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Abstract—Background: Millions of smart contracts have been
deployed to Ethereum for providing various applications. Recent
studies discovered many severe security and performance issues
in smart contracts by applying static program analysis techniques
to them. Given a smart contract, the majority of these analysis
techniques need to first construct its control flow graph, which
connects basic blocks through control flow transfers (CFTs),
before conducting further analysis. Aims: The objective of
this work is to understand the capabilities of static program
analysis techniques to identify CFTs, and to investigate how static
program analysis techniques can be improved if the CFTs are
complemented. Method: We perform a comprehensive empirical
study on six widely-used tools for smart contract analysis by using
all deployed smart contracts to understand their capabilities to
recognize CFTs. We capture all execution traces of all smart
contracts to evaluate the number of CFTs covered by traces
that are not found by those tools. We enhance a state-of-the-art
tool, oYENTE for discovering vulnerabilities in smart contracts
with the CFTs covered by traces to investigate how the tool is
improved. Results: These studied tools fail to identify all CFTs
due to several reasons, e.g., incomplete code patterns. Execution
traces effectively complement these tool in recognizing CFTs. By
including the CFTs covered by traces, the false negative rate of
OYENTE can be reduced by up to 30%. Conclusions: Our study
underlines the ineffectiveness of static analysis techniques due to
the incapabilities of CFT identification.

I. INTRODUCTION

Ethereum is the most popular and largest blockchain plat-
form supporting smart contracts. Millions of smart contracts
have been deployed on Ethereum, and the number increases
every day. A smart contract is a piece of autonomous pro-
gram that executes the predefined logic automatically and
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mandatorily [1]. Smart contracts are usually developed in high-
level programming languages (e.g., solidity [2]) and then
compiled into EVM (Ethereum Virtual Machine) bytecode,
which will be executed by the EVM in every Ethereum node.
Similar to programs developed in other languages for running
in diverse devices, smart contracts are prone to flaws, which
can cause severe financial losses. For example, a vulnerability
in the DAO contract leads to 60 million USD loss [3], and
a vulnerable contract developed by Parity inc. freezes 100
million USD so that users cannot withdraw money from it [4].

Recent studies have applied program analysis techniques
to discover security and performance issues in smart contracts
[5]-[18]. To name a few, ovENTE uses symbolic execution (SE)
to reveal four kinds of vulnerable contracts [5]. casper detects
three gas-inefficient code patterns (which will waste money of
developers and users) in smart contracts by leveraging SE [11].
smartCheck defines 21 bug patterns and looks for them in
smart contracts [12]. contractFuzzer applies fuzzing to smart
contracts to discover seven kinds of security problems [17].
osiris combines SE and taint analysis to discover integer
overflow vulnerabilities in smart contracts [18]. teEther not
only discovers security bugs in smart contracts, but also
generates exploits [16].

Given a smart contract, the majority of these analysis
techniques need to first construct its control flow graph (CFG),
which connects basic blocks (BBs) through control flow
transfers (CFTs), before conducting further analysis, because
CFG represents the execution flow. A CFT from instruction A
to B means that right after executing A, B will be executed.
Identifying all CFTs is a necessary step to construct a complete
and precise CFG. Since many security and reliability checking
relies on CFGs, incomplete and/or imprecise CFGs will impair



such checking. For instance, control flow integrity protection
may raise alarms if not all valid CFTs are recognized. Besides,
model checking may bias the results if the CFG does not
faithfully represent the analyzed program.

Constructing accurate CFG is also important to smart con-
tract analysis. For instance, ovenTE uses CFG to direct path
exploration, and it discards a program path if the target of a
jump operation cannot be determined. casper relies on CFGs
to detect dead BBs, opaque predicates and discover loops [11].
In particular, it will miss a loop if it cannot identify the
CFT corresponding to the back edge of a loop. As another
example, scompile, an SE-based tool, first constructs the CFG
for a contract, and then identifies critical program paths from
the CFG [15]. By doing so, scompile can alleviate path
explosion by just exploring critical paths, while leaving the
other paths unexplored. Unfortunately, little is known about
the capabilities of existing techniques for constructing CFGs
of smart contracts, especially identifying CFTs, and the impact
of inaccurate CFT identification.

To fill this gap, in this paper, we conduct the first in-depth
analysis of CFT identification on smart contracts. Since the
identification of CFTs highly depends on the instruction set,
existing binary analysis tools [19]-[23] cannot handle smart
contracts and the lessons learned from such tools cannot be
directly applied to smart contracts. For example, in x86/x64,
a CFT is usually caused by a JUMP, a CALL, or a RET
instruction. In smart contracts, the CALL operation is used
for inter-contract invocation (i.e., a contract calls the function
of another contract) while intra-contract invocation (i.e., a
function calls another function within the same contract) uses
the JUMP operation. Moreover, in smart contracts, the target
of a jump operation is stored in the runtime stack, rather than
being encoded in the jump operation. Therefore, the runtime
information is required to identify CFT, especially when the
jump target is influenced by inputs. Differently, for binaries
(e.g., x86), the target of a direct jump is encoded in the JUMP
operation, which can be easily obtained.

To obtain convincing and representative observations, we
perform a comprehensive examination on six widely-used
tools [5]-[10] for smart contract analysis by using all de-
ployed smart contracts from the launching of Ethereum to the
preparation of this paper (~5 million smart contracts) and all
their execution traces (60+ million execution traces), which are
collected by strategically instrumenting the EVM. We run the
selected tools to identify CFTs of these contracts, and contrast
the CFTs discovered by the six tools and the CFTs extracted
from all real execution traces. By quantitatively analyzing and
comparing the results of these tools, we obtain many useful
observations and insights. For example, oYENTE discovers more
CFTs than the other SE-based tools while porosity finds the
most CFTs. Besides statistical results, we find several technical
challenges that prevent existing techniques from identifying
all CFTs, such as, path explosion, the jump targets affected
by environment and input, etc., and identify the pros and
cons of existing techniques, such as, linear dissemblers find
more CFTs than recursive disassembler; pattern-based tools
should incorporate rich code patterns; semantic interpretation
of EVM operations is required to locate the target computed

by arithmetic/bitwise operations, to name a few.

Moreover, we find that using execution traces can signif-
icantly improve these tools in terms of CFT identification.
For example, the traces can complement the CFTs identified
by oveNTE (a tool for discovering security vulnerabilities in
smart contracts [5]) in about 40% of contracts. Leveraging this
insight, we use the recovered execution traces from Ethereum
to enhance ovenTE. The extensive experimental results show
that our approach can reduce up to 30% of its false negatives.
It is worth noting that the feasibility of recovering all execution
traces of the deployed smart contracts is a unique feature in
Ethereum. In contrast, although it is easy to collect some traces
of traditional executables to evaluate binary analysis tools, it is
extremely difficult, if not impossible, to get all execution traces
of all binary executables. The insights obtained in our study
highlight the ineffectiveness of static analysis techniques in
identifying all CFT, and shed light on smart contract analysis.
In summary, our work has three major contributions.

(1) To the best of our knowledge, it is the first large-scale
analysis of CFT identification on smart contracts. We conduct
a comprehensive examination on six widely-used tools with
all deployed smart contracts and obtain many insights, some
of which can be applied to other tools.

(2) We carefully instrument EVM to recover all execution
traces of smart contracts and use them to evaluate the tools,
and find that they can significantly complement the CFTs
discovered by the tools.

(3) Motivated by the above observation, we enhance OYENTE

with the CFTs extracted from execution traces. Extensive
experiments show that the traces can largely reduce its false
negatives.
Paper organization. Section II introduces background knowl-
edge. Section III details the in-depth analysis of six tools in
terms of their capabilities to identify CFTs. Section IV de-
scribes how we recover all execution traces and the comparison
result of CFTs identified by tools and those from the traces.
Section V presents how ovENTE can be enhanced with the
traces. We discuss some possible limitations of our study in
Section VI. After introducing related studies in Section VII,
we conclude the paper in Section VIII.

II. BACKGROUND
A. Ethereum

Ethereum blockchain has millions of blocks which are
linked together. A block can contain many transactions, each
of which is a message carrying important information (e.g.
the bytecode of a smart contract) sent to the blockchain. To
execute a smart contract, the caller should send a transaction to
trigger the execution [24]. An Ethereum client is responsible
for validating transactions and mining (i.e., producing blocks),
and therefore a client will download all historical transactions
from the blockchain and executes all transactions in order [24].

B. Smart Contract

Smart contract is an autonomous program [1], which is
often developed in a high-level language (e.g., solidity [2])
and then compiled into the bytecode that can be executed by
EVM. Being a stack-based virtual machine, EVM maintains a



stack to store the parameters and results of EVM operations.
The size of a stack item ranges from 1 byte to 32 bytes [1],
depending on the EVM operation that pushes the item onto the
stack. The memory in EVM is an intrinsic data structure for
storing the data attached in a transaction and the return value
of the invoked contract [1]. A contract also has a database-like
space, called storage, for storing persistent information (e.g.,
global variables, bytecode of smart contracts) [1].

A smart contract should be deployed to the blockchain
before others can use it. In particular, the developer sends
the bytecode of the contract (rather than the source code) to
the blockchain. Although some developers submit the source
code of their smart contracts to any blockchain explorers
(e.g., Etherscan [25]) for code validation, the proportion of
open-source smart contracts is less than 1% of all deployed
contracts [26]. Once a contract is deployed to the blockchain,
it will be associated with its address. To invoke a contract, its
address should be specified.

C. CFT: Control Flow Transfer

The bytecode of a smart contract consists of multiple
EVM operations. EVM supports 130+ EVM operations and
eight out of them can result in CFTs. Two jump operations
(i.e., JUMP, JUMPI) can result in intra-contract CFTs, which
jump from an EVM operation to another EVM operation
in the same contract [1] whereas the other six operations
(i.e., CREATE, CALL, CALLCODE, DELEGATECALL, STATICCALL,
SELFDESTRUCT) lead to inter-contract CFTs, which transfer
from an EVM operation of a contract to the EVM operation of
another contract [1]. This work concentrates on intra-contract
CFTs, and we leave the inter-contract CFTs to future work.
Note that it would not be a serious limitation of our study
because the interactions of contracts are infrequent [27].

EVM stores the jump target on the stack. JUMP is an
unconditional jump whose jump target is specified by the
stack’s top item [1]. JUMPI is a conditional jump that transfers
the control flow to the target specified by the top stack item
if the second stack item is not zero; otherwise the operation
following the JUMPI will be executed next [1]. A jump target is
marked by JUMPDEST [1]. Note that an intra-contract function
invocation (e.g., a function calls another function in the same
contract) is compiled into JUMP, and CALL is only for inter-
contract invocation (e.g., a contract calls another contract). We
represent a CFT in a smart contract as a tuple (pcs, pet), where
pcs 1s the program counter of a JUMP or a JUMPI, and pc; is
the program counter of the corresponding JUMPDEST.

We summarize unique features of smart contracts compared
to x86 binaries, which make it difficult to identify CFTs of
smart contracts. First, smart contracts are compiled into EVM
bytecode, which is a new instruction set without extensive
studies. Second, both branch statements (e.g., ‘if...else’) and
intra-contract function invocations are compiled into jump
operations, whereas x86 uses CALL to invoke a function which
distinguishes a function invocation from a jump. Third, the
jump target is stored on the stack rather than encoded in
the jump operation and therefore we cannot correlate a jump
operation with its jump target by parsing the jump operation.
In x86, the jump/call target of a direct jump/call is encoded
in the jump/call instruction. Since there are various ways to

push the jump target on the stack (Section II-D), correlating
a jump operation with its jump target is non-trivial.

D. Motivating Examples

Fig. 1 presents six bytecode snippets extracted from de-
ployed smart contracts to illustrate that CFT identification of
smart contracts can be quite challenging. In Fig. 1(a), whether
the contract jumps after executing JUMPI (Line 3) depends on
the result of EQ (Line 1). EQ pushes 1 on the stack top if
the top two stack items are equal; otherwise, it pushes 0 [1].
The jump target is the result of PUSH2 that pushes two bytes
(i.e., 0x009d, the jump target) onto the stack. A tool can
identify such CFTs by looking for the pattern PUSH2/JUMPI
in contracts.

PUSHA OxEEEEELES |

il
1 EQ { 2 PUSH2 0x0536 i
2 PUSH2 0x009d | 3 AWD 1 pusi1 0x04
3 JuMPI : :
(a) 4o (c) '3 PUSH2 0x1356
,,,,,,,,,,,,,,,,,,,,,,, Tl 14 SWAP1
1 PUSH2 0x018e ! 1 ISZERO {5 PUSH10 0x01...
. 12 BC |6 SWAP1
2 POP '3 JUMPI 17 DIV
3 SWAP1 ! (d) ! 8 PUSH4 Oxffffffff
oo s
4 JUM](?b) + 1 PUSHL 0x40 ' 10 JUMP
i 2 MLOAD :
3 guwp : e}
(e)
Fig. 1. Six examples of CFTs

Fig. 1(b) illustrates that the push operation (Line 1) that
pushes the jump target onto the stack can be located far away
from the jump operation (Line 4). To identify such CFT, a
tool needs to simulate stack operations or apply some static
analysis techniques (e.g., reaching definition analysis [28]).
Fig. 1(c) shows that the jump target is not directly encoded in
the bytecode; instead, it is the outcome of a bitwise operation
(Line 3). Therefore, to obtain the jump target, a tool should
execute EVM operations or at least interpret the semantics of
EVM operations. Fig. 1(d) sets the jump target of JUMPI (Line
2) by executing PC, which gets the current program counter
(i.e., Line 2) and pushes the value onto the stack [1]. To handle
such case, a tool needs to interpret the semantics of PC and
locate the operation to get the jump target, because the target
is not encoded in the bytecode.

In Fig. 1(e), the control flow is transferred by executing
JUMP (Line 2) whose target is read from the memory (Line 2).
MLOAD reads a value (0x40, Line 1) whose location is given in
the top stack item from the memory and pushes the value onto
the stack [1]. Fig. 1(f) presents a more complicated example,
which reads a value from the storage by executing SLOAD
(Line 2) and computes the jump target based on the value
after a couple of EVM operations (Lines 3 to 9). Please recall
that the memory stores the data from a transaction, and the
storage can be used for storing contract runtime information
(e.g., global variables) (Section II-B). Hence, it is difficult to
determine such jump targets without executing the contract in
practice. Even the simulation of EVM operations is unlikely
to tackle the last two cases, because the jump targets are
determined by the runtime values stored in the memory or
the storage.

III. IN-DEPTH ANALYSIS OF CFT IDENTIFICATION

This section first describes our method to collect all smart
contracts that have been deployed on the blockchain (Section



III-A), followed by introducing the existing techniques for
CFT identification (Section III-B). After presenting the selec-
tion of tested tools (Section III-C), we show the experimental
results (Section III-D). In the end, we discuss the capabilities
of different techniques for identifying CFTs of smart contracts
(Section III-E).

A. Smart Contract Collection

A simple method to collect the bytecode of a deployed smart
contract is to call the API, web3.eth.getCode() provided by an
Ethereum client, given the address of a contract [29]. However,
the API takes in the address of the queried contract [29] but
unfortunately, it is not easy to obtain the addresses of all
contracts. Moreover, the API can get the bytecode of a smart
contract that have been removed providing a proper block
number [29], however, for each removed contract, there is no
easy way to know at which block (i.e., when) it is removed.

We collect the bytecode of all contracts by instrumenting
an Ethereum client. After inspecting the source code of
Geth (the most popular Ethereum client), we learn that the
function evm.Create() is invoked for deploying contract and
its return value is the contract address. Therefore, we obtain
the address of a created contract before evm.Create() returns.
evm.Create() calls evm.StateDB.SetCode() to store the con-
tract bytecode (i.e., first parameter of evm.StateDB.SetCode())
in the storage. Therefore, to record contract bytecode, we
add code in evm.Create() to log the first parameter of
evm.StateDB.SetCode(). Our approach can even collect the
bytecode of the contracts that have been deployed and then
removed from the blockchain, because it captures all histor-
ical contract deployment activities. Consequently, we collect
4,979,625 smart contracts since the launching of Ethereum
(Jul. 30th, 2015) to Feb. 10th, 2018.

B. Existing Techniques for CFT Identification

Before introducing the smart contract tools selected for this
empirical study, we first summarize the techniques adopted by
existing tools to identify CFTs of smart contracts as follows.
Symbolic Execution. SE uses symbolic values, instead of
concrete values, as input and then represents the values of
program variables as symbolic expressions over the symbolic
input values [30]. SE is often used for path exploration,
leveraging a theorem prover to determine path feasibility. SE-
based tools for smart contracts usually simulate a stack and
symbolically execute EVM operations, thus the jump target
could be obtained from the simulated stack.

Pattern Recognition. EVM provides 32 push operations,
PUSHx (1 < =z < 32) which pushes an x-byte value on
the stack [1]. Since the jump target is stored on the stack,
a PUSHx right before a jump operation will push the jump
target onto the stack. Based on our observation, a pattern
recognition technique discovers CFTs by first looking for
such code patterns (e.g., PUSHx/JUMP and PUSHx/JUMPI) in
a contract and then extracting the jump target from PUSHXx.

Light-weight static analysis. Some light-weight static analy-
sis techniques (e.g., reaching definition analysis [8] and def-
use analysis [15]) have been applied in CFT identification. For
example, when reaching definition analysis is used, each EVM
operation is annotated with a set of variables that are visible

to this operation, and for every such variable, the position in
code where the variable was last assigned before the operation
is recorded [26]. It annotates every operation with the stack
layout before the execution of the operation [26]. This stack
layout contains references rather than actual values to the
operations that have produced this stack item [26]. Based
on light-weight static analysis, the push operation for setting
the jump target can be identified, even if it is not located
immediately before the jump operation.

C. Selected Tools for Smart Contract Analysis

Although a number of studies [S]-[16] present various tools
that can identify CFTs in smart contracts, we filter out the
tools that are neither publicly available nor capable of handling
the bytecode of smart contracts. Eventually, we select six
popular open-source tools [S]-[10] which can process EVM
bytecode directly. ovenTE [5], Ma1an [7] and Mythril [6] dis-
cover vulnerabilities of smart contracts; evmdis [8], Miasm [9],
and porosity [10] are three reverse engineering tools for
smart contracts.We classify these tools into two categories:
path-sensitive tools including ovente [5], mMaian [7] and
Mythril [6] which apply SE to determine path feasibility,
and path-insensitive tools including evmdis [8], Miasm [9],
and porosity [10]. Since path-insensitive tools will not check
the feasibility of a program path, they may find CFTs that
cannot be executed in practice. In contrast, path-sensitive
tools only consider the CFTs that are discovered during path
exploration. evmdis [8] is a disassembler which leverages
reaching definition analysis. Miasm [9] is also a disassembler.
porosity [10] is a decompiler for EVM bytecode. The latter
two apply pattern recognition to identify CFTs.

When running those tools to process contract bytecode, we
find that ovENTE and MaT1AN crash in processing 27,131 (0.5%)
and 115,286 (2.3%) contracts, respectively. The other tools
do not crash because they catch all exceptions. We find three
causes (i.e., malformed bytecode, unsupported operations, and
solver exceptions) of crashes and fix them because we are
more interested in technical capabilities than the imperfection
of implementations. Note that we do not resolve other (poten-
tial) bugs that do not lead to crashes.

D. Experimental Results of Selected Tools

This section presents the following experimental results:
the number of CFTs identified by each tool, the number of
contracts that different tools output the same result, and the
number of CFTs that can be identified by all tools.

We use cft to represent a control flow transfer in a contract.
Let C be the set of smart contracts analyzed in this study
and || denote the number of items in a set. Hence, |C| =
4,979,625. We use CFTOY, CFTMA, CFTMY, CFTEV,
CFT? M1 nd CFTFO to stand for the CFTs in the contract
Ci Wthh are 1dent1ﬁed by OYENTE, MAIAN, Mythril, evmdis,
Miasm and Porosity, respectively.

Number of CFTs. Fig. 2 shows the number of CFTs obtained
by six tools. The average numbers are marked in this figure.
We have several observations after inspecting the results and
the source code of these tools. First, Ma1an finds the fewest
CFTs because it stops path exploration once it finds a vul-
nerability. Hence, Ma1an cannot identify all CFTs since some
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Fig. 2. Number of CFTs identified by the studied tools
paths are not explored. Besides, since matan does not handle
the contracts without either CALL, CALLCODE, DELEGATECALL,
or SELFDESTRUCT, it finds zero CFT for such contracts. MATAN
adopts this strategy because it aims to detect three kinds of
vulnerabilities, which include the aforementioned four EVM
operations, rather than exploring all program paths.

Second, ovENTE finds more CFTs than Mythril due to
the difference in their configurations although they both use
SE. More precisely, since SE-based tools suffer from path
explosion, a common mitigation is to set a maximum path
depth, which refers to the max number of jump operations
that a path can execute. By doing so, an SE-based tool
terminates a path if its depth reaches the threshold. oveENTE
can explore more paths than Mythril, because the former sets
the maximum depth to 50 but the latter sets it to 12. Note that
although ma1an sets the maximum depth to 60, it discovers
fewest CFTs since it does not handle some contracts and stops
analysis once a vulnerability is found.

Third, Miasm and evmdis do not find as many CFTs as
porosity does, although they are all path-insensitive tools. We
find that their differences lie in processing contract bytecode.
More precisely, Miasm and evmdis are recursive disassemblers,
which process contract bytecode following its control flow.
More precisely, they disassemble the contract bytecode from
the first operation, and then try to find the jump target when
encountering a jump operation. If found, they continue to
analyze from the EVM operation at the jump target. Otherwise,
they stop analysis if they cannot determine a jump target.
Contrarily, Porosity implements a linear disassembler, which
does not follow the control flow of contract bytecode; instead,
it checks each jump operation in the contract bytecode. There-
fore, Porosity may find some CFTs whose jump operations
are failed to be reached by Miasm. We then manually check
the CFTs that are identified by porosity but not discovered
by ovenTE, and find that porosity includes infeasible CFTs
that will not be executed. oveENTE does not include such CFTs,
because it checks path feasibility.

Finding 1: The six analyzed tools identify different numbers
of CFTs due to their diverse techniques or configurations.
Linear disassemblers find more CFTs than recursive disas-
semblers since the latter stops if a jump target cannot be
determined.

AVE(|C’FTC(3Y ), AVE(\CFTQJA ), AVE(|CFT£IY|)
are used for representing the average numbers of CFTs for
all smart contracts identified by three path-sensitive tools.
Fig. 3 shows the average number of CFTs identified by path-
sensitive tools. The x axis is the number of jump operations,
which suggests the complexity of a smart contract and is
calculated by scanning contract bytecode. The y axis is the

average number. Thus, a point (x, y) in this figure means
that the average number of CFTs identified by a tool is y
if the contracts contain x jump operations. Fig. 3 shows that
the number of CFTs identified by three tools increases almost
linearly when the number of jump operations increases from
1 to about 200. It is reasonable because a more complicated
smart contract contains more CFTs. However, the linear trend
does not persist when the number of jump operations is larger
than 200. We find that they set four kinds of termination
conditions to mitigate path explosion. That is, they will stop
analysis if (1) it meets its objective; (2) it explores all paths
whose depths are lower than the maximum path depth; (3)
analysis time is expired; or (4) the number of BBs reaches
a preset threshold. For example, va1aN sets the maximum
path depth as 60, and stops analyzing a contract if SE has
executed 2,000 BBs (a BB will be counted multiple times if it
is executed repeatedly). Besides setting the path depth as 12,
Mythril gives 60s to each contract. oYENTE sets the timeout
of each contract as 50s, and it terminates exploring a program
path if a BB is executed more than 10 times.
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AVE(|CFTEV)), AVE(|CFTM!|), AVE(/CFTFO|)
denote the average numbers of CFTs for all smart contracts
identified by three path-insensitive tools. Fig. 4 presents the
average numbers with the same x axis and y axis as Fig.
3. We can see that the average number discovered by three
tools increases when the number of jump operations increases
from 1 to about 300. However, none of them keeps the
increasing trend, when the number of jump operations is
larger than 300. We find several reasons. Miasm and evmdis
stop analysis when they encounter a jump operation whose
jump target cannot be determined by them. Hence, much
code may remain unanalyzed when the two tools process
complicated smart contracts. Besides, we observe that the
code patterns recognized by porosity are incomplete. More
precisely, it only handles PUSH1 and PUSH2 to extract the jump
target. Note that EVM supports 32 push operations [1] and a
complicated contract is more likely to contain CFTs whose
jump targets need more than two bytes. Therefore, porosity
may miss many CFTs in complicated contracts with many
jump operations.




Finding 2: The six analyzed tools do not perform well in
analyzing complicated contracts because of path explosion,
premature stop, or incomplete code patterns.

Finding 3: The six analyzed tools identify the same CFTs
for only 1.7% of contracts due to different techniques and
configurations.

Fig. 5 presents the size (in byte) of contract bytecode and
the number of jump operations containing in a contract, which
are averaged on the contracts created every week from the
launching of Ethereum. It shows that the size and the number
has an increasing trend over time. This observation highlights
the need for the ability to analyze complicated smart contracts.
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Fig. 5. Size of contract bytecode and number of jump operations in a contract
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Contracts that different tools output the same result. If
C’FTC?Y = CFTCJ:/[A, all CFTs in ¢; identified by oYENTE
are also discovered by ma1an, and vice versa. Let C*V" =
{cile; € C,CFTOY = CFTMA = CFTMY}. For each
contract in Csym OYENTE, MAIAN and Mythril have the same
result in identifying CFTs. Let C°" = {c¢;|c; € C,CFTEV =
CFTM! = CFTFO} and C = {c|¢; € C, C’FTOY =
CFTMA = CFTMY CFTEV CFTMI = CFTPO}
They are the sets 1nc1ud1ng the contracts that the three path-
insensitive tools and all tools produce the same result, respec-
tively. We obtain the following results: |C*¥"™| = 359,583,
icsvm|/IC| = 7%, [Co|/|C| = 5%, and |C°|/|C| = 1.7%.
That is to say, for a very small proportion of smart contracts,
these tools find the same CFTs.

We then analyze path-sensitive tools and path-insensitive
tools, separately. Fig. 6 presents the proportion of contracts
that any two tools find the same CFTs in each contract. We find
that evmdis produces the same results as porosity for about
46% of smart contracts, which is the highest ratio compared
to other combinations. The reason is that the CFTs recognized
by code patterns can also be identified by reaching definition
analysis, because the latter can find all push operations that
push jump targets onto the stack. Moreover, any other two
tools produce quite different results. The reason is that all tools
except Miasm checks whether the operation at the jump target
is a JUMPDEST. Therefore, all tools except Miasm exclude
the CFTs with invalid jump targets (i.e., does not jump to a
JUMPDEST). The three SE-based tools result in the same result
for only 7% of contracts (not shown in this figure), since MATAN
stops if it discovers a vulnerability, and OYENTE, Mythril set
different path depths.
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Fig. 6. Proportion of contracts that two tools find the same CFTs

CFTs that can be identified by all tools. We further
investigate the set C*¥"". The x axis in Fig. 7 is the number of
jump operations, and the y axis represents the proportion of
contracts. Therefore, a point (x, y) in this figure indicates that
there are y x |C*Y"™| contracts belonging to C*¥™, and each of
them has x jump operations. The trend is that the proportion
becomes smaller if the complexity of smart contracts increases.
The outlier (1, 0.021) is because many contracts contain just
one jump operation and do not contain the EVM operations
concerned by maran. Hence, Ma1an does not handle those
contracts, resulting in a low ratio. The three path-insensitive
tools have a similar trend and thus we omit the detail.

S
o
®

proportion of contract

300 500 700
# of jump operations

0 100

Fig. 7.
Let NCFT" = CFTEY NCFTM! N CFTEC repre-
sent the CFTs of the contract ¢; that can be identified by
all three path-insensitive tools. Besides, the set | JCF T"th
CFTEVJCFTM'|JCFTE® indicates the CFTs of the
contract ¢; that can be identified by either of the three

path-insensitive tools. For example, after analyzing a smart
contract ¢;, CFTFV = {(1,3) (2,5)}, CFTM! = {(1,3)}
3) (

Proportion of contracts that path-sensitive tools find the same CFTs

and CFTF? = {( 2,7)}, and therefore (CFTSM =
{13 UCFTh = {(1,3) 2,5), 2.7},
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Fig. 8. Proportion of CFTs identified by all path-insensitive tools

We then investigate the set C — C° using the above

notations. C—C°*" includes the contracts that for each contract,
at least two path-insensitive tools do not find the same set
of CFTs. The x axis in Fig. 8 is the number of jump
operations, and the y axis is a proportion, which is computed
by AVE(|NCFT™"|/||JCFTS™|), indicating the average
proportion of CFTs identified by all path-insensitive tools to
the CFTs identified by either path-insensitive tools. Reconsider
the example above, the proportion is 1/3. Therefore, a point
(x, y) in this plot indicates that the CFTs of a contract
identified by all three path-insensitive tools accounts for y of
the CFTs identified by either path-insensitive tool, if it contains
x jump operations. The observation is that the proportion
becomes smaller if the complexity of smart contracts increases.
The outlier (1, 0.0156) is due to the same reason with the




outlier in Fig. 7. The three path-sensitive tools present a
similar trend, thus we omit the detail due to page limit.
Finding 4: It becomes more difficult for tools to agree
with each other when the complexity of contracts increases
mainly because much code in complicated contracts remains
unexplored when tools stop.

E. Discussion

Based on the experimental results, this section discusses the
capabilities of different techniques listed in Section III-B for
identifying CFTs of smart contracts.

Will the tools output infeasible CFT? An infeasible CFT
cannot be taken during execution. The SE-based tools check
path feasibility by invoking a theorem prover so that they will
not output infeasible CFTs. However, the path-insensitive tools
may include infeasible CFTs because they do not check path
feasibility.

Disassembling mode. A Linear disassembler can identify
more CFTs than a recursive disassembler, because the latter
has to stop if a jump target cannot be determined while the
former can still discover the remaining CFTs.

Can the tools handle complex contracts. All three SE-based
tools are not scalable to complicated contracts due to path
explosion. Experiments show that the three path-insensitive
tools also do not perform well in processing complicated
smart contracts (Fig. 4), because they choose the recursive
disassembling mode or do not include sufficient patterns.
CFT types. Existing techniques perform differently to handle
different types of CFTs.

(a) Push immediately before jump. All three techniques
(i.e., SE, pattern recognition and light-weight static analysis)
can identify the jump target that is pushed on the stack
immediately before a jump operation, as shown in Fig. 1(a).

(b) Push elsewhere. The jump target can be pushed on the
stack by a push operation located elsewhere rather than the
location exactly before a jump operation, as shown in Fig. 1(b).
SE can identify such jump target if it covers the corresponding
jump operation, because SE simulates a stack and interprets
EVM operations. Light-weight static analysis techniques (e.g.,
reaching definition analysis, def-use analysis) can also handle
this case, since they can identify use-define relationship. That
is, they can locate the push operation which pushes the jump
target on the stack. However, pattern recognition fails because
such case does not match the two code patterns, PUSHx/JUMP
and PUSHx/JUMPI.

(c) Target by computation. If the jump target is computed
by arithmetic/bitwise operations, as shown in Fig. 1(c), SE can
handle this case because it executes EVM operations symbol-
ically. Reaching definition analysis cannot discover such jump
target since the target is not encoded in a push operation. The
CFT cannot be determined by pattern recognition because such
case does not match the two code patterns.

(d) Target needs interpretation. The jump target can be
determined by interpreting the semantics of EVM operations,
as shown in Fig. 1(d). For the same reasons as the target by
computation, only SE can handle such case.

(e) Target affected by environment. In this case, the jump
target is affected by the environment (e.g., memory, storage).

All three techniques cannot identify such jump target because
static analysis cannot know the runtime values in the memory
and the storage.

IV. TRACE-BASED CFT IDENTIFICATION

We extract CFTs from execution traces of smart contracts to
examine whether execution traces can complement the tools.

A. Trace Collection

Execution trace. The execution trace logs the execution
information of every executed EVM operation in a smart con-
tract. The recorded information consists of the executed EVM
operation, the program counter, the stack/memory/storage
read/written by the operation, and the other data read from
the blockchain (e.g., mining difficulty, block number).
Ethereum Client instrumentation. An approach to obtain
traces is invoking a Web3 API, web3.debug.traceTransaction()
which takes in the hash of a transaction and outputs the trace
triggered by that transaction [31]. However, there is not easy
to obtain all transaction hashes. More severely, the API runs
slowly and after inspecting the source code of Ethereum, we
find that before executing the queried transaction, this API
has to initialize the runtime environment, construct the correct
state before the execution of the block containing the queried
transaction, and then replay the preceding transactions before
the queried transaction in the same block. Besides, Web3 APIs
use Remote Procedure Calls to communicate with an Ethereum
node, which introduces further delay.

We propose to instrument an Ethereum client to recover exe-
cution traces based on the following observations. A client will
execute all historical transactions and the execution of smart
contracts is triggered by transactions [24]. After investigating
the source code of Geth, we reveal that Geth provides a handler
for each EVM operation. Therefore, we insert some code into
all handlers to record execution information. Fig. 9 shows how
to log a CFT when executing JUMPI. opJumpi() (Line 1) is the
handler (simplified for presentation) for executing JUMPI. The
jump target and the flag are popped from the stack (Line 2).
We record the program counter of the JUMPI at Line 3. Then,
the program counter is updated accordingly (Lines 5, 6). We
record the new program counter at Line 7. Therefore, the CFT
is logged, which jumps from the old program counter to the
new one. Eventually, we collect 63,594,036 execution traces
from the launching of Ethereum to Feb. 10th, 2018.
func opJumpi(pc *uint64, ..., stack *Stack)(){

pos, cond := stack.pop(), stack.pop()
log(“current PC”+*pc)

if cond.Sign() != 0 {...

*pc = pos.Uint64()

} else {*pc++}
log(“jump target”+*pc)}

Fig. 9. Instrumentation of JUMPI’s handler

CFT covered by traces. Identifying the CFTs covered by
traces needs to instrument the handlers for JUMP and JUMPI,
because the jump target is the top stack item when executing
JUMP or JUMPI.

Trace splitting. A contract can invoke another contract, and
therefore an execution trace can contain CFTs from multiple
contracts. Therefore, we need to split the execution trace
into several sub-traces and each sub-trace corresponds to
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a contract. To do so, we need to find the beginning and
ending of executing a contract. There are four EVM operations
(i.e., CALL, CALLCODE, DELEGATECALL and STATICCALL) that
a contract calls another contract [1]. Therefore, we instrument
the handlers for those four operations.

1 func opCall(evm *EVM, contract *Contract, stack *Stack...)(){

2 stack.pop()
3 addr := stack.pop()
4 toAddr := common.BigToAddress(addr)

5 i‘cg(“Contract start” +toAddr)
6 ret, returnGas, err := evm.Call(contract, toAddr, ...)
7 log(“Contract end”)...}
Fig. 10. Mark the beginning and ending of executing a contract

Fig. 10 shows the code snippet of opCall(), which is the
handler for executing CALL. Since the other three handlers are
similar with opCall(), we omit their details. The second item
on the stack is the address of the invoked contract (Line 3), so
we mark the beginning of executing B at Line 5. The contract
B is executed using evm.Call() (Line 6), and hence we mark
the ending of executing B at Line 7.

B. Evaluation Results

This section presents to what extent, execution traces can
complement the CFTs identified by the studied tools, including
the number of contracts whose CFTs can be complemented by
traces, and the number of CFTs complemented by traces.
Contracts whose CFTs can be complemented by execution
traces. We use CFTTR to represent the CFTs i m contract ¢;
extracted from execution traces. We then use C y to represent
the contracts that some extracted CFTs are not discovered
by ovente. Thus, C5%¥ = {¢;|3cft,cft € CFTER cft &
CFTOY}. We use the value [CEE|/[C| to stand for the
proportlon of such contracts to the total analyzed contracts. We
define C11, CTE. CLE CTHE and CTE accordingly, and omit
their definitions due to page limit. The proportions according
to the studied tools are shown in Fig. 11. This figure shows
that for many smart contracts, execution traces can cover some
CFTs that are not discovered by the six tools.
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Fig. 11. Proportion of contracts that execution traces can complement their
CFTs discovered by the studied tools

We further have several specific observations. First, execu-
tion traces complement Porosity in about 10% of contracts,
even if it finds the most CFTs (Fig. 2). Second, the proportion
for Miasm is fairly high, 83%, because it stops analysis if
the immediate operation before a jump operation is not a
push operation, thus it will leave much code unanalyzed.
For evmdis, the proportion (21%) is much lower, compared
to Miasm, even if they both stop analysis if they cannot
determine a jump target. The reason is that evmdis applies
reaching definition analysis, so it can find the CFT which
cannot be identified by Miasm. An example of such CFT is
shown in Fig. 1(b) that the jump target is pushed on the stack
by a push operation far before the jump operation. Besides,

for ma1an, almost the CFTs of all (96%) contracts can be
complemented by traces. The reason is that vaTan does not
process the contracts without some specific operations, and it
stops analysis if a bug is found. For mythril, the proportion
is higher than oventE (65% vs. 40%). The reason should be
that oYENTE sets a larger path depth than mythril (50 vs. 12).
Number of CFTs complemented by execution traces. We
use CFT, CT RIOY 44 represent the CFTs which are extracted
from the execution traces, but not discovered by OYENTE.
Thus, CFTIR/OY = cft € CFTTR cft ¢ CFTOY ).
Hence, CT R/ OY\ stands for the number of such CFTs in
c;. We define such numbers for the other five tools accordingly
and we omit the definitions due to page limit. Fig. 12 presents
such numbers of the studied tools, where we mark the averages
and maximum numbers. Note that this figure just includes the
contracts, some CFTs of which are executed by traces but not
identified by tools. The average numbers range from 10 to
17, however, the maximum numbers are somewhat surprising,
which range from 122 to 1,125. Therefore, the observation is
that lots of CFTs can be complemented by execution traces,
because these CFTs are failed to be identified by the six tools.
We then investigate the maximum numbers in detail.
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Fig. 12. Numbers of the CFTs covered by traces but not discovered by tools

The maximum numbers of four tools (i.e., OYENTE, MAIAN,
Mythril and Miasm) are related to the same contract, 0OxDA16.
The address of a contract is 20 bytes, and we use the first
two bytes to refer to a contract to save space. The contract
0xDA16 is open source [32]. By inspecting its source code,
we find nested loops and there are 121 ‘else if{}” statements
in the inner loop. Besides, the size of the contract bytecode is
24,556 bytes, and we find 642 jump operations in its bytecode.
We capture eight transactions invoking the contract and thus
we collect eight execution traces. Execution traces add 1,125
CFTs to the CFTs identified by mMa1aN, since the contract does
not contain the operations concerned by matian. Therefore,
vaIaN finds zero CFT in the contract. Execution traces add
498 and 1,057 CFTs to the CFTs discovered by oyENTE and
Mythril, respectively due to the relatively small path depths
set by the tools. We find that the shortest trace consists of
657,051 EVM operations, and 45,862 out of them are jump
operations. Note that 45,862 is far deeper the path depths (i.e.,
50 and 12) set by the two tools. Execution traces add 1,116
CFTs to the CFTs discovered by Miasm, because the contract
has two consecutive operations, POP and JUMP that Miasm fails
to determine the jump target. Consequently, Miasm stops and
leaves much code unanalyzed.

The maximum numbers of the other two tools (i.e., evmdis
and porosity) are related to the same contract, Oxe414. The
size of the contract bytecode is 22,456 bytes, and we find 273
jump operations in its bytecode. We capture 240 transactions
and thus we collect 240 execution traces. The traces add 291



CFTs to the CFTs found by evmdis because we find a jump
operation whose jump target is computed by an ADD operation
rather than encoded in a push operation. Execution traces add
122 CFTs to the CFTs discovered by porosity, since we find
many jump operations whose jump targets are pushed on the
stack by executing PUSH3 that is not handled by porosity.

Finding 5: Execution traces effectively complement the
studied tools in identifying CFTs, since no tool can find all
CFTs and execution traces cover many CFTs which cannot
be discovered by the studied tools.

C. Possible Usages

Besides evaluating the effectiveness of tools to identify
CFTs, trace-based CFT identification has at least two possible
usages. First, before deploying a smart contract, we can use
fuzzing to generate traces for complementing its CFG obtained
by static analysis. Second, after deploying a smart contract,
recovering the traces of all invocations in blockchain and ana-
lyzing them allow us to conduct more accurate investigations
(e.g., discovering vulnerabilities/errors, locating faults.). An
example of the second usage is shown in Section V.

V. ENHANCING OYENTE THROUGH TRACES

We propose to enhance ovenTE [5] by traces. Section V-A
presents a motivating example that execution traces improve
the performance of ovente. Then, Section V-B describes our
approach to enhance the path exploration module of ovENTE
through the traces. We conduct a large-scale study on to what

extent the traces can improve oveNTE in Section V-C.
1 function buyWanCoin(address recipient){

2 if(now < startTime && now >= earlyReserveBeginTime){...}
3 else{...

4 buyNormal (recipient);}

5 function buyNormal(address recipient)internal{
7 buyCommon (recipient, toFund, toCollect);}

8 function buyCommon(address recipient,
uint toFund, uint wanTokenCollect)internal{

9 wanport.transfer(toFund);

)

Fig. 13. OYENTE misses the timestamp dependence bug at Line 2, but
execution traces help in discovering it

A. A Motivating Example

Fig. 13 shows the code snippet of a token (i.e., the cryp-
tocurrency implemented as a smart contract), which has been
deployed to the blockchain since Oct. 2th, 2017. This contract
has 4,657 bytes bytecode, 442 BBs and 143 jump operations,
and we recover 19,072 execution traces from the transactions
invoking this contract. Manual analysis of its source code re-
veals that it is a vulnerable timestamp-dependent contract [5],
which uses the block timestamp to control the execution of
some critical operations. More precisely, the comparison at
Line 2 uses ‘now’ in Solidity to get the timestamp of the
current block [2]. Hence, the timestamp determines whether or
not the critical function buyNormal() (Line 4) will be executed,
which invokes buyCommon() (Line 7) to send out money (Line

9). Consequently, a malicious miner can adjust the block’s
timestamp to affect the execution of this contract.

By leveraging the execution traces, we discover this vul-
nerable timestamp-dependent contract whereas OYENTE misses
it due to path explosion. More precisely, the function buy-
Common() remains unexplored after oYENTE stops analysis. In
contrast, execution traces complement the results of ovENTE,
because some traces cover the three functions and trigger
money transfer at Line 9. For example, in the trace of a
transaction (0x10fb referred to by the first two bytes of its
hash), we observe that after the execution of the 70th CFT,
the contract sends out money. Since 70 is much larger than
the maximum path depth (50) of oYENTE, OYENTE cannot output
correct results due to path explosion. In contrast, after running
OYENTE on the traces, the vulnerability is discovered.

B. Enhancing Approach

Input: bc, CFTm

Output: report

1 CFToy = explore(bc)

2 for cft € CFT—CFToy

3 for trace € traces(cft)
4 if trace € replayed TR
5
6
7

replay(bc,trace)
replayed_TR.append(trace)
return .(report = Analysis())

Fig. 14. Enhancing OYENTE with the CFTs from traces.

Fig. 14 shows how we enhance ovenTE. It takes in the
contract bytecode (bc) for analysis, the CFTs extracted from
traces (CFTrgr) and feeds the analysis modules of oYENTE
with new path conditions and the results of path exploration
to generate a report on vulnerabilities. More precisely, we
first record the CFTs (CFTpy) discovered by the original
oveNTE during path exploration (Line 1). For every CFT that
is extracted from traces but not in CFTpy (Line 2), we
obtain the traces covering that CFT (Line 3). We replay them
to construct path conditions, which are required to detect
vulnerabilities. For instance, to detect timestamp-dependent
contracts, oYENTE checks whether path conditions contain
timestamps. Unlike path exploration, trace replaying does not
need to solve path conditions, because a trace indicates a
feasible path. The replayed trace will be recorded to prevent
repeated replay (Line 6). We use the enhanced ovYENTE to
analyze all collected (4,979,625) contracts and present the
results in the following subsection.

C. Results of Enhanced oYENTE

oveNTE discovers four kinds of vulnerabilities. Specifically,
it detects mishandled exceptions by scanning contract byte-
code. Besides, it detects the other three bugs by first exploring
the paths of smart contracts and then checking whether these
bugs exist in the explored paths. Therefore, the enhanced
ovENTE can find the false negatives produced by the original
OYENTE, if the latter misses some paths which contain bugs.
Transaction-Ordering Dependence (TOD). The executions
of such contracts depend on the order of transactions, which
can be manipulated by malicious miners [5]. The enhanced
ovENTE discovers 521,330 TOD contracts whereas the orig-
inal one only uncovers 80.4% of them (i.e., 460,626). That



is, without enhancement, oyEnTE has 60,704 false negatives
(11.6% = 60, 704/521, 330).

Timestamp Dependence. The enhanced oYyENTE uncovers
183,668 such contracts whereas the original one only detect
84.3% of them (i.e., 154,871). Hence, the original oYENTE
results in 28,797 false negatives (15.7% = 28,797/183, 668).
Mishandled Exceptions. Such contracts fail to conduct a
proper check on the return value of calling another con-
tract and thus may produce unexpected results because ex-
ceptions may be raised during the execution of the callee
contract [5]. With/without enhancement, we detect the same
amount (115,731) of such contracts. It is excepted because
OYENTE scans the contract bytecode to locate the vulnerability
pattern instead of exploring the paths to vulnerable codes and
therefore the CFTs from execution traces have no effect in
finding such vulnerability.

Reentrancy Vulnerability. A contract A has a reentrancy
vulnerability if it calls another contract B and before the call
returns, B calls A using the intermediate state of A [5]. A reen-
trancy vulnerability in TheDAO contract results in 60 million
USD money loss [3]. The enhanced ovenTE finds 81,931 such
vulnerable contracts whereas the original one only discovers
70% of them (i.e., 57,392). In other words, the original oYENTE
leads to 24,539 false negatives (30% = 24, 539/81,931).
Summary. Execution traces can reduce the false negative rate
of ovENTE up to 30%, because traces cover some program paths
and CFTs that are not found by oYENTE.

VI. DISCUSSION

This section discusses possible limitations of our study.
First, the experimental results may be affected by the imple-
mentation flaws in the studied tools. To reduce such impact, we
have fixed the bugs which result in crashes of these tools (Sec-
tion III-C). Since our evaluation process has been automated
through scripts, we could evaluate the new versions of these
tools if any and compare them with existing ones to further
mitigate such impact. Second, the quantitative experimental
results are specific to the studied tools. It is worth noting
that most insights obtained by our analysis are general to the
techniques applied by those tools (Section III-E). To make our
experimental results representative, we select the six widely-
used open-source tools. Besides, the experimental results may
also be influenced by the configurations (e.g., max path depth)
of the studied tools. To reduce the influence, we evaluate
those tools with their default configurations, assuming that the
developers have tuned the parameters for best results. We will
explore more configurations in future work. Moreover, we will
release our data and program after paper publication for the
ease of reproducing our results and evaluating other tools.

VII. RELATED WORK

There are many program analysis tools [33], [34] for smart
contracts (EVM bytecode), which identify CFTs during anal-
ysis. oYENTE [5], casper [11], MaTan [7], mMythril [6], and
teether [16] apply SE to analyze smart contracts. evmdis
finds jump targets using reaching definition analysis [8].
sCompile [15] depends on def-use analysis to discover CFTs.
Miasm [9] and Porosity [10] discover CFTs by looking for
two code patterns. securify is a verifier for contract security,

which constructs CFG during bytecode decompilation [13].
Frowis and Bohme reuse the reaching definition analysis
module in evmdis [8] to check whether the targets of inter-
contract CFTs (e.g., by executing CALL) are affected by the
environment [26]. contractFuzzer discovers security bugs of
EVM bytecode by fuzzing [17]. osiris applies SE to reveal
integer overflow vulnerabilities in EVM bytecode, and uses
taint analysis to reduce false positives. zeus is verifier which
applies abstract interpretation and symbolic model checking
to check security properties [14]. Based on SE, teEther
discovers security bugs in EVM bytecode, and then generates
transactions which can exploit the bugs [16].

Although lots of efforts [19]-[21] have been made to binary
disassembly, it is still an unsolved problem since disassembly
is generally undecidable [22]. A recent empirical study on
nine state-of-the-art binary disassemblers shows that there
are several technical challenges (e.g., inline data, jump table,
alignment code, unreachable code, indirect calls) preventing
disassembly to obtain accurate results [23]. Besides, it is quite
different to disassemble EVM bytecode compared to binaries.
Execution traces have been used in many domains of software
engineering, e.g., bug diagnosis [35], feature location [36],
test case extraction [37], task offloading [38], fuzzing [39],
and software protection [40]. Our work differs in the goal of
recording traces, which is used for evaluating and enhancing
existing techniques in identifying CFTs, and in the way to
prepare inputs for producing traces. To prepare inputs, the
existing approaches either depend on human efforts [36],
produce random inputs [38], or deploy on the devices of
end users to collect user inputs [35]. Contrarily, we get the
inputs from the blockchain because the blockchain stores all
historical inputs (i.e., transactions) to the programs (i.e., smart
contracts). Therefore, we obtain all historical traces of smart
contracts that is extremely difficult to achieve this goal in other
platforms (e.g., get all historical traces of a desktop software
which has distributed to numerous users).

VIII. CONCLUSION

We conduct the first in-depth empirical study on the capa-
bilities of existing techniques for identifying CFTs in smart
contracts, and obtain many meaningful observations and in-
sights. Exploiting the salient features of Ethereum, we collect
all deployed smart contracts and recover all execution traces.
By contrasting the CFTs discovered by existing tools and
those extracted from the traces, we find that the traces can
significantly complement the CFTs discovered by the tools.
Leveraging this insight, we enhance oyENTE with execution
traces, and the extensive experiments demonstrate that this
approach can largely reduce its false negatives up to 30%. This
study can benefit Ethereum users, developers and analysts. We
will release our data and program after paper publication.
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