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Abstract
Fuzzing is widely used for vulnerability detection. There
are various kinds of fuzzers with different fuzzing strate-
gies, and most of them perform well on their targets. How-
ever, in industrial practice, it is found that the performance
of those well-designed fuzzing strategies is challenged by
the complexity and diversity of real-world applications. In
this paper, we systematically study an ensemble fuzzing ap-
proach. First, we define the diversity of base fuzzers in three
heuristics: diversity of coverage information granularity, di-
versity of input generation strategy and diversity of seed se-
lection and mutation strategy. Based on those heuristics,
we choose several of the most recent base fuzzers that are
as diverse as possible, and propose a globally asynchronous
and locally synchronous (GALS) based seed synchronization
mechanism to seamlessly ensemble those base fuzzers and
obtain better performance. For evaluation, we implement
EnFuzz based on several widely used fuzzers such as QSYM
and FairFuzz, and then test them on LAVA-M and Google’s
fuzzing-test-suite, which consists of 24 widely used real-
world applications. This experiment indicates that, under the
same constraints for resources, these base fuzzers perform
differently on different applications, while EnFuzz always
outperforms others in terms of path coverage, branch cover-
age and bug discovery. Furthermore, EnFuzz found 60 new
vulnerabilities in several well-fuzzed projects such as libpng
and libjpeg, and 44 new CVEs were assigned.

Index terms— Ensemble Fuzzing, Seed Synchronization

1 Introduction

Fuzzing is one of the most popular software testing tech-
niques for bug and vulnerability detection. There are many
fuzzers for academic and industrial usage. The key idea of
fuzzing is to generate plenty of inputs to execute the tar-
get application and monitor for any anomalies. While each
fuzzer develops its own specific fuzzing strategy to generate
inputs, there are in general two main types of strategies. One
is a generation-based strategy which uses the specification of
input format, e.g. grammar, to generate complex inputs. For
example, IFuzzer [33] takes a context-free grammar as speci-
fication to generate parse trees for code fragments. Radamsa

[22] reads sample files of valid data and generates interest-
ing different outputs from them. The other main strategy is a
mutation-based strategy. This approach generates new inputs
by mutating the existing seeds (good inputs contributing to
improving the coverage). Recently, mutation-based fuzzers
are proposed to use coverage information of target programs
to further improve effectiveness for bug detection. For ex-
ample, libFuzzer [10] mutates seeds by utilizing the Sani-
tizerCoverage [11] instrumentation to track block coverage,
while AFL [39] mutates seeds by using static instrumenta-
tion to track edge coverage.

Based on the above mentioned two fuzzers, researchers
have performed many optimizations. For example, AFLFast
[16] improves the fuzzing strategy of AFL by selecting seeds
that exercise low-frequency paths for additional mutations,
and FairFuzz [26] optimizes AFL’s mutation algorithm to
prioritize seeds that hit rare branches. AFLGo [15] as-
signs more mutation times to the seeds closer to target lo-
cations. QSYM [38] uses a practical concolic execution en-
gine to solve complex branches of AFL. All of these opti-
mized fuzzers outperform AFL on their target applications
and have already detected a large number of software bugs
and security vulnerabilities.

However, when we apply these optimized fuzzers to some
real-world applications, these fuzzing strategies are incon-
sistent in their performance, their effectiveness on different
applications varies accordingly. For example, in our evalu-
ation on 24 real-world applications, AFLFast and FairFuzz
perform better than AFL on 19 applications, while AFL per-
forms better on the other 5 applications. Compared with
AFL, libFuzzer performs better on 17 applications but worse
on the other 7 applications. For the parallel mode of fuzzing
which is widely-used in industry, AFLFast and FairFuzz only
detected 73.5% and 88.2% of the unique bugs of AFL. These
results show that the performance of existing fuzzers is chal-
lenged by the complexity and diversity of real-world applica-
tions. For a given real-world application, we cannot evaluate
which fuzzer is better unless we spend significant time an-
alyzing them or running each of these fuzzers one by one.
This would waste a lot of human and computing resources
[25]. This indicates that many of the current fuzzing strate-
gies have a lack of robustness — the property of being strong
and stable consistently in constitution. For industrial prac-
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tice, more robust fuzzing strategies are desired when applied
across different applications.

In this paper, we systematically study the performance of
an ensemble fuzzing approach. First, we define the diver-
sity of base fuzzers focusing on three heuristics: diversity of
coverage information granularity, diversity of input genera-
tion strategy, as well as diversity of seed mutation and selec-
tion strategy. Then, we implement an ensemble architecture
with a global asynchronous and local synchronous(GALS)
based seed synchronization mechanism to integrate these
base fuzzers effectively. To enhance cooperation among dif-
ferent base fuzzers, the mechanism synchronizes interesting
seeds(i.e., test cases covering new paths or triggering new
crashes) periodically to all fuzzers running on the same target
application. At the same time, it maintains a global coverage
map to help collect those interesting seeds asynchronously
from each base fuzzer.

For evaluation, we implement a prototype of EnFuzz,
based on several high-performance base fuzzers, including
AFL, AFLFast, FairFuzz, QSYM, libFuzzer and Radamsa.
All fuzzers are repeatedly tested on two widely used bench-
marks — LAVA-M and Google’s fuzzer-test-suite, follow-
ing the kernel rules of evaluating fuzzing guideline[25]. The
average number of paths executed, branches covered and
unique crashes discovered are used as metrics. The results
demonstrate that, with the same resource usage, the base
fuzzers perform differently on different applications, while
EnFuzz consistently and effectively improves the fuzzing
performance. For example, there are many cases where the
original AFL performs better on some real-world applica-
tions than the two optimized fuzzers FairFuzz and AFLFast.
In all cases, the ensemble fuzzing always outperforms all
other base fuzzers.

Specifically, on Google’s fuzzer-test-suite consisting of
real-world applications with a code base of 80K-220K
LOCs, compared with AFL, AFLFast, FairFuzz, QSYM,
libFuzzer and Radamsa, EnFuzz discovers 76.4%, 140%,
100%, 81.8%, 66.7% and 93.5% more unique bugs, executes
42.4%, 61.2%, 45.8%, 66.4%, 29.5% and 44.2% more paths
and covers 15.5%, 17.8%, 12.9%, 26.1%, 19.9% and 14.8%
more branches respectively. For the result on LAVA-M con-
sisting of applications with a code base of 2K-4K LOCs,
it outperforms each base fuzzer as well. For further eval-
uation on more widely used and several well-fuzzed open-
source projects such as Libpng and jpeg, EnFuzz finds 60
new real vulnerabilities, 44 of which are security-critical vul-
nerabilities and registered as new CVEs. However, other
base fuzzers only detect 35 new vulnerabilities at most.

This paper makes the following main contributions:

1. While many earlier works have mentioned the possi-
bility of using ensemble fuzzing, we are among the
first to systematically investigate the practical ensem-
ble fuzzing strategies and the effectiveness of ensem-
ble fuzzing of various fuzzers. We evaluate the perfor-
mance of typical fuzzers through a detailed empirical
study. We define the diversity of base fuzzers and study
the effects of diversity on their performance.

2. We implement a concrete ensemble approach with seed
synchronization to improve the performance of existing

fuzzers. EnFuzz shows a more robust fuzzing practice
across diverse real world applications. The prototype1

is also scalable and open-source so as to integrate other
fuzzers.

3. We apply EnFuzz to fuzz several well-fuzzed projects
such as libpng and libjpeg from GitHub, and sev-
eral commercial products such as libiec61850 from
Cisco. Within 24 hours, 60 new security vulnerabili-
ties were found and 44 new CVEs were assigned, while
other base fuzzers only detected 35 new vulnerabilities
at most. EnFuzz has already been deployed in indus-
trial practice, and more new CVEs are being reported1.

The rest of this paper is organized as follows: Section 2 in-
troduces related work. Section 3 illustrates ensemble fuzzing
by a simple example. Section 4 elaborates ensemble fuzzing,
including the base fuzzer selection and ensemble architecture
design. Section 5 presents the implementation and evalua-
tion of EnFuzz. Section 6 discusses the potential threats of
EnFuzz, and we conclude in section 7. The appendix shows
some empirical evaluations and observations.

2 Related Work

Here below, we introduce the work related to generation-
based fuzzing, mutation-based fuzzing, fuzzing in practice
and the main differences between these projects. After that
we summarize the inspirations and introduce our work.

2.1 Generation-based Fuzzing
Generation-based fuzzing generates a massive number of test
cases according to the specification of input format, e.g. a
grammar. To fuzz the target applications that require inputs
in complex format, the specifications used are crucial. There
are many types of specifications. Input model and context-
free grammar are the two most common types. Model-based
fuzzers [20, 34, 1] follow a model of protocol. Hence, they
are able to find more complex bugs by creating complex in-
teractions with the target applications. Peach [20] is one of
the most popular model-based fuzzers with both generation
and mutation abilities. It develops two key models: the data
model determines the format of complex inputs and the state
model describes the concrete method for cooperating with
fuzzing targets. By integrating fuzzing with models of data
and state, Peach works effectively. Skyfire [34] first learns a
context-sensitive grammar model, and then it generates mas-
sive inputs based on this model.

Some other popular fuzzers [21, 37, 31, 33, 24] gener-
ate inputs based on context free grammar. P Godefroid [21]
enhances the whitebox fuzzing of complex structured-input
applications by using symbolic execution, which directly
generates grammar-based constraints whose satisfiability is
examined using a custom grammar-based constraint solver.
Csmith [37] is designed for fuzzing C-compilers. It gener-
ates plenty of random C programs in the C99 standard as the

1https://github.com/enfuzz/enfuzz

2

https://github.com/enfuzz/enfuzz


inputs. This tool can be used to generate C programs ex-
ploring a typical combination of C-language features while
being free of undefined and unspecified behaviors. LAVA
[31] generates effective test suites for the Java virtual ma-
chine by specifying production grammars. IFuzzer [33] first
constructs parse trees based on a language’s context-free
grammar, then it generates new code fragments according to
these parse trees. Radamsa [22] is a widely used generation-
based fuzzer. It works by reading sample files of valid data
and generating interestingly different outputs from them.
Radamsa is an extreme ”black-box” fuzzer, it needs no in-
formation about the program nor the format of the data. One
can pair it with coverage analysis during testing to improve
the quality of the sample set during a continuous fuzzing test.

2.2 Mutation-based Fuzzing
Mutation-based fuzzers [23, 17, 2] mutate existing test cases
to generate new test cases without any input grammar or in-
put model specification. Traditional mutation-based fuzzers
such as zzuf [23] mutate the test cases by flipping random
bits with a predefined ratio. In contrast, the mutation ratio
of SYMFUZZ [17] is assigned dynamically. To detect bit
dependencies of the input, it leverages white-box symbolic
analysis on an execution trace, then it dynamically computes
an optimal mutation ratio according to these dependencies.
Furthermore, BFF [2] integrates machine learning with evo-
lutionary computation techniques to reassign the mutation
ratio dynamically.

Other popular AFL family tools [39, 16, 15, 26] apply
various strategies to boost the fuzzing process. AFLFast
[16] regards the process of target application as a Markov
chain. A path-frequency based power schedule is respon-
sible for computing the times of random mutation for each
seed. As with AFLFast, AFLGo [15] also proposes a simu-
lated annealing-based power schedule, which helps fuzz the
target code. FairFuzz [26] mainly focuses on the mutation
algorithm. It only mutates seeds that hit rare branches and
it strives to ensure that the mutant seeds hit the rarest one.
(Wen Xu et.al.)[36] propose several new primitives , speed-
ing up AFL by 6.1 to 28.9 times. Unlike AFL family tools
which track the hit count of each edge, libFuzzer [10] and
honggfuzz [5] utilize the SanitizerCoverage instrumentation
method provided by the Clang compiler. To track block cov-
erage, they track the hit count of each block as a guide to
mutate the seeds during fuzzing. SlowFuzz [30] prioritizes
seeds that use more computer resources (e.g., CPU, memory
and energy), increasing the probability of triggering algorith-
mic complexity vulnerabilities. Furthermore, some fuzzers
use concolic executors for hybrid fuzzing. Both Driller [32]
and QSYM use mutation-based fuzzers to avoid path explo-
ration of symbolic execution, while concolic execution is se-
lectively used to drive execution across the paths that are
guarded by narrow-ranged constraints.

2.3 Cluster and Parallel Fuzzing in Industry
Fuzzing has become a popular vulnerability discovery solu-
tion in industry [28] and has already found a large number
of dangerous bugs and security vulnerabilities across a wide

range of systems so far. For example, Google’s OSS-Fuzz
[4] platform has found more than 1000 bugs in 5 months
with thousands of virtual machines [9]. ClusterFuzz is the
distributed fuzzing infrastructure behind OSS-Fuzz, and au-
tomatically executes libFuzzer powered fuzzer tests on scale
[12, 13]. Initially built for fuzzing Chrome at scale, Clus-
terFuzz integrates multiple distributed libFuzzer processes,
and performs effectively with corpus synchronization. Clus-
terFuzz mainly runs multiple identical instances of libFuzzer
on distributed system for one target application. There is no
diversity between these fuzzing instances.

In industrial practice, many existing fuzzers also provide
a parallel mode, and they work well with some synchroniza-
tion mechisms. For example, each instance of AFL in par-
allel mode will periodically re-scan the top-level sync direc-
tory for any test cases found by other fuzzers[7, 3]. libFuzzer
in parallel will also use multiple fuzzing engines to exchange
the corpora[6]. These parallel mode can effectively improve
the performance of fuzzer. In fact, the parallel mode can be
seen as a special example of ensemble fuzzing which uses
multiple same base fuzzers. However, all these base fuzzers
have a lack of diversity when using the same fuzzing strat-
egy.

2.3.1 Main Differences

Unlike the previous works, we are not proposing a new con-
crete generation-based or mutation-based fuzzing strategy.
Nor do we run multiple identical fuzzers with multiple cores
or machines. Instead, inspired by the seed synchronization
of ClusterFuzz and AFL in parallel mode, we systemati-
cally study the possibility of the ensemble fuzzing of diverse
fuzzers mentioned in the earlier works. Referred to the ker-
nel descriptions of the evaluating fuzzing guidelines[25], we
empirically evaluate most state-of-the-art fuzzers, and iden-
tify some valuable results, especially for their performance
variation across different real applications. To generate a
stronger ensemble fuzzer, we choose multiple base fuzzers
that are as diverse as possible based on three heuristics.
We then implement an ensemble approach with global asyn-
chronous and local synchronous based seed synchronization.

3 Motivating Example

To investigate the effectiveness of ensemble fuzzing, we use
a simple example in Figure 1 which takes two strings as in-
put, and crashes when one of the two strings is “Magic Str”
and the other string is “Magic Num”.

Many existing fuzzing strategies tend to be designed with
certain preferences. Suppose that we have two different
fuzzers f uzzer1 and f uzzer2: f uzzer1 is good at solving the
”Magic Str” problem, so it is better for reaching targets T1
and T3, but fails to reach targets T2 and T4. f uzzer2 is good
at solving the ”Magic Num” problem so it is better for reach-
ing targets T2 and T6, but fails to reach targets T1 and T5. If
we use these two fuzzers separately, we can only cover one
path and two branches. At the same time, if we use them si-
multaneously and ensemble their final fuzzing results with-
out seed synchronization, we can cover two paths and four
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void crash(char* A, char* B){
if (A == "Magic Str"){ => T1

if (B == "Magic Num") {
bug(); => T4

}else{
normal(); => T3

}
}else if (A == "Magic Num"){ => T2

if (B == "Magic Str"){
bug(); => T5

}else{
normal(); => T6

}
}

}

T1 T2

T3 T4 T5 T6

Figure 1: Motivating example of ensemble fuzzing with seed
synchronization.

branches. However, if we ensemble these two fuzzers with
some synchronization mechanisms throughout the fuzzing
process, then, once f uzzer1 reaches T1, it synchronizes the
seed that can cover T1 to f uzzer2. As a result, then, with the
help of this synchronized seed, f uzzer2 can also reach T1,
and because of its ability to solve the ”Magic Num” prob-
lem, f uzzer2 can further reach T4. Similarly, with the help
of the seed input synchronized by f uzzer2, f uzzer1 can also
further reach T2 and T5. Accordingly, all four paths and all
six branches can be covered through this ensemble approach.

Table 1: covered paths of each fuzzing option

Tool T1-
T3

T1-
T4

T2-
T5

T2-
T6

fuzzer1 X

fuzzer2 X

ensemble fuzzer1 and fuzzer2
without seed synchronization

X X

ensemble fuzzer1 and fuzzer2
with seed synchronization

X X X X

The ensemble approach in this motivating example works
based on the following two hypotheses: (1) f uzzer1 and

f uzzer2 expert in different domains; (2) the interesting seeds
can be synchronized to all base fuzzers in a timely way. To
satisfy the above hypotheses as much as possible, success-
ful ensemble fuzzers rely on two key points: (1) the first is
to select base fuzzers with great diversity (as yet to be well-
defined); (2) the second is a concrete synchronization mech-
anism to enhance effective cooperation among those base
fuzzers.

4 Ensemble Fuzzing

For an ensemble fuzzing, we need to construct a set of base
fuzzers and seamlessly combine them to test the same tar-
get application together. The overview of this approach is
presented in Figure 2. When a target application is prepared
for fuzzing, we first choose several existing fuzzers as base
fuzzers. The existing fuzzing strategies of any single fuzzer
are usually designed with preferences. In real practice, these
preferences vary greatly across different applications. They
can be helpful in some applications, but may be less effective
on other applications. Therefore, choosing base fuzzers with
more diversity can lead to better ensemble performance. Af-
ter the base fuzzer selection, we integrate fuzzers with the
globally asynchronous and locally synchronous based seed
synchronization mechanism so as to monitor the fuzzing sta-
tus of these base fuzzers and share interesting seeds among
them. Finally, we collect crash and coverage information and
feed this information into the fuzzing report.

Base Fuzzers Selection

...

Seed Synchronization Mechanism

Base
Fuzzer

Base
Fuzzer

Base
Fuzzer

Base
Fuzzer

Result

generate

Result Result Result

generate generate generate

monitor

monitor monitor monitor monitor

seed is inter
esting?

N

Seed synchronization

Y

integrate together

...

Final Fuzzing Report

Global Coverage De-duplicate and triage Statistical Results

Target
Application

1 2 3 k

k321

Figure 2: The overview of ensemble fuzzing consists of base
fuzzer selection and ensemble architecture design. The base
fuzzer selection contains the diversity heuristic definition,
and the architecture design includes the seed synchroniza-
tion mechanism as well as final fuzzing report.
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4.1 Base Fuzzer Selection
The first step in ensemble fuzzing is to select a set of base
fuzzers. These fuzzers can be generation-based fuzzers,
e.g. Peach and Radamsa, or mutation-based fuzzers, e.g.
libFuzzer and AFL. We can randomly choose some base
fuzzers, but selecting base fuzzers with well-defined diver-
sity improves the performance of an ensemble fuzzer.

We classify the diversity of base fuzzers according to three
heuristics: seed mutation and selection strategy diversity,
coverage information granularity diversity, inputs generation
strategy diversity. The diversity heuristics are as follows:

1. Seed mutation and selection strategy based heuristic:
the diversity of base fuzzers can be determined by the
variability of seed mutation strategies and seed selec-
tion strategies. For example, AFLFast selects seeds that
exercise low-frequency paths and mutates them more
times, FairFuzz strives to ensure that the mutant seeds
hit the rarest branches.

2. Coverage information granularity based heuristic:
many base fuzzers determine interesting inputs by
tracking different coverage information. Hence, the
coverage information is critical, and different kinds of
coverage granularity tracked by fuzzers enhances diver-
sity. For example, libFuzzer guides seed mutation by
tracking block coverage while AFL tracks edge cover-
age.

3. Input generation strategy based heuristic: fuzzers with
different input generation strategies are suitable for dif-
ferent tasks. For example, generation-based fuzzers use
the specification of input format to generate test cases,
while the mutation-based fuzzers mutate initial seeds
by tracking code coverage. So the generation-based
fuzzers such as Radamsa perform better on complex
format inputs and the mutation-based fuzzers such as
AFL prefer complex logic processing.

Based on these three basic heuristics, we should be able to
select a diverse set of base fuzzers with large diversity. It is
our intuition that the diversity between the fuzzers following
in two different heuristics is usually larger than the fuzzers
that follows in the same heuristic. So, the diversity among
the AFL family tools should be the least, while the diversity
between Radamsa and AFL, between Libfuzzer and AFL,
and between QSYM and AFL is should be greater. In this
paper, we select base fuzzers manually based on the above
heuristics. the base fuzzers will be dynamically selected ac-
cording to the real-time coverage information.

4.2 Ensemble Architecture Design
After choosing base fuzzers, we need to implement a suit-
able architecture to integrate them together. As presented
in Figure 2, inspired by the seed synchronization of AFL in
parallel mode, one core mechanism is designed — the glob-
ally asynchronous and locally synchronous (GALS) based
seed synchronization mechanism. The main idea is to iden-
tify the interesting seeds (seeds that can cover new paths or

new branches or can detect new unique crashes) from differ-
ent base fuzzers asynchronously and share those interesting
seeds synchronously among all fuzzing processes.

monitor

...

... Base FuzzerBase Fuzzer

local seed queue

global seed pool

local seed queue local seed queue

global coverage map global crashes

Base Fuzzer
1 2 k

Figure 3: The data structure of global asynchronous and lo-
cal synchronous based seed synchronization mechanism.

ALGORITHM 1: Action of local base fuzzer
Input : Local seed pool of base fuzzer queue

1 repeat
2 foreach seed s of the queue do
3 s′ = Mutate(s);
4 Cover = Run(s’);
5 // if seeds s′ causes new crash or have new

// coverage, then store it in own seed pool and
// push it to the global seed pool asynchronously;

6 if Cover.causeCrash() then
7 crashes.push(s’);
8 queue.push(s′);
9 GlobalSeedPool.push(s′);

10 else if Cover.haveNewCoverage() then
11 queue.push(s′);
12 GlobalSeedPool.push(s′);
13 end
14 end
15 until timeout or abort-signal;

Output: Global crashing seeds crashes

This seed synchronization mechanism employs a global-
local style data structure as shown in Figure 3. The local
seed queue is maintained by each base fuzzer, while the
global pool is maintained by the monitor for sharing inter-
esting seeds among all base fuzzers. In ensemble fuzzing,
the union of these base fuzzers’ results is needed to iden-
tify interesting seeds during the whole fuzzing process. Ac-
cordingly, the global coverage map is designed, and any new
paths or new branches covered by the interesting seeds will
be added into this global map. This global map can not only
help decide which seeds to be synchronized, but also help de-
duplicate and triage the results. Furthermore, to output the
final fuzzing report after completing all fuzzing jobs, any in-
teresting seeds which contribute to triggering unique crashes
will be stored in the global crashes list.

First, let us take a look at the seed synchronization solution
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of the base fuzzer, which mainly describes how base fuzzers
contribute the interesting seeds asynchronously to the global
pool. As presented in lines 2-4 of algorithm 1, for each sin-
gle base fuzzer, it works with a local input seed queue and
runs a traditional continuous fuzzing loop. It has three main
steps: (1) Select input seeds from the queue, (2) mutate the
selected input seeds to generate new candidate seeds, (3) run
the target program with the candidate seeds, track the cover-
age and report vulnerabilities. Once the candidate seeds have
new coverage or cause unique crashes, they will be regarded
as interesting seeds and be pushed asynchronously into the
global seed pool, as presented in lines 6-12.

ALGORITHM 2: Action of global monitor sync

Input : Base fuzzers list BaseFuzzers[]
Initial seeds S
Synchronization period period

1 // set up each base fuzzers ;
2 foreach base fuzzer f of the BaseFuzzers[] do
3 f uzzer.setup();
4 end
5 // set up thread monitor for monitoring ;
6 monintor.setup();
7 GlobalCover.initial();
8 GlobalSeedPool.initial();
9 GlobalSeedPool.push(S);

10 repeat
11 foreach seed s of the GlobalSeedPool do
12 // Skip synchronized seeds ;
13 if s.isSync() == False then
14 foreach base fuzzer f of the BaseFuzzers[] do
15 Cover = f .run(s) ;
16 // update the global coverage ;
17 newCover =

(Cover∪GlobalCover)−GlobalCover ;
18 GlobalCover =Cover∪GlobalCover;
19 // synchronize the seed s to base fuzzer f ;
20 if Cover.causeCrash() and

!newCover.isEmpty() then
21 crashes.push(s);
22 f .queue.push(s);
23 else if !newCover.isEmpty() then
24 f .queue.push(s);
25 else
26 continue;
27 end
28 end
29 else
30 continue;
31 end
32 s.setSync(True);
33 end
34 // waiting until next seed synchronization ;
35 sleep(period);
36 until timeout or abort-signal;

Output: Crashing seeds crashes

Second, let us see the seed synchronization solution of the
monitor process, which mainly describes how the monitor
process synchronously dispatches the interesting seeds in the
global pool to the local queue of each base fuzzer. When
all base fuzzers are established, a thread named monitor

will be created for monitoring the execution status of these
fuzzing jobs, as in lines 2-6 of algorithm 2. It initializes the
global coverage information to record the global fuzzing sta-
tus of target applications by all the base fuzzer instances and
then creates the global seed pool with the initial seeds, as
in lines 7-9 of algorithm 2. It then runs a continuous pe-
riodically synchronizing loop — each base fuzzer will be
synchronously dispatched with the interesting seeds from the
global seed pool. Each base fuzzer will incorporate the seeds
into its own local seed queue, once the seeds are deemed to
be interesting seeds (seeds contribute to the coverage or crash
and has not been generated by the local fuzzer), as in line 15-
24 . To lower the overhead of seed synchronization, a thread
monitor is designed to work periodically. Due to this glob-
ally asynchronous and locally synchronous based seed syn-
chronization mechanism, base fuzzers cooperate effectively
with each other as in the motivating example in Figure 1.

5 Evaluation

To present the effectiveness of ensemble fuzzing, we first
implement several prototypes of ensemble fuzzer based on
the state-of-the-art fuzzers. Then, we refer to some ker-
nel descriptions of evaluating fuzzing guideline [25]. We
conduct thorough evaluations repeatedly on LAVA-M and
Google’s fuzzer-test-suite, several well-fuzzed open-source
projects from GitHub, and several commercial products from
companies. Finally, according to the results, we answer the
following three questions: (1) Can ensemble fuzzer perform
better? (2) How do different base fuzzers affect Enfuzz? (3)
How does Enfuzz perform on real-world applications

5.1 Ensemble Fuzzer Implementation
We implement ensemble fuzzing based on six state-of-the-
art fuzzers, including three edge-coverage guided mutation-
based fuzzers – AFL, AFLFast and FairFuzz, one block-
coverage guided mutation-based fuzzer – libFuzzer, one
generation-based fuzzer – Radamsa and one most recently
hybrid fuzzer – QSYM. These are chosen as the base fuzzers
for the following reasons (Note that EnFuzz is not limited to
these six and other fuzzers can also be easily integrated, such
as honggfuzz, ClusterFuzzer etc.):

• Easy integration. All the fuzzers are open-source and
have their core algorithms implemented precisely. It is
easy to integrate those existing fuzzers into our ensem-
ble architecture. We do not have to implement them on
our own, which eliminates any implementation errors
or deviations that might be introduced by us.

• Fair comparison. All the fuzzers perform very well and
are the latest and widely used fuzzers, as is seen by
their comparisons with each other in prior literature, for
example, QSYM outperforms similar fuzzers such as
Angora[18] and VUzzer. We can evaluate their perfor-
mance on real-world applications without modification.

• Diversity demonstration. All these fuzzers have differ-
ent fuzzing strategies and reflect the diversity among
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Table 2: Diversity among these base fuzzers
Tool diversity compared with AFL

AFLFast Seed mutation and selection strategy based
rule: the times of random mutation for each
seed is computed by a Markov chain model.
The seed selection strategy is different.

FairFuzz Seed mutation and selection strategy based
rule: only mutates seeds which hit rare
branches and strives to ensure the mutant
seeds hit the rarest one. The seed mutation
strategy is different.

libFuzzer Coverage information granularity based rule:
libFuzzer mutates seeds by utilizing the San-
itizerCoverage instrumentation, which sup-
ports tracking block coverage; while AFL
uses static instrumentation with a bitmap to
track edge coverage. The coverage informa-
tion granularity is different.

Radamsa Input generation strategy based rule:
Radamsa is a widely used generation-based
fuzzer which generates different inputs sam-
ple files of valid data. The input generation
strategy is different.

QSYM QSYM is a practical fast concolic execution
engine tailored for hybrid fuzzing. It makes
hybrid fuzzing scalable enough to test com-
plex, real-world applications.

correspondence with the three base diversity heuristics
mentioned in section 4.1: coverage information granu-
larity diversity, input generation strategy diversity, seed
mutation and selection strategy diversity. The concrete
diversity among these base fuzzers is listed in Table 2.

To demonstrate the performance of ensemble fuzzing and
the influence of diversity among base fuzzers, five prototypes
are developed. (1) EnFuzz-A, an ensemble fuzzer only based
on AFL, AFLFast and FairFuzz. (2) EnFuzz-Q, an ensemble
fuzzer based on AFL, AFLFast, FairFuzz and QSYM, a prac-
tical concolic execution engine is included. (3) EnFuzz-L,
an ensemble fuzzer based on AFL, AFLFast, FairFuzz and
libFuzzer, a block-coverage guided fuzzer is included. (4)
EnFuzz, an ensemble fuzzer based on AFL, AFLFast, lib-
Fuzzer and Radamsa, a generation-based fuzzer is further
added .(5) EnFuzz−, with the ensemble of same base fuzzers
(AFL, AFLFast and FairFuzz), but without the seed synchro-
nization, to demonstrate the effectiveness of the global asyn-
chronous and local synchronous based seed synchronization
mechanism. During implementation of the proposed ensem-
ble mechanism, we address the following challenges:

1) Standard Interface Encapsulating The interfaces of
these fuzzers are different. For example, AFL family
tools use the function main, but libFuzzer use a function
LLVMFuzzerTestOneInput. Therefore, it is hard to ensem-
ble them together. We design a standard interface to encapsu-
late the complexity of different fuzzing tools. This standard
interface takes seeds from the file system, and writes the re-

sults back to the file system. All base fuzzers receive inputs
and produce results through this standard interface, through
which different base fuzzers can be ensembled easily.

2) libFuzzer Continuously Fuzzing The fuzzing engine of
libFuzzer will be shut down when it finds a crash, while other
tools continue fuzzing until manually closed. It is unfair to
compare libFuzzer with other tools when the fuzzing time
is different. The persistent mode of AFL is a good solution
to this problem. Once AFL sets up, the fuzzer parent will
fork and execve a new process to fuzz the target. When
the target process crashes, the parent will collect the crash
and resume the target, then the process simply loops back to
the start. Inspired by the AFL persistent mode, we set up a
thread named Parent to monitor the state of libFuzzer. Once
it shuts down, Parent will resume the libFuzzer.

3) Bugs De-duplicating and Triaging We develop a tool
for crash analysis. We compile all the target applications
with AddressSanitizer, and test them with the crash samples.
When the target applications crash, the coredump file, which
consists of the recorded state of the working memory will
be saved. Our tool first loads coredump files, then gathers
the frames of each crash; finally, it identifies two crashes as
identical if and only if the top frame is identical to the other
frame. The method above is prone to underestimating bugs.
For example, two occurrences of heap overflow may crash at
the cleanup function at exit. However, the target program is
instrumented with AddressSanitizer. As the program termi-
nates immediately when memory safety problems occur, the
top frame is always relevant to the real bug. In practice, the
original duplicate unique crashes have been drastically de-
duplicated to a humanly check-able number of unique bugs,
usually without duplication. Even though there are some ex-
treme cases that different top frames for one bug, the result
can be further refined by manual crash analysis.

4) Seeds effectively Synchronizing The implementation of
the seed synchronization mechanism: all base fuzzers have
implemented the communication logic following the stan-
dard interface. Each base fuzzer will put interesting seeds
into its own local seed pool, and the monitor thread sync will
periodically make each single base fuzzer pull synchronized
seeds from the global seed pool through a communication
channel. This communication channel is implemented based
on file system. A shorter period consumes too many re-
sources, which leads to a decrease in fuzzing performance. A
longer period will make seed synchronizing untimely, which
also affects the performance. After multiple attempts with
different values, it is found that the synchronization interval
affects the performance at the beginning of fuzzing, while
little impact was observed in the long term. The interval of
120s is identified with the fastest convergence.

5.2 Data and Environment Setup
Firstly, we evaluate ensemble fuzzing on LAVA-M [19],
which consistis of four buggy programs, file, base64,
md5sum and who. LAVA-M is a test suite that injects hard-
to-find bugs in Linux utilities to evaluate bug-finding tech-
niques. Thus the test is adequate for demonstrating the ef-
fectiveness of ensemble fuzzing. Furthermore, to reveal the
practical performance of ensemble fuzzing, we also evaluate
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our work based on fuzzer-test-suite [8], a widely used bench-
mark from Google. The test suite consists of popular open-
source real-world applications. This benchmark is chosen to
avoid the potential bias of the cases presented in literature,
and for its great diversity, which helps demonstrate the per-
formance variation of existing base fuzzers.

We refer to the kernel criteria and settings of evaluation
from the fuzzing guidelines [25], and integrate the three
widely used metrics from previous literature studies to com-
pare the results on these real-world applications more fairly,
including the number of paths, branches and unique bugs. To
get unique bugs, we use crash’s stack backtraces to dedupli-
cate unique crashes, as mentioned in the previous subsection.
The initial seeds for all experiments are the same. We use the
test cases originally included in their applications or empty
seed if such initial seeds do not exist.

The experiment on fuzzer-test-suite is conducted ten times
in a 64-bit machine with 36 cores (Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz), 128GB of main memory, and
Ubuntu 16.04 as the host OS with SMT enabled. Each binary
is hardened by AddressSanitizer [11] to detect latent bugs.
First, we run each base fuzzer for 24 hours with one CPU
core in single mode. Next, since EnFuzz-L, EnFuzz and
EnFuzz-Q need at least four CPU cores to ensemble these
four base fuzzers, we also run each base fuzzer in paral-
lel mode for 24 hours with four CPU cores. In particular,
EnFuzz-A and EnFuzz− only ensembles three types of base
fuzzers (AFL, AFLFast and FairFuzz). To use the same re-
sources, we set up two AFL instances, one AFLFast instance
and one FairFuzz instance. This experimental setup ensures
that the computing resources usage of each ensemble fuzzer
is the same as any base fuzzers running in parallel mode.
Due to the large amount of data and the page limitation, we
include the variation of those statistical test results in our
GitHub. In fact. most metrics converged to similar values
during multithreaded fuzzing. The variation of those statis-
tical test results is small (between -5% 5%), so we just use
the averages in this paper.

5.3 Preliminary Evaluation on LAVA-M
We first evaluate ensemble fuzzing on LAVA-M, which has
been used for testing other systems such as Angora, T-Fuzz
and QSYM, and QSYM shows the best performance. We
run EnFuzz-Q (which ensembles AFL, AFLFast, FairFuzz
and QSYM) on the LAVA-M dataset. To demonstrate its
effectiveness, we also run each base fuzzer using the same
resources — four instances of AFL in parallel mode, four in-
stances of AFLFast in parallel mode, four instances of Fair-
Fuzz in parallel mode, QSYM with four CPU cores used in
parallel mode (two instances of concolic execution engine
and two instances of AFL). To identify unique bugs, we used
built-in bug identifiers provided by the LAVA project. The
results are presented in Table 3, 4 and 5, which show the
number of paths executed, branches covered and unique bugs
detected by AFL, AFLFast, FairFuzz, QSYM, EnFuzz-Q.

From Tables 3, 4 and 5, we found that AFL, AFLFast
and FairFuzz perform worse due to the complexity of their
branches. The practical concolic execution engine helps
QSYM solve complex branches and find significantly more

bugs. The base code of the four applications in LAVA-M
are small (2K-4K LOCs) and concolic execution could work
well on them. However, real projects have code bases that
easily reach 10k LOCs. Concolic execution might perform
worse or even get hanged, as presented in the latter subsec-
tions. Furthermore, when we ensemble AFL, AFLFast, Fair-
Fuzz and QSYM together with the GALS based seed syn-
chronization mechanism – EnFuzz-Q always performs the
best in both coverage and bug detection. In total, compared
with AFL, AFLFast, FairFuzz and QYSM, EnFuzz-Q exe-
cutes 44%, 45%, 43% and 7.7% more paths, covers 195%,
215%, 194% and 5.8% more branches, and detectes 8314%,
19533%, 12989% and 0.68% more unique bugs respectively.
From these preliminary statistics, we can determine that the
performance of fuzzers can be improved by our ensemble
approach.

Table 3: Number of paths covered by AFL, AFLFast, Fair-
Fuzz, QSYM and EnFuzz-Q on LAVA-M.

Project AFL AFLFast FairFuzz QSYM EnFuzz-Q

base64 1078 1065 1080 1643 1794
md5sum 589 589 601 1062 1198
who 4599 4585 4593 5621 5986
uniq 476 453 471 693 731
total 6742 6692 6745 9019 9709

Table 4: Number of branches covered by AFL, AFLFast,
FairFuzz, QSYM and EnFuzz-Q on LAVA-M.

Project AFL AFLFast FairFuzz QSYM EnFuzz-Q

base64 388 358 389 960 993
md5sum 230 208 241 2591 2786
who 813 791 811 1776 1869
uniq 1085 992 1079 1673 1761
total 2516 2349 2520 7000 7409

Table 5: Number of bugs found by AFL, AFLFast, FairFuzz,
QSYM and EnFuzz-Q on LAVA-M.

Project AFL AFLFast FairFuzz QSYM EnFuzz-Q

base64 1 1 0 41 42
md5sum 0 0 1 57 57
who 2 0 1 1047 1053
uniq 11 5 7 25 26
total 14 6 9 1170 1178

5.4 Evaluation on Google’s fuzzer-test-suite
While LAVA-M is widely used, Google’s fuzzer-test-suite
is more practical with many more code lines and contain-
ing real-world bugs. To reveal the effectiveness of ensem-
ble fuzzing, we run EnFuzz (which only ensembles AFL,
AFLFast, LibFuzzer and Radamsa) on all of the 24 real-
world applications of Google’s fuzzer-test-suite for 24 hours
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10 times. As a comparison, we also run each base fuzzer in
parallel mode with four CPU cores used. To identify unique
bugs, we used stack backtraces to deduplicate crashes. The
results are presented in Tables 6, 7 and 8, which shows
the average number of paths executed, branches covered
and unique bugs detected by AFL, AFLFast, FairFuzz, Lib-
Fuzzer, Radamsa, QSYM and EnFuzz respectively.

Table 6: Average number of paths covered by each tool on
Google’s fuzzer-test-suite for ten times.

Project AFL AFLFast FairFuzz LibFuzzer Radamsa QSYM EnFuzz

boringssl 3286 2816 3393 5525 3430 2973 7136
c-ares 146 116 146 191 146 132 253
guetzli 3248 2550 1818 3844 3342 2981 4508
lcms 1682 1393 1491 1121 1416 1552 2433
libarchive 12842 10111 12594 22597 12953 11984 31778
libssh 110 102 110 362 110 149 377
libxml2 14888 13804 14498 28797 17360 13172 35983
openssl-1.0.1 3992 3501 3914 2298 3719 3880 4552
openssl-1.0.2 4090 3425 3956 2304 3328 3243 4991
openssl-1.1.0 4051 3992 4052 2638 3593 4012 4801
pcre2 79581 66894 71671 59616 78347 60348 85386
proj4 342 302 322 509 341 323 709
re2 12093 10863 12085 15682 12182 10492 17155
woff2 23 16 20 447 22 24 1324
freetype2 19086 18401 20655 25621 18609 17707 27812
harfbuzz 12398 11141 14381 16771 11021 12557 16894
json 1096 963 721 1081 1206 1184 1298
libjpeg 1805 1579 2482 1486 1632 1636 2638
libpng 582 568 587 586 547 606 781
llvm 8302 8640 9509 10169 8019 7040 10935
openthread 268 213 230 1429 266 365 1506
sqlite 298 322 294 580 413 300 636
vorbis 1484 1548 1593 1039 1381 1496 1699
wpantund 4914 5112 5691 4881 4891 4941 5823
Total 190607 168372 186213 209574 188274 163097 271408

Improvement – 11% ↓ 2% ↓ 9% ↑ 1% ↓ 14%↓ 42% ↑

The first six columns of Table 6 reveal the issue of the
performance variation in those base fuzzers, as they perform
variously on different applications. Comparing AFL fam-
ily tools, AFL performs better than the other two optimized
fuzzers on 14 applications. Compared with AFL, libFuzzer
performs better on 15 applications, but worse on 9 applica-
tions. Radamsa performs better on 8 applications, but also
worse on 16 applications. QSYM performs better on 9 ap-
plications, but also worse on 15 applications. Table 7 and
Table 8 show similar results on branch coverage and bugs.

From Table 6, it is interesting to see that compared with
those optimized fuzzers based on AFL (AFLFast, FairFuzz,
Radamsa and QSYM), original AFL performs the best on
14 applications in parallel mode with 4 CPU cores. For the
total number of paths executed, AFL performs the best and
AFLFast performs the worst in parallel mode. While in sin-
gle mode with one CPU core used, the situation is exactly
the opposite, and the original AFL only performs the best on
5 applications, as presented in Table 14 of the appendix.

The reason for performance degradation of these opti-
mizations in parallel mode is that their studies lack the con-
sideration for synchronizing the additional guiding informa-
tion. Take AFLFast for example, it models coverage-based
fuzzing as Markov Chain, and the times of random mutation
for each seed will be computed by a power scheduler. This
strategy works well in single mode, but it would fail in paral-
lel mode because the statistics of each fuzzer’s scheduler are
limited in current thread. Our evaluation demonstrates that

many optimized fuzzing strategies could be useful in single
mode, but fail in the parallel mode even if this is the mode
widely used in industry practice. This experiment has been
missing by many prior literature studies. A potential solution
for this degradation is to synchronize the additional guiding
information in their implementation, similar to the work pre-
sented in PAFL[27].
Table 7: Average number of branches covered by each tool
on n Google’s fuzzer-test-suite for ten times.

Project AFL AFLFast FairFuzz LibFuzzer Radamsa QSYM EnFuzz

boringssl 3834 3635 3894 3863 3880 3680 4108
c-ares 285 276 285 202 285 285 285
guetzli 3022 2723 1514 4016 3177 3011 3644
lcms 3985 3681 3642 3015 2857 3731 4169
libarchive 10580 9267 8646 8635 11415 9416 13949
libssh 614 614 614 573 614 636 614
libxml2 15204 14845 14298 13346 19865 14747 21899
openssl-1.0.1 4011 3967 3996 3715 4117 4032 4673
openssl-1.0.2 4079 4004 4021 3923 4074 3892 4216
openssl-1.1.0 9125 9075 9123 8712 9017 9058 9827
pcre2 50558 48004 49430 36539 51881 36208 53912
proj4 267 267 267 798 267 261 907
re2 17918 17069 17360 16001 17312 16323 19688
woff2 120 120 120 2785 120 121 3945
freetype2 53339 52404 56653 57325 52715 48547 58192
harfbuzz 38163 36313 43077 39712 37959 38194 44708
json 7048 6622 5138 6583 7231 7169 7339
libjpeg 12345 11350 15688 10342 12009 11468 17071
libpng 4135 4393 4110 4003 3961 4085 4696
llvm 55003 56619 58306 57021 54312 48008 62918
openthread 3109 2959 2989 5421 3102 3634 5579
sqlite 2850 2847 2838 3123 3012 2853 3216
vorbis 12136 13524 13053 10032 11234 12849 14318
wpantund 40667 40867 41404 39816 40317 40556 43217
Total 352397 345445 360466 339501 354733 322764 407090
Improvement – 1% ↓ 2% ↓ 3% ↑ 0.6% ↓ 8%↓ 16% ↑

Table 8: Average number of unique bugs found by each tool
on n Google’s fuzzer-test-suite for ten times.

Project AFL AFLFast FairFuzz LibFuzzer Radamsa QSYM EnFuzz

boringssl 0 0 0 1 0 0 1
c-ares 3 2 3 1 2 2 3
guetzli 0 0 0 1 0 0 1
lcms 1 1 1 2 1 1 2
libarchive 0 0 0 1 0 0 1
libssh 0 0 0 1 0 1 2
libxml2 1 1 1 3 2 1 3
openssl-1.0.1 3 2 3 2 2 3 4
openssl-1.0.2 5 4 4 1 5 5 6
openssl-1.1.0 5 5 5 3 4 5 6
pcre2 6 4 5 2 5 4 8
proj4 2 0 1 1 1 1 3
re2 1 0 1 1 0 1 2
woff2 1 0 0 2 1 1 1
freetype2 0 0 0 0 0 0 0
harfbuzz 0 0 1 1 0 0 1
json 2 1 0 1 3 2 3
libjpeg 0 0 0 0 0 0 0
libpng 0 0 0 0 0 0 0
llvm 1 1 2 2 1 1 2
openthread 0 0 0 4 0 0 4
sqlite 0 0 0 3 1 1 3
vorbis 3 4 3 3 3 4 4
wpantund 0 0 0 0 0 0 0

Total 34 25 30 37 31 33 60
Improvement – 26% ↓ 12% ↑ 6% ↓ 9% ↑ 3%↓ 76% ↑

From the fifth columns of Table 6 and Table 14, we find
that compared with Radamsa in single mode, the improve-
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ment achieved by Radamsa is limited in parallel mode. There
are two main reasons: (1) Too many useless inputs generated
by Radamsa slow down the seed-sharing efficiency among
all instances of AFL. This seed-sharing mechanism does not
exist in single mode. (2) Some interesting seeds can be cre-
ated in parallel mode and shared among all instances of AFL.
These seeds overlap with the inputs generated by Radamsa.
So this improvement is limited in parallel mode.

For the EnFuzz which integrates AFL, AFLFast, lib-
Fuzzer and Radamsa as base fuzzers and, compared with
AFL, AFLFast, FairFuzz, QSYM, LibFuzzer and Radamsa,
it shows the strongest robustness and always performs the
best. In total, it discovers 76.4%, 140%, 100%, 81.8%,
66.7% and 93.5% more unique bugs, executes 42.4%,
61.2%, 45.8%, 66.4%, 29.5% and 44.2% more paths and
covers 15.5%, 17.8%, 12.9%, 26.1%, 19.9% and 14.8%
more branches respectively. These statistics demonstrate that
it helps mitigate performance variation and improves robust-
ness and performance by the ensemble approach with glob-
ally asynchronous and locally synchronous seed synchro-
nization mechanism.

5.5 Effects of Different Fuzzing Integration
To study the effects of the globally asynchronous and lo-
cally synchronous based seed synchronization mechanism,
we conduct a comparative experiment on EnFuzz−and
EnFuzz-A, both ensemble the same base fuzzers (2 instances
of AFL, 1 instance of AFLFast, 1 instance of FairFuzz) in
parallel mode with four CPU cores. To study the effects
of different base fuzzers on ensemble fuzzing, we also run
EnFuzz-Q, EnFuzz-L and EnFuzz on Google’s fuzzer-test-
suite for 24 hours 10 times. To identify unique bugs, we used
stack backtraces to deduplicate crashes. The results are pre-
sented in Tables 9, 10 and 11, which shows the average num-
ber of paths executed, branches covered and unique bugs de-
tected by EnFuzz−, EnFuzz-A, EnFuzz-Q, EnFuzz-L, and
EnFuzz, respectively.

Compared with EnFuzz-A, EnFuzz− which ensembles
the same base fuzzers AFL, AFLFast and FairFuzz, but
does not implement the seed synchronization mechanism.
EnFuzz− performs much worse on all applications. In to-
tal, it only executes 68.5% paths, covers 78.3% branches
and detects 32.4% unique bugs of EnFuzz-A. These statis-
tics demonstrate that the globally asynchronous and locally
synchronous based seed synchronization mechanism is criti-
cal to the ensemble fuzzing.

For EnFuzz-A, which ensembles AFL, AFLFast and Fair-
Fuzz as base fuzzers and implements the seed synchro-
nization with global coverage map, compared with AFL,
AFLFast and FairFuzz running in parallel mode with four
CPU cores used (as shown in Table 6, Table 7 and Table
8), it always executes more paths and covers more branches
on all applications. In total, it covers 11.3%, 25.9% and
13.9% more paths, achieves 7.2%, 9.3% and 4.8% more cov-
ered branches, and triggers 8.8%, 48% and 23% more unique
bugs. It reveals that the robustness and performance can be
improved even when the diversity of base fuzzers is small.

For the EnFuzz-Q which integrates AFL, AFLFast, Fair-
Fuzz and QYSM as base fuzzers, the results are shown in

the fourth columns of Tables 9, 10 and 11. Compared with
EnFuzz-A, EnFuzz-Q covers 1.1% more paths, executes
1.0% more branches and triggers 10.8% more unique bugs
than EnFuzz-A. The improvement is significantly smaller on
Google’s fuzzer-test-suite than on LAVA-M.

Table 9: Average number of paths covered by each Enfuzz
on Google’s fuzzer-test-suite for ten times.

Project EnFuzz− EnFuzz-A EnFuzz-Q EnFuzz-L EnFuzz

boringssl 2590 4058 3927 6782 7136
c-ares 149 167 159 251 253
guetzli 2066 3501 3472 4314 4508
lcms 1056 1846 1871 2253 2433
libarchive 4823 14563 14501 28531 31778
libssh 109 140 152 377 377
libxml2 11412 19928 18738 33940 35983
openssl-1.0.1 3496 4015 4095 4417 4552
openssl-1.0.2 3949 4976 5012 4983 4991
openssl-1.1.0 3850 4291 4383 4733 4801
pcre2 57721 81830 82642 84681 85386
proj4 362 393 399 708 709
re2 9053 13019 14453 17056 17155
woff2 19 25 24 1314 1324
freetype2 17692 22512 20134 26421 27812
harfbuzz 10438 14997 15019 16328 16894
json 648 1101 1183 1271 1298
libjpeg 1395 2501 2475 2588 2638
libpng 480 601 652 706 781
llvm 7953 9706 9668 10883 10935
openthread 197 281 743 1489 1506
sqlite 279 311 325 598 636
vorbis 928 1604 1639 1673 1699
wpantund 4521 5718 5731 5797 5823
Total 145186 212084 211397 262094 271408
Improvement – 46% ↑ 48% ↑ 80% ↑ 87% ↑

Table 10: Average number of branches covered by each En-
fuzz on Google’s fuzzer-test-suite for ten times.

Project EnFuzz− EnFuzz-A EnFuzz-Q EnFuzz-L EnFuzz

boringssl 3210 3996 4013 4016 4108
c-ares 285 285 285 285 285
guetzli 2074 3316 3246 3531 3644
lcms 2872 4054 4152 4098 4169
libarchive 6092 12689 11793 13267 13949
libssh 613 614 640 614 614
libxml2 14428 17657 16932 21664 21899
openssl-1.0.1 3612 4194 4204 4538 4673
openssl-1.0.2 4037 4176 4292 4202 4216
openssl-1.1.0 8642 9371 9401 9680 9827
pcre2 32471 51801 52751 52267 53912
proj4 267 267 267 907 907
re2 16300 18070 18376 19323 19688
woff2 120 120 121 3939 3945
freetype2 49927 55952 54193 58018 58192
harfbuzz 33915 43301 43379 44419 44708
json 4918 7109 7146 7268 7339
libjpeg 9826 15997 15387 16984 17071
libpng 3816 4487 4502 4589 4696
llvm 49186 58681 58329 60104 62918
openthread 2739 3221 4015 5503 5579
sqlite 2318 2898 2971 3189 3216
vorbis 10328 13872 13993 14210 14318
wpantund 33749 41537 41663 43104 43217
Total 295745 377665 376051 399719 407090
Improvement – 27% ↑ 28% ↑ 35% ↑ 38% ↑

The reason for performance degradation between experi-
ments on LAVA-M and Google fuzzer-test-suite is that the
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Table 11: Average number of bugs found by each Enfuzz on
Google’s fuzzer-test-suite for ten times.

Project EnFuzz− EnFuzz-A EnFuzz-Q EnFuzz-L EnFuzz

boringssl 0 0 0 1 1
c-ares 1 3 2 3 3
guetzli 0 0 1 1 1
lcms 0 1 1 2 2
libarchive 0 0 1 1 1
libssh 0 0 2 2 2
libxml2 1 1 1 2 3
openssl-1.0.1 0 3 3 4 4
openssl-1.0.2 3 5 5 5 6
openssl-1.1.0 2 5 5 6 6
pcre2 3 6 6 7 8
proj4 0 2 2 2 3
re2 0 1 1 2 2
woff2 0 1 1 1 1
freetype2 0 0 0 0 0
harfbuzz 0 1 1 1 1
json 1 2 2 2 3
libjpeg 0 0 0 0 0
libpng 0 0 0 0 0
llvm 0 1 1 2 2
openthread 0 0 1 3 4
sqlite 0 1 1 2 3
vorbis 1 4 4 4 4
wpantund 0 0 0 0 0

Total 12 37 41 53 60
Improvement – 208% ↑ 242% ↑ 342% ↑ 400% ↑

base codes of the four applications (who, uniq, base64 and
md5sum) in LAVA-M are small (2K-4K LOCs). The con-
colic execution engine works well on them, but usually per-
forms the opposite or even hangs on real projects in fuzzer-
test-suite whose code base easily reaches 100k LOCs.

For the EnFuzz-L which integrates AFL, AFLFast, Fair-
Fuzz and libFuzzer as base fuzzers, the results are pre-
sented in the seventh columns of Tables 9, 10 and 11. As
mentioned in section A, the diversity among these base
fuzzers is much larger than with EnFuzz-A. Compared with
EnFuzz-A, EnFuzz-L always performs better on all target
applications. In total, it covers 23.6% more paths, executes
5.8% more branches and triggers 42.4% more unique bugs
than EnFuzz-A.

For the EnFuzz which integrates AFL, AFLFast, lib-
Fuzzer and Radamsa as base fuzzers, the diversity is the
largest because they cover all three diversity heuristics.
Compared with EnFuzz-L, it performs better and covers
3.6% more paths, executes 1.8% more branches and triggers
13.2% more unique bugs. Both EnFuzz and EnFuzz-L per-
forms better than EnFuzz-Q. These statistics demonstrate
that the more diversity among these base fuzzers, the bet-
ter the ensemble fuzzer should perform. For real applications
with a large code base, compared with hybrid conclic fuzzing
or ensemble fuzzing with symbolic execution, the ensemble
fuzzing without symbolic execution may perform better.

5.6 Fuzzing Real-World Applications
We apply EnFuzz to fuzz more real-world applications from
GitHub and commercial products from Cisco, some of which
are well-fuzzed projects such as the image processing library
libpng and libjepg, the video processing library libwav, the

IoT device communication protocol libiec61850 used in hun-
dreds of thousands of cameras, etc. EnFuzz also performs
well. Within 24 hours, besides the coverage improvements,
EnFuzz finds 60 more unknown real bugs including 44 suc-
cessfully registered as CVEs, as shown in Table 13. All of
these new bugs and security vulnerabilities are detected in
a 64-bit machine with 36 cores (Intel(R) Xeon(R) CPU E5-
2630 v3@2.40GHz), 128GB of main memory, and Ubuntu
16.04 as the host OS.

Table 12: Unique previously unknown bugs detected by each
tool within 24 hours on some real-world applications.

Project AFL AFLFast FairFuzz LibFuzzer QSYM EnFuzz

Bento4 mp4com 5 4 5 5 4 6
Bento4 mp4tag 5 4 4 5 4 7
bitmap 1 1 1 0 1 2
cmft 1 1 0 1 0 2
ffjpeg 1 1 1 0 1 2
flif 1 1 1 2 1 3
imageworsener 1 0 0 0 1 1
libjpeg-05-2018 3 3 3 4 3 5
libiec61850 3 2 2 1 2 4
libpng-1.6.34 2 1 1 1 2 3
libwav wavgain 3 2 3 0 2 5
libwav wavinfo 2 1 2 4 2 5
LuPng 1 1 1 3 1 4
pbc 5 5 6 7 6 9
pngwriter 1 1 1 1 2 2
total 35 28 31 34 32 60

As a comparison, we also run each tool on those real-
world applications to detect unknown vulnerabilities. The
results are presented in table 12. EnFuzz found all 60
unique bugs, while other tools only found a portion of these
bugs. Compared with AFL, AFLFast, FairFuzz, LibFuzzer
and QSYM, EnFuzz detected 71.4%, 114%, 93.5%, 76.4%,
87.5% more unique bugs respectively. The results demon-
strate the effectiveness of EnFuzz in detecting real vulnera-
bilities in more general projects. For example, in the well-
fuzzed projects libwav and libpng, we can still detect 13
more real bugs, 7 of which are assigned as CVEs. We give
an analysis of the project libpng for a more detailed illus-
tration. libpng is a widely used C library for reading and
writing PNG image files. It has been fuzzed many times and
is one of the projects in Google’s OSS-Fuzz, which means it
has been continually fuzzed by multiple fuzzers many times.
But with EnFuzz, we detect three vulnerabilities, including
one segmentation fault, one stack-buffer-overflow and one
memory leak. The first two vulnerabilities were assigned as
CVEs (CVE-2018-14047, CVE-2018-14550).

In particular, CVE-2018-14047 allows remote attackers to
cause a segmentation fault via a crafted input. We analyze
the vulnerability with AddressSanitizer and find it is a typ-
ical memory access violation. The problem is that in func-
tion png free data in line 564 of png.c, the info ptr at-
tempts to access an invalid area of memory. The error oc-
curs in png free data during the free of text-related data
with specifically crafted files, and causes reading of invalid
or unknown memory, as show in Listing 1. The new vulnera-
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bilities and CVEs in the IoT device communication protocol
libiec6185 can also crash the service and have already been
confirmed and repaired.

#ifdef PNG_TEXT_SUPPORTED
/* Free text item num or (if num ==

-1) all text items */
if (info_ptr ->text != NULL &&

((mask & PNG_FREE_TEXT) &
info_ptr ->free_me) != 0)

Listing 1: The error code of libpng for CVE-2018-14047

We also apply each base fuzzer (AFL, AFLFast, FairFuzz,
libFuzzer and QSYM) to fuzz libpng separately, the above
vulnerability is not detected. To trigger this bug, 6 function
calls and 11 compares (2 for integer, 1 for boolean and 8 for
pointer) are required. It is difficult for other fuzzers to detect
bugs in such deep paths without the seeds synchronization
of EnFuzz. The performances of these fuzzers over time in
libpng are presented in Figure 4. The results demonstrate
that generalization and scalability limitations exist in these
base fuzzers – the two optimized fuzzers AFLFast and Fair-
Fuzz perform worse than the original AFL for libpng, while
EnFuzz performs the best. Furthermore, except for those
evaluations on benchmarks and real projects, EnFuzz had
already been deployed in industry practice, and more new
CVEs were being continuously reported.

Table 13: The 44 CVEs detected by EnFuzz in 24 hours.
Project Count CVE-2018-Number

Bento4 mp4com 6 14584, 14585, 14586, 14587,
14588, 14589

Bento4 mp4tag 6 13846, 13847, 13848, 14590,
14531, 14532

bitmap 1 17073
cmft 1 13833
ffjpeg 1 16781
flif 1 12109
imageworsener 1 16782
libjpeg-05-2018 4 11212, 11213, 11214, 11813
libiec61850 3 18834, 18937, 19093
libpng-1.6.34 2 14048, 14550
libwav wavgain 2 14052, 14549
libwav wavinfo 3 14049, 14050, 14051
LuPng 3 18581, 18582, 18583
pbc 9 14736, 14737, 14738, 14739,

14740, 14741, 14742, 14743,
14744

pngwriter 1 14047

6 Discussion

Based on benchmarks such as LAVA-M and Google’s fuzzer-
test-suite, and several real projects, we demonstrate that this
ensemble fuzzing approach outperforms any base fuzzers.
However, some limitations still threaten the performance of

(a) Number of paths over time

(b) Number of branches over time

Figure 4: Performance of each fuzzer over time in libpng.
Each fuzzer runs in four CPU cores for 24 hours.

ensemble fuzzing. The representative limitations and the
workarounds are discussed below.

The first potential threat is the insufficient and impre-
cise diversity of base fuzzers. Section 4.1 describes our
base fuzzer selection, we propose three different heuristics
to indicate diversity of base fuzzers, including diversity of
coverage information granularity, diversity of input genera-
tion strategy, and diversity of seed mutation selection strat-
egy. According to these three heuristics, we select AFL,
AFLFast, FairFuzz, libFuzzer, Radamsa and QSYM as the
base fuzzers. Furthermore, we implement four prototypes of
ensemble fuzzing and demonstrate that the greater the diver-
sity of base fuzzers, the better the ensemble fuzzer performs.
However, these three different heuristics of diversity may be
insufficient. More diversity measures need to be proposed
in future work. For example, initial seeds determine the ini-
tial direction of fuzzing and, thus, are significantly important
for fuzzing, especially for mutation-based fuzzers. Some
fuzzers utilize initial seeds generated by symbolic execution
[35, 29] while some other fuzzers utilize initial seeds con-
structed by domain experts or grammar specifications. How-
ever, we select base fuzzers manually according to the initial
diversity heuristic, which is also not accurate enough.

A possible solution to this threat is to quantify the initial
diversity value among different fuzzers for more accurate se-
lection. As defined in [14], the variance or diversity is a mea-
sure of the distance of the data in relation to the average. The
average standard deviation of a data set is a percentage that

12



indicates how much, on average, each measurement differs
from the other. To evaluate the diversity of different base
fuzzers, we can choose the most widely used AFL and its
path coverage as a baseline and then calculate standard devi-
ation of each tool from this baseline on the Google fuzzing-
test-suite. Then we can calculate the standard deviation of
these values as the initial measure of diversity for each base
fuzzer, as presented in formula (2) and (1), where n means
the number of applications fuzzed by these base fuzzers, pi
means the number of paths covered by the current fuzzer of
the target application i and pAi means the number of paths
covered by AFL of the application i.

mean =
1
n

n

∑
i=1

pi− pAi

pAi

(1)

diversity =
1
n

n

∑
i=1

(
pi− pAi

pAi

−mean)
2

(2)

Take the diversity of AFLFast, FairFuzz, Radamsa,
QSYM, and libFuzzer for example, as shown in the statistics
presented in Table 14 of the appendix, compared with AFL
on different applications, the diversity of AFLFast is 0.040;
the diversity of FairFuzz is 0.062; the diversity of Radamsa
is 0.197; the diversity of QSYM is 0.271; the diversity of lib-
Fuzzer is 11.929. In the same way, the deviation on branches
covered and the bugs detected can be calculated. We can add
these three values together with different weight for the fi-
nal diversity quantification. For example, the bug deviation
should be assigned with more weights, because from prior
research, coverage metrics (the number of paths or branches)
are not necessarily correlated well with bugs found. A more
advanced way to evaluate the amount of diversity would be
to count how many paths/branches/bugs were found by one
fuzzer and not by any of the others.

The second potential threat is the mechanism scalability
of the ensemble architecture. Section 4.2 describes the en-
semble architecture design, and proposes the globally asyn-
chronous and locally synchronous based seed synchroniza-
tion mechanism. The seed synchronization mechanism fo-
cuses on enhancing cooperation among these base fuzzers
during their fuzzing processes. With the help of seeds shar-
ing, the performance of ensemble fuzzing is much improved
and is better than any of the constituent base fuzzers with
the same computing resources usage. However, this mecha-
nism can still be improved for better scalability on different
applications and fuzzing tasks. EnFuzz only synchronizes
the coarse-grained information – interesting seeds, rather
than the fine-grained information. For example, we could
synchronize the execution trace and array index values of
each base fuzzer to improve their effectiveness in coopera-
tion. Furthermore, we currently select and mix base fuzzers
manually according to three heuristics. When scaled to ar-
bitrary number of cores, it should be carefully investigated
with huge number of empirical evaluations. A possible solu-
tion is that the base fuzzers will be dynamically selected and
initiated with different number of cores according to the real-
time number of paths/branches/bugs found individually by
each fuzzer. In the beginning, we have a set of different base

fuzzers; then Enfuzz selects n (this number can be config-
ured) base fuzzers randomly. If one fuzzer cannot contribute
to coverage for a long time, then it will be terminated, and
one new base fuzzer from the sets will be setup for fuzzing
or the existing live base fuzzer with better coverage will be
allocated with more CPU cores.

We can also apply some effective ensemble mechanisms in
ensemble learning such as Boosting to ensemble fuzzing to
improve the scalability. Boosting is a widely used ensemble
mechanism which will reweigh the base learner dynamically
to improve the performance of the ensemble learner: exam-
ples that are misclassified gain weight and examples that are
classified correctly lose weight. To implement this idea in
ensemble fuzzing, we could start up a master thread to mon-
itor the execution statuses of all base fuzzers and record more
precise information of each base fuzzer, then reassign each
base fuzzer some interesting seeds accordingly.

For the number of base fuzzers and parameters in ensem-
ble fuzzing implementation, it is scalable for integration of
most fuzzers. Theoretically, the more base fuzzers with di-
versity, the better ensemble fuzzing performs. We only use
four base fuzzers in our evaluation with four CPU cores. The
more computing resources we get, higher performance the
fuzzing practice acquires. Furthermore, in our implementa-
tion, we have tried different values of period time, and the
results are very sensitive to the specific setting of this value.
It only affects the performance in the beginning, but affects
little in the end. Furthermore, refering to the GALS system
design, we can also allocate a different synchronization fre-
quency for each local fuzzer dynamically.

7 Conclusion

In this paper, we systematically investigate the practical en-
semble fuzzing strategies and the effectiveness of ensemble
fuzzing of various fuzzers. Applying the idea of ensem-
ble fuzzing, we bridge two gaps. First, we come up with
a method for defining the diversity of base fuzzers and pro-
pose a way of selecting a diverse set of base fuzzers. Then,
inspired by AFL in parallel mode, we implement a concrete
ensemble architecture with one effective ensemble mecha-
nism, a seed synchronization mechanism. EnFuzz always
outperforms other popular base fuzzers in terms of unique
bugs, path and branch coverage with the same resource us-
age. EnFuzz has found 60 new bugs in several well-fuzzed
projects and 44 new CVEs were assigned. Our ensemble
architecture can be easily utilized to integrate other base
fuzzers for industrial practice.

Our future work will focus on three directions: the first is
to try some other heuristics and more accurate accumulated
quantification of diversity in base fuzzers; the second is to
improve the ensemble architecture with more advanced en-
semble mechanism and synchronize more fine-grained infor-
mation; the last is to improve the ensemble architecture with
intelligent resource allocation such as dynamically adjusting
the synchronization period for each base fuzzer, and allo-
cating more CPU cores to the base fuzzer that shares more
interesting seeds.
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A Preliminary demonstration of diversity
among base fuzzers

To help select base fuzzers with larger diversity, we need to
estimate the diversity between each base fuzzer. In general,
the more differently they perform on different applications,
the more diversity among these base fuzzers. Accordingly,
we first run each base fuzzer in single mode, with one CPU
core on Google’s fuzzer-test-suite for 24 hours. Table 14 and
Table 15 show the number of paths and branches covered by
AFL, AFLFast, FairFuzz, libFuzzer, Radamsa and QSYM.
Table 16 shows the corresponding number of unique bugs.
Below we present the performance effects of the three diver-
sity heuristics proposed in Section 4.1 in detail.

1) Effects of seed mutation and seed selection strategy –
what kind of mutation and selection strategy you use, what
kind of path and branch you would cover The first three
columns of Table 14 show the performance of the AFL fam-
ily tools. Their differences are the seed mutation and seed
selection strategies. The original AFL performs the best on
5 applications, but performs the worst on other 10 applica-
tions. AFLFast performs the best on 13 applications, and
only performs the worst on 4 applications. FairFuzz also per-
forms the best on 8 applications, but the worst on the other
9 applications. Although the total number of paths covered
improves slightly, the performance variation on each appli-
cation is huge, ranging from -57% to 38% in single cases.

From the first three columns in Table 15 and Table 16, we
get the same observation that the performance of these opti-
mized fuzzers varies significantly on different applications.
Although the total number of covered branches and unique
crashes improves slightly, the deviation of each application
is huge. AFLFast selects seeds that exercise low-frequency
paths to mutate more times. Take project lcms for exam-
ple, this seed selection strategy exercises more new paths by
avoiding covering “hot paths” too many times, but on project
libarchive, its “hot path” may be the key to further paths.
FairFuzz mutates seeds to hit rare branches. Take project
libxml2 for example, the rare branch fuzzing strategy guides
FairFuzz into deeper areas and covers more branches. How-
ever, on libarchive, this strategy fails. FairFuzz spends much
time in deep paths and branches, ignoring breadth search.
Unlike libxml2, the breadth first search strategy of other
fuzzers is more effective on libarchive. In general, the mu-
tation and selection strategy decides the depth and breath of
the covered branch and path.

2) Effects of coverage information granularity–what kind
of guided information you use, what kind of coverage met-
ric you improve. The diversity between AFL and libFuzzer
is their coverage information granularity. According to the
fourth column of Table 14, we find that compared with AFL,
libFuzzer performs better on 17 applications, and covers
30.3% more paths in total. However, according to the fourth
column of the Table 15, compared with AFL, libFuzzer only
performs better on 11 applications, which means on 6 appli-
cations, libFuzzer covers more paths but less branches. For
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total branch count, AFL covers 7.3% more than libFuzzer.
The reason is that AFL mutates seed by tracking edge hit
counts while libFuzzer utilizes the SanitizerCoverage instru-
mentation to track block hit counts. AFL prefers to cover
more branches while libFuzzer is better at executing more
paths. In general, edge-guided means more branches cov-
ered, and block-guided means more paths covered.

Table 14: Average number of paths for single mode.
Project AFL AFLFast FairFuzz libFuzzer Radamsa QSYM

boringssl 1334 1674 1760 3528 1682 1207
c-ares 80 84 88 123 78 72
guetzli 1382 1090 1030 1773 1562 1268
lcms 656 864 434 338 550 605
libarchive 3756 2834 1630 10124 4570 3505
libssh 64 68 62 201 63 87
libxml2 5762 7956 8028 19663 9392 5098
openssl-1.0.1 2397 2103 2285 1709 2303 2330
openssl-1.0.2 2456 2482 2040 1881 2108 1947
openssl-1.1.0 2439 2380 2501 1897 2311 2416
pcre2 32310 35288 36176 20981 37850 24501
proj4 220 218 218 334 182 208
re2 5860 6014 5016 6327 5418 5084
woff2 14 10 12 224 10 15
freetype2 7748 10939 10714 16360 9825 7188
harfbuzz 6793 8068 8668 10800 5688 6881
json 466 412 408 499 564 504
libjpeg 704 979 722 448 634 638
libpng 170 159 76 263 493 577
llvm 4830 5760 5360 5646 4593 4096
openthread 104 123 127 976 144 141
sqlite 179 193 172 431 256 180
vorbis 891 1122 821 848 875 898
wpantund 2959 3048 3513 3510 3146 2975

Total 83575 93867 91862 108884 94296 72422

Table 15: Average number of branches for single mode.
Project AFL AFLFast FairFuzz libFuzzer Radamsa QSYM

boringssl 2645 3054 3115 3608 3641 2539
c-ares 126 122 126 100 126 126
guetzli 1913 1491 1428 2774 2118 1906
lcms 2216 2755 935 2661 1661 2075
libarchive 4906 3961 2387 3561 5263 4366
libssh 604 604 604 518 604 626
libxml2 10082 12407 12655 13037 14287 9779
openssl-1.0.1 3809 3879 3901 2591 2993 3829
openssl-1.0.2 3978 4015 3883 2308 4068 3796
openssl-1.1.0 8091 8132 8212 7810 8292 8032
pcre2 27308 29324 28404 13463 30615 19557
proj4 264 260 260 683 264 258
re2 15892 15970 15073 11369 16485 14477
woff2 114 112 114 1003 114 115
freetype2 36798 44028 45319 45541 49468 33492
harfbuzz 16872 16051 19045 18659 16782 16886
json 4462 3626 4846 4547 4821 4538
libjpeg 6865 8495 4028 8828 6982 6377
libpng 1917 1878 1135 1651 2126 2294
llvm 54107 55697 57356 51548 53427 47226
openthread 2062 2473 2646 5295 2231 2410
sqlite 2706 2784 2771 2178 2190 2709
vorbis 11836 13561 12605 5902 11217 12531
wpantund 36059 36620 37269 28694 37075 35960

Total 255631 271299 268116 238329 276850 235903

3) Effects of Input generation strategy–what kind of gen-
eration strategy you use, what kind of corresponding ap-
plication you fuzz better. The diversity between AFL and
Radamsa is the input generation strategy. From the fifth
columns of Table 14 and Table 15, compared with AFL,
the plenty of inputs generated by Radamsa have some side
effects on most target applications (14 applications). Too
many extra inputs will slow down the execution speed of the
fuzzer. However, for some applications, the inputs generated
by Radamsa will improve the performance effectively. Take
libxml2 for example, Radamsa has some domain knowl-
edge that prefers to generate some structured data and spe-
cific complex format data. These domain knowledge are not
available in most mutation-based fuzzers, and this is a critical
disadvantage of AFL. But with the help of generation-based
fuzzers, the performance of AFL can be improved greatly.

Table 16: Average number of bugs for single mode.
Project AFL AFLFast FairFuzz libFuzzer Radamsa QSYM

boringssl 0 0 0 1 0 0
c-ares 1 2 2 1 2 1
guetzli 0 0 0 0 0 0
lcms 0 0 0 0 0 0
libarchive 0 0 0 0 0 0
libssh 0 0 0 1 0 0
libxml2 0 1 0 1 1 0
openssl-1.0.1 0 0 0 0 0 0
openssl-1.0.2 2 1 0 1 1 2
openssl-1.1.0 0 0 0 0 0 0
pcre2 2 1 1 1 2 1
proj4 0 0 0 1 0 0
re2 0 0 0 1 0 0
woff2 0 0 0 1 0 0
freetype2 0 0 0 0 0 0
harfbuzz 0 0 0 1 0 0
json 1 1 0 0 1 0
libjpeg 0 0 0 0 0 0
libpng 0 1 1 1 1 1
llvm 0 0 1 1 0 1
openthread 0 0 0 1 0 0
sqlite 0 0 0 1 1 1
vorbis 1 1 2 1 1 2
wpantund 0 0 0 0 0 0

Total 7 8 7 15 10 9

In conclusion: Different base fuzzers perform variously on
distinct target applications, showing the diversity for the base
fuzzers. The more diversity of these base fuzzers, the more
differently they perform on different applications. Further-
more, the above three types of effects should be considered
and could be incorporated into the fuzzing evaluation guide-
line [25] to avoid biased test cases or metrics selection when
evaluating different types of fuzzing optimization.

B Does performance vary in different modes?

We choose AFL as the baseline, and compare other tools
with AFL on path coverage to demonstrate the performance
variation. Figure 5 shows the average number of paths exe-
cuted on Google’s fuzzer-test-suite by each base fuzzer com-
pared with AFL in single mode. We also collect the result of
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(a) performance of
AFLFast in single thread

(b) performance of
FairFuzz in single thread

(c) performance of
libFuzzer in single thread

(d) performance of
Radamsa in single thread

(d) performance of QSYM
in single thread

Figure 5: Paths covered by base fuzzers compared with AFL in single mode on a single core.

(a) performance of
AFLFast in four threads

(b) performance of
FairFuzz in four threads

(c) performance of
libFuzzer in four threads

(d) performance of
Radamsa in four threads

(d) performance of QSYM
in four threads

Figure 6: Paths covered by base fuzzers compared with AFL in parallel mode with four threads on four cores.

(a) performance of
EnFuzz− in four threads

(a) performance of
EnFuzz-A in four threads

(a) performance of
EnFuzz-Q in four threads

(b) performance of
EnFuzz-L in four threads

(c) performance of
EnFuzz in four threads

Figure 7: Paths covered by EnFuzz with four threads on four cores compared with AFL in parallel mode with four threads on
four cores. EnFuzz− without the proposed seed synchronization performs the worst, and EnFuzz performs the best.

each base fuzzer running in parallel mode with four threads,
and the result is presented in Figure 6. Figure 7 shows the
average number of paths executed by EnFuzz compared with
AFL in parallel mode with four CPU cores. From these re-
sults, we get the following conclusions:

• From the results of Figure 5 and Figure 6, we find
that compared with AFL, the two optimized fuzzers
AFLFast and FairFuzz, block coverage guided fuzzer
libFuzzer, generation-based fuzzer Radamsa and hy-
brid fuzzer QSYM perform variously on different ap-
plications both in single mode and in parallel mode. It
demonstrates that the performance of these base fuzzers
is challenged by the diversity of the diverse real ap-
plications. The performance of their fuzzing strategies
cannot constantly perform better than AFL. The perfor-
mance variation exists in these state-of-the-art fuzzers.

• Comparing the result of Figure 5 and Figure 6, we find
that the performance of these base fuzzers in parallel
mode are quite different from those in single mode, es-
pecially for AFLFast and FairFuzz. In single mode, the
other two optimized base fuzzers perform better than
AFL in many applications. But in parallel mode, the
result is completely opposite that the original AFL per-
forms better on almost all applications.

• From the result of Figure 7, it reveals that EnFuzz-A,
EnFuzz-L and EnFuzz always perform better than AFL
on the target applications. For the same computing re-
sources usage where AFL running in parallel mode with

four CPU cores, EnFuzz-A covers 11.26% more paths
than AFL, ranging from 4% to 38% in single cases,
EnFuzz-Q covers 12.48% more paths than AFL, rang-
ing from 5% to 177% in single cases, EnFuzz-L cov-
ers 37.50% more paths than AFL, ranging from 13%
to 455% in single cases. EnFuzz covers 42.39% more
paths than AFL, ranging from 14% to 462% in sin-
gle cases. Through ensemble fuzzing, the performance
variation can be reduced.

• From the result of Figure 7, it reveals that
EnFuzz− without seed synchronization performs
worse than AFL parallel mode under the same resource
constraint. Compared with EnFuzz-A, EnFuzz-Q cov-
ers 1.09% more paths, EnFuzz-L covers 23.58% more
paths. For EnFuzz, it covers 27.97% more paths than
EnFuzz-A, 26.59% more paths than EnFuzz-Q, 3.6%
more paths than EnFuzz-L, and always performs the
best on all applications. The more diversity among
those integrated base fuzzers, the better performance
of ensemble fuzzing, and the seed synchronization
contributes more to the improvements.

In conclusion: the performance of the state-of-the-art
fuzzers is greatly challenged by the diversity of those real-
world applications, and it can be improved through the en-
semble fuzzing approach. Furthermore, those optimized
strategies work in single mode can not be directly scaled
to parallel mode which is widely used in industrial practice.
The ensemble fuzzing approach is a critical enhancement to
the single and parallel mode of those optimized strategies.
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