
Security Vulnerabilities in Ethereum Smart Contracts

Ardit Dika and Mariusz Nowostawski
Norwegian University of Science and Technology | NTNU

Information Security and Computer Science Departments, Gjovik, Norway
e-mail: dika.ardit@gmail.com, mariusz.nowostawski@ntnu.no

Abstract—
Ethereum provides an open, global computing platform,

that allows the exchange of value, automated and enforced
workflows, and the development of general purpose applica-
tions and libraries. Smart contracts present a foundation for
the computational capabilities of the Ethereum network. Moti-
vated by the known security breaches and recurring financial
losses due to smart contracts vulnerabilities, we review the
field of security of smart contract programming and provide
a comprehensive taxonomy of all known security issues. We
achieve that by a thorough review of known vulnerabilities. In
this work we also review the security code analysis tools used
to identify known vulnerabilities. We conduct the investigation
of security code analysis tools on Ethereum by assessing their
effectiveness and accuracy on known issues on a representative
sample of vulnerable contracts. We have used 21 clean, and 24
vulnerable contracts and four security tools: Oyente, Securify,
Remix, and SmartCheck, to assess the quality of contemporary
security analysis tools specific to Ethereum. The results indicate
that there are overall inconsistencies between the tools in
respect to different security properties. SmartCheck outper-
formed the other tools in terms of effectiveness, whereas Oyente
performed the best in terms of accuracy. Furthermore, based
on the limitations we identified, we propose improvements
within the user interfaces, interpretation of results, and, most
importantly, an enhanced list for vulnerability checks.

1. Introduction

Blockchain technology and cryptocurrencies have expe-
rienced a steady increase of attention from academia and the
industry alike [1]. Blockchain technology represents a fully
distributed public ledger and a peer-to-peer platform which
makes use of cryptography to securely host applications,
transfer digital currencies, messages, and store data [2].

One of the most popular blockchain platforms as of
March 2018, based on the current cryptocurrency market
capitalization1, is Ethereum. Vitalik Buterin, the main in-
ventor of Ethereum, in one of the panel discussion explains
Ethereum as a general purpose blockchain, meaning that
the Ethereum network is able to accomodate algorithms
expressed in a general purpose programming language. This

1. Cryptocurrency Market Capitalisation: https://coinmarketcap.com/

allows developers to build a variety of applications, ranging
from simple wallets to financial systems, energy trading sys-
tems or new and novel crypto currencies. Instead of building
a separate blockchain for each use case or application, a
variety of use cases can be done through technology known
as smart contracts. Ethereum can be considered a relatively
new and highly experimental platform, both because of the
time when it was introduced (July 20152), as well as its abil-
ity to create distributed applications with a Turing-complete
programming language running in a decentralised, peer-to-
peer blockchain platform. A general-purpose programming
language in a blockchain-based platform creates the op-
portunity for implementing a wide range of decentralised
applications. On the other side, it creates opportunities for
abuse.

In this work, we investigate the known security vulner-
abilities of smart contracts and provide an updated in-depth
analysis of existing smart contract vulnerabilities. In the
second part, we investigate the security code analysis tools
used to identify vulnerabilities and bugs in smart contracts.
To the best of our knowledge this is a unique contribution
to the field as the analysis of existing tools has not been
conducted before.

2. Problem Description

In addition to expressing business logic and handling
different, sometimes heavy computational tasks, based on
the Ether price3, smart contracts also present a foundation
for possessing expensive digital assets. This means that there
are currently financial and semi-financial smart contracts
which are worth thousands and millions of dollars. Due to
those reasons, smart contracts and the Ethereum platform are
continuously a target for adversaries and manipulators. As a
result, one of the main and active research areas is within the
security drawbacks of high-level programming languages
used for smart contract programming. The research com-
munity proposes further research and development work in
formal verification, techniques for analyzing smart contracts,
and defensive programming techniques.

What Ethereum and other popular blockchain platforms
have in common, is the publicly visible data. This is

2. Link: https://blog.ethereum.org/2015/07/30/ethereum-launches/

3. $705 as of the time of writing: https://ethereumprice.org/

955

2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing,
Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics

978-1-5386-7975-3/18/$31.00 ©2018 IEEE
DOI 10.1109/Cybermatics_2018.2018.00182

a result of having a decentralized peer-to-peer network
and distributed ledger among thousands of nodes4. Hence,
Ethereum is referred to as The World Computer5. Regard-
less of the positive impact and many benefits that this
approach has on Ethereum and generally in any other public
distributed blockchain, it presents serious challenges from
the security perspective. Implementing specific use cases of
smart contracts, considering the fact that the complete source
code of an application is publicly visible from anyone in the
network, and making sure that the code is correctly validated
and verified.

One of the key characteristics of Ethereum’s platform is
that once you deploy your smart contract in the blockchain,
you cannot modify or alter it. This characteristic can both
be seen as advantageous and disadvantageous. The advan-
tage is that it represents a trustworthy platform where the
developers cannot modify the smart contract once they
have deployed it, with the sole purpose of gaining illegal
profit and misleading the users. The disadvantage lies in
the unusual development challenges, such as the inability to
easily patch discovered vulnerabilities in already deployed
contracts.

Due to the above issues, a significant number of smart
contracts are considered to be vulnerable. In 2016, a sym-
bolic execution analysis tool (Oyente) was developed by Luu
et al. [3], which analysed all smart contracts in the Ethereum
blockchain at that time, in order to identify potential vul-
nerabilities6. Their results state, that at that time, 45% of
19,366 smart contracts in total were vulnerable with at least
one security issue [3].

Our work provides insight into the smart-contract secu-
rity domain. Through a thorough research and a comprehen-
sive experiment on security vulnerabilities and code analysis
tools we propose up-to-date taxonomy of vulnerabilities,
their architectural classification, in conjunction with their
severity level. In addition, we conduct an experiment on
several security tools to assess their accuracy, effectiveness,
and consistency. This generates results, such as false positive
and false negative rates and an overall discussion on how
effective these tools are in analysing the smart contracts
from the data collected in this study.

3. Related Work

We focus on three aspects in the area of smart contracts:
security vulnerabilities, smart contract attacks/incidents, and
preventive methodologies. In order to identify the current
state of the art, we have conducted literature review. Some
of the existing research is focused on security vulnerabilities
in general [3], [4], [5], [6], [7]. Others are focused on
specific vulnerabilities and smart contract challenges, such
as privacy [8], [9]. There are also articles focused only on

4. Ethereum as of May, 2017 has nearly 25,000 nodes. Link: http://www.
trustnodes.com/2017/05/31/ethereum-now-three-times-nodes-bitcoin

5. Ethereum: the World Computer: https://www.youtube.com/watch?v=
j23HnORQXvs

6. Vulnerabilities that Oyente is able to identify: transaction-ordering
dependence, timestamp dependence, mishandled exceptions and reentrancy.

one specific vulnerability, for example, on timed commit-
ments [10] and smart contract altering possibilities [11].

One of the most established taxonomies in this area is
the one provided by Atzei et al. [4]. The levels chosen to
represent the vulnerabilities are (i) focused on the program-
ming language Solidity, (ii) specific to the underlying imple-
mentation of the EVM, and (iii) specific to the Blockchain
itself. Note, Solidity vulnerabilities are also applicable for
other high-level programming languages in Ethereum. This
taxonomy seems to properly classify all vulnerabilities based
on their level, since a newly discovered vulnerability falls
in one of these categories. Therefore, we have used it as a
basis for our own taxonomy.

Another taxonomy is provided by Alharby and
Moorsel [5]. This one is based on a systematic study of
current research topics related to smart contracts, and it
identifies four key smart contract issues; codifying issues,
security issues, privacy issues, and performance issues. By
codifying issues they refer to the challenges that are related
with the development of smart contracts. This could be
generally called validation issues. The security issues mean
bugs or vulnerabilities (verification), and privacy issues
are related to unintentional information disclosures. Lastly,
performance issues are related to the challenges that affect
the ability of blockchain to scale. [5]

Other research articles refer to security vulnerabilities in
general, without any categorisation, such as, in [3], where
they discuss only severe vulnerabilities. In [7], where Bu-
terin with the community’s help created a crowd sourced list
of the major bugs with smart contracts, and in [6] through
a university course for smart contract programming, they
exposed numerous common pitfalls and vulnerabilities.

In addition to the above, more general research on
vulnerabilities, there is research on specific vulnerability, for
example privacy preserving issues. It represents a category
of development challenges to keep critical functions secret,
apply correctly cryptographic protocols, and avoid disclos-
ing data that should not have been public in the first place. A
research on ‘replacing paper contracts with Ethereum smart
contracts’ finds out what kind of criteria Ethereum needs to
fulfil to be properly applied on replacing paper contracts [8].
They conclude that due to a large privacy setback it is not
yet recommended to replace legally-enforceable agreements
with smart contract applications [8]. This is as a result of
the private information these papers (agreements) hold and
the damage that could be done if they become public or
if the blockchain does not work as intended on preserving
privacy. According to [5], lack of transactional privacy and
lack of data feeds privacy are two issues correlated with the
privacy preserving category.

A similar research on the issue of privacy-preserving
is conducted by Kosba et al. [9]. They highlighted the
significant importance of privacy in smart contract appli-
cations generally in blockchain technologies, not only in
Ethereum. For a solution to this issue, they have proposed a
decentralized smart contract system, Hawk, which does not
store financial transactions in the blockchain and saves the
developers from implementing any cryptographic function-

956

ality [9]. Juels et al. [12], also investigated the leakage of
confidential information and theft of cryptographic keys for
smart contracts used in criminal activities.

One of the most prominent vulnerabilities of Ethereum
is considered to be the timestamp dependency. Boneh
and Naor [10], introduce and construct timed commitment
schemes which are proposed as a solution for this vulnera-
bility. Their proposed solution could be applied when two
mutually suspicious parties wish to exchange signatures on
a contract.

Another issue that has been tackled in the literature is the
gas-costly pattern, more specifically, the under-optimised
smart contracts that consume more gas than necessary. A
research investigation in this regard is done by Chen et
al. [13], in which they identified 7 gas costly patterns and
grouped them into two categories. They also developed a
tool, named Gasper, focused only on identifying gas-costly
patterns by analysing the smart contracts’ bytecode [13].
Their results indicate that over 80% of 4240 smart contracts
analysed, suffer from one of the gas-costly patterns [13].

In addition, there are specific challenges in communi-
cating with external services (Oracles7). Zhang et al. [14]
presented an authenticated data feed system called Town
Crier, which enables smart contracts to consume data from
outside the blockchain while preserving confidentiality with
encrypted parameters.

There is a significant number of issues, some of which
have known solutions. Some of the solutions proposed re-
quire for blockchain upgrades, meaning that all the nodes
have to upgrade their version in order to solve a particular
issue, or they are proposed as a separate platform on top of
a blockchain. This makes it challenging in rolling out the
actual fixes.

4. Ethereum Vulnerabilities

In this section we provide a brief explanation for each
of the security vulnerabilities that has been included into the
taxonomy. Some of these vulnerabilities have already been
known for a while, therefore we follow well-established
naming conventions. Some small self-explanatory issues
with the Ethereum smart contracts are excluded from the
list and the main focus of this section is (mostly) within the
severe vulnerabilities.

Reentrancy is considered to be one of the most severe
vulnerability. It has been first recognised by the biggest at-
tack ever made (TheDAO hack). The reentrancy vulnerabil-
ity relies on the interaction between two smart contracts, (A)
and (B). If through an interaction from a contract (A) with
another contract (B), (A) handing over control to contract
(B) makes it possible for (B) to call back into (A) before
the first initiated interaction is completed, contract (B) can
effectively retrieve multiple refunds and empty the balance

7. Oracle: A reliable connection between Web APIs and smart contracts,
since smart contracts cannot fetch external data on their own.

of contract (A). The use of checks-effects-interactions8 is
recommended as a solution to avoid this vulnerability.

tx.origin (transaction origin) is the identity of the user
who initiated a chain of interactions between contracts. The
usage of tx.origin for authorisation is discouraged, as it is
easy for attacker to spoof that value in a contract. tx.origin
must be used with extra care not to allow an attacker
obtaining leveraged privileges in the contract.

Callstack depth exception. It is possible to makes an
external call to fail because it exceeds the maximum call
stack of 1024 [15]. As a result, the call will fail, and if
the exception is not properly handled by the contract, the
attacker can force the contract to produce an output which
suits them.

Timestamp dependence presents a common vulnerabil-
ity favouring a malicious miner. If a contract is using it for
a critical check, the miner can manipulate the timestamp
for a few seconds by changing the output to be in its
favour [16]. However, this vulnerability is severe only if
used in critical components of a contract and requires miners
to have sufficient computing facilities.

Transaction-ordering dependence refers to the idea
that the user can never be sure of the order of transactions.
For example consider a smart contract which offers a reward
for solving a puzzle. Once a user solves the puzzle and sub-
mits the transaction, at the same moment the smart contract
owner can reduce (or completely remove) the reward. There
is a probability that the transaction that reduces or removes
the reward is processed first. In this case, the owner gets an
answer for the puzzle, and the solver (user) does not get the
reward.

The use of external calls is considered to be by default
risky [16], because adversaries can execute malicious code
in that external contract. Therefore, it is recommended to
possibly avoid external calls ("calls to the unknown") in
general or treat those calls as potentially risky and take
precautions, such as, use send instead of call_value(), favor
pull over push for external calls, and handle errors (check
the return value) [16].

Unchecked-send bug is part of the exception disorders
or mishandled exceptions. This class of vulnerabilities is
also referred to as "send instead of transfer. ’Transfer’
automatically checks for the return value, whereas using
’send’ you have to manually check for the return value, and
throw an exception if the send fails. Not doing so, can lead
to an attacker executing malicious code into the contract and
draining the balance. Overall, the consequences are similar
to the reentrancy and call to the unknown vulnerability.

DoS is explained by SmartCheck9 as a situation in which
conditional statement (if , for , while) depends on an external
call: the callee may permanently fail (throw or revert),
preventing the caller from completing the execution [17]. An
attacker can cause inconvenience by supplying the contract
with data that is expensive to process, thereby preventing

8. First subtract the value from the contracts’ balance then send the Ether,
and check for the return value.

9. SmartCheck: https://smartcontracts.smartdec.net/

957

others to interact with it. This vulnerability is closely related
to the external calls vulnerability and to prevent this form
of attack from happening, we need to handle properly any
throw exceptions from external calls, and also, avoid looping
behaviour.

Blockhash usage similarly to the block timestamp, it is
not recommended to be used on crucial components, for the
same reason as with the timestamp dependency, because the
miners, to some degree, can manipulate it and change the
output to their favour. This is particularly pronounced when
blockhash is used as a source of randomness.

Gasless send makes a transaction to fail if not enough
gas is provided for a specific call. The maximum gas limit
on the network can vary over time based on the transaction
fees10. It is important to throw an exception if a failure
based on the gas consumption happens. Also, it is important
to develop functions that do not require too much gas, not
only for the purpose of failing, but also for the sole purpose
of mitigating the costs of executing the contract.

Other vulnerabilities include; immutable bugs
(e.g. wrong constructor name) which refer to a bug or a code
mistake which cannot be altered after deployment/discovery,
the use of untrustworthy data feeds, failure to keep
secrets or in other words failure to apply cryptography
and as a result expose crucial functions or values, the
challenge to generate randomness, style guide violation,
and others.

Existing defensive programming as well as traditional
secure programming techniques apply to smart contract
programming. Note however, that many of vulnerabilities
are unique to smart contracts. Some of it has to do with the
novel approach of building smart contract applications in a
public blockchain. Since, so far, developers are used to a
more traditional way of developing software. Traditionally,
developers do not have to worry about many of these issues,
because the traditional systems provide certain guarantees
that a public blockchain cannot.

5. Preventive Methodologies

ZeppelinOS is an operating system for smart contract
applications developed by Zeppelin Solutions [18]. As re-
ferred to by Zeppelin Solutions, ZeppelinOS is "an open-
source, distributed platform of tools and services on top of
the EVM to develop and manage smart contract applications
securely". Their system is composed of four components,
kernel, scheduler, marketplace, and off-chain tools. In other
words, Zeppelin introduces a novel approach in developing
smart contracts by using already developed and secure smart
contracts (i.e. libraries). The off-chain component provides
numerous tools like debugging, testing, deployment and
monitoring. Based on their team, these tools will enhance
the development process (better, easier, robust), and gen-
erally will help to provide a more secure smart contract
environment.

SolCover11 provides code coverage for Solidity testing.

10. Link:http://www.kingoftheether.com/contract-safety-checklist.html

11. Link: https://github.com/sc-forks/solidity-coverage

Relying on code coverage, SolCover measures and describes
the degree of overall testing in a smart contract. Even
though, it does not serve as a mechanism to identify specific
vulnerabilities, it could be argued that it creates a more
secure environment with the philosophy that more tests
provide improved security metrics.

HackThisContract12 is a crowdsourcing experimental
website that encourages developers to test smart contracts
before deployment by uploading it on their website. Other
developers, with their own techniques, will try and exploit
possible vulnerabilities. Additionally, they provide a list of
vulnerable smart contract examples which the developers
should not follow. Overall, with the sole purpose of deploy-
ing secure smart contracts and mitigate severe issues in a
pre-deployment phase.

Security audits are considered to be the most effective
way of identifying vulnerabilities in a pre-deployment phase.
Experienced blockchain developers and specialised teams
carefully investigate the smart contract manually and auto-
matically to identify vulnerabilities. Despite the fact that it
might be the most secure method for preventing deployment
of vulnerable smart contracts, it is not popular because of
the high costs and time it takes to conduct them13. Currently
there are many firms that do smart contract security audits:
Zeppelin, Solidified14, SmartDec15, and DejaVu16.

Other preventive methodologies include staying up-to-
date with Ethereum upgrades and especially with the attacks
that happen over time, since they may discover a new vul-
nerability. Also, it is of a vital importance to follow a list of
recommendations for secure smart contracts once you start
developing, such as the extensive list by ConsenSys [19].

Oyente. Oyente is known to be the first and most popular
security analysis tool. It was developed by Luu et al. [3]
and is one of the few tools presented in a major security
conference, Ethereum Devcon17. Oyente leverages symbolic
execution to find potential security vulnerabilities, including
here transaction-ordering dependence, timestamp depen-
dence, mishandled exceptions and reentrancy. The tool
can analyze both Solidity, and the bytecode of a smart con-
tract. In its early stage it could have been used only through
a command line interface. Currently, it provides a more user-
friendly web-based interface. It is worth mentioning that
it is the only tool that describes its verification method to
eliminate false positives [3].

Securify. Securify18 is a web-based security analysis
tool and, according to their website, it is the first security
analysis tool that provides automation (to enable everyone
to verify smart contracts), guarantees (for finding specific
vulnerabilities), and extensibility (to capture any newly dis-

12. Link: http://hackthiscontract.io/

13. Based on a community discussion in Reddit, a smart contract secu-
rity audit costs between $20k-$60k. Link: https://www.reddit.com/r/ethdev/
comments/6pdgvd/how_much_does_a_smart_contract_audit_cost/

14. Link: https://solidified.io/

15. Link: https://smartcontracts.smartdec.net/

16. Link: http://www.dejavusecurity.com/services/

17. Link: https://www.youtube.com/watch?v=bCvh6ED-cj0

18. Link: https://securify.ch/

958

covered vulnerability). Securify uses formal verification but
also relies on static analysis checks. The security issues
that it covers are: transaction reordering, recursive calls,
insecure coding patterns, unexpected ether flows, and use
of untrusted input. However, the recursive calls, unexpected
ether flows, and part of the insecure coding patterns checks
are locked (require full access)19.

Remix. Remix20 is a web-based IDE that facilitates
writing Solidity smart contracts, deploying and running
them. A debugger and a testing environment (test-blockchain
network) are integrated. Additionally, it serves as a security
tool by analyzing the Solidity code only, to reduce coding
mistakes and identify potential vulnerable coding patterns.
Some of the vulnerabilities that it identifies are: tx.origin
usage, timestamp dependence, blockhash usage, gas costly
patterns, check effects (reentrancy)21. Remix security anal-
ysis rely on formal verification (deductive program verifica-
tion and theorem provers).

SmartCheck. SmartCheck22 is also a web-based secu-
rity code analysis tool provided by SmartDec team23. Smart-
Dec is a company focused on security audits, analysis tools
and web development. Recently (November, 2017), they
released a beta version of their security tool, SmartCheck.
It automatically checks for vulnerabilities and bad coding
practises. In addition to that, it highlights the vulnerability
(e.g. line of code), gives an explanation of the vulnera-
bility, and a possible solution to avoid a particular secu-
rity issue. Their analysis uses Solidity code and it is not
stated which specific methodology they use to identify the
vulnerabilities (e.g. symbolic execution, formal verification,
etc.). Each vulnerability discovered is shown in correlation
with its severity level. Some of the severe vulnerabilities
they identify are: DoS by external contract, gas costly
patterns, locked money, reentrancy, timestamp dependency,
tx.origin usage, and unchecked external call. Additionally,
SmartCheck identifies many other vulnerabilities with low
severity (warnings), such as, compiler version not fixed,
style guide violation, and redundant functions.

F* Framework. F*, from Microsoft Research, presents
a framework for analyzing the runtime safety and the func-
tional correctness of Ethereum smart contracts, outlined
by Bhargavan et al. [20]. It relies on formal verification,
by translating Solidity or bytecode into F* (a functional
programming language) and then identifying potential vul-
nerabilities, such as, reentrancy and exception disorders.

Mythril. Mythril is a recently released experimental
security analysis tool from ConsenSys24. Through a com-
mand line interface, it is able to analyze bytecode, and
by installing solc (command line compiler) it also analyses
Solidity code. So far, it is able to identify a variety of vulner-
abilities, such as, unprotected functions, reentrancy, integer
overflow/underflow, and tx.origin usage. Some other severe

19. As of October, 2017

20. Link: https://remix.ethereum.org/

21. Link: https://remix.readthedocs.io/en/latest/analysis_tab.html

22. Link: http://tool.smartdec.net

23. Link: https://smartcontracts.smartdec.net/

24. Link: https://github.com/b-mueller/mythril/

vulnerability checks are presented as work in progress, such
as, timestamp dependence, transaction-ordering dependence,
and information exposure25.

Gasper. Gasper is a security tool developed by Chen
et al. [13], which is not released yet. However, from their
research paper, we already know that it is focused only on
identifying gas costly programming patterns in a smart
contract through a command line interface. It runs analysis
only for the bytecode. Moreover, they have discovered seven
gas costly patterns, and grouped them into two categories.
Gasper also relies on symbolic execution to cover all reach-
able code-blocks by disassembling its bytecode using disasm
(disassembler). So far, they only cover the gas costly patterns
from the first category that they have discovered, the rest is
work-in-progress. [13]

6. Methodology and Experiments

Vulnerability Severity level

B
lo

ck
ch

ai
n

Unpredictable state (dynamic libraries) 2
Generating randomness 2-3

Time constrains / Timestamp dependence 1-3
Lack of transactional privacy 1-3

Transaction-ordering dependence 2-3
Untrustworthy data feeds (oracles) 3

E
V

M Immutable bugs/mistakes 3
Ether lost in transfer 3

So
lid

ity

Gas costly patterns 1-2
Call to the unknown 3

Gasless send 3
Exception disorders / Mishandled exceptions / Unchecked-send bug 3

Type casts 2
Reentrancy 3

Unchecked math (Integer over- and underflow) 1-2
Visbility / Exposed functions or secrets/ Failure to use cryptography 2-3

‘tx.origin’ usage 3
‘blockhash’ usage 2-3

DoS 3
‘send’ instead of ‘transfer’ 1-2

Style violation 1
Redundant fallback function 1

TABLE 1. TAXONOMY OF VULNERABILITIES

We have assessed the smart contract security tools based
on their:

• effectiveness - check how many smart contract prob-
lems the tools were able to find from our data set

• accuracy - assessing the correctness of the results
they produce, based on false positive and false neg-
ative rates

• consistency - assessed in security tools that analyse
both bytecode and Solidity, and check if there is any
inconsistency27.

We collected known vulnerabilities based on literature
search and online resources, and stayed up-to-date with any
related web-articles or blogs and Reddit forums that were
assessing smart contract security issues, between February
and October 2017. Additionally, we have used group chats
(Slack channels, Gitter) and e-mails to communicate with
developers or users for a specific security tool.

Audited Smart Contracts. In order to assess the false
positive rates we need secure/trusted and tested smart con-
tracts which are considered to be bug-free or at least without

25. Link: https://github.com/b-mueller/mythril/blob/master/security_
checks.md

27. For example, if a tool produces some results with the bytecode of a
smart contract and other with the Solidity source code of the same contract.

959

Security
Tool ReEntrancy Timestamp

dependency TOD26 Mishandled
exceptions

Immutable
Bugs

tx.orgin
usage

Gas costly
patterns

Blockhash
usage

Oyente � � � � � X X X
Remix � � X � X � � �

F* � X X � X X X X
Gasper X X X X X X � X
Securify � X � � X � X X

S. Analysis X X X � X X X X
SmartCheck � � � � � � � X

Imandra n/a n/a n/a n/a n/a n/a n/a n/a
Mythril � X X � � � X X

TABLE 2. TOOLS/VULNERABILITIES MATRIX

any severe security vulnerability. For that, we decided to use
smart contracts which were previously audited. We chose
Zeppelin28. We have collected 28 audited smart contracts
in total from Zeppelin, starting from the one audited first,
up until the last one (October 23, 2017). We did a manual
check for each security audit to dismiss a smart contract
which had one of the following cases:

• is written in a programming language other than
Solidity,

• is identified with severe vulnerabilities from Zep-
pelin, and not updated afterwards,

• is used for token pre-sale29,
• very recent security audit (not updated, nor pub-

lished).

After doing this data clean-up, we ended up with a total
of 21 security audited smart contracts. Table 3 provides a list
of the data-set for this category, where the seven highlighted
in red are the discarded smart contracts which were not taken
into consideration. Additionally, each one has a link to the
corresponding source on Zeppelin’s blog. Lastly, the source
code for each smart contract is collected using EtherScan30.

Vulnerable Smart Contracts. Vulnerable smart con-
tracts are used to identify the false negative rates, as well
as the gaps, i.e. the vulnerabilities which are not covered
by the tools. We have used existing research articles, online
resources, and community discussions assessing attacks and
bugs in smart contracts, to assemble a list of vulnerable
smart contracts [3], [7], [21], [22], [23]. Table 4 provides
the list of contracts used as our data-set.

Smart contracts which are synthetic are labelled with
the term "Sample" on their name. Moreover, the ones high-
lighted in red are not taken into consideration, because i)
Suicide function has been called and their code is no longer
available (two cases) or ii) Smart contracts that allow their
owners to withdraw the contract funds, are removed because
it was considered to be more of a trust issue rather than a
bug or vulnerability. Therefore, out of 28 smart contracts
in total, after clean-up we ended up with 2431. The tools
which are chosen for the experiment are: Oyente, Securify,
Remix and SmartCheck. All four tools have a web-based
user interface.

28. More than $450 million have been raised by smart contracts that
have been audited by Zeppelin.

29. They are mostly temporary smart contracts used to crowd-fund an
organisation.

30. Link: https://etherscan.io/

30. TOD: Transaction-ordering dependence

31. Stricly speaking, 23, since two smart contracts have either bytecode
or Solidity available, not both.

Smart
Contract Source (* = https://blog.zeppelin.solutions)

Hacker
Gold (HKG)

*/ethercamps-hacker-gold-hkg-public-code-audit-b7dd3a2fe43b

ArcadeCity
(ARC)

*/arcade-city-arc-token-audit-9071fa55a4e8

Golem
Network

*/golem-network-token-gnt-audit-edfa4a45bc32

ProjectKudos */ethercamps-projectkudos-public-code-audit-179ee0c6672d
EtherCamp’s
DSTC

*/ethercamps-decentralized-startup-team-public-code-audit-65f4ce8f838d

SuperDAO
Promissory

*/draft-superdao-promissory-token-audit-2409e0fe776c

SuperDAO
ConstitutionalDNA

*/draft-superdao-promissory-token-audit-2409e0fe776c

ROSCA */wetrust-rosca-contract-code-audit-928a536c5dd2
Matchpool
GUP

*/matchpool-gup-token-audit-852a70330f2

iEx.ec
RLC

*/iex-ec-rlc-token-audit-80abd763709b

Cosmos */cosmos-fundraiser-audit-7543a57335a4

Blockchain
Capital (BCAP)

*/blockchain-capital-token-audit-68e882d14f0

WingsDAO */wingsdao-token-audit-f39f800a1bc1

Moeda */moeda-token-audit-ac72944caa6f

Basic
Attention

*/basic-attention-token-bat-audit-88bf196df64b

Storj */storj-token-audit-32a9af082797

Metal */metal-token-audit-d7e4dbf17bcf

Decentraland
MANA

*/decentraland-mana-token-audit-ee56a6bca708

Tierion
Pre-sale

*/tierion-presale-audit-ec14b91c3140

Serpent
Compiler

*/serpent-compiler-audit-3095d1257929

Hubbi */hubii-token-audit-227c0adf50ea

Tierion */tierion-network-token-audit-163850fd1787

Kin */kin-token-audit-121788c06fe

Render */render-token-audit-2a078ba6d759

Fuel */fuel-token-audit-30cc02f257f5

Enigma */enigma-token-audit-91111e0b7f8a

Global
Messaging

*/global-messaging-token-audit-865e6a821cd8

Ripio */ripio-token-audit-abe43b887664

TABLE 3. AUDITED SMART CONTRACTS COLLECTION

In total, 23 vulnerable and 21 audited smart contracts
are analyzed with the four tools. Since each security tool
identifies different vulnerabilities, not all vulnerable smart
contracts were fit to be tested with all the tools. However,
we decided to analyze all vulnerable smart contracts, in
order to capture a general analysis on how many vulner-
abilities each tool is not able to identify. This also gives us
an insight within the possible future improvements of the
security tools. The data analysis consists of four different as-
sessments: effectiveness, accuracy, consistency, and overall
assessment. With the exception of the Overall assessment,
all other three assessments have a clear data analysis process
and an evaluation method.

Effectiveness. Generally, the effectiveness of the tools
is assessed based on the percentage of the smart contracts
in total that the tools were able to analyse. The nature of
the data-set consists of different type of smart contracts,
including here; secure, vulnerable, old compiler versions,
grand scale, small scale, and samples. Additionally, the
symbolic execution methodology predominantly used to
identify vulnerabilities is rather complex, since it analyses
the code without any known input and also loops through
the blockchain to cover all possible behaviours. Therefore,

960

Smart
contract name Vulnerability

TheDao Re-entrancy

SimpleDao Sample compiler version 0.3.1
Re-entrancy,

call to the unkown

SimpleDao Sample compiler version 0.4.2
Re-entrancy,

call to the unkown

King of the Ether game (KoET)
Unchecked-send

bug, Gasless send, Mishandled exception

KotET Sample compiler version 0.3.1
Gasless

send

KotET Sample compiler version 0.4.2
Gasless

send

GovernMental (PonziGovernmental)
Unchecked-send

bug, Call-stack limit

GovernMental simplified sample 0.3.1
Immutable

bugs, exception disorder, call-stack limit, unpredictable state

Rubixi
Immutable

bugs, wrong constructor name

FirePonzi
Type

casts (intentional scam)

Parity Multisig 1
Unintended

function exposure

Parity Multisig 2 - Suicide Function called
Unintended

function exposure

Parity Multisig 3- Suicide Function called
Unintended

function exposure

GoodFellas
Typo

(wrong constructor name)

StackyGame
Typo

(wrong constructor name)

DynamicPyramid
Contract

that does not refund

GreedPit
Contract

that does not refund

NanoPyramid
Contract

that does not refund

Tomeka
Contract

that does not refund

Double3
Allows

the contract owner to withdraw all the funds

TheGame
Allows

the contract owner to withdraw all the funds

ProtectTheCastle
Call-stack

limit, Withdraw option

RockPaperScissors (RPS)
Public
moves

SmartBillions
Blockhash

bug

EtherPot
Unchecked-send

bug

TheRun
Timestamp
dependence

OddsAndEvents Compiler 0.3.1 Sample
Keeping
secrets

OddsAndEvents Compiler 0.4.2 Sample
Keeping
secrets

TABLE 4. VULNERABLE SMART CONTRACTS COLLECTION

the security tools and the methodology are themselves prone
to errors and failures.

Accuracy. Assessing just the effectiveness of the tools
does not necessarily show us how accurate the results are.
Therefore, it is crucial to assess the accuracy of the results
that the tools produce. Accuracy is assessed through the false
positive and false negative rates. Initially, this assessment
idea came from Zhang et al. [24], in which they evaluate the
anti-phishing tools with the same methodology, using 200
verified phishing URLs (in our case vulnerable contracts)
and 516 legitimate URLs (in our case audited contracts), to
test the performance of 10 popular phishing tools (in our
case 4 popular Ethereum security code analysis tools).

First, we ran 21 audited smart contracts in each tool.
Based on the results obtained and the severity level of
vulnerabilities, we decided to manually analyse only five
vulnerabilities32. Other vulnerabilities are not considered for
manual analysis, either because they cannot be manually
analysed (e.g. gas costly patterns), the security audit firm
does not cover them, or they are vulnerabilities with low
severity (e.g. useful warnings or style violations). The man-
ual analysis is conducted as follows:

• Check the Zeppelin source of the smart contract in
which a vulnerability is identified

• If the vulnerability is also identified by Zeppelin,
and the smart contract owners have not modified

32. Including here: reentrancy, timestamp dependence, transaction re-
ordering, unchecked-send bug, tx.origin usage.

the code for that specific vulnerability or they have
suppressed it – it is removed from the false positives
results.

• Additionally, a manual analysis following a list of
recommendations for smart contract security [19] is
conducted and the line where the vulnerability is
identified is checked manually to verify if it is false
positive.

The other approach in regards to accuracy is the false
negative assessment. This is done through the vulnerable
contracts that have at least one vulnerability. If the tools
state that they are able to identify a specific vulnerability
and they fail to do so, it is considered a false negative. The
results obtained from this experiment have two possibilities
of failure:

• False Positive when the tool identifies a vulnera-
bility in an audited smart contract, and the manual
inspection does not confirm it.

• False Negative when the security tool does not find
a specific vulnerability in a vulnerable contract.

Security
Tool Method Bytecode

analysis
Solidity
analysis CLI33 WUI34

Oyente Symbolic execution � � � �
Remix Formal verification X � � �

F* Framework Formal verification � � � X
Gasper Symbolic execution � X N/A N/A
Securify Formal verification � � X �
Simple

Analysis35 Heuristics � X � X

SmartCheck N/A X � X �
Imandra
Contracts Formal verification N/A - paid access

Mythril Concolic
testing (symbolic execution)

� � � X

TABLE 5. TAXONOMY OF TOOLS

Table 5 provides an overview of the generated taxonomy
for security code analysis tools. The categorisation is based
on their similarities, such as, the methodology they use
(highlight) to identify security issues (symbolic execution,
formal verification), which code analysis they are able to
perform (bytecode, Solidity), and their user interface (CLI,
WUI). As it can be seen, for some tools we have partial
information, either because the tool is not released yet
(Gasper), the methodology is not stated in their documen-
tation (SmartCheck), or the tool requires paid access for
additional information and usage (Imandra Contracts).

Compared to the taxonomy provided by Hildenbrandt et
al. [22], which covers all Ethereum software quality tools,
our taxonomy is only focused on security tools used to
identify vulnerabilities/bugs in smart contracts. The security
tools stated here use symbolic execution and formal veri-
fication as a methodology to identify vulnerabilities. These
two methodologies, generally, are used interchangeably and
in combination. Table 2 provides the generated matrix of
the security tools and the vulnerabilities they cover. The
total list of vulnerabilities is extensive, where for example,

33. CLI: Command Line Interface

34. WUI: Web-based User Interface

35. A simple program analysis tool specifically used for detect-
ing unchecked-send bug. Link: http://hackingdistributed.com/2016/06/16/
scanning-live-ethereum-contracts-for-bugs/

961

only SmartCheck identifies 21 vulnerabilities in total, in-
cluding here various warnings and low-risk vulnerabilities.
Therefore, due to space limitations, only the most important
vulnerabilities are taken into consideration for this matrix.
Most security tools (6 out of 8) identify more than one
vulnerability, and only two tools identify one vulnerability
each, Gasper (gas costly patterns), and Simple analysis
(unchecked-send bug). Furthermore, since Imandra requires
paid access, we do not have any information on what
kind of vulnerabilities it covers. To simplify the matrix, in
the mishandled exceptions we cover: exception disorders,
unchecked-send bug, and gasless send. Whereas, in the im-
mutable bugs category we cover, type casts and integer over-
and underflow as well. Visibility (function exposure) checks
are omitted because they are covered only from Smart-
Check. And since the stack-size limit is not a vulnerability
anymore, it is eliminated from the list, even though Oyente
still has that vulnerability check.

7. Conclusion

The main purpose of this article was to provide insights
into the security vulnerabilities on Ethereum smart contracts
and assess the overall effectiveness of popular security code
analysis tools used to detect those vulnerabilities. The main
motivation behind this work was to contribute to a more
secure and trustworthy Ethereum environment. We have
conducted a comprehensive review on peer-reviewed pub-
lications and online resources to collect available data and
to propose two taxonomies. The first taxonomy, presented
in Table 1, outlines already exploited vulnerabilities and
classifies them based on their architectural and severity level.
It serves as a list of issues that can aid developers who
plan to develop smart contract applications. The second one,
to is a novel taxonomy of current security tools. We have
classified the tools based on the methodology they use, the
user interface, and the analysis they are able to execute,
which allows us to build a ‘state of the art’ of security tools
on Ethereum. Lastly, we construct a matrix of security tools
and the vulnerabilities they cover in order to identify gaps
and absent vulnerability checks.

References

[1] Z. Zheng, S. Xie, H.-N. Dai, and H. Wang, “Blockchain challenges
and opportunities: A survey,” Work Pap, 2016.

[2] C. Dannen, Introducing Ethereum and Solidity: Foundations of Cryp-
tocurrency and Blockchain Programming for Beginners, 1st ed.
Berkely, CA, USA: Apress, 2017.

[3] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM,
2016, pp. 254–269.

[4] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts (sok),” in International Conference on
Principles of Security and Trust. Springer, 2017, pp. 164–186.

[5] M. Alharby and A. van Moorsel, “Blockchain-based smart contracts:
A systematic mapping study,” arXiv preprint arXiv:1710.06372, 2017.

[6] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step
by step towards creating a safe smart contract: Lessons and insights
from a cryptocurrency lab,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 79–94.

[7] V. Buterin, “Thinking about smart contract security - ethereum
blog,” https://blog.ethereum.org/2016/06/19/thinking-smart-contract-
security/, June 2016, (Accessed on 11/18/2017).

[8] W. Egbertsen, G. Hardeman, M. van den Hoven, G. van der Kolk,
and A. van Rijsewijk, “Replacing paper contracts with ethereum smart
contracts,” 2016.

[9] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016, pp. 839–858.

[10] D. Boneh and M. Naor, “Timed commitments,” in Advances in
Cryptology—Crypto 2000. Springer, 2000, pp. 236–254.

[11] B. Marino and A. Juels, “Setting standards for altering and undoing
smart contracts,” in International Symposium on Rules and Rule
Markup Languages for the Semantic Web. Springer, 2016, pp. 151–
166.

[12] A. Juels, A. Kosba, and E. Shi, “The ring of gyges: Investigating the
future of criminal smart contracts,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 283–295.

[13] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart
contracts devour your money,” in Software Analysis, Evolution and
Reengineering (SANER), 2017 IEEE 24th International Conference
on. IEEE, 2017, pp. 442–446.

[14] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 270–282.

[15] Solidity, “Security considerations — solidity 0.4.19 documen-
tation,” http://solidity.readthedocs.io/en/latest/security-considerations.
html, (Accessed on 11/19/2017).

[16] Ethereum-Wiki, “Safety · ethereum/wiki wiki,” https://github.com/
ethereum/wiki/wiki/Safety, (Accessed on 11/19/2017).

[17] SmartDec, “Smartcheck | knowledgebase | dos by external con-
tract,” https://tool.smartdec.net/knowledge/SOLIDITY_DOS_WITH_
THROW, (Accessed on 12/14/2017).

[18] M. Araoz, “Introducing zeppelinos: the operating system for smart
contract applications,” https://blog.zeppelin.solutions/introducing-
zeppelinos-the-operating-system-for-smart-contract-applications-
82b042514aa8, July 2017, (Accessed on 11/20/2017).

[19] ConsenSys, “Recommendations for smart contract security in so-
lidity - ethereum smart contract best practices,” https://consensys.
github.io/smart-contract-best-practices/recommendations/, (Accessed
on 11/21/2017).

[20] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, A. Rastogi, T. Sibut-Pinote, N. Swamy,
and S. Zanella-Beguelin, “Formal verification of smart contracts,” in
Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security-PLAS’16, 2016, pp. 91–96.

[21] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting ponzi
schemes on ethereum: identification, analysis, and impact,” arXiv
preprint arXiv:1703.03779, 2017.

[22] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,
and G. Rosu, “Kevm: A complete semantics of the ethereum virtual
machine,” Tech. Rep., 2017.

[23] CryptoNews, “CCN: Bitcoin, Ethereum, NEO, ICO & Cryp-
tocurrency News,” https://www.cryptocoinsnews.com/, (Accessed on
11/25/2017).

[24] Y. Zhang, S. Egelman, L. Cranor, and J. Hong, “Phinding phish:
Evaluating anti-phishing tools.” ISOC, 2006.

962

