
A general framework for blockchain analytics
Massimo Bartoletti, Stefano Lande, Livio Pompianu

University of Cagliari
Italy

Andrea Bracciali
University of Stirling

UK

Abstract
Modern cryptocurrencies exploit decentralised blockchains
to record a public and unalterable history of transactions. Be-
sides transactions, further information is stored for different,
and often undisclosed, purposes, making the blockchains a
rich and increasingly growing source of valuable informa-
tion, in part of difficult interpretation. Many data analytics
have been developed, mostly based on specifically designed
and ad-hoc engineered approaches. We propose a general-
purpose framework, seamlessly supporting data analytics
on both Bitcoin and Ethereum — currently the two most
prominent cryptocurrencies. Such a framework allows us
to integrate relevant blockchain data with data from other
sources, and to organise them in a database, either SQL or
NoSQL. Our framework is released as an open-source Scala
library. We illustrate the distinguishing features of our ap-
proach on a set of significant use cases, which allow us to
empirically compare ours to other competing proposals, and
evaluate the impact of the database choice on scalability.

CCSConcepts •Applied computing→Electronic com-
merce; Digital cash;

Keywords Blockchain, Bitcoin, Ethereum, Analytics

ACM Reference Format:
Massimo Bartoletti, Stefano Lande, Livio Pompianu andAndrea Brac-
ciali. 2017. A general framework for blockchain analytics. In SE-
RIAL’17: ScalablE and Resilient InfrAstructures for distributed Ledgers,
December 11–15, 2017, Las Vegas, NV, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3152824.3152831

1 Introduction
The last few years have witnessed a steady growth in in-
terest on blockchains, driven by the success of Bitcoin and,
more recently, of Ethereum. This has fostered the research
on several aspects of blockchain technologies, from their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SERIAL’17, December 11–15, 2017, Las Vegas, NV, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5173-7/17/12. . . $15.00
https://doi.org/10.1145/3152824.3152831

theoretical foundations — both cryptographic [5, 9] and eco-
nomic [17, 29] — to their security and privacy [1, 6, 10, 13, 20].
Among the research topics emerging from blockchain

technologies, one that has received major interest is the
analysis of the data stored in blockchains. Indeed, the two
main blockchains contain several gigabytes of data (∼130GB
for Bitcoin, ∼300GB for Ethereum), that only in part are
related to currency transfers. Developing analytics on these
data allows us to obtain several insights, as well as economic
indicators that help to predict market trends.
Many works on data analytics have been recently pub-

lished, addressing anonymity issues, e.g. by de-anonymising
users [19, 20, 25, 27], clustering transactions [11, 30], or eval-
uating anonymising services [22]. Other analyses have ad-
dressed criminal activities, e.g. by studying denial-of-service
attacks [2, 32], ransomware [15], and various financial frauds
[23, 24, 31]. Many statistics on Bitcoin and Ethereum ex-
ist, measuring e.g. economic indicators [16, 28], transaction
fees [21], the usage of metadata [3], etc.

A common trait of these works is that they create views of
the blockchainwhich contain all the data needed for the goals
of the analysis. In many cases, this requires to combine data
within the blockchain with data from the outside. These data
are retrieved from a variety of sources, e.g. blockchain ex-
plorers, wikis, discussion forums, and dedicated sites (see Ta-
ble 1 for a brief survey). Despite such studies share several
common operations, e.g., scanning all the blocks and the
transactions in the blockchain, converting the value of a
transaction from bitcoins to USD, etc., researchers so far
tended to implement ad-hoc tools for their analyses, rather
than reusing standard libraries. Further, most of the few
available tools have limitations, e.g. they feature a fixed set
of analytics, or they do not allow to combine blockchain data
with external data, or they are not amenable to be updated.
The consequence is that the same functionalities have been
implemented again and again as new analytics have been
developed, as witnessed by Table 1.

In this context, we believe that the introduction of an effi-
cient, modular and general-purpose abstraction layer to man-
age internal and external information is key for blockchain
data analytics, along the lines of the software engineering
best practices of reuse.

Contributions. The main contribution of this paper is a
framework to create general-purpose analytics on the block-
chains of Bitcoin and Ethereum. The design of our tool is

https://doi.org/10.1145/3152824.3152831
https://doi.org/10.1145/3152824.3152831

SERIAL’17, December 11–15, 2017, Las Vegas, NV, USA M. Bartoletti et al.

Analysis goal Gathered data Sources

Anonymity

Transactions graph
OP_RETURN metadata
IP addresses
address tags
address tags

bitcoind [19, 20, 22, 27, 30], forum.bitcoin.org [27]
bitcoind [22]
bitcoin faucet [27], blockchain.info [22]
blockchain.info [19, 20, 30], bitcointalk.org [19, 20, 30]
bitcoin-otc.com [30], bitfunder.org [30]

Market
analytics

Transactions graph
IP addresses
address tags
trade data

bitcoind [16], blockexplorer.com [28]
blockchain.info, ipinfo.io [16]
blockchain.info [16]
bitcoincharts.com [16]

Cyber-crime

Transactions graph
mempool
unconfirmed transactions
no longer online services
list of DDoS attacks
mining pools
trades on assets/services
list of fraudulent services
address tags
exchange rate

bitcoind [2, 31, 32], blockchain.info [15, 23], Bitcore [4]
bitcoind [2]
bitcoind [2]
archive.org [31, 32]
bitcointalk.org [32]
blockchain.info, bitcoin wiki [32]
bitcoin wiki [32]
bitcointalk.org [15, 31], badbitcoin.org [31], cryptohyips.com [31]
blockchain.info [31]
bitcoincharts.com [15, 31], quandl.com [15]

Metadata OP_RETURN transactions
OP_RETURN identifiers

bitcoind [3]
kaiko.com, opreturn.org, bitcoin wiki [3]

Transaction
fees

Transactions graph
exchange rate
mining pools

bitcoind [21]
coindesk.com [21]
blockchain.info [21]

Table 1. Data gathered by various blockchain analyses.

based on an exhaustive survey of the literature on the anal-
ysis of blockchains. The results of our survey, summarized
in Table 1, highlight the need to process external data besides
those already present on the blockchain. To this purpose,
the workflow supported by our tool consists of two steps:
(i) we construct a view of the blockchain, also containing the
needed external data, and we save it in a database; (ii) we
analyse the view by using the query language of the DBMS.
The first step is supported by a new Scala library. Distin-
guishably, we allow views to be organised either as a MySQL
database, or a MongoDB collection. Our library supports
the most commonly used external data, e.g. exchange rates,
address tags, protocol identifiers, and can be easily extended
by linking the relevant data sources. We evaluate the effec-
tiveness of our framework by means of a set of paradigmatic
use cases, which we distribute, together with the source code
of our library, under an open source license1. We exploit our
use cases to evaluate the performance of SQL vs. NoSQL
databases for storing and querying blockchain views. As a
byproduct of our study, we provide a qualitative comparison
of the other tools for general-purpose blockchain analytics.

2 Creating blockchain analytics
We illustrate our framework through some case studies,
which, for uniformity, have been developed for the Bitcoin
case. We refer to our github repository for some Ethereum
examples. Our libraryAPIs provide the following Scala classes
to represent the primitive entities of the blockchain:
• BlockchainLib: main library class. It provides the
getBlockchainmethod, to iterate over Block objects.
• Block: contains a list of transactions, and some block-
related attributes (e.g., block hash and creation time).
• Transaction: contains various related attributes (e.g.,
transaction hash and size).

The library constructs the above-mentioned Scala objects
by scanning a local copy of the blockchain. It uses the client,
either Bitcoin Core or Parity, to have a direct access to the
1https://github.com/bitbart/blockchain-analytics-api

1 object MyBlockchain {
2 def main(args: Array[String]): Unit = {
3

4 val blockchain = BlockchainLib.getBitcoinBlockchain(
5 new BitcoinSettings("user", "password", "8332",

MainNet))
6 val mongo = new DatabaseSettings("myDatabase",

MongoDB , "user", "password")
7 val myBlockchain = new Collection("myBlockchain",

mongo)
8

9 blockchain.end (473100).foreach(block => {
10 block.bitcoinTxs.foreach(tx => {
11 myBlockchain.append(List(
12 ("txHash", tx.hash),
13 ("blockHash", block.hash),
14 ("date", block.date),
15 ("inputs", tx.inputs),
16 ("outputs", tx.outputs)
17))
18 })})}}

Figure 1. A basic view of the blockchain.

blocks, exploiting the provided indices. For Bitcoin, it uses
the BitcoinJ library as a basis to represent the various kinds
of objects, while for Ethereum it uses suitable Scala represen-
tations. The APIs allow constructed objects to be exported
as MongoDB documents or MySQL records. In MongoDB
(a widespread non-relational DBMS) a database is a set of
collections, each of them containing documents. Documents
are lists of pairs (k,v), where k is a string (called field name),
and v is either a value or a MongoDB document. Conversely,
MySQL implements the relational model, and represents an
objects as a record in a table. In Sections 2.1 to 2.4 we develop
a series of analytics on Bitcoin. Full Scala code which builds
the needed blockchain views, queries, and analysis results
can be found in the GitHub repository of the project1.

2.1 A basic view of the Bitcoin blockchain
Since all the analyses shown in Table 1 explore the transac-
tion graph (e.g. they investigate output values, timestamps,
metadata, etc.), our first case study focusses on a basic view
of the Bitcoin blockchain containing no external data. The
documents in the resulting collection represent transactions,
and they include: (i) the transaction hash; (ii) the hash of
the enclosing block; (iii) the date in which the block was
appended to the blockchain; (iv) the list of transaction inputs
and outputs.

We show in Figure 1 how to exploit our Bitcoin Analytics
APIs to construct this collection. Lines 1-2 are standard
Scala instructions to define the main function. The object
blockchain constructed at line 4 is a handle to the Bitcoin
blockchain. At line 5we setup the connection to Bitcoin Core,
by providing the needed parameters (user, password, and
port), and by indicating that wewant to use themain network
(alternatively, the parameter TestNet allows to use the test
network). At line 6 we setup the connection to MongoDB
(alternatively, the parameter MySQL allows to use MySQL).
Since lines 1-6 are similar for all our case studies, for the

https://en.bitcoin.it/wiki/Category:Pool_Operators
https://en.bitcoin.it/wiki/Trade
https://en.bitcoin.it/w/index.php?title=OP_RETURN&oldid=61694
https://github.com/bitbart/blockchain-analytics-api
https://bitcoin.org/en/bitcoin-core/
https://parity.io/
https://github.com/bitbart/blockchain-analytics-api
https://bitcoinj.github.io/
https://www.mongodb.com
https://www.mysql.com/

A general framework for blockchain analytics SERIAL’17, December 11–15, 2017, Las Vegas, NV, USA

1 val opReturnOutputs = new Collection("opReturn", mongo)
2

3 blockchain.start (290000).end (473100).foreach(block => {
4 block.bitcoinTxs.foreach(tx => {
5 tx.outputs.foreach(out => {
6 if(out.isOpreturn ()) {
7 opReturnOutputs.append(List(
8 ("txHash", tx.hash),
9 ("date", block.date),

10 ("protocol", OpReturn.getApplication(out.
outScript.toString)),

11 ("metadata", out.getMetadata ())
12))}})})})

Figure 2. Exposing OP_RETURN metadata.

sake of brevity we will omit them in the subsequent listings.
We declare the target collection myBlockchain at line 7.

At this point, we start navigating the blockchain (from
the origin block up to block number 473100) to populate the
collection. To do that we iterate over the blocks (line 9) (note
that b => {. . . } is an anonymous function, where b is a
parameter, and {. . . } is its body), and for each block we
iterate over its transactions (at line 10). For each transaction
we append a new document to myBlockchain (lines 11-16).
This document is a set of fields of the form (k,v), where k
is the field name, and v is the associated value. For instance,
at line 12 we stipulate that the field txHash will contain the
hash of the transaction, represented by tx.hash. This value
is obtained by the API BitcoinTransaction.
Running this piece of code results in a view, which we

can process to obtain several standard statistics, like e.g. the
number of daily transactions, their average value, the largest
recent transactions, etc.2

2.2 Analysing OP_RETURN metadata
Besides being used as a cryptocurrency, Bitcoin allows for
appending a few bytes of metadata to transaction outputs.
This is done preeminently through the OP_RETURN op-
erator. Several protocols exploit this feature to implement
blockchain-based applications, like e.g. digital assets and
notarization services [3].

We now construct a view of the blockchain which exposes
the protocol metadata. More specifically, the entries of view
represent transaction outputs, and are composed of: (i) the
hash of the transaction containing the output; (ii) the date in
which the transaction has been appended to the blockchain;
(iii) the name of the protocol that produced the transac-
tion; (iv) the metadata contained in the OP_RETURN script.
Our API supports the creation of this view by providing the
method OpReturn.getApplication (used at line 10 in Fig-
ure 2), which takes as input a piece of metadata, and returns
the name of the associated protocol. This is inferred by the
results of the analysis in [3].

2Note that one could also perform these queries during the construction of
the view. However, this would not be convenient in general, since — as we
will see also in the following case studies — many relevant queries can be
performed on the same view.

1 val blockchain = BlockchainLib.getBitcoinBlockchain(new
BitcoinSettings("user","password","8332",MainNet ,true))

2 val mongo = new DatabaseSettings("myDatabase", MongoDB , "user"
, "password")

3 val txWithFees = new Collection("txWithFees", mongo)
4

5 blockchain.end (473100).foreach(block => {
6 block.bitcoinTxs.foreach(tx => {
7 txWithFees.append(List(
8 ("blockHash", block.hash),
9 ("txHash", tx.hash),

10 ("fee", tx.getInputsSum () - tx.getOutputsSum ()),
11 ("date", block.date),
12 ("rate", Exchange.getRate(block.date))
13))})})

Figure 3. Exposing transaction fees.

The obtained view can be used to perform various analyses.
For instance, we show the number of transactions associ-
ated with the most used protocols (only those with at least
1000 transactions). The protocol with the highest number
of transactions is Colu, which is used to certify and trans-
fer the ownership of physical assets. The second most used
protocol is Omni, followed by Blockstore, a key-value store
upon which other protocols are based.

pof
exis

t
colu

coin
spa

rk

ope
nas

setsomn
i
fact

om
stam

per
y

bloc
ksig

n

mon
egr

aph
ascr

ibe

eter
nity

wal
l

bloc
ksto

re
sma

rtbi
t

50

100

150

200

250
N
um

be
ro

ft
ra
ns
ac
tio

ns
(K
)

2.3 Transaction fees
In this section we study transaction fees, which are earned
by miners when they append a new block to the blockchain.
Each transaction in the block pays a fee, which in Bitcoin
is defined as the difference between its input and output
values.While the values of outputs are stored explicitly in the
transaction, those of inputs are not: to obtain them, one must
retrieve from a past block the transaction that is redeemed
by the input. This can be obtained through a “deep” scan of
the blockchain, which is featured by our library.
We show in Figure 3 how to construct a MongoDB col-

lection which contains, for each transaction: (i) the hash of
the enclosing block; (ii) the transaction hash; (iii) the fee;
(iv) the date in which the transaction was appended to the
blockchain; (v) the exchange rate between BTC and USD in
such date. Since exchange rates are not stored in the Bitcoin
blockchain, we resort to an external source (Coindesk) to
obtain them.
The extra parameter true in the BitcoinSettings con-

structor (missing in the previous example), triggers the “deep”
scan. When scanning the blockchain in this way, the library
maintains a map which associates transaction outputs to

https://blockchain.info/charts/n-transactions
https://bitinfocharts.com/comparison/bitcoin-transactionvalue.html
https://blockchain.info/largest-recent-transactions
https://blockchain.info/largest-recent-transactions
https://en.bitcoin.it/wiki/OP_RETURN
https://en.bitcoin.it/wiki/OP_RETURN
https://www.colu.com/
http://www.omnilayer.org/
https://github.com/blockstack/blockchain-id/wiki/Blockstore
http://www.coindesk.com/price/bitcoin-price-index/

SERIAL’17, December 11–15, 2017, Las Vegas, NV, USA M. Bartoletti et al.

their values, and inspects this map to obtain the value of in-
puts3. The methods getInputsSum (resp., getOutputsSum)
at line 10 returns the sum of the values of the inputs (resp.,
the outputs) of a transaction.
The obtained collection can be used to perform several

standard statistics, e.g. the daily total transaction fees, the av-
erage fee, the percentage earned by miners from transaction
fees, etc. We analyse the so-called whale transactions [14],
which pay a unusually high fee to miners.

To obtain the whale transactions, we first compute the
average x̄ and standard deviation σ of the fees in all trans-
actions: in USD, we have x̄ = 0.41, σ = 12.09. Then, we
define whale transactions as those which pay a fee greater
than x̄ + 2σ = 24.58 USD. Overall we collect 242, 839 whale
transactions; those with biggest fee are displayed below.

Fee (USD) Date Transaction hash
136243.37 2016-04-26 14:15:22 cc455ae816e6cdafdb58d54e35d4f46d860047458eacf1c7405dc634631c570d
56493.50 2017-01-04 20:01:28 d38bd67153d774a7dab80a055cb52571aa85f6cac8f35f936c4349ca308e6380
39502.15 2017-05-31 14:28:51 cb95ab3aef378c14bc59d0db682d96202b981c1f8fad7d66e23e0be06f2a00c4
25095.71 2017-05-31 14:28:51 8e12a1aba87e4657f5fabec1121ed57f706805ad6d4ffe88c6fce78596bd9b75
23518.00 2013-08-28 10:45:17 4ed20e0768124bc67dc684d57941be1482ccdaa45dadb64be12afba8c8554537

2.4 Address tags
The webpage blockchain.info/tags hosts a list of associ-
ations between Bitcoin addresses and tags which briefly de-
scribe their usage. Table 1 shows that address tags are widely
adopted. Cyber-crime studies retrieve addresses tagged as
scam or ransomware on forums. Market analyses exploit tags
for recognising addresses of business services. Anonymity
studies tag the addresses that seem to belong to the same
entity. In this section we construct a blockchain view where
outputs are associated with the tags of the address which
can redeem them (we discard the outputs with untagged ad-
dresses). More specifically, we construct a view representing
transaction outputs that contains: (i) hash of the enclosing
transaction; (ii) the date in which the transaction has been
appended to the blockchain; (iii) the output value (in BTC);
(iv) the address receiving the payment; (v) the tag associated
to the address.
To perform the analysis, we query blockchain.info to

retrieve the tags associated to addresses. Using the obtained
view, one can aggregate transactions on different business
levels [16] to obtain statistics about the total number of trans-
actions, the amount of BTC exchanged, the geographical dis-
tributions of tagged service, etc. In particular, we aggregate
all addresses whose tag starts with SatoshiDICE, and then
we measure the number of daily transactions which send
BTC to one of these addresses. The diagram below shows the
results of this analysis. The fall in the number of transactions
at the start of 2015 may be due to the fact that SatoshiDICE
is using untagged addresses.

3Since inputs can only redeemed transactions on past blocks, the map
always contains the required output. Although coinbase inputs do not have
a value in the map, we calculate their value using the total fees of the current
block and the block height (reward is halved each 210,000 blocks).

Case MongoDB MySQL
Create Query Size Create Query Size

Basic 9 h 2860 s 300 GB 9 h 3.5 h 266 GB
Metadata 2 h 0.5 s 0.5 GB 1.4 h 2.5 s 0.5 GB

Fees 9 h 448 s 51 GB 8.5 h 614 s 43.5 GB
Tags 4 h 1.8 s 0.8 GB 2.3 h 2.7 s 0.6 GB
Table 2. Performance evaluation of our framework.

10.2
012

04.2
013

11.2
013

05.2
014

12.2
014

06.2
015

01.2
016

0

1,000

2,000

3,000

N
um

be
ro

ft
ra
ns
ac
tio

ns

3 Implementation and validation
We implement the Ethereum-side of our library by exploit-
ing Parity, queried by means of the web3j library. Bitcoin
data is provided by both BitcoinJ and the RPC interface of
Bitcoin Core. While BitcoinJ APIs only allow the program-
mer to retrieve a block by its hash, Bitcoin Core’s interface
exposes calls to do so by its height on the chain. Further-
more, BitcoinJ block objects do not carry information about
block height and the hash of the next block (they only have
backward pointers, as defined in the blockchain), which can
be fetched by using Bitcoin Core. Our APIs allow to navi-
gate blockchains. Particularly, in the Bitcoin case, we do this
by iterating over these steps: (i) get the hash h of the block
of height i , by using Bitcoin Core; (ii) get the block with
hash h, by using BitcoinJ; (iii) increment i . By default, the
loop starts from 0 and stops at the last block. The methods
blockchain.start(i), and blockchain.end(j) allow to
scan an interval of blockchains, as shown in Section 2.2. We
write the SQL queries exploiting ScalikeJDBC, a SQL-based
DB access library for Scala. ScalikeJDBC provides also a DSL
for writing SQL queries.

We carry out our experiments using consumer hardware,
i.e. a PC with a quad-core Intel Core i5-4440 CPU@ 3.10GHz,
equippedwith 32GB of RAMand 2TB of hard disk storage. All
the experiments scan the Bitcoin blockchain from the origin
block up to block number 473100 (added on 2017/06/27).
Table 2 displays a comparison of the size of each view, and
the time required to create and query it.
Note that the size of the blockchain view constructed

in Basic (Section 2.1) is more than twice than the current
Bitcoin blockchain. This is because, while Bitcoin stores
scripts in binary format, our library writes them as strings,
so to allow for constructing indices and performing queries
on scripts. Moreover, the SQL query in Basic is particularly
slow because of the join operations it performs. Indeed, SQL

https://blockchain.info/charts/transaction-fees
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://blockchain.info/tags
https://github.com/web3j/web3j
http://scalikejdbc.org/

A general framework for blockchain analytics SERIAL’17, December 11–15, 2017, Las Vegas, NV, USA

Tool Blockchain Database Schema Ext. data Updated
blockparser BTC RAM-only Custom Custom 2015-12

rusty-blockparser BTC SQL, CSV Fixed Custom 2017-09
blockchainsql.io BTC SQL Fixed None N/A

BlockSci BTC RAM-only Custom Custom 2017-09
python-parser BTC None None Custom 2017-05

Our framework BTC, ETH MySQL, MongoDB Custom Custom 2017-09

Table 3. General-purpose blockchain analytics frameworks.

and MongoDB query times are quite similar in all the other
cases, where no join operation is required.

4 Comparison with related tools
We now compare other general-purpose blockchain anal-
ysis tools with ours. Table 3 summarises the comparison,
focussing on the target blockchain, the DBMS used, the sup-
port for creating custom a schema, and for embedding ex-
ternal data. The rightmost column indicates the date of the
most recent commit in the repository. Note that all the tools
which support Bitcoin also work on Bitcoin-based altcoins.

The projects blockparser and rusty-blockparser al-
low one to perform full scans of the blockchain, and to de-
fine custom listeners which are called each time a new block
or transaction is read. Unlike our library, these tools offer
limited built-in support for combining blockchain and exter-
nal data. The website blockchainsql.io has a GUI through
which one can write and execute SQL queries on the Bitcoin
blockchain. This is the only tool, among those mentioned
in Table 3, that does not need to store a local copy of the
blockchain. A drawback is that the database schema is fixed,
hence it is not possible to use it for analytics which require ex-
ternal data. While the other tools store results on secondary
memory, blockparser and BlockSci keep all the data in
RAM. Although this speeds up the execution, it demands for
“bigmemory servers”, since the size of the blockchains of both
Bitcoin and Ethereum has largely surpassed the amount of
RAM available on consumer hardware. Note instead that the
disk-based tools also work on consumer hardware. Some low-
level optimizations, combined with an in-memory DBMS,
help [12] to overwhelm the performance of the disk-based
tools. Unlike the other tools, [12] provides also data about
transactions broadcast on the peer-to-peer network.

Remarkably, as far as we know none of the analyses men-
tioned in Table 1 uses the general-purpose tools in Table 3.
Instead, several of them acquire blockchain raw data by using
Bitcoin Core4 (the reference Bitcoin client), and encapsulate
them into Java objects with the BitcoinJ APIs before process-
ing. However, neither Bitcoin Core nor BitcoinJ are natural
tools to analyse the blockchain: the intended use of BitcoinJ
is to support the development of wallets, and so it only gives
direct access to blocks and transactions from their hash, but
it does not allow to perform forward scans of the blockchain.

4https://bitcoin.org/en/bitcoin-core. Another popular tool for access-
ing the blockchain was Bitcointools (https://github.com/gavinandresen/
bitcointools), but it seems no longer available.

On the other hand, Bitcoin Core would provide the means
to scan the blockchain, but this requires expertise on its low-
level RPC interface, and even doing so would result in raw
pieces of JSON data, without any abstraction layer.
A precise comparison of the performance of these tools

against ours is beyond the goals of this paper. The perfor-
mance analysis in Table 2 is a first step towards the definition
of a suite of benchmarks for evaluating blockchain parsers.

5 Conclusions and future work
We have presented a framework for developing general-
purpose analytics on the blockchains of Bitcoin and Ethereum.
Its main component is a Scala library which can be used
to construct views of the blockchain, possibly integrating
blockchain data with data retrieved from external sources.
Blockchain views can be stored as SQL or NoSQL databases,
and can be analysed by using their query languages. Our ex-
periments confirmed the effectiveness and generality of our
approach, which uniformly comprises in a single framework
several use cases addressed by various ad-hoc approaches
in literature. Indeed, the expressiveness of our framework
overcomes that of the closer proposals in the built-in sup-
port for external data, and the support of different kinds of
databases and blockchains. Importantly, coming in the form
of an open source library for a mainstream language, our
framework is amenable of being validated and extended by
a community effort, following reuse best practices.
Specifically, on the comparison of SQL vs NoSQL, our

experiments did not highlight significant differences in the
complexity of writing and executing queries in the two lan-
guages. Instead, we observed that the schema-less nature of
NoSQL databases simplifies the Scala scripts. From Table 2
we see that both creation and query time are comparable
as order of magnitude. As already discussed in Section 3,
the difference in the execution time of queries is due to join
operations in SQL. A more accurate analysis, carried over
a larger benchmark, is scope for future work. Anyway, it is
worth recalling that the goal of our proposal is provide to
the final user the flexibility to choose the preferred database,
rather than ascertain an idea of best-fit-for-all in the choice.

Although our framework is general enough to cover most
of the analyses in Table 1, it has some limitations that can be
overcome with future extensions. In particular, some anal-
yses addressing e.g. information propagation, forks and at-
tacks [7, 8, 18, 26] require to gather data from the underlying
peer-to-peer network. To support this kind of analyses one
has to run a customized node (either of Bitcoin or Ethereum).
Such an extension would also be helpful to obtain on-the-fly
updates of the analyses.

Acknowledgments. This work is partially supported by Aut.
Reg. of Sardinia P.I.A. 2013 “NOMAD”, This paper is based
upon work from COST Action IC1406 cHiPSET, supported by
COST (European Cooperation in Science and Technology).

https://github.com/znort987/blockparser
https://github.com/mikispag/rusty-blockparser
https://bitcoinj.github.io
https://bitcoin.org/en/bitcoin-core
https://github.com/gavinandresen/bitcointools
https://github.com/gavinandresen/bitcointools

SERIAL’17, December 11–15, 2017, Las Vegas, NV, USA M. Bartoletti et al.

References
[1] Elli Androulaki, Ghassan Karame, Marc Roeschlin, Tobias Scherer, and

Srdjan Capkun. 2013. Evaluating User Privacy in Bitcoin. In Financial
Cryptography and Data Security (LNCS), Vol. 7859. Springer, 34–51.
https://doi.org/10.1007/978-3-642-39884-1_4

[2] Khaled Baqer, Danny Yuxing Huang, Damon McCoy, and Nicholas
Weaver. 2016. Stressing Out: Bitcoin “Stress Testing”. In Financial
Cryptography Workshops (LNCS), Vol. 9604. Springer, 3–18.

[3] Massimo Bartoletti and Livio Pompianu. 2017. An analysis of Bitcoin
OP_RETURN metadata. In Financial Cryptography Workshop (LNCS),
Vol. 10323. Springer.

[4] Stefano Bistarelli and Francesco Santini. 2017. Go with the -Bitcoin-
Flow, with Visual Analytics. In ARES. 38:1–38:6. https://doi.org/10.
1145/3098954.3098972

[5] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A. Kroll, and Edward W. Felten. 2015. SoK: Research Perspec-
tives and Challenges for Bitcoin and Cryptocurrencies. In IEEE S & P.
104–121. https://doi.org/10.1109/SP.2015.14

[6] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark,
Joshua A. Kroll, and Edward W. Felten. 2014. Mixcoin: Anonymity for
Bitcoin with Accountable Mixes. In Financial Cryptography and Data
Security (LNCS), Vol. 8437. Springer, 486–504. https://doi.org/10.1007/
978-3-662-45472-5_31

[7] Christian Decker and Roger Wattenhofer. 2013. Information propa-
gation in the Bitcoin network. In P2P. IEEE, 1–10. https://doi.org/10.
1109/P2P.2013.6688704

[8] Joan Antoni Donet Donet, Cristina Pérez-Solà, and Jordi Herrera-
Joancomartí. 2014. The Bitcoin P2P Network. In Financial Cryptogra-
phy Workshops (LNCS), Vol. 8438. Springer, 87–102. https://doi.org/10.
1007/978-3-662-44774-1_7

[9] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The
Bitcoin Backbone Protocol: Analysis and Applications. In EURO-
CRYPT (LNCS), Vol. 9057. Springer, 281–310. https://doi.org/10.1007/
978-3-662-46803-6_10

[10] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis,
Hubert Ritzdorf, and Srdjan Capkun. 2016. On the Security and
Performance of Proof of Work Blockchains. In ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, 3–16. https:
//doi.org/10.1145/2976749.2978341

[11] Martin Harrigan and Christoph Fretter. 2016. The Unreasonable Effec-
tiveness of Address Clustering. In UIC/ATC/ScalCom/CBDCom/IoP/S-
martWorld. IEEE, 368–373.

[12] Harry Kalodner, Steven Goldfeder, Alishah Chator, Malte Möser, and
Arvind Narayanan. 2017. BlockSci: Design and applications of a
blockchain analysis platform. arXiv preprint arXiv:1709.02489 (2017).

[13] Ghassan O. Karame, Elli Androulaki, Marc Roeschlin, Arthur Gervais,
and Srdjan Capkun. 2015. Misbehavior in Bitcoin: A Study of Double-
Spending and Accountability. ACM Trans. Inf. Syst. Secur. 18, 1 (2015),
2. https://doi.org/10.1145/2732196

[14] Kevin Liao and Jonathan Katz. 2017. Incentivizing Blockchain Forks
via Whale Transactions. In Financial Cryptography Workshop (LNCS),
Vol. 10323. Springer.

[15] Kevin Liao, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. 2016.
Behind closed doors: measurement and analysis of CryptoLocker ran-
soms in Bitcoin. In APWG Symp. on Electronic Crime Research (eCrime).
IEEE, 1–13. https://doi.org/10.1109/ECRIME.2016.7487938

[16] Matthias Lischke and Benjamin Fabian. 2016. Analyzing the Bitcoin
network: The first four years. Future Internet 8, 1 (2016), 7.

[17] Loi Luu, Ratul Saha, Inian Parameshwaran, Prateek Saxena, and
Aquinas Hobor. 2015. On Power Splitting Games in Distributed Com-
putation: The Case of Bitcoin PooledMining. In IEEE Computer Security
Foundations Symposium. IEEE, 397–411. https://doi.org/10.1109/CSF.
2015.34

[18] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. 2016. Refund
Attacks on Bitcoin’s Payment Protocol. In Financial Cryptography and
Data Security (LNCS), Vol. 9603. Springer, 581–599. https://doi.org/10.
1007/978-3-662-54970-4_34

[19] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko,
Damon McCoy, Geoffrey M. Voelker, and Stefan Savage. 2013. A fistful
of bitcoins: characterizing payments among men with no names. In
Internet Measurement Conference. ACM, 127–140. https://doi.org/10.
1145/2504730.2504747

[20] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko,
Damon McCoy, Geoffrey M. Voelker, and Stefan Savage. 2016. A
fistful of Bitcoins: characterizing payments among men with no names.
Commun. ACM 59, 4 (2016), 86–93. https://doi.org/10.1145/2896384

[21] Malte Möser and Rainer Böhme. 2015. Trends, tips, tolls: A longi-
tudinal study of Bitcoin transaction fees. In Financial Cryptography
Workshops (LNCS), Vol. 8976. Springer, 19–33. https://doi.org/10.1007/
978-3-662-48051-9

[22] Malte Möser and Rainer Böhme. 2017. Anonymous Alone? Measuring
Bitcoin’s Second-Generation Anonymization Techniques. In EuroS&P
Workshops. 32–41. https://doi.org/10.1109/EuroSPW.2017.48

[23] M. Möser, R. Böhme, and D. Breuker. 2013. An inquiry into money
laundering tools in the Bitcoin ecosystem. InAPWG Symp. on Electronic
Crime Research (eCrime). IEEE, 1–14. https://doi.org/10.1109/eCRS.
2013.6805780

[24] Malte Möser, Rainer Böhme, and Dominic Breuker. 2014. Towards
Risk Scoring of Bitcoin Transactions. In Financial Cryptography Work-
shops (LNCS), Vol. 8438. Springer, 16–32. https://doi.org/10.1007/
978-3-662-44774-1_2

[25] Micha Ober, Stefan Katzenbeisser, and Kay Hamacher. 2013. Structure
and Anonymity of the Bitcoin Transaction Graph. Future Internet 5, 2
(2013), 237–250. https://doi.org/10.3390/fi5020237

[26] Giuseppe Pappalardo, Tiziana di Matteo, Guido Caldarelli, and Tomaso
Aste. 2017. Blockchain Inefficiency in the Bitcoin Peers Network. CoRR
abs/1704.01414 (2017). http://arxiv.org/abs/1704.01414

[27] Fergal Reid and Martin Harrigan. 2013. An analysis of anonymity in
the Bitcoin system. In Security and privacy in social networks. Springer,
197–223. https://doi.org/10.1007/978-1-4614-4139-7_10

[28] Dorit Ron and Adi Shamir. 2013. Quantitative analysis of the full
Bitcoin transaction graph. In Financial Cryptography and Data Se-
curity (LNCS), Vol. 7859. Springer, 6–24. https://doi.org/10.1007/
978-3-642-39884-1

[29] Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden.
2016. Incentive Compatibility of Bitcoin Mining Pool Reward Func-
tions. In Financial Cryptography and Data Security (LNCS), Vol. 9603.
Springer, 477–498. https://doi.org/10.1007/978-3-662-54970-4_28

[30] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. 2014. Bitio-
dine: Extracting intelligence from the Bitcoin network. In Financial
Cryptography and Data Security (LNCS), Vol. 8437. Springer, 457–468.

[31] Marie Vasek and Tyler Moore. 2015. There’s No Free Lunch, Even
Using Bitcoin: Tracking the Popularity and Profits of Virtual Currency
Scams. In Financial Cryptography and Data Security (LNCS), Vol. 8975.
Springer, 44–61. https://doi.org/10.1007/978-3-662-47854-7_4

[32] Marie Vasek, Micah Thornton, and Tyler Moore. 2014. Empirical
Analysis of Denial-of-Service Attacks in the Bitcoin Ecosystem. In
Financial Cryptography Workshops (LNCS), Vol. 8438. Springer, 57–71.
https://doi.org/10.1007/978-3-662-44774-1_5

https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1145/3098954.3098972
https://doi.org/10.1145/3098954.3098972
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1007/978-3-662-44774-1_7
https://doi.org/10.1007/978-3-662-44774-1_7
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1145/2732196
https://doi.org/10.1109/ECRIME.2016.7487938
https://doi.org/10.1109/CSF.2015.34
https://doi.org/10.1109/CSF.2015.34
https://doi.org/10.1007/978-3-662-54970-4_34
https://doi.org/10.1007/978-3-662-54970-4_34
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1145/2896384
https://doi.org/10.1007/978-3-662-48051-9
https://doi.org/10.1007/978-3-662-48051-9
https://doi.org/10.1109/EuroSPW.2017.48
https://doi.org/10.1109/eCRS.2013.6805780
https://doi.org/10.1109/eCRS.2013.6805780
https://doi.org/10.1007/978-3-662-44774-1_2
https://doi.org/10.1007/978-3-662-44774-1_2
https://doi.org/10.3390/fi5020237
http://arxiv.org/abs/1704.01414
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-642-39884-1
https://doi.org/10.1007/978-3-642-39884-1
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-47854-7_4
https://doi.org/10.1007/978-3-662-44774-1_5

	Abstract
	1 Introduction
	2 Creating blockchain analytics
	2.1 A basic view of the Bitcoin blockchain
	2.2 Analysing OP_RETURN metadata
	2.3 Transaction fees
	2.4 Address tags

	3 Implementation and validation
	4 Comparison with related tools
	5 Conclusions and future work
	References

