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ABSTRACT

Decentralized cryptocurrencies feature the use of blockchain to

transfer values among peers on networks without central agency.

Smart contracts are programs running on top of the blockchain

consensus protocol to enable people make agreements while

minimizing trusts. Millions of smart contracts have been deployed

in various decentralized applications. The security vulnerabilities

within those smart contracts pose significant threats to their

applications. Indeed, many critical security vulnerabilities within

smart contracts on Ethereum platform have caused huge financial

losses to their users. In this work, we present ContractFuzzer, a

novel fuzzer to test Ethereum smart contracts for security

vulnerabilities. ContractFuzzer generates fuzzing inputs based on

the ABI specifications of smart contracts, defines test oracles to

detect security vulnerabilities, instruments the EVM to log smart

contracts runtime behaviors, and analyzes these logs to report

security vulnerabilities. Our fuzzing of 6991 smart contracts has

flagged more than 459 vulnerabilities with high precision. In

particular, our fuzzing tool successfully detects the vulnerability

of the DAO contract that leads to $60 million loss and the

vulnerabilities of Parity Wallet that have led to the loss of $30

million and the freezing of $150 million worth of Ether.

CCS CONCEPTS

� Security and privacy → Software and application

security; � Software and its engineering → Software testing

and debugging;
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1 INTRODUCTION
Cryptocurrencies and blockchain technologies have gained

huge popularity and attentions in industry and academia in

recent years. By the end of 2017, the total cryptocurrency market

capital has reached around 600 billion [19]. A cryptocurrency

usually adopts a well-designed consensus protocol that is agreed

by all participating nodes in its underlying network, and the

computing nodes (i.e., the miners) of the network are responsible

for recording the state of the network after transactions in a

distributed and shared ledger  a blockchain. The blockchain

was originally proposed for value transfer among networked

peers without trust [11]. Later, there are many enhanced

blockchain platforms supporting smart contracts. One of the most

popular ones is Ethereum [22], which enhances the blockchain

platform with a Turing-complete programming language,

allowing developers to write smart contracts and decentralized

applications. The ecosystem of Ethereum is growing rapidly: the

number of smart contracts and decentralized applications have

increased to more than 2 million on March 2018 [28]. The

explosive growth of Ethereum ecosystem shows its potential in

incubating killer blockchain applications in the future.

Smart contracts enable building decentralized applications on

top of the blockchain consensus protocol so that users can make

agreements via blockchain while minimizing trust. They are code

running on the blockchain that can define arbitrary rules to

control digital assets [22]. Decentralized Applications (DApps) are

basically composed of a set of smart contracts as the backend and

a set of user interfaces as its frontend. Smart contracts have

enabled a wide range of DApps in practice, such as wallets,

prediction market, instant messaging, microblogging,

crowdfunding, etc. The Ethereum accounts (including both the

smart contract accounts and externally own accounts) are now
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managing 98 million of Ether, which is about 59 million of USD in

early 2018 [28].

However, managing so much wealth under smart contracts

also makes them attractive targets for attacking by hackers.

Indeed, security problem with smart contracts have resulted in

serious losses for the blockchain community. The infamous DAO

contract bug [17] led to $60 million US loss. The Parity wallet has

suffered from two vulnerabilities[32][33]. The first one has

resulted in the loss of $60 million, and the second one has frozen

more than $150 million in terms of Ether.

There are several reasons that make smart contracts

vulnerable to security attacks. First, each execution of a smart

contract is dependent on the underlying blockchain platform and

the executions of other cooperating smart contracts. Smart

contract developers may easily write vulnerable smart contracts if

they fail to fully understand the implicit relationships among

those smart contracts. Second, the programming languages (e.g.,

Solidity) and runtime environments are new to many developers,

and these tools are still crude. Vulnerabilities may slip into smart

contracts when the deficiencies of the tool chain are not well

handled by the developers. Last but not the least, the immunity of

smart contracts makes updating them after deployment hard to

realize. Despite some workaround measures [34], security bug

fixes to smart contracts may take a long time to apply, which will

expose vulnerable smart contracts to security threats.

In previous work, several smart contract verification tools are

proposed to detect security vulnerabilities in smart contracts.

However, there are still limitations with them. First, the detection

strategy may be imprecise, which can lead to a high rate of false

positives, i.e., the detected vulnerabilities are either unlikely to

manifest or impossible to exploit. Second, symbolically verifying

all possible paths suffer from the path explosion problem, which

may also lead to false negatives if only some paths are verified.

In this work, we propose ContractFuzzer, a fuzzing framework

to detect security vulnerabilities in smart contracts on Ethereum

platform. ContractFuzzer analyzes the ABI interfaces of smart

contracts to generate inputs that conform to the invocation

grammars of the smart contracts under test. We define new test

oracles for different types of vulnerabilities and instrument EVM

to monitor smart contract executions for detecting real smart

contract vulnerabilities. Then we also showed the practicability

and applicability of ContractFuzzer by deploying 6991 real-world

smart contracts on our testnet for ContractFuzzer to perform

security fuzzing on them. The experimental results showed that

ContractFuzzer detected more than 459 vulnerabilities with very

high precision, where each of them has been confirmed by our

manual analysis.

The main contribution of this work is three-fold. First, to the

best of our knowledge, this work proposes the first fuzzing

framework for detecting security vulnerabilities of smart

contracts on Ethereum platform. Second, it proposes a set of new

test oracles that can precisely detect real-world vulnerabilities

within smart contracts. Third, we systematically performed

fuzzing on 6991 real world smart contracts on Ethereum platform,

and ContractFuzzer has identified at least 459 smart contracts

vulnerabilities, including the DAO bug and Parity Wallet bug.

The organization of the remaining sections is as follows. In

Section 2, we present the preliminaries of smart contract

programming and review typical smart contract vulnerabilities. In

Section 3, we will define the test oracle to detect vulnerabilities in

smart contract. Then, in Section 4, we present the design of our

ContractFuzzer framework. After that, we report a

comprehensive experimental study to evaluate the effectiveness

of ContractFuzzer in Section 5 followed by a discussion on related

work in Section 6. Finally, we conclude our work in Section 7.

2 A REVIEW OF SMART CONTRACTS
In this section, we will briefly review security vulnerabilities

of smart contracts studied in this work.

2.1 The Basics of Smart Contracts on Ethereum
The state s of a blockchain is a mapping from addresses to

accounts. The Ethereum blockchain platform not only supports

external accounts (i.e., owned by human) but also smart contract

accounts [27], which have balances in terms of Ether and

persistent private storage managed by code. Conceptually,

Ethereum [22] can be viewed as a transaction-based state

machine, where its state is updated on every transaction.

Moreover, the validity of the transactions is verified by the

consensus protocol of the underlying blockchain platform. A

transaction is a message that is sent from one account to another

account. It can include binary data (as payload) and Ether. When

the target is a smart contract account, its code is executed and the

payload is provided as input data.

The executable code of smart contract is bytecode running on

the stack-based Ethereum Virtual Machine (EVM). Developers

can program smart contracts using Solidity, a high-level

programming language [16], which are then compiled into EVM

bytecode. Upon creation, each transaction is charged with certain

amount of gas to pay for its execution and to avoid malicious

code wasting Ethereum resources. When the gas is used up

during contract execution, an out-of-gas exception is triggered,

which reverts all modifications made to the state of the account

in the sense of transaction.

2.2 Vulnerabilities of Smart Contracts on

Ethereum
The security vulnerabilities of blockchain enabled

decentralized applications can happen at the blockchain level,

EVM level, and smart contract level. In this work, we are focusing

on security vulnerabilities of smart contracts, which we will

briefly review in this section. We will follow the vulnerabilities

taxonomy of [1] and [9].

Gasless Send. The gasless send vulnerability is due to the fact

that when using send the recipient contract’s fallback function

will be invoked but with a fixed gas stipend as determined by the

EVM. Usually, the gas limit for the fallback function is 2300 when

the amount sent is nonzero. As a result, if the recipient contract

has an expensive fallback function, the sender of the ether will

get an out of gas exception. If such exception is not checked and

propagated appropriately, a malicious sender can keep ether

wrongfully while seemingly innocent.
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Exception Disorder. The Exception disorder is due to the

fact that Solidity is inconsistent in terms of exception handling,

which is dependent on the way contracts call each other. When a

contract calls the function of another, it may fail due to different

types of exceptions. When such exception occurs, the handling

mechanism is determined by how the calls are made. Given a

chain of nested calls where each call is a direct call to the function

of a contract, when exception occurs, all the transactions will be

reverted (including ether transfer). However, for a chain of nested

calls where at least one call is made through low-level call

methods on address (address.call(), address.delegatecall(), or

address.send()), the rollback of the transaction will only stop at the

calling function and return false. From that point, no other side

effect can be reverted and no throw will be propagated. Such

inconsistencies in terms of exception handling will make the

calling contracts unaware of the errors happened during

execution.

Reentrancy. The reentrancy bug is due to the fact that some

of the functions are not designed to be reentrant by the

developers. However, a malicious contract deliberately invokes

such functions in a reentrant manner (e.g., through fallback

functions), it may lose ether. The famous “The DAO” attack just

made use of this vulnerability to cause $60 million US loss in

terms of ether.

Timestamp Dependency. The timestamp dependency

vulnerability exists when a smart contract uses the block

timestamp as part of the conditions to perform a critical operation

(e.g., sending ether) or as the source of entropy to generate

random numbers. In a distributed system like blockchain, the

miner has the freedom to set the timestamp of a block within a

short time interval less than 900 seconds [24]. However, if a smart

contract transfer ether based on timestamp, an attacker can

manipulate block timestamps to exploit the vulnerability.

Block Number Dependency. The block number dependency

vulnerability is like Timestamp dependency. It happens when a

smart contracts uses the block.number as part of the conditions to

perform a critical operation (e.g., sending ether) or as the source

of generating random numbers. Indeed, both block.timestamp and

block.number are variable that can be manipulated by miners, so

they cannot be used as a source of entropy because of the miners’

incentive [30]. Moreover, even using the block.blockhash()

function with block.number as parameters for random number

generation is still vulnerable either due the execution mechanism

of EVM or due to the transparency of the blockchain.

Dangerous DelegateCall. The delegatecall is identical to a

message call except that the code at the target address is

executed in the context of the calling contract[27]. This means

that a contract can dynamically load code from a different address

at runtime while the storage still refers to the calling contract.

This is the way to implement the “library” feature in Solidity for

reusing code. However, when the argument of the delegatecall is

set as msg.data, an attacker can craft the msg.data with the

signature of a function so that the attacker can make the victim

contract to call whatever function it provides. This is exemplified

by the outbreaks of the first round of parity wallet vulnerability

[32]. As shown in Table 1, at line 6 the Wallet contract contains a

delegatecall with msg.data as its parameter. This makes an

attacker can call any public function of _walletLibrary with the

data of Wallet. So, the attacker calls the initWallet function

(defined at line 10) of the _walletLibrary smart contract and

become the owner the wallet contract. Finally, he can send the

ether of the wallet to his own address to finish the attack. This

attack has led to $30 million loss to the parity wallet users.

Table 1. Dangerous Delegate Call in Parity Wallet Contract

1 contract Wallet{

2 function() payable { //fallback function

3 if (msg.value > 0)

4 Deposit(msg.sender, msg.value);

5 else if (msg.data.length > 0)

6 _walletLibrary.delegatecall(msg.data);

7 }

8 }

9 contract WalletLibrary {

10 function initWallet(address[] _owners, uint _required, uint

_daylimit) {

11 initDaylimit(_daylimit);

12 initMultiowned(_owners, _required);

13 }

14 }

Freezing Ether. Another type of vulnerable contract is the

freezing ether contract. These contracts can receive ether and can

send ether to other addresses via delegatecall. However, they

themselves contain no functions to send ether to other address. In

another word, they purely rely on the code of other contracts (via

delegatecall) to send ether. When the contracts providing the

ether manipulation code performs suicide or self-destruct

operation, the calling contract has no way to send out ether and

all its ether is frozen. The second round of attack on Parity wallet

vulnerability is just because many wallet contracts can only rely

on the parity library to manipulate their ether. When the parity

library was changed to a contract through initialization and then

killed by the hacker. All the ether within the wallets contracts

relying on the parity library is frozen.

3 DEFINING TESTING ORACLES FOR

VULNERABILITIES OF SMART CONTRACTS
In this section, we will define test oracles for detecting each type

of vulnerabilities in smart contracts.

3.1 Test Oracle for Gasless Send
Within EVM, the send() is implemented as a special type of

call(). So the oracle GaslessSend ensures the call within EVM is

indeed a send() call and that the send() call returns an error code

of ErrOutOfGas during execution. To check a call is a send(), we

verify whether the input of the call is 0 and the gas limit of the

call is 2300.

3.2 Test Oracle for Exception Disorder
We define the test oracle ExceptionDisorder as follows: for a

chain of nested calls (or delegatecalls) originated from a root call

(or delegatecall), if the root call doesn’t throw exception while at

least one of its nested calls throws exception, we consider the call
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chain contains exception disorder. In another word, the exception

is not properly propagated back to the root call.

3.3 Test Oracle for Reentrancy
The test oracle Reentrancy is defined based on the two sub-

oracles. The first sub-oracle is ReentrancyCall which checks

whether the function call A appears more than once within the

call chain originated from call A. The second sub-oracle is

CallAgentWithValue that checks three conditions: (1) there is a

call() invocation with value greater than 0 (the amount of Ether

to transfer); (2) there are enough gas stipend for the callee to

perform complex code execution (i.e., not send or transer); (3)

the callee of the call() is the agent contract provided by our tool

rather than accounts specified by the contract under test. The

Reentrancy test oracle is defined as:

ReentrancyCall CallAgentWithValue

We consider the Reentrancy vulnerability happens when

there is a call that invokes back to itself through a chain of calls

and the call has sent ether to our agent contract through Call()

with enough gas stipend such that our agent contract can

perform the reentrant call again within its fallback functions. In

another word, our ContractFuzzer flags reentrancy vulnerability

only when it can successfully mount a reentrancy attack on the

target contract. We will present the design of our agent contract

and its attack scenarios in Section 4.3.

3.4 Test Oracle for Timestamp Dependency
The test oracle TimestampDependency is defined on three

sub-oracles. The first sub-oracle is TimestampOp that checks

whether the calls within the current contract have invoked the

TIMESTAMP opcode during execution. The second sub-oracle is

SendCall which checks whether the call is a send() call that

sends ether to other contract. The third sub-oracle is

EtherTransfer that checks whether the value of a call() (the

amount of Ether to transfer) is greater than 0. To be specific, the

TimestampDependency is defined as:

TimestampOp (SendCall EtherTransfer)

To summarize, we consider the TimestampDependency

happens when the current contract has used block timestamp and

the contract either has transferred ether during execution.

3.5 Test Oracle for Block Number Dependency
The test oracle BlockNumDependency is similar to

TimestampDependency except that it checks the use of block

number rather than the use of block timestamp. It is also defined

based on 3 sub-oracles. The first one is BlockNumberOp that

checks whether the calls within the current contract have

invoked the NUMBER opcode during execution. The other sub-

oracles are the same as that of the TimestampDependency. And

the BlockNumDependency is defined as:

BlockNumOp (SendCall EtherTransfer)

To summarize, we consider the BlockNumDependency

happens when the current contract has used block number and

the contract either has transferred ether during execution.

3.6 Test Oracle for Dangerous DelegateCall
The test oracle DangerDelegateCall checks whether there is

a deletegate call invoked during the execution of the current

contract and that the function called by the delegate call is

obtained from the input (e.g., msg.data) of the initial call to the

contract. In another word, the test oracle checks whether the

contract under test invokes a delegate call whose target function

is provided by a potential attacker.

3.7 Test Oracle for The Freezing Ether Contract
The test oracle for FreezingEther checks whether a contract

can receive ether and have used delegatecall during execution

but there is no transfer/send/call/suicide code within the

current contract itself to transfer ether to other address. In

another word, the FreezingEther test oracle labels a contract as

vulnerable if its balance is greater then zero during execution, but

it has no way to transfer ether with its own code (i.e., using call,

transfer, and suicide).

4 THE SMART CONTRACT FUZZER
In this section, we first give an overview of our ContractFuzzer

tool. Then we proceed to present the design of each core

component of the tool in detail.
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Fig. 1 Overview of the ContractFuzzer Tool

4.1 An Overview of ContractFuzzer

An overview of ContractFuzzer describing its workflow is
shown in Fig. 1 where the major steps are number starting from 0
to 5. The ContractFuzzer tool contains an offline EVM
instrumentation tool and an online fuzzing tool. The offline EVM
instrumentation process in step 0 is responsible for instrumenting
the EVM such that the fuzzing tool can monitor the execution of
smart contracts to extract information for vulnerability analysis.
We also build a web crawler to extract deployed smart contracts
on the Ethereum platform from Etherscan [25] website. Our
crawler will extract the contract creation code (the binary of a
smart contract), the ABI interfaces, and the constructor argument
of those contracts. Furthermore, we also deploy the smart
contracts on our Ethereum testnet. The deployed smart contracts
serve two purposes: as subjects for fuzzing and as inputs for
contract calls using contract address as argument.
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The online fuzzing process begins with step 1 where the
ContractFuzzer tool will analyze the ABI interface and the
bytecode of the smart contract under test. Then it will extract the
data types of each argument of ABI functions as well as the
signatures of the functions used in each ABI function. In step 2,
the tool will perform ABI signature analysis of all smart contracts
crawled from Ethereum and then index the smart contracts by the
function signature they support. This step is crucial for testing
the interaction of smart contracts. Based on the analysis results
on step 1 and step 2, the tool will generate valid fuzzing inputs
conforming to ABI specification as well as mutated inputs across
the border of validity in step 3. Note ABI not only can specify
common data types as argument but also contracts address and
functions selector as argument. The indexed smart contracts
returned from step 2 are used to generate inputs for ABIs with
contract address as arguments. Then in step 4, the tool will start
the fuzzing process to bombard the generated inputs against the
ABI interfaces with random function invocations. Finally, in step
5, the tool begins to detect security vulnerabilities by analyzing
the execution logs generated during fuzzing. The fuzzing process
continues until the available testing time is used up. The whole
fuzzing campaign ends when the tool has finished fuzzing on all
smart contracts under test.

4.2 Static Analysis of Smart Contracts
Analysis of ABI Function Signatures of Contracts Pool.

The ContractFuzzer tool performs static analysis on ABIs the

smart contracts pool to extract the signatures of the public

functions supported by those contracts. More specifically, based

on the exported ABI of each smart contract in JSON format, the

tool extracts all function signatures declared in the ABI. We then

calculate the function selector for each function signature, i.e., the

first four bytes Keccak (SHA-3) hash of the signature of the

function. Finally, we build a map with function selector as the key

and a vector of addresses of all smart contracts having the same

function selector as the value.

Static Analysis of Smart Contract Under Test. The

Application Binary Interface (ABI) [15] of Ethereum smart

contract is static and strongly typed. We parse the JSON format

of the contract’s ABI interface to extract its function descriptions

and data types of each argument. The input domain of most data

types can be determined precisely based on the documents [20].

However, the address data type essentially represents the address

of contract account or external accounts. When the argument

provided to the function is a contract address, the function may

use the call function to interact with the contract. Therefore,

when generating inputs for an ABI function with address type

arguments, we must use the addresses of smart contracts that can

support the functions called within the smart contract under test.

For a given ABI function of a smart contract under test, how

can we effectively determine subset of smart contracts that it can

interact with? The answer lies in the call() invocation within the

bytecode of the function implementation. The first four bytes of

the arguments for the call() function correspond to the first four

bytes Keccak (SHA-3) hash of the signature of the function,

which is also called the function selector.

Based on this observation, we perform static analysis of the

smart contract bytecode to identify the function selectors used

within the code of each public ABI functions as shown in Table 2.

The input of the algorithm is a smart contract in binary form and

the output is a map, which maps each ABI function of the smart

contract to a set of function selectors used in its code. At line 2,

the algorithm first disassembles the smart contract bytecode into

assembly code with the EVM tool disam. Then the algorithm

extracts its set of public ABI functions as funs at line 4. From line

5 to line 16, there is a loop that iterates each function in funs to

get the set of function selectors for it. Within the loop, it first

extracts the body of the function and then locates the set of code

segments of the function from line 6 to line 8. From line 10 to line

14, there is another loop that iterates each line of each code

segment and checks whether the line starts with “PUSH4” opcode.

If so, it will split the function selector. At line 15 and 16, the

algorithm sets M[f] with the set of selectors. Finally, the

algorithm returns the whole map M. The algorithm is performed

on each smart contract in the pool.

Table 2. The Function Selector Analysis Algorithm

function:FindFunctionSelectorForABI

input: bin, smart contract in binary form

output: a map M recording the set of function selectors used

in each ABI function of ABI

1 def FindFunctionSelectorForABI(bin):

2 dasm_bin = disamble(bin) //disassemble binary file

3 //extract each public ABI function signatures

4 funs = extractFunction(dasm_bin)

5 foreach f in funs: //iterate over each public function

6 body = extractBody(f) //extract body of function f

7 //get the code segments of body

8 codeSegs = getCodeSegments(body)

9 selector = set()

10 foreach seg in codeSeg: //iterate over code segments

11 foreach line in seg: //iterate each line

12 if line.startswith("PUSH4")

13 //extract one function selector

14 selector.add(line.split()[1])

15 if len(selector) >0: //ensure selector not empty

16 M[f]=selector

17 return M //return the map

As discussed in previous sections, we have stored the
addresses of all smart contracts with the same function selector in
a map. So for each function selector returned from the function
selector analysis algorithm, we search the map to find all smart
contract addresses supporting that function selector as a ABI
function. Then, we put those smart contracts into a private
contracts pool for each ABI function of the smart contract under
fuzzing. When generating fuzzing inputs for address data type of
an ABI function, we will use the contract addresses within the
private smart contract pool of the function, which makes the
interactions of smart contracts possible.

4.3 Fuzzing Input Generation
Input Generation Based on ABI Interface. he input

generation algorithm is responsible for generating valid inputs

for each function. We use different strategies to generate inputs

for fixed-size inputs and non-fixed-sized inputs. For fixed-size

input types such as INT<M>, UINT<M>, BYTES<M>, and fixed

array <type>[M], we first build a set of values by randomly
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generating inputs within the valid input domain. Then we also

build another set of seed inputs that are frequently used in smart

contracts for that type based on static analysis. Then we combine

these two sets to form the candidate value sets for that type. For

non-fixed-size inputs such as bytes, string, and <type>[], we

generate the inputs in two steps. We first randomly generate a

positive number as the length. Then we randomly select elements

from their input domain.

The ContractFuzzer performs fuzzing for each function

declared in the ABI of the smart contracts under test. Therefore,

the input generation module aims at generating one set of

candidate inputs for each function. To do so, the input generation

module iterates each argument of the function to generate k

candidates for each argument based on its input domain. Then

the complete set of inputs is the combinations of k candidates of

all arguments. Finally, the set of inputs are encoded into bytecode

representation ready for invocation.

Input Generation for Reentrancy Vulnerability. Different

from other vulnerabilities studied in this work, triggering the

reentrancy vulnerability requires the interactive calls between

two smart contracts. Therefore, we cannot expose such

vulnerability by simply invoking a contract from an external

account. Therefore, we need to generate a reentrant attack

scenario to try triggering reentrancy vulnerability within the

smart contract under test.

Table 3. A Contract with Reentrancy Vulnerability

1 contract BountyHunt{

2 …

3 function claimBounty() preventTheft {

4 uint balance = bountyAmount[msg.sender];

5 if (msg.sender.call.value(balance)()) {

6 totalBountyAmount -= balance;

7 bountyAmount[msg.sender] = 0;

8 }

9 }

10 }

11 contract AttackerAgent{

12 …

13 function AgentCall(address contract_addr,bytes msg_data){

14 call_contract_addr = contract_addr;

15 call_msg_data = msg_data;

16 contract_addr.call(msg_data);

17 }

18 function() payable{

19 call_contract_addr.call(call_msg_data);

20 }

21 }

Therefore, we created an AttackerAgent contract to interact
with each ABI function of the smart contract under test with a
reentrant attack scenario. We use the testing of the BountyHunt
smart contract as an example for illustration. The ContractFuzzer
has also successfully detected reentrancy vulnerability within it
in our experiment.

As shown in Table 3, the ContractFuzzer is fuzzing the
claimBounty function of BountyHunt smart contract to determine
whether it contains a reentrant bug. To do so, the fuzzer uses the

AttackerAgent to try stealing ether from it with reentrant attack.
At first, the AgentCall function of the AttackerAgent performs a
call (line 14 to 16) to the claimBounty function of BountyHunt
smart contract to initiate the attack (step 1). Within the
claimBounty function, the BountyHunt send ether with a call at
line 5 before setting the value of the corresponding
bounryAccount to 0 at line 7. Since the call has no parameters
provided, it will invoke the callback function (at line 18) of the
AttackerAgent (step 2). Within the callback function, the
AttackerAgent can invoke the claimBounty() function again to as
the reentrant call (step 3). As a result, the BountyHunt will send
ether to the AttackerAgent again until all of its ether is depleted.
With the help of the AttackerAgent, we can ensure each
reentrancy vulnerability flagged by ContractFuzzer is indeed
exploitable.

4.4 Instrumenting EVM to Collect Test Oracles
Based on the definition of our proposed test oracles, we

generally need to collect three types of information. The first type
of information is about various attributes of a contract call or
delegatecall. The second type of information is about the
opcodes invoked during execution. The third type of information
is the state of the contract during execution.

Collecting Information on Call/DelegateCall/Send.

According to our definitions of smart contract vulnerabilities, all

of them are related to the Call/DelegateCall/Send operation of a

smart contract under fuzzing. The Send is treated as a special

type of Call within EVM, And the DelegateCall is intrinsically

the same as a Call except that the context and the storage of the

caller rather than the callee is used during execution. Therefore,

we can model all of them with the same Call data structure

during instrumentation.

As shown in Table 4, for a Call, we collect the following

information during its execution. These attributes of the call are

crucial to support most of the test oracles.

Table 4 Information Recorded for a Call

caller address of the account that initiates the call

callee address of the contract called

function function called by caller

input arguments for the function

value amount of ether sent to callee

gas gas stipend allowed for the call

internal_calls calls made within the current smart contract

opCode_stackopcode executed in the current call

Furthermore, to support the test oracle Reentrancy and
ExceptionDisorder, contract fuzzer requires information on cross
contracts calls beyond the current contract under fuzzing.
Therefore, we also record a chain of Calls invoked starting from
the initial call, including the calls made in both the current
contract and other contracts involved.

To record such information, we instrument of the EVM.Call()
and EVM.DelegateCall() function within the EVM implementation
of Ethereum to collect Call related information for each call.
More specifically, we push the CALL opCode on to the
opcode_stack, record information on internal calls, and also
append the call onto the call chain.

Collecting Information on Opcode.Some test oracles such

as TimestampDependency and BlockNumDependency must
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check the execution of some opcode such as TIMESTAMP and

NUMBER. Moreover, many of the opCodes may change the state

of the contract, which we will also need to record. To record

opcode execution, we instrument the interpreter.Run() function

within the Interpreter implementation of Ethereum. Upon the

interpretation of each opCode monitored, we push it to the

opCode stack of the current contract. We choose 34 out of the 129

EVM instructions for instrumentation in this work because they

are either directly used by our test oracles or they may lead to the

change of contract state, which are useful for security analysis.

4.5 Vulnerability Analysis and Report
The vulnerability analysis and report module is responsible for

detecting the existence of any security vulnerability for report.

When the call stack of the initial call becomes empty, the

instrumentation module within the EVM will first checks those

sub-oracles based on the collected instrumentation information.

Then the instrumentation model will send those sub-oracles to a

HTTP server listening at port 8888 of localhost. The server will

collect the results of sub-oracles and then perform the final check

of the composite conditions for each test oracle.

5 EXPERIMENT AND RESULTS ANALYSIS
In this section, we present the details of our experiment as well

as the results analysis.

5.1 Experiment Setup
We use a desktop PC as our testing environment. The PC is

running Ubuntu 14.04 LTS and is equipped with Intel i5 8-core
CPU and 16GB of memory. We configured two dockers within
the PC to help setup the testing client and the Ethereum testnet.
Within the docker running testing client, we used Ethereum
Javascript API (web3.js libraries) within the node.js runtime to
interact with the geth client within the testnet docker. The testnet
docker installs the geth client version 1.7.0 and then we also
created an Ethereum private blockchain within this docker with
one peer node as the testnet. We set the initial mining difficulty
of the genesis block with a very low value such that transaction
confirmation can be fast during fuzzing. Finally, we deployed the
6991 smart contracts within this testnet for experimentation.
Since we are focusing only on the smart contract vulnerabilities
in this work, it is fine for our testnet to contain only one peer.

5.2 Smart Contracts as Subject Programs
There are about 9960 distinct smart contracts with verified

source code on Etherscan [25] at the time of writing. We have
crawled all of them and removed some smart contracts that
cannot be deployed on our testnet due to their use of some
invalid Ethereum address. Finally, the remaining 6991 smart
contracts are used as our experimental subjects. We use the
contract creation code (bytecode), the ABI interfaces, and the
constructor argument of those contracts as the input for our
ContractFuzzer. We choose these smart contracts with source
code because they make it easier for us to manually verify the
experiment results. But the ContractFuzzer only needs the
bytecode of the smart contracts to work.

5.3 Experimental Procedure

The ContractFuzzer first performs static analysis on each
contract to prepare the private contract pool for each ABI

interface and to extract the ABI functions. With the static analysis
result and the contract pool, the ContractFuzzer proceeds to
generate inputs.

For each ABI function of each smart contract under fuzzing,
ContractFuzzer call it with three types of account. The first one is
an external account that is the creator the contract under test.
The second one is a plain external account that has no
relationship with the contract under test. The third one is a
contract account called AttackAgent that can interact with the
target contract with a reentrancy attack scenario. From each of
the three types of account, we call the smart contract under test
with two modes: one is with ether transfer and one is not.

For each ABI function, if contains arguments, ContractFuzzer
will generate k inputs to call it. Otherwise, we will simple
perform one call on it. Combing with the 3 types of account and
the 2 choices of call.value(), we will generate 6*k calls for a
function with argument and 6 (3*2) calls for a function without
argument. We initialize k with a large value so that the
ContractFuzzer can have a wide range of candidate calls to
choose from. When fuzzing a specific smart contract, we merge
all calls generated for each of its ABI function into a pool of calls
to the smart contract. Then the ContractFuzzer starts the HTTP
server to collect and analyze test oracles. For each smart contract,
ContractFuzzer randomly selects calls from its pool of calls to
perform fuzzing, which simulates different invocation sequences
of the functions of the smart contract. Finally, the results are
collected and analyzed by the server for report. We stopped the
experiment after about 80 hours of fuzzing until the results
gradually converge.

To compare our tool with the state of art smart contract
verification tool, we also used the Oyente verification tool[9] to
scan the 6991 subject smart contracts and compare the results
with ContractFuzzer.

5.4 Experimental Results and Analysis

In this section, we present our experimentation results
followed by detailed results analysis for each research question.

Table 5 Summary of Vulnerability Detected

Vulnerability Type

Number of

Vulnerabilities Percentage

True

Positive

Rate

Gasless Send 138 2.06% 100%

Exception Disorder 36 0.54% 100%

Reentrancy 14 0.21% 100%

Timestamp Dependency 152 2.27% 96.05%

Block Number Dependency 82 1.23% 96.34%

Dangerous Delegatecall 7 0.10% 100%

Freezing Ether 30 0.45% 100%

Total 459 / /

Summary of Vulnerabilities Detected. In this section, we

first summarize the results of our fuzzing campaign as shown in

Table 5. The columns show the vulnerability type, the number of

vulnerabilities found for the type, and its percentage over all

smart contracts tested. The rows represent the results for each

vulnerability type.
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The number of smart contracts with Gasless Send
vulnerability is 138, which is about 2.06% of all contacts tested.
Since our test oracle for Gasless Send checks the occurrence of
ErrOutOfGas error within the EVM, our results is precise and
generates no false positives. For Exception Disorder, the
ContractFuzzer detects 36 vulnerable smart contracts, which is
about 0.54% of all smart contracts. We also manually checked
each smart contract detected and confirmed that they were all
true positives.

The number of Reentrancy vulnerability detected by
ContractFuzzer is 14, which is about 0.21% of all smart contacts
studied in the experiment. We checked these cases manually, and
we confirm that there are no false positives reported. The
infamous the DAO bug is also detected.

For Timestamp Dependency and Block Number Dependency,
the ContractFuzzer detected 152 and 82 vulnerable smart
contracts, respectively. We manually checked those smart
contracts for confirmation. And we found 6 out of the 152 smart
contracts flagged as Timestamp Dependency are false positives
and 3 out of the 82 flagged as Block Number Dependency are
false positives. Therefore, the true positive rates are 96.05% and
96.34%, respectively. The reason for the false positive cases is due
to the imprecision of our test oracle definition for these two types
of vulnerabilities. Indeed, in the test oracle definition for both
cases, we checked the use of the opcode (TIMESTAMP and
NUMBER) and the use of ether transfer calls within the ABI
function tested. We have not checked whether there exists a
dataflow def-use chain between the reading of the TIMESTAMP
and NUMBER and the use of them in calculating the condition for
transferring ether. However, recording such information may
involve expensive data flow tracking through instrumentation of
the smart contracts under test. Considering the high true positive
rate, we consider the solution of ContractFuzzer is a cost-effective
trade-off.

We detected 7 cases of Dangerous Delegatecall vulnerabilities,
which we confirm were all true positives. These smart contracts
all used the inputs of the initial caller to extract the functions to
be called by delegatecall. The smart contract leading to the first
round of Parity bugs are also detected. For the Freezing Ether
vulnerability, we have detected 30 cases. We examined these
smart contracts and confirm that all of them indeed have no way
to send out ethers with their own code and they can only transfer
ether indirectly through other contracts. In total, the
ContractFuzzer has precisely detected 459 smart contracts as
vulnerable with very high true positive rate.

Table 6 Comparison of Contract Fuzzer and Oyente

Vulnerability Type ContractFuzzer Oyente

Statistics No. FP FN No. FP FN

Timestamp Dependency 152 6 95 273 70 44

Reentrancy 14 0 1 43 28 0

Comparison with the Oyente Verification Tool. We also

compared ContractFuzzer with the Oyente verification tool [9][29]

on the detection of some type of vulnerabilities in common. The

publicly released Oyente tool [29] can detect 4 types of

vulnerabilities. One of them is the call stack size limit

vulnerability that is no longer relevant since it is already

addressed in the Ethereum EIP150 hardfork. The other 3 types of

vulnerability detected by Oyente tool is the Transaction-ordering

dependency, Timestamp Dependency, and Reentrancy. The

testing of transaction-ordering dependency requires the

manipulation of the transaction confirmation process, which is

not yet supported by ContractFuzzer. So only the Timestamp

Dependency and Reentrancy vulnerabilities can be detected by

ContractFuzzer and Oyente in common. In general, if we add the

transaction-ordering dependency vulnerability, ContractFuzzer

can detect 7 out of 8 types of vulnerabilities while the Oyente can

only detect 3 out of 8 types of vulnerabilities. So the

ContractFuzzer can detect more types of vulnerabilities.

As shown in Table 6, for Timestamp Dependency, The

ContractFuzzer detected 152 vulnerabilities and the Oyente

detected 273 vulnerabilities. We examined those smart contracts

manually and found both the ContractFuzzer and the Oyente

have false positives and false negatives. The false negatives of the

ContractFuzzer are due to two reasons. The first one is that some

contracts hardcoded a specific time (i.e., a crowdfunding starting

date) within their code and compares the block timestamp with it.

As shown in Table 7, the code snippet for BDSM_Crowdsale

smart contract specifies two fixed dates as the starting date and

ending for ICO (line 3 and 4). Then the contract compares the

block timestamp with the ICO starting dates to determine

whether to perform a refund (line 6 and 7). Obviously, the smart

contract is timestamp dependent since its uses the current block

timestamp to decide whether to perform ether transfer. However,

since the specific date has passed already, the condition will

always fail. As a result, no ether transfer will happen during

execution and ContractFuzzer will not consider it timestamp

dependent. The second reason for the false negatives of

ContractFuzzer is some conditions are hard to trigger with

limited testing time. For example, one contract requires a specific

call pattern of the functions before triggering a timestamp

dependent ether transfer. We can perform more extensive fuzzing

with different function call sequences to improve this situation.

Table 7. A False Negative Case of ContractFuzzer

1 contract BDSM_Crowdsale {

2 …

3 uint public startICO_20_December = 1513728060; //2017.12.20

4 uint public stopICO_20_March = 1521504060; //2018.3.20

5 function () payable {

6 if (now < startICO_20_December) {

7 msg.sender.transfer(msg.value);

8 }

9 …

The false negatives of the Oyente tool are mainly due to the

difficulty of symbolically analyzing cryptographic operations.

Many of the vulnerable smart contract makes use of the block

timestamp or the block number as the source for random seed

generation with cryptographic function. For example, the code

snippet from the Bomb contract at Table 8 invokes cryptographic

functions such as blockhash and keccak256 with block number

and timestamp as input (line 3). And then it checks whether the

results is equal to 1 (line 4) before transferring ether. This code is

almost unfeasible to be symbolically analyzed, as it is basically
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asking for an input that inverts 1, which is exactly what

cryptographic function is designed to make difficult. As a result,

the Oyente may miss the vulnerabilities written with this pattern.

There are also some false positive cases of Oyente tool. After

manual inspection, we found the timestamp is never used to

calculate the path condition to transfer ether.

For Reentrancy Vulnerability, The ContractFuzzer detected 14

vulnerabilities and the Oyente detected 43 vulnerabilities. With

manual examination, we confirmed all 14 vulnerabilities detected

by ContractFuzzer are all true positives. However, there is one

vulnerable smart contracts missed by for ContractFuzzers (i.e.,

false negatives). We checked these smart contracts and found that

the vulnerable function of some smart contracts must perform

complex condition checks before transferring ether. However,

these conditions are hard to trigger by ContracFuzzer.

Table 8. A False Negative Case of Oyente

1 function buy(uint8 _bomb) public payable {

2 …

3 int _random =

uint(keccak256(block.blockhash(block.number-

1),msg.gas,tx.gasprice,block.timestamp))%bomb.chance + 1;

4 if(_random == 1){

5 bomb.owner.transfer(…)

6 ceoAddress.transfer(…)

7 }}

For the Oyente tool, 28 out of the 43 smart contracts flagged

as reentrant are false positives with our test oracle definition. We

classified the 28 false positive cases into 3 types. The first type is

the smart contract uses send() and transfer() operation with a

limited gas stipend which makes the callback function of the

callee have no enough gas to perform the reentrant call again.

The vulnerable functions of the second type of smart contracts

strictly check whether the caller of them is the owner of the

smart contract specified during contract creation. Since there is

no way for an external account to invoke the function containing

ether transfer, reentrant attack is also not possible. Finally, the

third type of smart contracts can only transfer ether to a hard-

coded address. A malicious contract has no way to get the ether

or trigger reentrant call. Therefore, these 28 cases are false

positive cases with our definition: reentrancy can never be

triggered from an external contract. ContractFuzzer did not

report those false positive cases because it checked both the

reentrant call and the transfer of ether to external account.

To conclude, when compared with Oyente, the

ContractFuzzer has much lower false positive rate on both

vulnerabilites. However, the false negative rates of

ContractFuzzer is high for Timestamp Dependency, which we may

use more comprehensive input generation schemes to improve.

5.5 Case Studies on Attacks on Vulnerable Smart

Contracts

In this section, we will present cases studies on some
exploitable smart contracts detected by ContractFuzzer.

Wrongfully Holding Ether of Investors. The

CrowdSalePreICO in Table 9 is a malicious smart contract that

makes use the exception disorder vulnerability to wrongfully hold

the ether of the investors. The function at line 3 is the callback

function of the smart contract. The ContractFuzzer will call the

CrowdSalePreICO with an empty input and some value to serve

as an investor. Then the callback function will check the received

ether and add it to the total deposit (line 5 to 8). However, if the

total deposit exceeds the crowd sale limit, the excessive ether will

be returned to the investor (line 9 to 11). However, the send at

line 11 may fail. But the CrowdSalePreICO smart contract will not

check and handle the error. As a result, the fundraiser will

wrongfully keep the excessive ether of the investor.

Table 9. ICO Contract Wrongfully Holding Ether of
Investors

1 contract CrowdSalePreICO {

2 …

3 function() payable stopInEmergency onlyStarted notFinalized{

4 …

5 uint contribution = msg.value;

6 if (safeAdd(totalDepositedEthers, msg.value) >hardCapAmount)

{

7 contribution = safeSub(hardCapAmount, totalDepositedEthers);

8 }

9 uint excess = safeSub(msg.value, contribution);

10 if (excess > 0){

11 msg.sender.send(excess);

12 }

13 }

14 }

Manipulating Timestamp to Win Slot Machine. As

shown in Table 10, the contract SlotMachine() is a smart contract

that makes use of the block timestamp as random number for

determining the winner of the slot machine game.

Table 10. An Exploitable Slot Machine Smart Contract

1 contract SlotMachine {

2 …

3 function(){

4 uint nr = now; //now is the block timestamp

5 uint y = nr & 3;

6 …

7 if(y==1) { wins[1]++; win = (msg.value * 2) + (msg.value / 2);}

8 earnings += int(msg.value);

9 if(win > 0) {

10 bool res = msg.sender.send(win);

11 earnings -= int(win);

12 } } }

At line 4, the block timestamp is read into nr. Then nr is used

to calculate win (line 5 to 7). Then the win is used to determine

whether send the reward to the caller of the function (line 9 to 11).

If a miner of the Ethereum blockchain participates the slot

machine game, he can manipulate the value of block timestamp

(i.e. now) in favor of he/her interest. This kind of attack exists in
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all smart contracts that makes use of the block timestamp and

block number to determine the condition for ether transfer.

Relying on Hard-Coded Library to Transfer Ether. As

shown in Table 11, which is the wallet contract affected by the

second round of parity bug. Within the Wallet smart contract, it

can invoke the code of walletLibrary to manipulate its account or

perform other operations (line 7 and line 10). However, the code

of Wallet contains no call/transfer/suicide to transfer ether. What

is worse, the walletLibrary is defined as a hard-coded address.

When walletLibrary is changed to a smart contract account and

killed, the Wallet contract has no way to send out ether and its

ether is frozen. During the attack of the parity vulnerability on

Nov. 2017, $280M ether was frozen within such Wallet smart

contracts account.

Table 11. The Wallet Smart Contracts Frozen by Parity Bug

1 contract Wallet is WalletEvents {

2 …

3 function() payable {

4 if (msg.value > 0)

5 Deposit(msg.sender, msg.value);

6 else if (msg.data.length > 0)

7 _walletLibrary.delegatecall(msg.data);

8 }

9 function hasConfirmed(bytes32 _operation, address _owner)…{

10 return _walletLibrary.delegatecall(msg.data);

11 }

12 address constant _walletLibrary =

0xcafecafecafecafecafecafecafecafecafecafe;

13 }

6 RELATED WORK

In this section, we briefly review related works on smart
contract vulnerabilities and attacks as well as security testing and
verification techniques to detect such security bugs.

6.1 Smart Contracts Bugs and Vulverabilities
Delmolino et al. [4] showed that there could be a lot of logical

problems in even a tiny smart contract. And they listed some

common logical problems such as contract never refunding ether

to its sender and non-encrypted data leaking privacy. Miller [10]

audited the source code of smart contracts, and reports call-stack

overflow bugs on Ethereum. After undergoing continuous attacks

in 2016, the problem is resolved via a hard fork on Ethereum.

Atzei [1] systematically surveyed security attacks on Ethereum

smart contracts. They provided taxonomy of smart contract

vulnerabilities based on their characteristics.

6.2 Smart Contracts Security
Fillâtre [6] presented Why3, a tool used for program

verification, which is now available within Solidity Web IDE [9]

as the formal verification backend. When programming smart

contract within the IDE, the tool can help check the arrangement

of integer array, the overflow of mathematic operation and the

division by zero bugs.

Bhargavan [3] managed to study the security of smart

contracts and the reliability of Solidity compiler. They designed a

tools suite, which could transform both Solidity source code and

EVM bytecode to F* [3] program, respectively. Luu et al [9]

designed Oyente, a symbolic verification tool for smart contract.

Oyente builds the control-flow graph of smart contracts and then

performs symbolic execution on the control flow graph while

checking whether there exist any vulnerable patterns.

Nikolic et al [12] designed MAIAN, a symbolic execution tool

for reasoning about tracing properties to detect vulnerable smart

contracts. It specified three typical smart contracts vulnerabilities

based on trace properties. The MAIAN can efficiently detect the

greedy, the prodigal and the suicidal contracts through symbolic

execution. Different from their work, the ContractFuzzer tool

performed fuzzing and runtime monitoring to detect

vulnerabilities that happened during execution, which can

generate fewer false positives. Hirai [8] used Isabelle/HOL tool to

verify the smart contract called Deed, which is a part of Ethereum

Name Service implementation. Specifically, the work verifies the

oracle that only the owner of Deed could decrease its balance.

Furthermore, they also found the EVM implementation is poorly

tested during the verification process. Echidna [21] is a smart

contract fuzzer with oracles defined within unit test by testers. It

can also generate inputs to fuzz smart contracts. However, it

provides no direct API supporting security testing of smart

contracts.

6.3 Fuzzing Techniques for Vulnerability

Detection
Many of the black-box fuzzers are grammar-based such as

SPIKE [2] and Peach [5]. Hanford [7] and Purdom [13] started to

study test case generation based on grammar in 1970s. They

showed grammar-based fuzzers are effective to detect

vulnerabilities within the application under testing.

7 CONCLUSION

With the popularity of blockchain and smart contract
technique, millions of smart contracts have been deployed on
blockchain platforms to enable the building of decentralized
applications. However, the security vulnerabilities of the smart
contracts pose big threat to their future. In this work, we
proposed ContractFuzzer, a precise and comprehensive fuzzing
framework to detect 7 types of Ethereum smart contract
vulnerabilities. Our experiment with 6991 real world smart
contracts shows that the input generation and test oracle analysis
strategies of ContractFuzzer are effective to trigger and detect
security vulnerabilities with very high precision. Our tool
reported 459 vulnerabilities in total out of the 6991 smart
contracts tested, including the infamous the DAO bug and the
Parity Wallet bug. When compared with the state of art security
verification tool Oyente, the ContractFuzzer not only can detect
more types of vulnerabilities but it also has much lower false
positives.

For future work, to reduce false negatives, we may study the
vulnerability exploit patterns for those types of smart contract
bugs, which may guide us to generate more effective vulnerability
triggering inputs. We will also extend our tool to detect more
types of smart contract vulnerabilities related to the EVM or the
underlying blockchain platform. Finally, we will also generalize
our work to the security testing of other smart contract platforms.
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