
CFG Construction Soundness in Control-Flow Integrity
Gang Tan

The Pennsylvania State University

University Park, PA

gtan@cse.psu.edu

Trent Jaeger

The Pennsylvania State University

University Park, PA

tjaeger@cse.psu.edu

ABSTRACT
Control-Flow Integrity (CFI) is an intensively studied technique

for hardening software security. It enforces a Control-Flow Graph

(CFG) by inlining runtime checks into target programs. Many meth-

ods have been proposed to construct the enforced CFG, with differ-

ent degrees of precision and sets of assumptions. However, past CFI

work has not made attempt at justifying their CFG construction

soundness using formal semantics and proofs. In this paper, we

formalize the CFG construction in two major CFI systems, identify

their assumptions, and prove their soundness; the soundness proof

shows that their computed sets of targets for indirect calls are safe

over-approximations.

KEYWORDS
Control-flow integrity; control-flow graphs; type systems; type

soundness

1 INTRODUCTION
Control-Flow Integrity (CFI), proposed by Abadi et al. [1], is a spe-
cialized inlined reference monitor that enforces a pre-determined

Control-Flow Graph (CFG) on a low-level program. The CFG is

enforced through a combination of static and dynamic checks. Di-

rect branches are checked statically since their targets are stati-

cally known. For indirect branches, dynamic checks are inlined

to ensure that the runtime control flow follows the CFG. Indirect

branches include indirect calls (i.e., function calls via register or

memory operands), indirect jumps (i.e., jumps via register or mem-

ory operands), and return instructions.

CFI is important for software security since it mitigates control-

flow hijacking attacks. Many software attacks hijack the control

flow of programs, including stack-smashing attacks, return-to-libc

attacks [8], and more recent code-use attacks such as ROP (Return-

Oriented Programming [12]) attacks. By enforcing that a program’s

control flow has to follow a CFG, many control-flow hijacking

attacks can be effectively thwarted.

The security policy of CFI is the enforced CFG, which makes CFG

construction a key problem in CFI. A program can have multiple

CFGs, since a CFG is a static over-approximation of a program’s

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PLAS’17, October 30, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5099-0/17/10. . . $15.00

https://doi.org/10.1145/3139337.3139339

intra-procedural and inter-procedural control flow.
1
There are two

main considerations when constructing a program’s CFG: security

and soundness. For security, a finer-grained CFG is desired in the

sense that it has fewer control-flow edges; its enforcement in CFI

gives attackers less room to manipulate the control flow. For in-

stance, a CFG that allows an indirect call to target only a subset of

functions is better for security than a CFG that allows the indirect

call to target all functions. For soundness, a CFG needs to have all

necessary control-flow edges so that its enforcement will not break

the program’s legal execution.

Many methods (e.g., [5, 9–11, 13, 15–18]) have been proposed for

CFG construction in CFI, through binary-level analysis or through

the help of a compiler; detailed discussion will be in the related-

work section. CFG construction via the help of a compiler constructs

finer-grained CFGs since it propagates extra information at the

intermediate-representation level in the compiler to binary code

and uses that information to compute a more precise set of targets

for indirect branches.

It is relatively easy to argue the soundness of coarse-grained CFG

construction. For example, certain binary-level systems allow an in-

direct call to target all functions [17, 18] and this is obviously sound.

However, soundness is a serious concern for fine-grained CFG con-

struction. Resolving targets of indirect branches in fine-grained

CFG construction requires a special form of points-to analysis: for

a code pointer used in an indirect branch, it determines what code

addresses the code pointer can point to. For scalability, previous

fine-grained CFI systems have proposed specialized, efficient CFG-

construction methods, under some assumptions about the code. For

instance, MCFI [10] uses a type-based approach and relies on the

assumption that no indirect call via a function pointer invokes a

function with a type signature different than the signature of the

function pointer. While authors of these systems informally argued

their CFG-construction soundness, they all lack formal soundness

proofs.

The goal of this paper is to formalize the CFG construction and

the underlying assumptions so that formal soundness can be stated

and proved, for two main fine-grained CFI systems [5, 10]. The

first system [10] relies on types, while the second [5] uses dataflow

analysis (taint tracking) for CFG construction.

For formalization, we introduce a C-like imperative language and

its formal semantics. It turns out that the formal semantics has to

distinguish between memory-safe and memory-unsafe executions

since CFG construction is sound only with respect to memory-

safe executions. On top of the imperative language, we formalize

the CFG construction and assumptions of the two CFI systems

through type systems. The type systems, however, do not guarantee

1
In the CFI literature, a CFG specifies both intra-procedural and inter-procedural

control flows; the program-analysis literature sometimes uses the term call graphs for

inter-procedural control flows. We follow the CFI literature in this paper.

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

3

https://doi.org/10.1145/3139337.3139339

complete type safety, but only partial type safety. As we will see, the
first one guarantees the safety of types that involve function-pointer

types and the second one guarantees only the separation between

function-pointer values and non-function-pointer values. For each

type system, we will formalize partial type safety, which is sufficient

to show the soundness of the corresponding CFG construction (in

particular, an indirect call always stays in the constructed CFG).

The rest of the paper is organized as follows. We start with a

discussion of related work. We then present a C-like imperative

language in Sec. 3 and discuss its syntax and small-step operational

semantics. Based on the language, Sec. 4 and Sec. 5 formalize CFG

construction, the assumptions, and the soundness of a type-based

approach and a taint-based approach, respectively. In Sec. 6, we

discuss how violations of the assumptions in the two CFI systems

can be resolved. We conclude in Sec. 7.

2 RELATED WORK
CFG construction has always been a key problem in CFI research.

However, none of the existing CFI work provides a rigorous sound-

ness proof for their CFG construction; the most some of the CFI

work has done is to provide an informal argument for soundness

together with some validation via testing. CFI construction roughly

can be divided into two categories: the binary-analysis approach

and the compiler-based approach. The binary-analysis approach

analyzes binary code directly for CFG construction [9, 15, 17, 18].

Since binary code lacks structured information, the CFG determined

by binary analysis is coarse grained. Among binary-analysis work

so far, TypeArmor [15] provides the best precision; it performs

liveness analysis to determine the arity (number of arguments) in

an indirect call and uses arity matching to narrow down the set of

indirect-branch targets. Another approach for CFG construction is

to modify a compiler to propagate information such as types from

source to binary code and uses the extra information for binary-

level fine-grained CFG construction [5, 10, 11, 13, 16]. For instance,

Forward-Edge CFI [13] relies on arity matching and MCFI [10] uses

type signatures for pairing indirect calls and functions. This paper

provides rigorous foundation for CFG construction in two recent

fine-grained CFI systems.

CFG construction in CFI is a special kind of points-to analysis

focusing on code pointers. General points-to analysis has been an

active research area and many methods have been proposed in

the past. Some algorithms consider the presence of C’s function

pointers [4] and some consider how to resolve virtual method calls

in object-oriented languages [2, 6, 14]. However, the soundness

arguments in most points-to analysis papers are informal. Conway

et al. [3] describe a formalization of pointer analysis. Similar to our

work, their proof of soundness assumes memory-safe executions.

One difference is that their formalization is based on abstract inter-

pretation, while ours is based on type systems and uses standard

progress and preservation proofs. Furthermore, their focus is on

formalizing general points-to analysis such as Steensgaard’s algo-

rithm and as a result their formalization does not contain functions

nor function pointers; in contrast, dealing with functions and func-

tion pointers is central to any CFG construction in CFI. Finally, it

is worth pointing out that formalizing the CFG soundness in CFI

is perhaps more critical than formalizing general pointer-analysis

soundness since CFI is a security mechanism.

3 THE LANGUAGE
We next introduce the formal syntax and operational semantics of

an imperative language. The language serves as the basis for our

formalization of CFG construction in two fine-grained CFI systems

in Sec. 4 and Sec. 5.

The language includes the core features of C-like programs that

are relevant to CFG construction for indirect branches after the

programs have been compiled to an intermediate representation

(such as the LLVM IR). It models pointers, direct and indirect func-

tion calls, stack and heap allocation, and includes typical types

such as pointer and struct types. Since it models an intermediate

representation, data stored on the stack and passed during function

calls/returns have been flattened to values of atomic types (i.e.,

integer and pointer types) and code operations are expressed in

terms of values of atomic types.

Another important point worth clarification is that the language

and our formal CFG-construction soundness proofs in later sec-

tions focus on indirect calls. The CFI literature distinguishes for-

ward edges by indirect calls/jumps from backward edges by return

instructions in CFGs. CFG construction in CFI is largely about

forward-edge computation for the reason that backward edges can

be computed once forward edges have been computed and also

backward edges can be enforced via other mechanisms such as

shadow stacks. Furthermore, the language we will introduce ig-

nores indirect jumps since it models an intermediate language; an

indirect call at this level is compiled to an indirect call in binary

code, or an indirect jump in the case of a tail call.
2

We next introduce some notation. We use d for a sequence of ds;

we use ϵ for the empty sequence and “d0;d1” for a sequence whose

head is d0 and tail is d1. We use A⇀ B for a partial function from

domain A to B.

3.1 Syntax
Fig. 1 and Fig. 2 introduce the syntax of types and programs for

the language. In types, we distinguish atomic types (t) from regular

types (τ). Values of an atomic type are of some unit size; without

loss of generality, the unit size is assumed to be one. Values of a

regular type may be of size greater than one and, when stored in

memory, they are flattened to a sequence of values of atomic types.

In atomic types, we distinguish between data-pointer types and

function-pointer types since, as we will see, the distinction is re-

quired by formalization of the assumptions used in fine-grained

CFG construction. Syntax τ∗ is for data-pointer values that point to
data of type τ , while “(t1 → t2) fptr” is for function-pointer values
that point to functions that take t1 values and return t2 values. In C,

“(t1 → t2) fptr” is written as “(t2)(∗)(t1)”. Without loss of generality,

functions are assumed to take only one parameter.

Regular types include atomic types and struct types in the syntax

of {id1 : t1, . . . , idn : tn }, which carries a list of pairs of ids and

atomic types. We introduce a flatten(−) function. It maps a regular

2
In binary code, indirect jumps can also be used to implement jump-table based

intra-procedural control flows; their targets, however, can be easily computed by the

compiler when it generates jump tables.

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

4

AtomicType t := int | τ∗ | (t1 → t2) fptr
Type τ := t | {id1 : t1, . . . , idn : tn }

Figure 1: The syntax of types.

Program P ::= fd; t x ; s
Function fd ::= t2 f (t1 x1){t x ; s; ret e}
Stmt s ::= lv = e | lv = (τ∗) malloc(e)

| lv = call f (e) | lv1 = icall e(e1)
LVal lv ::= x | ∗lv | lv->id
Exp e := w | lv | &lv | &f | e1 + e2 | (t)e

Figure 2: The syntax of an imperative language.

type τ to an ordered atomic-type list, which tells how values of type

τ are stored in memory. To make our model general, we do not use

a particular flatten function, but assume the following properties:

• flatten(τ) is the singleton list containing τ , when τ is an

atomic type.

• When τ = {id1 : t1, . . . , idn : tn }, flatten(τ) is a list of atomic

types so that, for any i , field idi ’s type ti is included in the

list; we define the index of ti in the list to be offset(idi ,τ).

We further define size(τ) to be the length of flatten(τ).
The syntax for the language is presented in Fig. 2. A program is a

sequence of function declarations, followed by a sequence of global

variable declarations, and a sequence of global statements (these

statements would occur in themain function of the corresponding C

program). The body of a function declaration fd can have a sequence
of local variable declarations, a sequence of statements, and a return

at the end. Note that all variables and function parameters must

be of atomic types since values of struct types have already been

flattened in this language.

A statement can be an assignment, a heap allocation, a direct call

on a function name f , or an indirect call (icall) via an expression.

The language omits intra-procedural control-flow statements such

as if-statements for the reason that CFG constructions in the two

fine-grained CFI systems we examine are flow insensitive.

As in C, an l-value stands for a location in memory. It can be a

variable, a dereference of an l-value, or a struct field. Expressions

are pure. An expression can be a constant wordw , an l-value, the

address of an l-value, the address of a function, the addition of two

expressions, or a type cast.

As an example, a simple program in this language is as follows.

Note there is an indirect call in the bar function through a function

pointer in a struct.

int foo (int x) {ret x+1};
int bar ({id1:int, id2:(int->int) fptr}* s) {

int x;
x = icall (s->id2) (s->id1);
ret x

};
int y;
{id1:int, id2:(int->int) fptr}* s;
s = ({id1:int, id2:(int->int) fptr}*) malloc(2);

s->id1 = 10; s->id2 = &foo;
y = call bar(s);

3.2 Operational semantics
For formalizing CFG-construction soundness in CFI, it turns out that

the operational semantics needs to distinguish between memory-

safe and memory-unsafe executions. We first present the reason

behind this.

The soundness of CFG construction means that the CFG con-

structed for a program is always respected by the program’s execu-

tion at runtime. Programs in memory-unsafe languages including C

and C++, however, can have memory errors such as out-of-bounds

memory accesses or dangling pointer accesses. Such memory errors

can cause the corruption of code pointers in memory and change

the control flow of the program in arbitrary ways. For instance,

an “int∗” pointer may go out of bounds and point to a location

that stores a function pointer and a subsequent memory update

via the “int∗” pointer can change the function pointer to arbitrary

values; then a use of the function pointer in an indirect call may

change the control flow in arbitrary ways. We call such executions

memory-unsafe executions.

Clearly, CFG construction should not capture control-flow edges

that occur only inmemory-unsafe executions of the program. There-

fore, the soundness of CFG construction should be stated as follows:

a memory-safe execution of the program always follows the con-
structed CFG. A memory-safe execution rules out the possibility

of overwriting memory via an out-of-bounds pointer. We stress

that the restriction over memory-safe executions means that the

constructed CFG does not contain control-flow edges that occur

only in memory-unsafe executions—such edges are not intended

by programmers. After a CFG is constructed, a CFI system that en-

forces the CFG on the program execution does not necessarily need

to enforce memory safety; if an input triggers a memory error in

the program and induces an edge outside the CFG, the CFI system

would raise an alarm.

Given the above discussion, it is necessary for the operational

semantics to distinguish memory-unsafe executions from memory-

safe ones. Memory safety can be decomposed into spatial memory

safety and temporal memory safety. In the operational semantics

we will present, pointers are augmented with bounds information

so that spatial safety violations lead to an error state “merr”. For

simplicity, our language disallows memory deallocation so that its

operational semantics can ignore temporal memory safety. Our

language could be augmented with memory deallocation and tem-

poral safety could also be modeled in the operational semantics by

adding more metadata into the runtime state (e.g., following the

SoftBound-CETS approach [7]).

Machine configurations. The operational semantics evaluates

one machine configuration to the next machine configuration. Fig. 3

presents the components in machine configurations.

A value can be an integerw , a pointer l(b,d), or the address of a
function in the form of &f . In pointer l(b,d), l is a memory address

and [b,d) is the address range of the buffer that l is supposed to

be within. We define inbound(l ,b,d) to hold when b ≤ l ∧ l < d .
Because of pointer arithmetic, l could be an address outside the

range of [b,d).

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

5

Val v ::= w | l(b,d) | &f
Mem m : Addr ⇀ Val
StkFrame δ : Var ⇀ Addr
MemType Λ : Addr ⇀ AtomicType
State σ ::= (m,δ ,Λ)
Cont c := ϵ | s; c | lv = ret e; c
Config κ := (σ , c)

Figure 3: Machine configurations.

A machine state σ contains a memorym, a series of stack frames

δ , and a memory type Λ. A memorym is a partial map from ad-

dresses to values. A stack frame δ maps variables to their addresses

in memory. There is a series of stack frames in a state, one for

each function call. A memory type Λ records the declared types of

locations during memory allocation. For instance, if the program

declares a global variable x of type int∗, then the global stack frame

would map x to some address l and Λ would map l to type int∗.

Given a state σ , we write σ .m, σ .δ , and σ .Λ for its memory, stack

frames, and memory type, respectively.

A machine configuration is (σ , c), where σ is the current state

and c the continuation for the rest of the program. A continuation

c can be the empty list ϵ , which tells that the program has ended,

or a statement s followed by another continuation, or a return

continuation in the syntax of “lv = ret e ; c”; the return continuation

is for returning to the caller of the current running function.

During machine-configuration evaluation, we also assume a

function environment F , which maps from function names to their

definitions and is initialized as follows:

Definition 3.1 (Initial configuration). For a program P of the form

“fd
1
; . . . ; fdn ; t1 x1; . . . ; tj x j ; s1; . . . ; sk ”, the initial configuration is

((m0,δ0,Λ0), s1; . . . ; sk) with respect to F , where F maps function

names to their definitions according to fd
1
; . . . ; fdn , and

m0 = {l1 7→ default(t1), . . . , lj 7→ default(tj)},
δ0 = {x1 7→ l1, . . . ,x j 7→ lj },
Λ = {l1 7→ t1, . . . , lj 7→ tj }.

The initial configuration initializes variables according to their

types in the following way:

Definition 3.2 (Default values).

default(int) = 0

default(τ∗) = 0(0,0)

default((t1 → t2) fptr) = &dummyFun

Note that 0(0,0) is a pointer with the empty range; so the deref-

erence of it always leads to a memory error (the rule will be shown

later). Also, we use a dedicated function name dummyFun; its ad-

dress is used to initialize function-pointer variables; it is assumed

that dummyFun does not appear in the program.

Evaluation rules. Fig. 4 to Fig. 7 present the evaluation rules. At

a high level, we have rules for evaluating l-values, expressions,

and machine configurations. In all evaluation rules, we assume

σ = (m,δ ,Λ) to simplify notation. During evaluation, memory

errors may occur; all the rules that result in memory errors are put

(σ , lv) ⇓
lval

v : t .

(σ ,x) ⇓
lval

δ (x)
(δ (x),δ (x)+1) : Λ(δ (x))

(σ , ∗lv) ⇓
lval

m(l) : t ,
if (σ , lv) ⇓

lval
l(b,d) : t∗ ∧ inbound(l ,b,d)

(σ , lv->idi) ⇓lval (l ′ + off)(b′′,d ′′) : ti ,

if (σ , lv) ⇓
lval

l(b,d) : τ∗ ∧ τ = {id1 : t1, . . . , idn : tn }
∧ inbound(l ,b,d) ∧ to_ptr(m(l)) = l ′(b′,d ′)

∧ l ′ − b ′ = k ∗ size(τ) ∧ off = offset(idi ,τ)
∧ [b ′′,d ′′) = [b ′,d ′) ∩ [l ′ + off , l ′ + off + 1)

where

δ (x) = δ0(x), if δ = δ0;δ1 ∧ x ∈ dom(δ0)

Figure 4: L-value evaluation. Assume σ = (m,δ ,Λ)

(σ , e) ⇓ v : t

(σ ,w) ⇓ w : int

(σ , lv) ⇓m(l) : t , if (σ , lv) ⇓
lval

l(b,d) : t ∧ inbound(l ,b,d)
(σ ,&lv) ⇓ v : t∗, if (σ , lv) ⇓

lval
v : t

(σ ,&f) ⇓ &f : (t1 → t2) fptr,when F (f) = t2 f (t1 x1){. . .}
(σ , e1 + e2) ⇓ w1 +w2 : int,

if for i = [1..2], (σ , ei) ⇓ vi : int ∧ to_int(vi) = wi
(σ , e1 + e2) ⇓ (l +w ∗ size(τ))(b,d) : τ∗,

if (σ , e1) ⇓ v1 : τ ∗ ∧ to_ptr(v1) = l(b,d)
∧ (σ , e2) ⇓ v2 : int ∧ to_int(v2) = w

(σ , (t)e) ⇓ v : t , if (σ , e) ⇓ v : t ′

where

to_int(v) =


w if v = w
l if v = l(b,d)
undefined otherwise

and

to_ptr(v) =


w(0,0) if v = w
l(b,d) if v = l(b,d)
undefined otherwise

Figure 5: Expression evaluation. Assume σ = (m,δ ,Λ).

into Fig. 7. For instance, a memory access via an out-of-bounds

pointer leads to memory errors.

Fig. 4 presents the rules for l-value evaluation in the form of

“(σ , lv) ⇓
lval

v : t”, meaning that lv evaluates to a value v , which
stands for a memory location that holds t values. Evaluation of

variable x as an l-value returns a pointer value according to the

address of x in δ . Evaluation of ∗lv requires a memory read through

a pointer value and therefore requires the pointer be in bound.

Evaluation of lv->idi needs to consider the offset of idi in the

flattened type list of a struct type.

Fig. 5 presents the rules for expression evaluation. Judgment

“(σ , e) ⇓ v : t” means that e evaluates to value v of type t . The rules
are straightforward and we only comment that it assumes integer

and pointer values can be freely converted back and forth using

to_int(−) and to_ptr(−) functions. When an integer is converted to

a pointer, the resulting pointer carries the empty range so that any

memory access via the pointer results in a memory error. When a

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

6

(σ , c) → (σ ′, c ′), if σ = (m,δ ,Λ)

and c = then (σ ′, c ′) =

lv = e; c1 ((m[l 7→ v],δ ,Λ), c1), if (σ , lv) ⇓lval l(b,d) : t ∧ inbound(l ,b,d) ∧ (σ , e) ⇓ v : t ′

lv = call f (e); c1 (stack_alloc(σ ,x : t1 = v ;y : t = default(t)), sf ; lv = ret ef ; c1),

if (σ , e) ⇓ v : t ′
1
∧ F (f) = t2 f (t1 x){t y; sf ; ret ef }

lv = icall e(e1); c1 (σ , lv = call f (e1); c1), if (σ , e) ⇓ &f : (t1 → t2) fptr

lv = (τ∗) malloc(e); c1 (m′[l 7→ l1(l1,l1+w)],δ ,Λ
′), c1)

if (σ , lv) ⇓
lval

l(b,d) : τ∗ ∧ inbound(l ,b,d) ∧ (σ , e) ⇓ v : int

∧ to_int(v) = w ∧ heap_alloc(σ ,w,τ) = ((m′,δ ,Λ′), l1)

lv = ret e; c1 ((m[l 7→ v],δ1,Λ), c1)

if δ = δ0;δ1 ∧ (σ , e) ⇓ v : t ′ ∧ ((m,δ1,Λ), lv) ⇓lval l(b,d) : t ∧ inbound(l ,b,d)

stack_alloc((m,δ ,Λ),x1 : t1 = v1; . . . ;xn : tn = vn) = (m ∪m0,δ0;δ ,Λ ∪ Λ0),where

m0 = {l1 7→ v1, . . . , ln 7→ vn } so that dom(m0) ∩ dom(m) = ∅ and

δ0 = {x1 7→ l1, . . . ,xn 7→ ln } and Λ0 = {l1 7→ t1, . . . , ln 7→ tn }

heap_alloc((m,δ ,Λ),w,τ) = ((m ∪m0,δ ,Λ ∪ Λ0), l1),where
extend(flatten(τ),w) = t1; . . . ; tw ∧ m0 = {l1 7→ default(t1), . . . , l1 +w − 1 7→ default(tw)}

∧ dom(m0) ∩ dom(m) = ∅ ∧ Λ0 = {l1 7→ t1, . . . , l1 +w − 1 7→ tw }

Figure 6: Machine configuration evaluation.

pointer is converted to an integer, it loses the bounds information,

losing its capability as a pointer.

Runtime evaluation of machine configurations is formalized as

a small-step relation: (σ , c) → (σ ′, c ′). Fig. 6 presents the relatively
standard rules. Heap allocation in the rule for “lv = (τ∗) malloc(e)”
requires an extend(−,−) operation; specifically, extend(flatten(τ),w)

returns a type list of widthw by repeating the pattern in flatten(τ).
As an example, suppose flatten(τ) = [int, int∗], then

extend(flatten(τ), 5) = [int, int∗, int, int∗, int].

4 CFG CONSTRUCTION FROM TYPE
SIGNATURES

Modular CFI (MCFI [10]) adopts a type-based approach for CFG

construction: an indirect call through a function pointer that is of

type “(t1 → t2) fptr” is allowed to invoke any function whose type

is t1 → t2.
3

The soundness of the type-based approach relies on that no

indirect call via a function pointer invokes a function with a type

signature different than the signature of the function pointer. For

that, MCFI maintains the integrity of function-pointer types: a value
of a function-pointer type must always contain the address of a

function of the same type. This allows CFG construction to use a

function pointer’s static type to compute what subset of functions

an indirect call using that function pointer can target. Integrity of

non-function-pointers types, on the other hand, is not critical. For

3
Instead of strict type equality, MCFI actually uses a notion of structural equivalence

when matching function pointers and functions, for accommodating functions of

variable numbers of arguments and structurally equivalent struct types. We ignore

this aspect in this formalization, although accommodating it would not add too much

difficulty.

example, a value of type int∗ may well contain an integer and that

would not affect the soundness of the type-based approach.

For maintaining partial type safety on function-pointer types,

one assumption proposed by MCFI’s authors for the input program

was

A1: No type cast should involve function-pointer types.

That is, a value that is of a type that has function pointers inside

cannot be cast to have a different type.

We argue there is another implicit assumption in MCFI:

A2: No pointer arithmetic or memory reads/writes through a
function pointer are allowed.

If pointer arithmetic were allowed on a function pointer, the func-

tion pointer after pointer arithmetic would not be consistent with

its type. A memory write through a function pointer would over-

write the code of the underlying function and invalidate any static

guarantee on the code, including types. In theory, memory reads

through function pointers would not invalidate the type-based ap-

proach; however, there are few reasons for reading code as data in

legitimate programs and they are ruled out as well.

4.1 Formalizing MCFI’s Assumptions
To formalize assumption A1, we define the set of types that contain

function pointers using the predicate has_fptr(−); it returns true

if and only if t or τ contains a function-pointer type directly or

indirectly. We abbreviate such types as has-fptr types.

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

7

(σ , lv) ⇓
lval

merr

(σ , ∗lv) ⇓
lval

merr, if (σ , lv) ⇓
lval

merr

(σ , ∗lv) ⇓
lval

merr,

if (σ , lv) ⇓
lval

v : t ∧ to_ptr(v) = l(b,d) ∧ ¬inbound(l ,b,d)
(σ , lv->id) ⇓

lval
merr, if (σ , lv) ⇓

lval
merr

(σ , lv->id) ⇓
lval

merr,

if (σ , lv) ⇓
lval

v : τ∗ ∧ to_ptr(v) = l(b,d) ∧ ¬inbound(l ,b,d)
(σ , lv->id) ⇓

lval
merr,

if (σ , lv) ⇓
lval

l(b,d) : τ∗ ∧ τ = {id1 : t1, . . . , idn : tn }
∧ inbound(l ,b,d) ∧ to_ptr(m(l)) = l ′(b′,d)
∧ (l ′ − b ′) is not a multiple of size(τ)

(σ , e) ⇓ merr

(σ , lv) ⇓ merr, if (σ , lv) ⇓
lval

merr

(σ , lv) ⇓ merr,

if (σ , lv) ⇓
lval

v : t ∧ to_ptr(v) = l(b,d) ∧ ¬inbound(l ,b,d)
(σ ,&lv) ⇓ merr, if (σ , lv) ⇓

lval
merr

(σ , e1 + e2) ⇓ merr, if (σ , e1) ⇓ merr or (σ , e2) ⇓ merr

(σ , (t)e) ⇓ merr, if (σ , e) ⇓ merr

(σ , c) → merr

(σ , lv = e; c) → merr, if (σ , lv) ⇓
lval

merr or (σ , e) ⇓ merr

(σ , lv = e; c) → merr,

if (σ , lv) ⇓
lval

v : t ∧ to_ptr(v) = l(b,d) ∧ ¬inbound(l ,b,d)
(σ , lv = call f (e); c) → merr, if (σ , e) ⇓ merr

(σ , lv = icall e(e1); c) → merr, if (σ , e) ⇓ merr

(σ , lv = icall e(e1); c) → merr,

if (σ , e) ⇓ &dummyFun : (t1 → t2) fptr
(σ , lv = (τ∗) malloc(e); c) → merr,

if (σ , lv) ⇓
lval

merr or (σ , e) ⇓ merr

(σ , lv = (τ∗) malloc(e); c) → merr,

if (σ , lv) ⇓
lval

v : t ∧ to_ptr(v) = l(b,d) ∧ ¬inbound(l ,b,d)
(σ , lv = ret e; c) → merr, if (σ , e) ⇓ merr

(σ , lv = ret e; c) → merr, if δ = δ0;δ1 ∧ ((m,δ1,Λ), lv) ⇓lval merr

(σ , lv = ret e; c) → merr,

if δ = δ0;δ1 ∧ ((m,δ1,Λ), lv) ⇓lval v : t
∧ to_ptr(v) = l(b,d) ∧ ¬inbound(l ,b,d)

Figure 7: Memory-unsafe executions. Assume σ = (m,δ ,Λ).

Definition 4.1 (has-fptr types).

has_fptr(t) =


false if t = int

true if t = (t1 → t2) fptr
has_fptr(τ) if t = τ∗

has_fptr(τ) =


has_fptr(t), if τ = t
has_fptr(t1) ∨ . . . ∨ has_fptr(tn)

if τ = {id1 : t1, . . . , idn : tn }

We next present a type system that formalizes assumptions A1

and A2. The type system uses the following typing judgments,

where Γ is a type environment, mapping from variables to their

types.

Γ ⊢
lval

lv : t

Γ ⊢
lval

x : Γ(x)

Γ ⊢
lval

lv : t∗

Γ ⊢
lval

∗lv : t

Γ ⊢
lval

lv : {id1 : t1, . . . , idn : tn }∗

Γ ⊢
lval

lv->idi : ti

Γ ⊢ e : t

Γ ⊢ w : int

Γ ⊢
lval

lv : t

Γ ⊢ lv : t

Γ ⊢
lval

lv : t

Γ ⊢ &lv : t∗

F (f) = t2 f (t1 x1){. . .}

Γ ⊢ &f : (t1 → t2) fptr

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Γ ⊢ e1 : τ∗ Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : τ∗

Γ ⊢ e : t ′ allowed_cast(t ′, t)

Γ ⊢ (t)e : t

Γ ⊢ s ok

Γ ⊢
lval

lv : t Γ ⊢ e : t

Γ ⊢ lv = e ok

Γ ⊢
lval

lv : τ∗ Γ ⊢ e : int

Γ ⊢ lv = (τ∗) malloc(e) ok

Γ ⊢
lval

lv : t2 F (f) = t2 f (t1 x1){. . .} Γ ⊢ e : t1

Γ ⊢ lv = call f (e) ok

Γ ⊢
lval

lv : t2 Γ ⊢ e : (t1 → t2) fptr Γ ⊢ e1 : t1

Γ ⊢ lv = icall e(e1) ok

⊢ fd ok

Γ = x : t ,x1 : t1, . . . ,xn : tn ∀j ∈ [1..m], Γ ⊢ sj ok Γ ⊢ e : t ′

⊢ t ′ f (t x){t1 x1; . . . ; tn xn ; s1; . . . ; sm ; ret e} ok

⊢ P ok

∀i ∈ [1..n], ⊢ fdi ok
∀j ∈ [1..k], x1 : t1, . . . ,xm : tm ⊢ sj ok

⊢ (fd
1
; . . . ; fdn ; t1 x1; . . . ; tm xm ; s1; . . . ; sk) ok

Figure 8: Typing rules for type-based CFG construction.

Judgment Meaning
Γ ⊢

lval
lv : t L-value lv holds t values under Γ.

Γ ⊢ e : t Expression e has type t under Γ.
Γ ⊢ s ok Statement s is well typed under typing context Γ.
⊢ fd ok Function declaration fd is well typed.

⊢ P ok Program P is well typed.

Fig. 8 presents the fairly standard rules in the type system, except

for a few cases. First, to formalize assumption A1, the rule for a

type cast “(t)e” uses predicate allowed_cast(t ′, t), where t ′ is the
type of e . It is defined as follows:

allowed_cast(t ′, t) = ¬has_fptr(t ′) ∧ ¬has_fptr(t)

It makes sure that a type cast is allowed only if the original and

the result types do not contain function-pointer types. Note that

the restriction does not disallow other kinds of type casts, such

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

8

as from int to τ∗ or from τ∗ to τ ′∗ when τ and τ ′ do not contain

function-pointer types.

Second, rules for pointer arithmetic (e1 + e2) and memory oper-

ations (via lv) take data-pointer types (τ∗) and disallow function-

pointer types; this is how assumption A2 is formalized. An expres-

sion of a function-pointer type can be used only in an indirect call

or in assignments.

4.2 Soundness of MCFI’s CFG Construction
As explained before, soundness of type-based CFG construction

relies on partial type safety for has-fptr types. That is, if the type

system statically determines that an expression is of a type that

contains a function-pointer type, then at runtime it must evaluate to

a value that has the type. The type system, on the other hand, makes

no guarantee for types that do not contain function-pointer types.

Therefore, if an expression’s static type is t , there is no guarantee

that the runtime value that the expression evaluates to actually has

type t .
The soundness proof needs to capture the aforementioned invari-

ant formally. For that, we introduce a predicate value_inv(Λ,v, t),
which models the invariant that holds on a value v , a type t (which
is the type of an expression that evaluates tov), and a memory type

Λ; recall Λ is a map from locations to their declared types during

allocation.

Definition 4.2 (Value invariants for the type-based method).
value_inv(Λ,v, t) holds when one of the following cases holds:

(1) ifv = w , then t = int, or t = τ∗ for some τ and ¬has_fptr(τ);
(2) if v = l(b,d) and has_fptr(t), then t = τ∗ for some τ and

Λ|[b,d) = extend(flatten(τ),d − b).
(3) ifv = l(b,d) and ¬has_fptr(t), then for all l ′ ∈ [b,d), we have

¬has_fptr(Λ(l ′)).
(4) if v = &f , then F (f) = t2 f (t1 x1){. . .} and t = (t1 →

t2) fptr;
(5) if v = &dummyFun, then t = (t1 → t2) fptr for some t1 and

t2.

We next explain value_inv(Λ,v, t) by cases.

• When v is an integerw , the static type can either be int, or

some τ∗ because of type casts. For instance, “(int∗)4” is of
static type int∗, but the runtime value is an integer. Note the

invariant implicitly says that an integer can never have a

function-pointer type.

• The two cases for l(b,d) capture the invariant maintained on

data-pointer values. When has_fptr(t), then t = τ∗ for some

τ and the types of the locations of the underlying buffer must

be consistent with the flattened type list of τ in the memory

type Λ. Recall that extend(flatten(τ),d − b) returns a type

list of width d − b by repeating the pattern in flatten(τ). We

use the notation Λ|[b,d) for the type list in Λ in the range

of [b,d). This case enforces partial type safety on has-fptr

types.

On the other hand, when “¬has_fptr(t)”, the locations of

the underlying buffer may not be consistent with t because
of type casts. For example, suppose l(b,d) points to a buffer

whose locations have type int in Λ; initially l(b,d) has type
int∗, but is then cast to have type int∗∗; then the new type is

inconsistent with the types in Λ. In this case, we require that

wf_conf(σ , c)

wf_state(σ)

wf_conf(σ , ϵ)

Γ(σ) ⊢ s ok wf_conf(σ , c)

wf_conf(σ , s; c)

σ = (m,δ0;δ ,Λ) wf_state(σ)

Γ(σ) ⊢ e : t σ1 = (m,δ ,Λ)
Γ(σ1) ⊢lval lv : t wf_conf(σ1, c)

wf_conf(σ , lv = ret e; c)

Figure 9: Well-formed configurations.

the types of the locations in Λ do not contain has-fptr types.

This implies a level of separation between data pointers and

function pointers: a data pointer that is of a non-has-fptr type

cannot point to a buffer whose locations are of has-fptr types.

If this were violated, it would be possible to modify function

pointers in the buffer via the data pointer, destroying partial

type safety on has-fptr types.

Note the two cases for pointer values allow out-of-bounds

pointers: l(b,d) can be of type τ∗ even if l is out of bound (but
a memory error would result if such pointers were derefer-

enced). As a special case, l(b,d) is of any type τ∗ when [b,d)
is the empty range.

• Finally, when v is the address of a function, the type must

be exactly the same as the function’s declared type.

We say a state (m,δ ,Λ) is well formed if (1) the value stored in

a memory location is consistent with the corresponding type in

Λ according to value_inv(−,−,−), and (2) the domains ofm and Λ

are the same and are supersets of the addresses in δ .

Definition 4.3 (Well-formed states). wf_state(m,δ ,Λ) holds if
(1) ∀l ∈ dom(Λ), value_inv(Λ,m(l),Λ(l)).

(2) dom(m) = dom(Λ) ⊇ rng(δ), where rng(δ) is the union of the

ranges of stack frames in δ . The range of a single stack frame δ
is defined to be the set {δ (x)|x ∈ dom(δ)}.

To show the standard progress and preservation for partial type

safety, we first introduce well-formed configurations, defined in

Fig. 9. With all the definitions, we can state the standard progress

and preservation theorems.

Theorem 4.4 (Preservation). If (σ , c) → (σ ′, c ′), and
wf_conf(σ , c), then wf_conf(σ ′, c ′).

Theorem 4.5 (Progress). If wf_conf(σ , c), then either exist σ ′

and c ′ so that (σ , c) → (σ ′, c ′), or (σ , c) → merr, or c = ϵ (the final
state).

Preservation is proved by case analysis over (σ , c) → (σ ′, c ′) and
progress is proved by case analysis over wf_conf(σ , c). In the ap-

pendix, we present the major lemmas required for proving progress

and preservation. Note that our type progress and preservation are

with respect to the definition of well-formed states, which requires

only value_inv(−,−,−) for partial type safety.

Corollary 4.6 (Soundness of type-based CFG construction).

When a well-typed program (i.e., ⊢ P ok) executes an indirect call

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

9

“lv = icall e(e1)” in a memory-safe execution, and e’s type is “(t1 →
t2) fptr” in its type environment, then the execution always invokes a
function whose type is t1 → t2.

Proof. For a well-typed program P , it is easy to show that the initial

configuration is well formed. When it gets to a configuration κ =
(σ , lv = icall e(e1); c), we must have that κ is well formed thanks to

the preservation theorem. Therefore e is of type “(t1 → t2) fptr” in
configuration κ. Thanks to the progress theorem, if the next state

is not merr, then we must have (σ , e) ⇓ &f : (t1 → t2) fptr for
some f , which in turn gives us value_inv(σ .Λ,&f , (t1 → t2) fptr).
By definition, we get F (f) = t2 f (t1 x1){. . .}. □

5 CFG CONSTRUCTION BASED ON TAINT
ANALYSIS

Ge et al. [5] recently proposed a CFG-construction method based on

taint analysis (specifically, dataflow analysis on function pointers).

They applied the method to enforce CFI on OS kernel software, in-

cluding the FreeBSD kernel. The basic idea is to track how function

pointers are propagated in the input program via taint analysis, as

a way of determining what indirect-call sites function pointers can

reach. In more detail, for a function f , the method first taints all

function pointers that directly receive the address of f and then

taints (recursively) any function pointer that may receive the value

of a tainted function pointer. After the tainting process, if the func-

tion pointer used in an indirect call is tainted, then f is in the target

set of the indirect call. This taint-tracking process is performed

separately for each function in the program. After all functions

have been processed, the target set of an indirect call is determined.

To simplify taint tracking without a full-blown points-to analy-

sis, the method by Ge et al. makes a few assumptions about how

programs use function pointers.

A1: Function-pointer types may not be cast to or cast from
non-function-pointer types.
A2: There exists no direct data pointers to function pointers.
A3: No pointer arithmetic or memory reads/writes through a
function pointer are allowed.

Assumption A1 prohibits casts between function-pointer types

and non-function-pointer types. It guarantees that function pointers

can be stored only in variables of function-pointer types and there-

fore taint tracking can ignore variables of non-function-pointer

types. Without the assumption, a function pointer could be stored

in a variable of a type such as int and taint tracking would have to

track such variables. Note that the type-cast assumption here is less

strict than the type-cast assumption of the type-based method that

was discussed in the previous section: assumption A1 of the taint-

based method allows a function-pointer type be cast to a different

function-pointer type; it maintains the separation between function

pointers and data pointers, but integrity of function-pointer types

is not guaranteed; in contrast, integrity of function-pointer types

is maintained in the type-based method.

Assumption A2 excludes types such as “((t1 → t2) fptr)∗”, imply-

ing that a function pointer cannot be buried inside a data pointer.

This further simplifies taint tracking as otherwise there would be a

need to track the taints of function pointers stored in data pointers.

We note this assumption still allows a data pointer to a struct that

contains a function-pointer field. Finally, assumption A3 restricts

allowed_cast(t1, t2) { Ψ

¬has_fptr(τ)

allowed_cast(int,τ∗) { ∅

¬has_fptr(τ)

allowed_cast(τ∗, int) { ∅

¬has_fptr(τ1) ¬has_fptr(τ2)

allowed_cast(τ1∗,τ2∗) { ∅

allowed_cast((t1
b
→ t2) fptr, (t

′
1

b′
→ t ′

2
) fptr) { {b = b ′}

Figure 10: Allowed type casts.

what operations can be performed on function pointers and is the

same as a previous assumption in the type-based method.

We next introduce a type and constraint-generation system that

formalizes the aforementioned assumptions and the taint-tracking

process. The three assumptions will be baked into the typing rules

of the system; taint tracking will be formalized as a constraint-

generation process of the system.

First, the function-pointer type is changed to add a boolean taint

tag: (t1
b
→ t2) fptr, where the taint tag b can be either T (true) or F

(false). Since taint tracking is performed on individual functions,

we fix a particular function, say foo, for which the system performs

taint tracking. Intuitively, when a value is of type “(t1
T

→ t2) fptr”, it

is a function pointer thatmay point to foo; when it is of type “(t1
F

→

t2) fptr”, it is a function pointer that cannot point to foo. Adding

taint tags to types is appropriate since the taint-based method by

Ge et al. [5] is flow insensitive. For a flow-sensitive taint tracking

algorithm, types can be still be used to track taints after programs

have been compiled to the static-single-assignment form.

The next definition formalizes the set of types that disallow

direct data pointers to function pointers. From this point on , we

will use t for only those atomic types for which no_dp_to_fp(t)
holds; similarly for regular types (τ).

Definition 5.1 (Types with no direct data pointers to function point-
ers).

no_dp_to_fp(t) =



true, if t = int

τ , (t1
b
→ t2) fptr ∧ no_dp_to_fp(τ)

if t = τ∗
no_dp_to_fp(t1) ∧ no_dp_to_fp(t2)

if t = (t1
b
→ t2) fptr

no_dp_to_fp(τ) =


no_dp_to_fp(t), if τ = t
no_dp_to_fp(t1) ∧ . . . ∧ no_dp_to_fp(tn)

if τ = {id1 : t1, . . . , idn : tn }

Fig. 10 presents judgment “allowed_cast(t1, t2) { Ψ”, which
tells what kinds of type casts are allowed. In the judgment, Ψ is a set

of constraints on taint tags that should be satisfied. The first three

rules are essentially the same as the restriction on type casts in the

previous section: type casts are allowed when no function-pointer

types are involved. The last rule further allows a function-pointer

type be cast to another different function-pointer type, as long

as their taint tags are the same. Note there is no need to worry

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

10

Γ ⊢
lval

lv : t Γ ⊢
lval

x : Γ(x)

Γ ⊢
lval

lv : t∗

Γ ⊢
lval

∗lv : t

Γ ⊢
lval

lv : {id1 : t1, . . . , idn : tn }∗

Γ ⊢
lval

lv->idi : ti

Γ ⊢ e : t { Ψ Γ ⊢ w : int { ∅

Γ ⊢
lval

lv : t

Γ ⊢ lv : t { ∅

Γ ⊢
lval

lv : t

Γ ⊢ &lv : t∗ { ∅

F (foo) = t2 foo (t1 x1){. . .}

Γ ⊢ &foo : (t1
b
→ t2) fptr { {b = T}

f , foo F (f) = t2 f (t1 x1){. . .}

Γ ⊢ &f : (t1
b
→ t2) fptr { {b = F}

Γ ⊢ e1 : int { Ψ1 Γ ⊢ e2 : int { Ψ2
Γ ⊢ e1 + e2 : int { Ψ1 ∪ Ψ2

Γ ⊢ e1 : τ∗ { Ψ1 Γ ⊢ e2 : int { Ψ2
Γ ⊢ e1 + e2 : τ∗ { Ψ1 ∪ Ψ2

Γ ⊢ e : t ′ { Ψ1 allowed_cast(t ′, t) { Ψ2
Γ ⊢ (t)e : t { Ψ1 ∪ Ψ2

t1 <: t2 { Ψ int <: int { ∅ τ∗ <: τ∗ { ∅ (t1
b
→ t2) fptr <: (t1

b′
→ t2) fptr { {b = T ⇒ b ′ = T}

Γ ⊢ e <: t { Ψ
Γ ⊢ e : t ′ { Ψ′ t ′ <: t { Ψ

Γ ⊢ e <: t { Ψ′ ∪ Ψ

Γ ⊢ s { Ψ

Γ ⊢
lval

lv : t Γ ⊢ e <: t { Ψ

Γ ⊢ lv = e { Ψ

Γ ⊢
lval

lv : τ∗ Γ ⊢ e : int { Ψ

Γ ⊢ lv = (τ∗) malloc(e) { Ψ

Γ ⊢
lval

lv : t ′
2

F (f) = t2 f (t1 x1){. . .}
Γ ⊢ e <: t1 { Ψ1 t2 <: t

′
2
{ Ψ2

Γ ⊢ lv = call f (e) { Ψ1 ∪ Ψ2

Γ ⊢
lval

lv : t ′
2

Γ ⊢ e : (t1
b
→ t2) fptr { Ψ1

Γ ⊢ e1 <: t1 { Ψ2 t2 <: t
′
2
{ Ψ3

Γ ⊢ lv = icall e(e1) { Ψ1 ∪ Ψ2 ∪ Ψ3

⊢ fd { Ψ

Γ = x : t ,x1 : t1, . . . ,xn : tn ∀j ∈ [1..m], Γ ⊢ sj { Ψj Γ ⊢ e <: t ′ { Ψ′

⊢ t ′ f (t x){t1 x1; . . . ; tn xn ; s1; . . . ; sm ; ret e} { Ψ1 ∪ . . . ∪ Ψm ∪ Ψ′

⊢ P { Ψ

∀i ∈ [1..n], ⊢ fdi { Ψi ∀j ∈ [1..k], x1 : t1, . . . ,xm : tm ⊢ sj { Ψ′
j

⊢ (fd
1
; . . . ; fdn ; t1 x1; . . . ; tm xm ; s1; . . . ; sk) { Ψ1 ∪ . . . ∪ Ψn ∪ Ψ′

1
∪ . . .Ψ′

k

Figure 11: Typing and constraint-generation rules for taint-based CFG construction.

about cases such as when t1 = ((t1
b
→ t2) fptr)∗ since such types

are invalid by assumption A2.

Furthermore, we note that there are two views on judgments that

produce taint-tag constraints, including “allowed_cast(t1, t2) { Ψ”.
First, when taint tags on function-pointer types are constants (T or

F), constraints serve as checks that enforce certain rules. Another

view is to first decorate function-pointer types with taint variables
and use those judgments to produce a set of constraints on those

taint variables; a solution to those constraints produces checkable

assignments from taint variables to constants.

Fig. 11 presents a type and constraint-generation system for

modeling the taint-based method for CFG construction. Most judg-

ments produce constraints on taint tags to model taint tracking. For

instance, the rule for “Γ ⊢ e : t { Ψ” when e = &foo requires the

taint tag of the resulting function pointer be T; when e = &f and

f , foo, the taint tag should be F. The judgment “t1 <: t2 { Ψ”
models what kind of constraints should be generated when a value

of t1 flows to a value of t2. The only substantial case is when t1 and
t2 are function-pointer types; the generated constraint says that,

when t1 is tainted, then t2 must be tainted, reflecting how taint is

propagated through function-pointer assignments. Same as the last

section, the type system allows pointer arithmetic and memory op-

erations only on values of data-pointer types, not function-pointer

types, formalizing assumption A3.

For the soundness proof, we define value_inv(Λ,v, t) for mod-

eling the runtime invariant of value v and its static type v under

memory type Λ in the taint-based method. The only difference from

the corresponding version for the type-based method is the case

when v = &f ; it requires the taint tag must be T when f is foo (i.e.,

the function being taint tracked).

Definition 5.2 (Value invariants for the taint-based method).
value_inv(Λ,v, t) holds when one of the following cases holds:

(1) ifv = w , then t = int, or t = τ∗ for some τ and ¬has_fptr(τ);
(2) if v = l(b,d) and has_fptr(t), then t = τ∗ for some τ and

Λ|[b,d) = extend(flatten(τ),d − b).
(3) ifv = l(b,d) and ¬has_fptr(t), then for all l ′ ∈ [b,d), we have

¬has_fptr(Λ(l ′)).

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

11

(4) if v = &f , then F (f) = t2 f (t1 x1){. . .} and t = (t1
b
→

t2) fptr, and if f = foo, then b = T.

(5) if v = &dummyFun, then t = (t1 → t2) fptr for some t1 and
t2.

With the new runtime invariant, we can similarly define well-

formed states and configurations and show the progress and preser-

vation theorems, which lead to the following soundness corollary.

Corollary 5.3 (Soundness of taint-based CFG construc-

tion). Let P be a program in which all taint tags are taint variables
and it is well typed by ⊢ P { Ψ. Let η be a solution of Ψ and it assigns
taint variables to constants (T or F). Let η(P) be the program with
all taint variables replaced by constants according to η. Then when
η(P) executes an indirect call “lv = icall e(e1)” in a memory-safe

execution, and e’s type is “(t1
F

→ t2) fptr” in its type environment, the
indirect call cannot invoke the function foo.

Proof. For a well-typed program P , it is easy to show that the initial

configuration is well formed. When it gets to a configuration κ =
(σ , lv = icall e(e1); c), we must have that κ is well formed thanks to

the preservation theorem. Therefore e is of type “(t1 → t2) fptr” in
configuration κ. Thanks to the progress theorem, if the next state

is not merr, then we must have (σ , e) ⇓ &f : (t1
F

→ t2) fptr for

some f , which in turn gives us value_inv(σ .Λ,&f , (t1
F

→ t2) fptr).
By definition of value invariants, f cannot be foo. □

By the corollary, only if e is of type “(t1
T

→ t2) fptr” in “lv =
icall e(e1)”, we need to add foo to the possible target list of the

indirect call. By repeating taint tracking for all functions, the target

list for the indirect call can be completely decided.

6 FIXING ASSUMPTION VIOLATIONS
Each of the previous two approaches for sound CFG construction

makes a set of assumptions on input programs. Clearly, not all soft-

ware satisfy those assumptions. In this section, we briefly discuss

possible resolutions when those assumptions are violated.

The type-based approach assumes no type cast should involve

function-pointer types (assumption A1). MCFI [10] includes a static

checker that reports violations of this assumption to programmers.

It further classifies violations into the kind that does not lead to

unsound CFGs and the kind that requires code fixes for sound

CFG construction. On SPEC2006 benchmarks, it was shown only

a few code changes were required to fix the second kind of viola-

tions, mostly by adding function wrappers. For instance, in the gcc
benchmark of SPEC2006, there is a generic key-comparison func-

tion pointer typed “int (*)(unsigned long, unsigned long)”.
In two places, the function pointer is set to be the address of strcmp,
whose type is “int (*)(const char*, const char*)”. Since the
function pointer’s type is incompatible with strcmp’s, MCFI’s CFG

generation does not connect the function pointer to strcmp. To fix

the problem, a strcmp wrapper function was added that has the

equivalent type as the type of the comparison function and makes a

direct call to strcmp. The key-comparison function pointer is then

set to be the address of the wrapper function. MCFI does not re-

port violations of assumption A2 (no pointer arithmetic or memory

reads/writes through a function pointer), but it is expected that

such violations are rare.

Assumptions A2 and A3 of the taint-based approach were found

to hold largely for OS kernel software [5], where seven violations

were found for the default FreeBSD kernel configuration, and these

violations were fixed manually by changing the source code. The au-

thors did not report violations of assumption A1 (function-pointer

types may not be cast to or cast from non-function-pointer types),

which would require more code changes. However, this did not

impact sound CFG generation for the kernel software Ge et al.
inspected [5]. Since assumption A1 on the type casts in the taint-

based approach is less strict than the type-cast assumption in the

type-based approach, it would involve smaller code changes for

fixing the type-cast violations in the taint-based approach.

As future work, we plan to study sound relaxations of those

assumptions so that fewer violations and fixes will be required for

CFG construction. It would also be interesting to combine CFG-

construction techniques, including the type-based approach and

the taint-based approach, both for enhancing CFG precision and

for relaxation of assumptions.

7 CONCLUSIONS
As attackers always aim to find weak points in software systems, so-

lutions that enhance software security should be built on a rigorous

foundation of formal semantics and proofs so that precise claims

can be made on those solutions. We formalize the soundness of CFG

construction in two major CFI systems, using a standard frame-

work of type soundness and a weakened notion of type safety. We

believe the same framework can be used to show CFG-construction

soundness of other CFI systems and all future CFI systems should

be treated with the same level of rigor.

8 ACKNOWLEDGMENTS
We thank anonymous reviewers for their insightful comments,

which helped us substantially improve the paper. This research is

based upon work supported by US NSF grants CNS-1624126, CNS-

1408880, CCF-1624124, the Defense Advanced Research Projects

Agency (DARPA) under agreement number N66001-13-2-4040, and

Office of Naval Research Grant N00014-17-1-2498. The views and

conclusions contained herein are those of the authors and should

not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of any of the above

organizations or any person connected with them.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow

integrity. In 12th ACM Conference on Computer and Communications Security
(CCS). 340–353.

[2] David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis of C++ Virtual

Function Calls. In ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 324–341.

[3] Christopher L. Conway, Dennis Dams, Kedar S. Namjoshi, and Clark Barrett. 2008.

Pointer Analysis, Conditional Soundness, and Proving the Absence of Errors. In

Proceedings of the 15th International Symposium on Static Analysis. 62–77.
[4] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive In-

terprocedural Points-to Analysis in the Presence of Function Pointers. In ACM
Conference on Programming Language Design and Implementation (PLDI). 242–
256.

[5] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-

Grained Control-Flow Integrity for Kernel Software. In IEEE European Symposium
on Security and Privacy (EuroS&P). 179–194.

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

12

[6] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997. Call

Graph Construction in Object-oriented Languages. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA). 108–124.

[7] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.

2010. CETS: Compiler Enforced Temporal Safety for C. In Proceedings of the 2010
International Symposium on Memory Management. 31–40.

[8] Nergal. 2001. The Advanced Return-into-lib(c) Exploits: PaX Case Study. Phrack
Magazine, Volume 11, Issue 0x58, File 4 of 14 (2001).

[9] Ben Niu and Gang Tan. 2013. Monitor Integrity Protection with Space Effi-

ciency and Separate Compilation. In 20th ACM Conference on Computer and
Communications Security (CCS).

[10] Ben Niu and Gang Tan. 2014. Modular Control Flow Integrity. In ACM Conference
on Programming Language Design and Implementation (PLDI). 577–587.

[11] Jannik Pewny and Thorsten Holz. 2013. Control-Flow Restrictor: Compiler-based

CFI for iOS. In ACSAC ’13: Proceedings of the 2013 Annual Computer Security
Applications Conference.

[12] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-into-

libc without function calls (on the x86). In 14th ACM Conference on Computer and
Communications Security (CCS). 552–561.

[13] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-

Flow Integrity in GCC & LLVM. In 23rd Usenix Security Symposium.

[14] Frank Tip and Jens Palsberg. 2000. Scalable Propagation-based Call Graph Con-

struction Algorithms. In ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA). 281–293.

[15] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski, Xi Chen,

Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano

Giuffrida. 2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks at the

Binary Level. In IEEE Symposium on Security and Privacy (S&P). 934–953.
[16] ZhiWang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Approach to Provide

Lifetime Hypervisor Control-Flow Integrity. In IEEE Symposium on Security and
Privacy (S&P). 380–395.

[17] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-

Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity and

Randomization for Binary Executables. In IEEE Symposium on Security and Pri-
vacy (S&P). 559–573.

[18] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In

22nd Usenix Security Symposium. 337–352.

A APPENDIX: SOUNDNESS PROOF SKETCH
We next sketch the major lemmas and proofs for the soundness

proof of type-based CFG construction. The proof structure for the

soundness of taint-based CFG construction is largely the same

and uses a similar set of lemmas, but with a different definition of

value_inv(−,−,−).

The following lemma is easily proved by using the definition of

value_inv(−,−,−).

Lemma A.1.

(1) If ¬has_fptr(t) and ¬has_fptr(t ′), then value_inv(Λ,v, t) is
equivalent to value_inv(Λ,v, t ′).

(2) If [b,d) is the empty range, then value_inv(Λ, l(b,d),τ∗) holds
for any τ .

(3) If value_inv(Λ, l(b,d),τ∗), then value_inv(Λ, l ′(b,d),τ∗) for
any l ′.

(4) If value_inv(Λ,v, t ′) and allowed_cast(t ′, t), then
value_inv(Λ,v, t).

(5) If value_inv(Λ,v, t) and Λ ⊆ Λ′, then value_inv(Λ′,v, t).

Lemma A.2 (Reads preserve invariants). For σ = (m,δ ,Λ), if
wf_state(σ), and value_inv(Λ, l(b,d), t∗), and inbound(l ,b,d), then
value_inv(Λ,m(l), t).

Proof. (a) Assume has_fptr(t). We can get Λ(l) = t , because
value_inv(Λ, l(b,d), t∗), flatten(t) = [t], and inbound(l ,b,d). From
wf_state(σ), we have value_inv(Λ,m(l),Λ(l)), which gives us the

goal value_inv(Λ,m(l), t).

(b) Assume ¬has_fptr(t). Then we get ¬has_fptr(Λ(l)), because
value_inv(Λ, l(b,d), t∗) and inbound(l ,b,d). From wf_state(σ), we
have value_inv(Λ,m(l),Λ(l)), which is equivalent to our goal

value_inv(Λ,m(l), t) by part (1) of Lemma A.1. □

Lemma A.3 (Writes preserve invariants). For σ = (m,δ ,Λ), if
wf_state(σ), and value_inv(Λ, l(b,d), t∗), and inbound(l ,b,d), and
value_inv(Λ,v, t), and σ ′ = (m[l 7→ v],δ ,Λ), then wf_state(σ ′).

Proof. Let m′ = m[l 7→ v]. First, since dom(m′) = dom(m) and

wf_state(σ) gives us dom(m) = dom(Λ) ⊇ rng(δ), we easily get

dom(m′) = dom(Λ) ⊇ rng(δ).
Next we show for all l ′ ∈ dom(Λ), value_inv(Λ,m′(l ′),Λ(l ′)).

when l ′ , l , we get the result from wf_state(σ). When l ′ = l , we
need to show value_inv(Λ,v,Λ(l)); this is proved by two cases.

(a) Assume has_fptr(t). From value_inv(Λ, l(b,d), t∗), flatten(t) =
[t], and inbound(l ,b,d), we get Λ(l) = t . Then the goal is proved

from assumption value_inv(Λ,v, t).
(b) Assume ¬has_fptr(t). Then we get ¬has_fptr(Λ(l)), because

value_inv(Λ, l(b,d), t∗) and inbound(l ,b,d). Then the assumption

value_inv(Λ,v, t) is logically equivalent to goal value_inv(Λ,v,Λ(l)),
by part (1) of Lemma A.1. □

From a state σ , we can construct a type environment Γ(σ) from
the top stack frame and the memory type in σ .

Definition A.4. Let σ = (m,δ0;δ1,Λ). Define Γ(σ) = λx .Λ(δ0(x)).

Lemma A.5 (Lemma about l-values). Let σ = (m,δ ,Λ).

(1) If Γ(σ) ⊢
lval

lv : t , and (σ , lv) ⇓
lval

v : t ′, then t = t ′.
(2) If Γ(σ) ⊢

lval
lv : t , and (σ , lv) ⇓

lval
v : t , and wf_state(σ),

then value_inv(Λ,v, t∗).
(3) If Γ(σ) ⊢

lval
lv : t , and wf_state(σ), then either exists v so

that (σ , lv) ⇓
lval

v : t or (σ , lv) ⇓
lval

merr.

The proof is by induction over the derivation of Γ(σ) ⊢
lval

lv : t .
The only difficult cases lie in the proof of part (2). The case for ∗lv
is proved using Lemma A.2. The case for lv->id is proved by case

analysis over whether the struct type of lv is a has-fptr type and

case analysis over the shape of the value stored at location lv in

memory; a further assumption needs to made on flatten(−): when

¬has_fptr(τ), any type t in flatten(τ) must satisfy ¬has_fptr(t).

Lemma A.6 (Lemma about expressions). Let σ = (m,δ ,Λ).

(1) If Γ(σ) ⊢ e : t , and (σ , e) ⇓ v : t ′, then t = t ′.
(2) If Γ(σ) ⊢ e : t , and wf_state(σ), and (σ , e) ⇓ v : t , then

value_inv(Λ,v, t).
(3) If Γ(σ) ⊢ e : t , and wf_state(σ), then either exists v so that

(σ , e) ⇓ v : t or (σ , e) ⇓ merr.

The proof of the above lemma is by straightforward induction

over the derivation of Γ(σ) ⊢ e : t .
The preservation theorem is then proved by case analysis over

(σ , c) → (σ ′, c ′), using Lemmas A.5 and A.6 and the following

lemma. The progress theorem is proved by case analysis over

wf_conf(σ , c), using Lemmas A.5 and A.6.

Lemma A.7. If wf_conf(σ , c), and σ .δ = σ ′.δ , and σ .Λ ⊆ σ ′.Λ,
and wf_state(σ ′), then wf_conf(σ ′, c).

Session 2: Program Analysis PLAS’17, October 30, 2017, Dallas, TX, USA

13

	Abstract
	Introduction
	Related Work
	The Language
	Syntax
	Operational semantics

	CFG Construction From Type Signatures
	Formalizing MCFI's Assumptions
	Soundness of MCFI's CFG Construction

	CFG Construction Based on Taint Analysis
	Fixing Assumption Violations
	Conclusions
	Acknowledgments
	References
	Appendix: soundness proof sketch

