactions in which it fuzz-tests the whole set of deployed
smart contracts and constants needed are extracted from
this whole set. Our experiment results showed that the
current combination of techniques can detect security
vulnerability issues of these seven classes precisely with a
true positive rates of 96-100%, and Table 1 shows the
results [1]. We have made the tool called ContractFuzzer
publicly available [2].

Table 1 Summary of Vulnerabilities Detected [1]

Vulnerability Class # of Detected
Vulnerabilities True positive rate

Gasless Send 138 1.000
Exception Disorder 36 1.000
Reentrancy 14 1.000
Timestamp Dependency 152 0.960
Block Number Dependency 82 0.963
Freezing Ether 30 1.000
Dangerous Delegatecall 7 1.000

C. Discussion
To develop Fuse, we still need to address a number of

technical issues. Our fuzz testing prototype [2], even
though precise in practice, are still restrictive. For instance,
compared to Oynete [4][5], the prototype of
ContractFuzzer detected about 50% fewer true positive
cases in the experiment [1]. Fuse will address this issue by
expanding the definitions of test oracle and incorporating a
new testing technique in generating test data. Another issue
is that the offline analysis could be inefficient. We plan to
study an online counterpart. However, online analysis may
further slow down the execution of smart contracts, which
is an issue to be addressed.

Fuse also aims to provide test scenarios for developers’
reference. Our experience in path tracing [6] is that the data
log for encoding the control flow of a test scenario could

be large in size, prohibiting the transfer of a test scenario to
a developer’s site for visualization in private. Fuse aims to
address the log size problem while facilitating visualization
in high fidelity. One interesting observation is that the test
scenario encoding can be performed offline as the number
of cases that expose vulnerability issues should be in small
minority. One possible option is to develop on top of the
notion of HPPDAG [6] to encode such a test scenario.

A smart contract may interact with some other modules
in a Dapp. A Dapp may generate wrong transactions to a
blockchain for smart contract execution. This part should
also be tested. We are studying how Dapp testing can be
performed together with fuzz testing on smart contracts.

III. CONCLUSION
This paper has presented the Fuse architecture and

discussed the progress and a plan for actions to realize
Fuse. to fuzz-test smart contract and Dapps and assist
developers for test diagnosis via test scenario visualization.

REFERENCES
[1] Bo Jiang, Ye Liu, and W. K. Chan. ContractFuzzer: Fuzzing Smart

Contracts for Vulnerability Detection. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software
Engineering (ASE 2018). ACM, New York, NY, USA, 259-269,
2018. DOI: https://doi.org/10.1145/3238147.3238177

[2] ContractFuzzer. https://github.com/gongbell/ContractFuzzer (last
access on 26 Sept 2018)

[3] Etherenum. https://www.ethereum.org/ (last access on 26 Sept
2018)

[4] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and
Aquinas Hobor. Making Smart Contracts Smarter. In Proceedings
of the 23rd ACM SIGSAC Conference on Computer and
Communications Security (CCS 2106), pp:254-269, Vienna,
Austria, 2016. DOI: https://doi.org/10.1145/2976749.2978309

[5] Oynete. https://github.com/melonproject/oyente (last access on 26
Sept 2018)

[6] Chunbai Yang, Shangru Wu, and W. K. Chan. Hierarchical Program
Paths. ACM Transactions on Software Engineering and
Methodology, 25(3), Article 27, 44 pages, 2016. DOI:
https://doi.org/10.1145/2963094

Ethereum Virtual Machine and
Testnet

Execution
Profilingdeveloper

Fuzz Test
Generation

other
smart

contracts

smart
contract A

fuzzing test caess

Vulnerability
Detection

feedback

Test Scenario
Encoding

Test Report
Generation

Smart Contract
Preparation

AB
I s

pe
ci

fic
at

io
n

Smart Contract
Acquisition

fuzzing profile

fuzzing profile

test scenario

smart
contract A

test report

smart contract

Test Scenario
Visualization

<<backend>>

<<frontend>>

<<website>>

test report

<<Fuse testing service >>

Web
Portal

smart
contract A

<<web browser>>

Visualization
space

<<user company>>

te
st

 re
po

rt

Fig. 1. Architecture of Fuse

708

