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Abstract—Ethereum is the largest blockchain platform sup-
porting smart contracts with the second biggest market capital-
ization. Ethereum data can yield many useful insights because
of the large volume of transactions, accounts and blocks as
well as the popular applications developed as smart contracts.
Studying Ethereum data can also reveal many new attacks to the
platform and its smart contracts. Unfortunately, it is non-trivial
to systematically explore Ethereum because it involves massive
heterogeneous data, which are produced and stored in different
ways. Although a few recent studies report some interesting
observations about Ethereum, they are limited by their data
acquisition methods which cannot provide comprehensive and
precise data. In this paper, to fill the gap, we propose DataEther,
a systematic and high-fidelity data exploration framework for
Ethereum by exploiting its internal mechanisms. Besides sup-
porting the analyses in existing studies, DataEther further
empowers users to explore unknown phenomena and obtain
in-depth understandings. We first describe how we tackle the
challenging issues in developing DataEther, and then use four
data-centric applications to demonstrate its usage and report
many new observations.

I. INTRODUCTION

Being the second largest blockchain in market capitaliza-

tion [1], Ethereum distinguishes itself as the most successful

blockchain supporting smart contracts. A smart contract is a

piece of autonomous program running on the blockchain ac-

cording to the program logic defined beforehand [2]. Exploring

this complex system can yield many useful insights because

of the huge volume of transactions, accounts and blocks [3],

popular applications developed as smart contracts (e.g., token

ICOs [4], phenomenal games [5]), as well as attacks to the

platform and its smart contracts [6].

It is non-trivial to systematically explore Ethereum be-

cause it involves massive heterogeneous data, such as blocks,

transactions, smart contracts, execution traces, and accounts.

Although a few recent studies report some interesting obser-

vations by exploring data from Ethereum [3], [7]–[13], they

are limited by their data acquisition methods, which can be

divided into four categories, including C1: downloading &

parsing block files [8], [14]; C2: invoking Web3 APIs provided

by Ethereum [9], [10]; C3: crawling blockchain explorer

websites [11], [12]; C4: instrumenting Ethereum node [3],

[13]. In particular, they suffer from the following limitations:

incomplete data, confusing information, and inefficiency.

First, all four categories of methods produce incomplete

data. Concretely, C1 and C2 methods cannot obtain inter-

nal transactions (to be explained in §II) launched by smart

contracts, thus missing the interactions among smart contracts

(e.g., how malicious contracts exploit the vulnerabilities in

legitimate contracts). The blockchain explorer websites used

by C3 methods usually list partial data and discourage au-

tomated crawlers to guarantee the availability to all visitors.

For example, Etherscan [15], the most popular Ethereum block

explorer, just shows the last 0.5 million transactions. Although

some blockchain explorer websites provide APIs for fetching

data, they also just support partial data (e.g., Etherscan’s APIs

return only the most recent 10,000 transactions [16]). Note

that the APIs provided by Ethereum are different from the

APIs provided by blockchain explorer websites. The former

collect data from an Ethereum node, whereas the latter acquire

data from the websites of blockchain explorers. Existing C4
methods only collect limited data for specific applications. For

instance, our previous work only collects the sender, receiver,

and the amount of money transferred in each transaction to

investigate money transfer, contract creation and contract in-

vocation [3]. Grossman et al. just acquire internal transactions

and storage operations to detect the reentrancy vulnerability

of smart contracts [13].

Second, C3 methods may lead to confusing information.

For example, the ‘Contract Creation Code’ box in Etherscan

shows the deployment bytecode of a smart contract. Since the

‘Switch To Opcodes View’ button is next to this box, users

may expect to see the disassembly of the deployment bytecode

after clicking the button. However, Etherscan shows the

disassembly of the runtime bytecode. The difference between

the deployment bytecode and the runtime bytecode is detailed

in §II-B. Moreover, Etherscan sometimes just lists partial

internal transactions and displays the statement “... Produced

N Contract Internal Transactions”, where N is smaller than the

correct number. Consequently, users may mistakenly think that

there are just N internal transactions. For instance, we find 243

internal transactions incurred by a transaction whose hash is

“0x8023679696f1db7fe00adfdab4fcd8600a7cd6e4c5d8a8054d

f0d97cd06503de”, but Ethereum just lists 31 out of them

and displays the statement “... Produced 31 Contract Internal

Transactions” [17].
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Third, C2 and C3 methods are inefficient. The latter is

restricted by the network bandwidth and the rate limit im-

posed by the web server. For example, Etherscan restricts

the frequency of invoking its APIs to 5 queries/sec [16]. For

the former, some Web3 APIs return data slowly due to their

design. For example, debug_traceTransaction() takes a long

time to return the execution trace of each queried transaction.

We learn the root cause after inspecting the source code of

Ethereum: before executing the queried transaction, this API

has to initialize the runtime environment, construct the correct

state before the execution of the block containing the queried

transaction, and then replay the preceding transactions before

the queried transaction in the same block. Moreover, Web3

APIs use Remote Procedure Calls (RPC) to communicate with

an Ethereum node, which introduces further delay. Hence, the

long time required for collecting the execution traces for all

transactions (more than 370 million) through this API would

be unacceptable.

To address the above limitations in existing studies, we

propose DataEther, a systematic and high-fidelity data ex-

ploration framework for Ethereum by exploiting its internal

mechanisms and carefully instrumenting an Ethereum full

node. The rationale of our approach lies in the fact that

each node keeps the same copy of the blockchain and the

execution of smart contracts can be replayed by leveraging

the transactions invoking those smart contracts [2]. Different

from existing methods, DataEther acquires all blocks (§III-B),

transactions (§III-D), execution traces (§III-C), and smart

contracts (§III-E) from Ethereum, and collects ERC20 token

activities (§III-F). Table I lists the information that can be

acquired by DataEther and existing methods.

We overcome several technical challenges in developing

DataEther. First, Ethereum has massive heterogeneous data

distributed in different sources, such as execution traces in

Ethereum Virtual Machine and transactions in blocks, without

a detailed document about the internals of Ethereum. We

overcome this issue by first scrutinizing Ethereum implemen-

tation and then carefully instrumenting an Ethereum node

to acquire the data. Second, not all data can be directly

obtained from Ethereum. We address this challenge by first

figuring out the relationships among data and then deciding

how to obtain them. For example, the balance of an account

is determined by several factors, including the genesis block,

transactions that increase/decrease the balance, block rewards,

uncle block rewards, and gas rewards. Hence, we first restore

such information to recover all the historical values of account

balance. Third, we need to collect the information of tokens

(token is a kind of smart contract) but less than 1% smart

contracts are open-source [18]. We recognize tokens and their

behaviors by conducting bytecode analysis and trace analysis.

Based on the plenty of diverse data collected by DataEther,
we develop four new applications to demonstrate its usage,

including profiling important entities in Ethereum such as

account balance and tokens (§IV), characterizing reentrancy

attacks through transaction-based analysis (§V), revealing non-

deployable contracts through contract-based analysis (§VI),

TABLE I
INFORMATION THAT CAN BE ACQUIRED BY EXISTING METHODS AND

DATAETHER. � AND × DENOTE THAT THE INFORMATION CAN/CANNOT

BE COLLECTED, RESPECTIVELY. � MEANS THAT THE INFORMATION CAN

ONLY BE PARTIALLY OBTAINED. WE SELECT ETHERSCAN AS A

REPRESENTATIVE OF C3, OUR PREVIOUS WORK [3] AND GROSSMAN ET

AL.’S WORK [13] AS REPRESENTATIVES OF C4.

and detecting underpriced DoS attacks through trace-based

analysis (§VII). We obtain many new insights from these

applications. For example, In §IV, we learn that Nanopool, a

mining pool, gets stable profit and distributes it to its miners.

Moreover, most token holders invest just one kind of tokens

while most tokens receive little attention. In §V, we discover

22 accounts that exploited the reentrancy vulnerability of

the DAO contract. In particular, 13 out of them have not

been reported before, and 7 out of 22 accounts exploited an

unreported attack surface. In §VI, we discover a special kind

of smart contracts, named non-deployable contracts, and learn

their usages, including sending Ether to multiple accounts

by one transaction, transferring Ether ‘forcibly’, and using

non-deployable contracts to steal Ether in a new way. In

§VII, we uncover 27,313 unreported attacking transactions

that exploited 3 underpriced operations to launch DoS attacks.

We also note that although DataEther has been implemented

for Ethereum, it can be easily extended to support other

blockchains (e.g., NEO [19], TRON [20], Qtum [21]) which

have the similar design of smart contracts with Ethereum. In

summary, we make the following contributions.

(1) We propose DataEther, a systematic and high-fidelity data

exploration framework for Ethereum by exploiting its internal

mechanisms and instrumenting an Ethereum full node.

(2) We implement DataEther after addressing several technical

challenges. It obtains all historical data and enables new

functionalities. It is also more efficient than existing methods.

(3) We develop four data-centric applications based on the

data collected by DataEther, and obtain many new observa-

tions. DataEther and the collected data will be released after

the paper is published.

The remainder of this paper is organized as follows. §II in-

troduces the necessary background. After detailing DataEther
in §III, we describe four applications based on DataEther in

§IV, §V, §VI, and §VII, respectively. We review related studies

in §VIII and conclude the paper in §IX.

II. BACKGROUND

A. Account and Transaction

Ethereum has two kinds of accounts: (1) Externally Owned

Account (EOA). Each EOA has a pair of <public key, private

key> [2] and its address is derived from the public key; (2)
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Smart contract account. Such account is created by an EOA

or another smart contract, and has executable bytecode of

smart contract [2]. An account is referred to by its address. A

transaction is a message sent from an EOA to another account,

which carries information like the amount of Ether sent, the

method invoked and the corresponding parameters [2]. An

internal transaction is a message sent from a smart contract

account to another account [2]. Note that internal transactions

are not stored in the blockchain and hence cannot be obtained

by parsing blocks. To avoid ambiguity, we use external trans-
action to denote the transaction sent from an EOA.

B. Smart Contract and Ethereum Virtual Machine

Smart contracts are usually developed in high-level lan-

guages(e.g., Solidity [22]) and then compiled into bytecode to

be executed by the Ethereum Virtual Machine (EVM). EVM

is a stack-based virtual machine with 130+ operations [2]. Be-

sides stacks, EVM also has Memory, which provides transient

storage, and Storage, which provides permanent storage [2].

The bytecode of a smart contract can be deployed to

Ethereum by an external or internal transaction. In the for-

mer case, the input data property of the external transaction

contains the deployment bytecode of the contract [2]. In the

latter case, the deployment bytecode is stored in the mem-

ory [2]. The deployment bytecode consists of the initialization
bytecode for initializing the smart contract and its parameters

as well as the runtime bytecode. The runtime bytecode will be

stored in the blockchain, but the initialization bytecode will

be discarded after contract deployment [2].

A contract can be invoked by an external transaction, whose

input data property provides the parameters and specifies the

invoked method and to property contains the contract address,

or an internal transaction [2]. In the latter case, the address

of the contract to be invoked is in the stack and the invoked

method and parameters are in the memory.

Ethereum allows a contract to self-destruct, which is useful

in several situations (e.g., stopping a buggy contract). When a

contract self-destructs, its runtime bytecode will be removed

from the blockchain and the remaining Ether in the contract

will be sent to a specified account [2].

C. Ether, Token and Gas

Ether is the cryptocurrency of Ethereum [2]. A user can

get Ether by mining blocks, purchasing from markets, or from

other users. Token is a kind of alternative cryptocurrency coins,

which is implemented in smart contracts and operated on

Ethereum [23]. Ethereum supports launching tokens for ICO

(Initial Coin Offering) by deploying the token contacts, which

usually follow certain standards (e.g., ERC20 [24]). A token

standard defines standard methods and standard events whose

semantics are well-documented. Besides standard methods and

standard events, a token standard allows developers to imple-

ment non-standard methods and non-standard events [24].

To thwart resource abuse and incentivize nodes to con-

tribute their computing resources, Ethereum introduces the gas

mechanism that requires transaction senders to pay execution

fees [2]. Ethereum defines the gas cost of EVM operations [2]

and lets the gas price be changeable by transaction senders.

The execution fee of a transaction is the multiplication of the

gas price with the total gas cost of all executed operations [2].

D. Block, Mining, and Synchronization
A block consists of a block header containing meta infor-

mation and a block body comprising zero or more transac-

tions [2]. Note that the block stores neither execution traces

nor token activities. The genesis block (i.e., the first block)

sets the initial state of the blockchain, such as the balances of

some accounts, etc. All blocks are linked together. The parent
block of a block A is the block mined exactly before A [2],

and every block (except the first one) has the block hash of

its parent.
The accounts who mine blocks (i.e., miners) will be re-

warded. The mining reward consists of three parts: block

reward, uncle block reward and gas reward. The uncle block
of a block A has the same parent block with the parent

block of A [2] but it does not include transactions. Since

uncle blocks accelerates block confirmation and improves

the security of blockchain [25], mining uncle blocks is also

rewarded. A miner will receive gas reward if its mined block

includes transactions. Since proof-of-work mining needs lots

of computing resources [26], miners tend to form a large

mining pool to increase the success probability of mining

blocks. The mining pool aggregates the computation results

from its miners and distributes mining reward to them. Note

that mining pools have diverse reward distribution schemes.
When an Ethereum node joins the Ethereum network, it

first synchronizes with its peers for downloading blockchain

or the state of blockchain before validating or mining blocks.

Ethereum supports three synchronization modes, namely full,

fast and light [27]. Only a full node implements the full mode

that downloads the entire blockchain, stores it in block files,

and executes all historical transactions [27].

Fig. 1. High-level overview of DataEther

III. DATAETHER

A. Overview
As shown in Fig. 1, DataEther consists of three stages.

In the data acquisition stage, DataEther obtains the raw data

from the blockchain during synchronization and processes

it through five modules to collect information from blocks

(§III-B), execution traces (§III-C), transactions (§III-D), smart

contracts (§III-E), and tokens (§III-F), respectively. The trans-

action explorer needs the data collected by the block explorer
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and trace explorer, because external transactions are stored

in blocks and internal transactions are extracted from the

traces. The contract explorer relies on the transaction explorer,

because a contract is deployed and invoked by a transaction.

The token explorer depends on the contract explorer and

trace explorer, because we identify tokens by contract analysis

and recognize token behaviors by trace analysis. It is worth

noting that acquiring such information is not straightforward

because the massive heterogeneous data are distributed in

diverse sources and not all data can be directly obtained

from Ethereum. We address these issues by first figuring

out the relationships among various types of data and then

exploiting the internal mechanisms of Geth, an Ethereum full

node, through instrumentation. The details are reported in the

following subsections.

In the data storage stage, all extracted data are stored in

ElasticSearch [28] for the ease of data management. Users can

get access to the collected data in ElasticSearch. In the applica-

tion stage, users can conduct various analyses on the collected

data. We demonstrate it through four data-centric applications,

including profiling account balance and tokens (§IV), charac-

terizing reentrancy attacks through transaction-based analysis

(§V), revealing non-deployable contracts through contract-

based analysis (§VI), and detecting underpriced DoS attacks

through trace-based analysis (§VII).

B. Block Explorer

Block explorer collects the information of genesis block

and normal/uncle blocks as well as mining rewards. During

synchronization, an Ethereum full node constructs the entire

blockchain locally and validates every block, especially the

fields in each block (e.g., gas consumption, the hash of execu-

tion results of transactions, timestamp, etc.) using the function

ValidateBlock(). DataEther records the block data after

block validation by extracting all properties of the validated

block. For example, the timestamp in each block is necessary

for trend analysis (§IV), and the coinbase (i.e., account) that

mines this block is used for investigating mining behaviors.

If a block contains transactions, the Transaction Explorer

(§III-D) extracts and processes them. DataEther gathers the

data of uncle blocks by instrumenting ValidateBlock() since

it also validates uncle blocks. Since the block header stores

the property parent hash, DataEther correlates a block with its

uncles by checking their parent hashes.

The data in the genesis block sets the initial state of

Ethereum. We cannot use the above approach to acquire the

data in the genesis block because there are no transactions

in the genesis block and there is no miner for it. Fortu-

nately, we find that Ethereum creates the genesis block by

invoking the function ToBlock(), which sets the initial states

of many accounts. These accounts are organized in a map

which associates an account address with the data structure

GenesisAccount. Since GenesisAccount contains the initial

state information of an account, which is unmarshalled from

a configuration file, we collect the information in the genesis

block by instrumenting the ToBlock() function.

Miners will be rewarded after they mine blocks/uncle

blocks, which consist of block rewards, uncle block rewards

and gas rewards. The reward is of interest for profiling miners’

behaviors but it is not recorded in the block. By inspecting

Geth, we find that the function accumulateRewards() sets

block rewards and uncle block rewards and the function

TransitionDb() sets the gas rewards, and hence DataEther
instruments these two functions to record rewards.

C. Trace Explorer

Since executing smart contracts is a salient feature of

Ethereum, we propose a new approach to acquire the detailed

information of every executed EVM operations. Such infor-

mation is important to many applications, such as recognizing

token transfers (§III-F) and detecting underpriced DoS attacks

(§VII). More precisely, since Geth provides interpretation han-

dlers to interpret EVM bytecode, we carefully instrument all

130+ interpretation handlers by inserting recording code to log

the detailed information of each operation, including its pro-

gram counter, opcode and operand, the stack/memory/storage

items that are read/written, and the gas consumption of the

operation.

1  func (g *Genesis) ToBlock(db ethdb.Database) *types.Block{ 
    … 
2    for addr, account := range g.Alloc { 
3      statedb.AddBalance(addr, account.Balance) 
4      statedb.SetCode(addr, account.Code) 
5      statedb.SetNonce(addr, account.Nonce) 
6      for key, value := range account.Storage { 
7        statedb.SetState(addr, key, value) 

} 
} 
… 

1  func opJumpi(pc *uint64, evm *EVM, contract *Contract, ){ 
2    pos, cond := stack.pop(), stack.pop(); 
3    Log(*pc, cond, pos) 
4    if cond.Sign() ！= 0 {… 
5     *pc = pos.Uint64()
6    } else { 
7     *pc++}
8    evm.interpreter.intPool.put(pos, cond) 
9    return nil, nil } 

Fig. 2. Instrumenting the handler of JUMPI

We use the operation JUMPI as an example to explain how

to instrument the operations. Fig. 2 presents the code snippet

of its interpretation handler with our code (Line 3). JUMPI is

used for the conditional jump, which consumes top two stack

items. The top stack item is the jump target and the second

item is the outcome of the latest comparison (Line 2). After

the execution of JUMPI, the program counter (PC) moves to

the jump target (Line 5) if the comparison result is not 0;

otherwise, it moves to the next operation (Line 7). DataEther
logs PC and the two stack items read by JUMPI (Line 3).

After gathering the execution trace, we need to correlate it

with the transaction because the same trace can be triggered

by different transactions. It is non-trivial to achieve this goal

because the interpretation handlers do not know which transac-

tion is executed. After analyzing Geth, we find that it invokes

ApplyTransaction() to execute a transaction. Specifically,

this function first extracts a message from the transaction being

executed, and then initializes an EVM context and creates an

EVM object. After that, it executes the message by calling

ApplyMessage(), in which EVM operations are executed in

order. Therefore, DataEther instruments these functions to

correlate a transaction with its execution trace.

D. Transaction Explorer

Transaction explorer collects internal and external transac-

tions when DataEther processes blocks. With the information

of transactions, we can extract smart contracts from them
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(§III-E). It is easy to collect external transactions, but it is

not straightforward to capture internal transactions, because

they are not stored in the blocks. To address this issue, we

first identify all EVM operations that can trigger internal

transactions [2] because internal transactions are invoked by

smart contracts, and then investigate the execution traces that

contain any of such operations. Eventually, we identify 6 EVM

operations (i.e., CREATE, CALL, CALLCODE, DELEGATECALL,

STATICCALL, SELFDESTRUCT).

CREATE is used to create a smart contract. CALL invokes

a smart contract whose address is specified by the second

stack item. The id of the invoked method and the parameters

passed to the method are stored in the memory. A contract

can also send Ether to another account using CALL and the

amount is specified in the third stack item. CALLCODE is

equivalent to CALL except that the callee runs in the caller’s

context. For example, when the callee writes to the storage,

it writes to the caller’s storage. DELEGATECALL is equiva-

lent to CALLCODE except that it persists the current values

of properties sender (i.e., the transaction sender) and value
(i.e., the amount of Ether). DELEGATECALL is considered

to be a bug-free version of CALLCODE [29]. STATICCALL

functions equivalently to CALL, except that it disallows any

modifications to the state during the call (and its subcalls, if

present) [30]. SELFDESTRUCT is used to self-destruct a smart

contract, and the account specified by the top stack item will

receive the remaining Ether of the self-destructed contract [2].

By analyzing the execution traces containing any of these

6 operations, DataEther collects all internal transactions trig-

gered by these operations. DataEther acquires various informa-

tion about an internal transaction, including the corresponding

EVM operation (e.g., CREATE, CALL), transaction sender

(i.e., the contract being executed), transaction receiver (i.e.,

the contract being created/called, or the account receiving

Ether from a self-destructed contract), the amount of Ether

being transferred, and the gas allowing the callee to spend.

Since an external transaction can produce multiple internal

transactions, DataEther associates an external transaction with

its internal transactions because such correlation helps users

better understand the consequence of executing an external

transaction. Fig. 3 illustrates how DataEther identifies such

correlation, where the EOA account (i.e., EOA1) sends an

external transaction t1 to execute a smart contract SC1. The

execution of SC1 produces an internal transaction it1, which

calls the smart contract SC2. Then, SC2 invokes SC3 through

another internal transaction it2. By conducting backtracking

on the call chain, DataEther knows that both it1 and it2 are

triggered by t1 whose sender is EOA1.

Fig. 3. Correlating an external transaction with its internal transactions.

E. Contract Explorer

Contract explorer acquires the information of smart con-

tracts, which is used to determine token information (§III-F)

and characterize non-deployable contracts (§VI). When a con-

tract is being deployed, its deployment bytecode includes three

parts, i.e., the initialization bytecode, runtime bytecode and the

region for storing initialization parameters. Since an external

transaction and an internal transaction deploy a contract in

different ways, DataEther handles the two cases separately.

Fig. 4. The process of creating a contract

Contract deployed by an external transaction. If an external

transaction deploys a contract, we can obtain the contract’s

deployment bytecode in the transaction’s input data property.

We propose a two-step approach to identify the initialization

bytecode, runtime bytecode, and parameter region from the

deployment bytecode. First, we locate and extract the runtime

bytecode by inspecting five major functions in Geth as shown

in Fig. 4, which depicts the process for an external or an

internal transaction to deploy a smart contract. Specifically,

ApplyTransaction() extracts a message (a data structure in

Geth to be explained below) from the external transaction and

then invokes ApplyMessage(). A message contains the neces-

sary information for running the transaction, e.g., the address

of the receiver, the data carried by the transaction, the Ether

that should be transferred by the transaction. ApplyMessage()

creates a new state transition and calls TransitionDb(),

in which the function evm.Create() is invoked. Finally,

evm.Create() executes the initialization bytecode and calls

evm.StateDB.SetCode() to store the runtime bytecode in the

storage. Therefore, we instrument evm.Create() to obtain the

runtime bytecode. Second, DataEther extracts the initialization

bytecode and parameter region by dividing the deployment

bytecode into three parts according to the runtime code. For

example, Fig. 5 shows the deployment bytecode of a real

contract, Issuer [31], which has 1,069 bytes. DataEther first

obtains its runtime bytecode, whose length is 823 bytes. Then,

DataEther locates the beginning (offset 150) of the runtime

bytecode in the deployment bytecode. After that, we get the

initialization bytecode from offset 0 to offset 149 and learn

that the parameter region starts from offset 973.

1  func (g *Genesis) ToBlock(db ethdb.Database) *types.Block{ 
    … 
2    for addr, account := range g.Alloc { 
3      statedb.AddBalance(addr, account.Balance) 
4      statedb.SetCode(addr, account.Code) 
5      statedb.SetNonce(addr, account.Nonce) 
6      for key, value := range account.Storage { 
7        statedb.SetState(addr, key, value) 

} 
} 
… 

1  func opJumpi(pc *uint64, evm *EVM, contract *Contract, ){ 
2    pos, cond := stack.pop(), stack.pop() 
3    Log(*pc, cond, pos); 
4    if cond.Sign() != 0 { 

… 
5     *pc = pos.Uint64()
6    } else { 
7     *pc++

 } 
8    evm.interpreter.intPool.put(pos, cond) 
9    return nil, nil 

} 

Initialization bytecode (150 bytes) 

Runtime bytecode (823 bytes) 

Parameter region (96 bytes) 

606060405234610000576040516060806103cd8339810160409081528151602
083015191909201515b5b60008054600160……90925560038054858416908316
17905560028054928416929091169190911790555b5050505b6103378061009
6600039 

606060405236156100675763ffffffff60e060020a6000350416630b0f77438
11461006c578063867904b41461008b5780……16815600a165627a7a72305820
c2b40c8157f7dc3973e813f1d6522ffae1772f4bd4813c0ec756e2d97a17408
80029 

0000000000000000000000006efd5665ab4b345a7ebe63c679b651f375dddb7e 
000000000000000000000000e75cd82ada6200356a5a879b31d87c3c5e6f70d0 
000000000000000000000000b2e59493763d0d0be2634b2d1afe066914b0fcc2 

Fig. 5. Deployment bytecode partitions

Contract deployed by an internal transaction. As shown

in Fig. 4, the operation CREATE (its interpretation handler

is opCreate()) is called to create a contract. After that,
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opCreate() invokes evm.Create() and the remaining process

is the same as the process for an external transaction to deploy

a contract. Based on this observation, we insert recording

code after the call to evm.StateDB.SetCode() to log the

address of the deployed contract, which is the first param-

eter of evm.StateDB.SetCode(), and the runtime bytecode

of the created contract, which is the second parameter of

evm.StateDB.SetCode(). Since the deployment bytecode of

a contract created by an internal transaction is stored in the

memory, which is the fourth parameter of opCreate(), we ac-

quire the deployment bytecode by instrumenting opCreate().

After that, we locate the initialization bytecode, runtime byte-

code and parameter region in the deployment bytecode through

the same process described above.

Contract invocation. Besides handling contract creation,

contract explorer also collects the information of contract

invocation, including the method id of the invoked method

and parameters passed to the method. When a transaction

calls a method of a smart contract, it should provide the

corresponding method id [2]. When an external transaction

calls a smart contract, DataEther gets the call data from its

input data property, which is the first four bytes of input
data. The parameters are the remaining bytes of input data.

If an internal transaction invokes a contract, the interpretation

handler opCall() or opCallCode() or opDelegateCall() or

opStaticCall() will be called depending on which EVM

operation triggers the internal transaction. Since the call data

(including the method id and parameters) is stored in the

memory, DataEther obtains it by reading the memory when

the interpretation handler is being executed [22].

F. Token Explorer

Although many tokens have been created, distributed, and

controlled by smart contracts running on Ethereum, little is

known about token behaviors. DataEther takes the first step to

examine such smart contracts by gathering token information,

such as its name, symbol, and token transfer activities. Token

contracts usually follow certain standards so that they can be

discerned, transferred and traded by third-party applications

(e.g., wallets, exchange markets) [32], but they can also define

non-standard methods.

ERC20 tokens. ERC20 [24] is the most popular stan-

dard, which defines 6 standard methods (i.e., totalSupply(),

balanceOf(), transfer(), transferFrom(), approve() and

allowance()) and 2 standard events (i.e., Transfer and Ap-

proval). Based on this fact, DataEther determines whether a

contract is an ERC20 token by checking whether it implements

those standard methods and events. More precisely, since the

method id of a method is derived from its prototype and the

event is represented by the hash from its prototype, we first

calculate the method ids and event hashes of those standard

methods and events, respectively, and then check whether they

exist in the runtime bytecode of a contract.

Tokens transfer. ERC20 defines two standard methods for

token transfer (i.e., transfer() and transferFrom()), and

therefore we can recognize them in the transaction according

to their method ids. However, a token contract can also provide

other methods for token transfer. For example, we find that

Zilliqa [33] offers the function burn() and VeChain [34]

provides the function offerBonus() to transfer tokens. Note

that such non-standard methods cannot be recognized by third-

party applications, because these applications do not know the

prototypes of non-standard methods. To address this issue,

we propose to monitor the Transfer event to quantify token

transfer because ERC20 standard requires the emission of

Transfer whenever token transfers [24]. Technically, DataEther
captures events by analyzing execution traces because the

EVM operations LOG0, LOG1, LOG2, LOG3 and LOG4 are

used for recording events on the blockchain [2].

Token name and symbol. We find two ways to set token

names and symbols: (1) hardcode in the initialization bytecode,

e.g., Tronix [35] sets its name using the statement “string

public name = “Tronix”” in its constructor; (2) providing

them as the parameters to the initialization bytecode. For the

first scenario, DataEther looks for PUSH32 operations whose

operands are human-readable in the initialization bytecode

of token contracts, because token contracts use PUSH32 to

push data on the stack and the operand of PUSH32 stores

the name and symbol. For the second scenario, DataEther
searches the initialization parameters from the transaction to

create contracts for human-readable characters.

G. Efficiency of DataEther

We compare the efficiency of DataEther and that of C2
methods (i.e., invoking Web3 APIs provided by Ethereum),

because 6 out of 9 kinds of data can be fully collected

by C2, which is higher than the other existing methods as

shown in Table I. More precisely, we record the time required

by DataEther and the C2 methods to collect the execution

traces of 10,000 transactions that invoke smart contracts. All

experiments are conducted on a server equipped with an Intel

Xeon E5-2609 v3, 32GB main memory and 10TB HDD, and

we repeat each experiment 30 times.

Since DataEther instruments an Ethereum full node and

acquires data during synchronization, we measure the time

consumption of the first two stages (i.e., data acquisition, data

storage) of DataEther by launching it to acquire data (including

blocks, traces, transactions, smart contracts, and tokens) until it

records 10,000 execution traces. In our experiment, the average

time consumption of DataEther is 100.4s.

We then measure the time consumption of collecting the

same 10,000 execution traces by invoking the web3 API,

debug.traceTransaction(). Note that before invoking the

API we have to finish the synchronization of block files

that cover the transactions triggering these 10,000 execution

traces [36]. When measuring the time consumption of such

API, we exclude the time used for synchronization and just

count the time from sending the query to receiving the result.

The experimental results show that such approach consumes

498.5s, which is 18.6x larger than that of DataEther. Fig.

6 shows the time consumption of DataEther and the API-

based approach. A box at x-axis m shows the statistics of
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time consumptions for collecting m traces in 30 repeated

experiments. We can see that DataEther is much faster than

debug.traceTransaction(), because this API needs to con-

struct the exact state for executing the queried transaction [36]

and uses RPC to communicate with the caller.

Fig. 6. The time consumption of DataEther and the API-based approach.

IV. PROFILING ETHEREUM ENTITIES

Analyzing the various data collected by DataEther, we can

profile Ethereum entities from many aspects and examine the

evolution of their features as DataEther correlates the data

with timestamps. Due to page limit, we only report the study

of account balance and tokens because to the best of our

knowledge, they have not been examined by other works.

A. Account Balance
DataEther computes the historical balances of any account

by considering all ways that can change balances. Eq.(1) shows
how to compute the balance of an account a at block n:

B(a, n) = B(a, 1) +

n∑

i=2

(A(a, i) +R(a, i)− S(a, i)), (1)

where B(a, 1) is the initial balance of a set by the gen-

esis block. A(a, i) is the mining reward to a at block i,
including block reward, uncle block reward and gas reward.

A(a, i) == 0 if a neither mine the block nor the uncle block

with block number i. R(a, i) (or S(a, i)) denotes the amount

of Ether received (or sent) by a according to the transactions

in block i. DataEther collects B(a, 1) and A(a, i) by its

block explorer (§III-B), R(a, i) and S(a, i) by its transaction

explorer (§III-D). The historical account balance allows us

to analyze the changes in account balance over time. Such

information can be correlated with other information or events

to uncover new insights. As an example, we leverage the

historical balances of Nanopool, a mining pool, to understand

how it distributes the earned Ether to its miners.

Historical balances of Nanopool. Fig. 7 shows the balance of

an account from Jan. 13, 2017 02:08:41 AM (T1) to Jun. 06,

2017 09:35:56 AM (T2). This account is the coinbase of the

mining pool, Nanopool [37]. The x-axis gives the time points

(in seconds) since T1. Assuming the account balance was m

at T1, a point (x, y) in the black dash-dot line means that

the balance became m+y at the time T1+x. This figure also

shows the received mining reward and the amount of Ether sent

by the account. A point (x, y) in the cyan solid line means

that the accumulative mining reward to the account reaches y

Ether from T1 to T1+x. A point (x, y) in the pink dashed line

indicates that the accumulative amount of Ether sent from the

account reaches y Ether from T1 to T1+x.

We observe that the balance did not change drastically.

The reason may be that the Ether earned by the mining pool

is distributed to the miners who contribute their computing

Fig. 7. The change of balance, mining reward and Ether sent over time

resources. Moreover, Fig. 7 shows that the mining reward and

the amount of Ether sent increased at the same pace, because

the Ether sent to participant miners comes from the mining

reward. By zooming in on the first 105 seconds in the subfigure

of Fig. 7, we observe that the mining reward increased steadily

(mining 1 block about every 1.7 min on average), indicating

that the mining pool with massive computing power can mine

blocks steadily. This observation supports the viewpoint that

miners can get stable income by joining a mining pool [38].

Interestingly, the amount of Ether sent increased periodically

(every 5.5h on average) and the balance decreased correspond-

ingly. This observation reveals the reward distribution strategy

of Nanopool, which pays the miners several times a day [39]

instead of distributing the block reward once a block is mined.

Remark: DataEther can acquire all historical balances of any

accounts, which can be correlated with other information (e.g.,

Ether transfer) to reveal new insights. In particular, we observe

that the mining pool Nanopool has stable mining reward and

distributes the reward to its miners periodically.

Fig. 8. Token holders of each token

B. Token

We profile token holders and token transfer behaviors to

understand the investors and their behaviors. Fig. 8 shows the

number of holders for all ERC20 tokens that implement all

six standard methods and two standard events [24]. A point

(x, y) means that there are y tokens, each of which is held

by no more than x holders. DataEther considers an account

as a token holder if it has ever participated in transferring

(sending or receiving) certain token. We find that the token

with the most holders (1,028,686) is the TRON token, which

is ranked 9 of all tokens in terms of market capitalization [40].

Moreover, we find that about 80% (43,097/54,448) of tokens

have no more than 10 holders. In other words, most tokens

receive little attention.

Fig. 9. The number of tokens held by token holders
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A point (x, y) in Fig. 9 denotes that there are y holders, each

of which holds no more than x different tokens. One observa-

tion is that most token holders (9,074,478) just invest one kind

of tokens. One account holds 6,201 tokens. Manual investiga-

tion reveals that it is a smart contract named EtherDelta 2

belonging to an exchange market named EtherDelta [41].

EtherDelta 2 holds many kinds of tokens because it allows

users to buy/sell tokens by invoking the contract.

Remark: DataEther can identify tokens and create the map-

ping between tokens and their holders. Moreover, it can recog-

nize token transfer behaviors by interpreting the Transfer event

from execution traces. We observe from the data collected by

DataEther that most tokens receive little attention and most

token holders just invest one kind of tokens.

Fig. 10. A cycle of size 3 in the DAO attack

V. TRANSACTION-BASED ANALYSIS

Analyzing the transactions can benefit various applications

(e.g., attack forensics, anomaly detection, de-anonymization,

etc.). We present an application of anomaly detection that

concerns the cycle in contract invocation triggered by an

external transaction. Fig. 10 shows an example where a thick

edge denotes an inter-contract call and a thin edge stands for an

intra-contract call. The contract Attacking SC calls the contract

DAO which in turn calls the contract ManagedAccount. Then,

ManagedAccount calls Attacking SC, and the smart contract

invocation forms a cycle. We count the number of contracts

in the cycle as the size of a cycle. For instance, the size of the

cycle in Fig. 10 is three. We regard a cycle as a suspicious one

if an external transaction triggers the cycle to be executed for

more than H times (H = 10 in our experiments). Our anomaly

detector identifies a suspicious cycle by first identifying a cycle

and then counting the number of executions of that cycle.

DataEther eases the development of our anomaly detector

because it records the information of all internal and external

transactions and correlates an external transaction with all its

internal transactions (detailed in §III-D).

Our detector finds many suspicious cycles related to the

DAO contract. This contract has a reentrancy vulnerability, and

the attacker has exploited this vulnerability to withdraw a large

amount of money by invoking it repeatedly [42]. To better

understand this vulnerability and the corresponding attacks, we

first examine the reported attacking transactions and the code

of the DAO contract [43], and then investigate the collected

transactions to answer how many accounts exploited the DAO
contract. As shown in Fig. 10, in the reported attack transac-

tions, splitDAO() is an attack surface in the DAO contract,

which was called by the malicious contract (i.e., Attacking SC).

Then, splitDAO() invokes withdrawRewardFor() in the same

contract. After that, withdrawRewardFor() calls payOut() in

TABLE II
UNREPORTED ATTACKING ACCOUNTS AND THE NUMBER OF ATTACKING

TRANSACTIONS INVOLVED IN THE DAO ATTACK

the ManagedAccount contract, which invokes call.value()

to transfer Ether to the attacker. call.value() will trigger the

execution of the fallback method [2] in the attacking account,

which invokes splitDAO() again.

We capture thousands of external transactions sent to the

DAO contract, each of which triggers a cycle of size 3 and

forces the cycle to be executed for more than 10 times. These

transactions are sent by 22 attacking accounts, 13 of which
were unreported [42]. Besides, we reveal that 7 out of 13

unreported attacking accounts take advantages of an unre-
ported attack surface, getMyReward() in the DAO contract. In

particular, those 7 attacking accounts invoke getMyReward(),

which also calls withdrawRewardFor(). That is, the interaction

pattern of contracts involved in the attack that exploits the

unreported attack surface is the same as the one shown in Fig.

10 except that splitDAO() is replaced with getMyReward().

Table II lists all unreported attacking accounts, their attack

surfaces and the numbers of attacking transactions.

Remark: The transaction data obtained by DataEther can

enable many applications. As an example, our anomaly de-

tector discovers 22 accounts that attack the DAO contract,

which include 13 unreported accounts. Moreover, our detector

identifies an unreported attack surface of the DAO contract.

VI. CONTRACT-BASED ANALYSIS

Inspecting smart contracts is an important step in many ap-

plications, such as vulnerability discovery [44], Ponzi schemes

detection [12], and gas-inefficient code detection [45], [46].

This section presents a contract-based application: discovering

and understanding abnormal smart contracts. In particular, by

examining the initialization bytecode of smart contracts, we

discover a special kind of smart contracts whose initialization

bytecode ends with the EVM operation SELFDESTRUCT. That

is, the contract will self-destruct immediately after initializa-

tion. We name such contracts as non-deployable contracts.

Such contracts have a special feature: nobody (including the

creator) can execute the contract again since no runtime

bytecode is deployed on the blockchain.

We first design an automated approach to identify non-

deployable contracts from the initialization bytecode of smart

contracts collected by DataEther. To the best of our knowl-

edge, no existing studies analyzed initialization bytecode.

Given the initialization bytecode of a smart contract, our

approach first constructs its control flow graph (CFG) based on
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OYENTE [44] (a static analysis tool for EVM bytecode) and

then traverses the CFG to check whether every path contains

the SELFDESTRUCT operation. If so, a non-deployable con-

tract is found. Our approach discovers 26,730 non-deployable

contracts in our dataset. Fig. 11 shows the number of non-

deployable contracts created within each hour from the first to

the last discovered non-deployable contracts. We can see that

81% (21,612/26,730) non-deployable contracts were created

from June 11 to August 1, 2018.

Fig. 11. Number of non-deployable contracts

To understand the potential usages of non-deployable smart

contracts, we scrutinize all non-deployable contracts manually

and identify three patterns. One is to execute the EVM

operation CALL repeatedly for transferring Ether to multiple

accounts. 584 (2%) contracts use this pattern. Different from

Bitcoin whose transaction can have multiple outputs [47], an

Ethereum transaction can send Ether to only one account

without using contracts. Note that sending Ether to multiple

accounts in one transaction costs less gas than using multiple

transactions, each of which sends Ether to one receiver,

because a transaction consumes at least 21,000 units of gas [2].

Hence, one potential usage of non-deployable contracts is to

conduct multiple transfers using one transaction.
The second pattern is to transfer Ether via self-destruction.

4,534 (17%) non-deployable contracts adopt this pattern. A

contract cannot receive Ether if none of its methods is marked

as ‘payable’, except mining rewards and the Ether from self-

destructed contracts [22]. Moreover, a contract cannot refuse

the Ether from mining rewards and self-destruction [22]. We

call such Ether transfer as forcible transfer. The forcible

transfer can be used to send Ether to a buggy contract that

misses the ‘payable’ keyword. Besides, forcible transfer can

be exploited by attackers to subvert the contracts that check

their balances before conducting sensitive tasks [48]. That is,

an attacker can affect the comparison result through forcible

transfer. Hence, another potential usage of non-deployable

contracts is to forcibly transfer Ether to certain accounts.
The third pattern is to steal Ether. All 21,612 non-

deployable contracts created from June 11, 2018 to August 1,

2018 use this pattern to steal Ether from the smart contract

of a phenomenal game, Fomo3D [49]. This game collects

Ether from all participants and sends the rewards to the last

participant before the timer goes to zero. A recent news

disclosed that the rewards were claimed by an attacker that

blocked the blockchain to prevent other users from joining

the game (i.e., becoming the last participant) [50]. Differently,

we find an unreported attack mode after investigating the

non-deployable contracts. More precisely, an account who

sends Ether to Fomo3D has a probability to win other kinds

of rewards (not the rewards claimed when the timer goes to

zero [50]). Fomo3D records the accounts that have been

rewarded, and it does not reward any account twice. Hence,

the attacker creates many non-deployable contracts, and

instructs each contract to send Ether to Fomo3D for claiming

such rewards. Consequently, the rewards obtained by all

non-deployable contracts are sent to the attacker. By using

non-deployable contracts, attackers are more likely to hide

themselves because no bytecode will be deployed on the

blockchain. Besides, attackers can get the refund of execution

fee due to the execution of SELFDESTRUCT [2]. After

checking all 21,612 contracts and their transactions, we find

that 280.9 Ether (worthy of about 0.14 million USD at that

time) are stolen. For example, the non-deployable contract

(address: 0xf3063e7cEcb382b7812EBaEff638bec1cf50Ed08)

sends 0.1 Ether to Fomo3D (transaction hash:

0x01bd3cbfbe5f69646cfa0aff609637759433555eeedee160890

c69d22312776f) and gets about 0.24 Ether back. Therefore,

the attacker steals about 0.14 Ether by leveraging a single

non-deployable contract.

Remark: Scrutinizing the bytecode of smart contracts can

discover many interesting behaviors. As an example, we design

an automated approach to detect non-deployable contracts

from the data collected by DataEther and obtain an in-depth

understanding of their potential usages, including (1) transfer-

ring Ether to multiple accounts by one external transaction; (2)

forcible Ether transfer; and (3) stealing Ether through an un-

reported attack pattern that exploits non-deployable contracts.

VII. TRACE-BASED ANALYSIS

Investigating the traces of a smart contract can help us

learn its execution states. As an example, this section reports

how we detect underpriced DoS attacks from the execution

traces collected by DataEther. The gas cost of an EVM

operation is expected to be proportional to the resources

consumption of executing that operation in order to thwart

resources abusing [2]. However, the gas costs of some EVM

operations are lower than they should be. We call such

operations underpriced operations. An attacker can launch

underpriced DoS attack by executing underpriced operations

repeatedly. Such attacks can waste the computing resources of

Ethereum nodes and hence deny the service of blockchain. Our

previous work proposes an adaptive gas mechanism to defend

against underpriced DoS attack [10]. Differently, in this paper,

we propose a detector to discover the EVM operations that
have been exploited by underpriced DoS attacks.

We propose a three-step approach to detect underpriced DoS

attack by looking for the EVM operations with abnormally

high execution frequencies. First, we compute the frequency

of each EVM operation in every execution trace. Second, we

construct a frequency sequence for every analyzed operation.

This sequence lists the execution frequencies of an operation in

all execution traces in chronological order. Third, we apply the

Tukey’s range test [51] to the frequency sequences for locating

outliers. Tukey’s range test is a well-known method to find

outliers, which are values that are significantly different from
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TABLE III
RESULTS OF UNDERPRICED DOS ATTACK DETECTION

other values [51]. An outlier in this application refers to an

EVM operation that has been executed much more frequently

in one trace than in other traces. We do not set a fixed

threshold to the execution frequencies of EVM operations,

because some operations will be executed much more times

than other operations in normal situations.

Table III shows the detection results. Column 1 lists the four

underpriced EVM operations that have been exploited by real
DoS attacks. Columns 2, 3 present the numbers of external

transactions for attacking purpose and the average numbers of

the underpriced operations executed per attacking transaction.

It has been reported that EXECODESIZE was used to launch

DoS attacks [52]. However, the attacks that exploit SLOAD,

BALANCE, or DELEGATECALL have not been reported before,

and these attacks sent 27,313 (i.e., 1 + 8, 190 + 19, 122) at-

tacking transactions. We further explore why these operations

were exploited to launch DoS attacks. Since SLOAD loads a

value from the storage and BALANCE gets an account balance

stored in the storage [2], their operations need disk I/O. DEL-

EGATECALL produces an internal transaction which invokes

another smart contract [2]. Since smart contracts are stored

in the storage, the execution of DELEGATECALL consumes

considerable CPU and disk resources. As these operations

were underpriced, attackers repeatedly execute them to cause

extensive disk I/O and high CPU usage in every Ethereum

full node. Although we cannot launch DoS attacks against the

Ethereum blockchain by exploiting these three operations, we

believe they are not false positives because the gas costs of

SLOAD, BALANCE, and DELEGATECALL have been increased

from 50, 20 and 40 to 200, 400 and 700 in the updated

Ethereum, respectively [53].

Remark: The execution traces enable analyzing smart con-

tracts and detecting attacks. Based on the execution traces col-

lected by DataEther, we discover 27,313 unreported attacking

transactions that exploited 3 underpriced operations.

VIII. RELATED WORK

There are four typical ways to acquire data from Ethereum.

C1: downloading & parsing block files. Kiffer et al. studied

the hard fork of Ethereum due to the divergences in the

solutions for the DAO attack by parsing block files [8].

MAIAN discovered three kinds of vulnerabilities in smart

contracts that are collected by the downloading & parsing

approach [14].

C2: invoking Web3 APIs. Our previous work, GASPER [45]

detected several gas-costly code patterns from smart con-

tracts that were collected by invoking web3.eth.getCode().

Our previous work collected execution traces by calling

debug.traceTransaction() for calculating the execution fre-

quencies of EVM operations [10]. Bartoletti et al. designed

a general-purpose framework to support data analytics on

Bitcoin and Ethereum, where data is collected by invok-

ing the APIs provided by Bitcoin and Ethereum, respec-

tively [9]. EtherQL [54] collected blockchain data through

the APIs exported by EthereumJ (a Java implementation of

Ethereum) [55], and maintained the data in MongoDB [56].

C3: crawling blockchain explorer websites. ZEUS verified

the safety of 22.4 thousand smart contracts via abstract in-

terpretation and symbolic model checking [11]. Two studies

detected and dissected the contracts that implement Ponzi

schemes [12], [57]. They all collect contract by crawling

blockchain explorers, including Etherscan, Etherchain and

EtherCamp. Some studies combined the downloading & pars-

ing approach and the web crawling approach. Huang et al.

estimated the potential profitability of mining and speculating

tokens using real-world blockchain and trade data [58]. More

precisely, they obtained the data from Bitcoin and Litecoin by

parsing their block files, and acquired the data from the other

blockchains by web crawling. Bartoletti et al. conducted an

empirical analysis of smart contracts with two data sets. One

is crawled from Ethereum explorer websites and the other is

extracted from the block files of Bitcoin [59].

C4: instrumenting Ethereum node. Our previous work

obtained the senders, receivers, and the amount of Ether

transferred from transactions, and then conducted graph anal-

ysis [3]. In comparison, DataEther acquires much more in-

formation of various types. Even for an internal transaction,

DataEther collects new information, such as its gas limita-

tion, the EVM operation (e.g., CALLCODE, DELEGATECALL)

triggering it, the actual gas consumption, and its input data.

Moreover, our previous work did not handle STATICCALL

because it is a new operation introduced first in Geth V

1.7.0 [3]. The consequence is that the internal transactions

triggered by STATICCALL will be missed. Grossman et al.

obtained the information of internal transactions and stor-

age operations to effectively detect callback free objects in

smart contracts [13]. Our previous tool, GasReducer [46]

collected data by both APIs and instrumentation for contract

optimization. In particular, it obtained contracts by calling

web3.eth.getCode(), and recorded every executed operation

and its gas consumption from an instrumented node.

IX. CONCLUSION

To address the limitations of existing methods for exploring

Ethereum, we propose and develop DataEther, a systematic

and high-fidelity data exploration framework which exploits

Ethereum’s internal mechanisms and carefully instruments an

Ethereum full node. DataEther acquires all historical data

and collects ERC20 token activities, thus enabling many

new applications. We demonstrate its usefulness through four

applications, including profiling account balance and tokens,

characterizing reentrancy attacks, revealing non-deployable

contracts, and detecting underpriced DoS attacks, which have

yielded many new insights. DataEther and the collected data

will be released after the paper is published.
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