
EVM*: From Offline Detection to Online
Reinforcement for Ethereum Virtual Machine

Fuchen Ma∗, Ying Fu†, Meng Ren‡, Mingzhe Wang†, Yu Jiang†, Kaixiang Zhang§, Huizhong Li§, and Xiang Shi§
∗ Beijing University of Posts and Telecommunications, China

† Tsinghua University, China
‡ Sun Yat-sen University, China § WeBank, China

mfc@bupt.edu.cn,fy17@mails.tsinghua.edu.cn, renm8@mail2.sysu.edu.cn, wmzhere@gmail.com,
jiangyu198964@126.com, {kxzhang, wheatli, jimmyshi}@webank.com,

Abstract—Attacks on transactions of Ethereum could be dan-
gerous because they could lead to a big loss of money. There are
many tools detecting vulnerabilities in smart contracts trying
to avoid potential attacks. However, we found that there are
still many missed vulnerabilities in contracts. Motivated by this,
we propose a methodology to reinforce EVM to stop dangerous
transactions in real time even when the smart contract contains
vulnerabilities. Basically, the methodology consists of three steps:
monitoring strategy definition, opcode-structure maintenance and
EVM instrumentation. Monitoring strategy definition refers to
the specific rule to test whether there is a dangerous operation
during transaction execution. Opcode-structure maintenance is
to maintain a structure to store the rule related opcodes and
analyze it before an operation execution. EVM instrumentation
inserts the monitoring strategy, interrupting mechanism and the
opcode-structure operations in EVM source code. For evaluation,
we implement EVM* on js-evm, a widely-used EVM platform
written in javascript. We collect 10 contracts online with known
bugs and use each contract to execute a dangerous transaction,
all of them have been interrupted by our reinforced EVM*, while
the original EVM permits all attack transactions. For the time
overhead, the reinforced EVM* is slower than the original one by
20-30%, which is tolerable for the financial critical applications.

Index Terms—Blockchain security, Ethereum, EVM defending

I. INTRODUCTION

Ethereum is a platform for developers to write their own
applications using blockchain techniques. Attacks on the pro-
grams deployed on Ethereum platform could cause a big loss
of money. In April 2018, a hacker attacked BEC exploiting a
data overflow vulnerability in Ethereum ERC-20 contract and
successfully transferred innumerable BEC tokens to two other
addresses. As a result, a large number of BECs in the market
were sold, and the value of the digital currency almost reached
zero, which brought a devastating blow to BEC market trans-
actions. Currently, the communities are paying increasingly
more attention to the security of Ethereum platform.

To solve the security problems, many researchers attempted
to improve the robustness of smart contracts. Testing tools for
smart contracts mainly leveraged the techniques of fuzzing and
symbolic execution. Fuzzing based tools include Echidna [5]
and ContractFuzzer [6], [9]. These tools simulate the execution
of a large number of transactions to find vulnerabilities in

contracts. Some well-known symbolic execution tools are
Oyente [7], [8], Manticore [3] and Mythril [2]. Symbolic
execution tools could trigger critical paths and detect security
vulnerabilities. All of these tools perform well in detecting
potential threats in smart contracts.

However, in the industry practice, we find that the above
tools tend to miss certain vulnerabilities. For example, we run
ContractFuzzer on a contract with a known timestamp bug for
2 hours, but the bug was not detected. This indicates that it
is incomplete to focus only on contract level, so we try to
solve this problem at EVM level. In this paper, we propose a
methodology to reinforce the EVM platform. It consists of
three steps: monitoring strategy definition, opcode-structure
maintenance and EVM instrumentation. Monitoring strategy
definition provides a specific way to decide whether there is
a dangerous operation during the execution of transactions.
Opcode-structure maintenance is to maintain a structure to
store the interesting opcodes for analysis before executing any
operation. EVM instrumentation is the process to insert the
monitoring strategy, interrupting mechanism and the opcode-
structure operations in the proper place of the EVM source
code. In this way, the reinforced EVM* could stop dangerous
transactions in real time.

The proposed methodology is scalable to be implemented
on different EVM platforms and bug types. For evaluation,
we implement our methodology on js-evm, and two moni-
toring strategies are defined in our implementation to prevent
overflow and timestamp bugs. For the instrumentation part, we
instrument the monitoring strategies and throw an exception
when encountered an unsafe action. A stack is used to store
the rule related opcodes as well as the operands if any. 10
smart contracts are collected online with known overflow and
timestamp bugs. Then we made a dangerous transaction on
each contract on the original EVM and the reinforced EVM*.
None of the dangerous transactions are stopped by the
original EVM, while all the transactions on the reinforced
EVM* have been interrupted. For the time overhead,
the EVM* with the overflow strategy is slower than the
original EVM by 22.16%, the EVM* with the timestamp
strategy is slower by 28.98% and the EVM* with both
strategies is slower by 32.96%. For the financial critical
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applications, the overhead is tolerable to ensure the security.
Furthermore, when we apply some open-source fuzz testing
tool such as ContractFuzzer to test those vulnerable contracts,
many bugs would be missed with two or more hours testing.

The contributions of our work lay on the following aspects:
1) We proposed a framework of reinforcing EVM to prevent

dangerous transactions at real time, which is scalable for
different EVM platforms such as py-evm and js-evm, and
different bug types such as overflow and reentry bugs.

2) We implemented a reinforced EVM on js-evm for over-
flow and timestamp vulnerabilities. We evaluate the effec-
tiveness of the original EVM and the reinforced EVM*.
The reinforced EVM* could successfully stop dangerous
transactions from execution.

II. RELATED WORK

We discuss the most related work aiming at the detection
of the vulnerabilities in smart contracts and the semantics
formalization of EVM.

Smart contract Testing: Fuzzing has been widely used
in traditional software vulnerability detection [13]–[16] and
fuzzing based tools working on the smart contract simulate
plenty of transactions on a private chain. Each transaction
contains all the functions of a specific smart contract, but these
functions are fed into the transaction in different orders with
different inputs. Among these tools, the way to define bugs
is different. Echidna [5] takes a list of invariants (properties
that should always remain true) as input. For each invariant, it
generates random sequences of calls to the contract and checks
if the invariant holds. If there is a way to falsify the invariant,
Echidna will report it as a bug. Whereas, ContractFuzzer [6],
[9] defines test oracles to detect security vulnerabilities.

Symbolic execution tools could auto-generate inputs to
trigger different unique code paths, and trace the inputs which
crashed the program. Manticore [3] could trigger a key path
that may cause a crash and expose its analysis engine via
Python APIs. Moreover, Manticore not only aims at symbolic
testing for solidity scripts, but is also able to analyze Linux
ELF binaries(x86, x86_64 and ARMv7). Mythril [2] combines
concolic analysis, taint analysis and control flow checking to
detect a variety of security vulnerabilities. Oyente [7], [8] is
a symbolic execution tool that works directly on EVM byte
code without access to the high level representations.

EVM semantics formalization: Semantics formalization on
EVM tries to tackle a complex mix between requirements for
high assurance and a rich adversarial model of Ethereum.
KEVM [11] is the first fully executable formal semantics
of the EVM, created based on a framework for executable
semantics, the K framework. A Lem implementation of EVM
[12] provides a formal specification of the interface between
a smart contract execution and the rest of the world. Lem is
a language designed to compile to various interactive theorem
provers, including Coq, Isabelle/HOL, and HOL4. This EVM
defination can be used to prove invariants and safety properties
of Ethereum smart contracts.

Main difference: Unlike the works mentioned above, we do
not provide a detecting tool to discover vulnerabilities in smart
contact or formalize the EVM for verification. We propose a
method to reinforce the EVM. The reinforced EVM* could
make up for the detecting tools. The vulnerabilities missed by
those tools could be stopped if it occurs in a transaction.

III. REINFORCEMENT METHODOLOGY

We now describe the methodology to reinforce the EVM.
The framework of the reinforced EVM* contains three main
components as Figure 1 shows. Monitoring strategy refers to
the method to define whether an opcode sequence is dangerous
and how to stop a dangerous transaction. Opcode-structure
maintenance contains three parts – initialization, record and
analysis for run-time decision. The last component is EVM
instrumentation. In this component, monitoring strategies and
structure operations will be inserted into the EVM source code,
resulting in the reinforcement EVM*.

A. Monitoring Strategy

Monitoring strategy is the most important part of the rein-
forced EVM*. The specific strategy consists of two parts: in-
teresting opcodes and the constraints for the opcode sequences.
As an example, we will explain how to define strategies of
overflow bugs and timestamp bugs.

1) Overflow Bugs: To infer if an overflow action occurs
in a transaction, the interesting opcodes may contains ADD,
SUB, MUL, ADDMOD, MULMOD and EXP. In an overflow
situation, the constraints needed to be satisfied are listed as
below. The violation of any of these constraints could possibly
lead to an overflow problem.

• If two positive numbers perform an adding operation, but
the result of the operation is negative

• If two negative numbers perform an adding operation, but
the result of the operation is positive.

• If a positive number subtracts a negative number, but the
result is negative.

• If a negative number subtracts a positive number, but the
result is positive.

• If two positive numbers perform an multiplication oper-
ation, but the result of the operation is negative.

• If two negative numbers perform an multiplication oper-
ation, but the result of the operation is negative.

2) Timestamp Bugs: The sensitive opcode that timestamp
bugs concerned about is TIMESTAMP. If the value put in
call() function, which is the beginning of a transaction, is
bigger than zero, or the call() function tries to send some
ether to other contracts, there possibly is a timestamp bug
if the TIMESTAMP opcode occurs.

B. Opcode-Structure Maintenance

Opcode-structure is a user-defined structure to record inter-
esting opcodes and run-time information related to the analysis
of dangerous actions. In each call process, the structure will
first be initialized. Before the execution of each opcode,
the structure will be updated and analyzed. If the opcode
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Fig. 1. The framework of the reinforced EVM*. It mainly consists of three components: Monitoring strategy definition for run-time bug detection, Opcode-
structure maintenance for operation monitoring, and EVM instrumentation for transaction decision and protection.

sequences in the structure are regarded to be dangerous that
violate any constraint defined in the module of monitoring
strategy, the interrupt procedure will be executed.

The candidate structures for the implementation of opcode-
structure could be: stack, queue, tree and some other struc-
tures. The choice of the structure should depend on the moni-
toring strategy. If the strategy concerns about only the adjacent
relationship among opcodes, a stack or a queue may be a better
choice. If the strategy focuses on more complex relationships
among opcodes, a tree structure may be considered. In our
implementation, we use stack as the opcode-structure.

C. EVM Instrumentation

EVM instrumentation module instruments monitoring
strategies and interrupting mechanism in the EVM source
code. Monitoring strategies should be instrumented in a new
file in the EVM project folder. Each strategy needs to be
wrapped into a function that returns a boolean type. The
interrupting mechanism could be wrapped into a function
which is able to terminate the EVM. As for the operations
of opcode-structure, the initialization process of the structure
should be inserted in the place after where the CALL opcode
is detected. Right before the execution of each operation,
the opcode-structure should be tested using each monitoring
strategy function.

The overall instrumentation process is shown in Algorithm
1. The input of the instrumentation process is the monitoring
strategies and interrupt mechanism. As line 1-2 presents, new
functions should be defined to implement the monitoring and
interrupting process. For each opcode of the transactions, if it
is a CALL opcode, a new stack named op_Stack is initialized
and the first item is pushed into the stack as shown in line 4-7.
Whereas, if it is an interesting opcode we concerned, it will
first be pushed in the stack. Then each monitoring strategy will
test whether the current stack is safe. If the stack is detected
to be dangerous by any strategy, the execution is interrupted,
which is shown in line 10-13. If no dangerous actions are
detected, the opcode will be executed as line 15 shows.

Algorithm 1: Instrumentation process
Input : monitoring_strategies and Interrupt

mechanism
1 define_fuc(monitoring_strategies);
2 define_fuc(Interrupt);
3 foreach opcode op of the transaction do
4 if op.isCall() then
5 // if opcode op is the first opcode of a Call

operation
6 op_Stack = new OP_STACK();
7 op_Stack.push(new Item(CALL,

op.operands()));
8 else if op.isInteresting() then
9 op_Stack.push(new Item(op.name(),

op.operands()));
10 foreach monitoring_strategies st do
11 if !Test(st, op_Stack)) then
12 Interrupt();
13 end
14 end
15 execute(op);
16 end

Output: Reinforced EVM

IV. EVALUATION

In our evaluation of the reinforced EVM*, we will answer
the following questions:
Q1. Can the reinforced EVM* platform detect vulnerabilities
in transactions and stop the vulnerable executions?
Q2. What is the time overhead of the reinforced EVM* on
executing different transactions?

A. Data and Environment Setup

To evaluate the effectiveness of the reinforced EVM*, we
selected 10 real-world contracts with known overflow and
timestamp bugs. The contracts are compiled into abi (Applica-
tion Binary Interface) files and binary files. Then we used each

556



contract to execute a dangerous transaction both on the original
EVM and the reinforced EVM* to find out whether they could
stop the dangerous transactions from execution. Furthermore,
we developed and initialized a simple fuzzing environment
based on ContractFuzzer to imitate the transaction process.
It takes an abi file of the contract as input. In a transaction,
each function will be executed random times with arbitrary
parameters. The environment augmented with the ability to
detect overflow bug and timestamp bug, will create lots of
transactions, to see whether these bugs could be detected, in
the duration time of 2 hours in this experiment. The version
of the solc compiler we used is 0.4.25, the operating system
is Linux x86_64.

To answer the second question, we use the fuzzing environ-
ment to make transactions on the original EVM and reinforced
EVM*. We calculate the amount of transactions made in the
time limit on both versions to evaluate the time overhead.

B. Effectiveness of the Reinforced EVM

Table I presents the experimental results of the reinforced
EVM* compared with the original EVM. The circle symbol
in the table means all the transactions based on the contract
executed till the end, while the cross symbol in the table means
that the transactions are stopped.

TABLE I
THE EFFECTIVENESS OF REINFORCED EVM* W.R.T. ORIGINAL EVM

Contract Number Fuzzing tool Original
EVM

Reinforced
EVM* Bug type

Contract_1 detect ◦ × Overflow
Contract_2 detect ◦ × TimeStamp
Contract_3 not detect ◦ × Overflow
Contract_4 not detect ◦ × Overflow
Contract_5 not detect ◦ × Overflow
Contract_6 detect ◦ × TimeStamp
Contract_7 detect ◦ × TimeStamp
Contract_8 detect ◦ × Overflow
Contract_9 not detect ◦ × Overflow

Contract_10 not detect ◦ × Overflow

From the third and the fourth columns of the table, we
found that for the original EVM, all the dangerous transactions
have been permitted to be running. However, all the dangerous
transactions have been stopped from executing by the rein-
forced EVM*. Furthermore, as the second column shows, only
50% of the vulnerabilities have been detected by the fuzzing
environment, which means the detected vulnerabilities could
be avoided with manually revision of contracts, and the other
50% would remain exploitable. The reinforced EVM* could
successfully stop the dangerous transactions from executing
when any problems detected, which could effectively ensure
the security of the transaction, even when the deployed con-
tract has vulnerabilities.

Among the five contracts not detected by fuzzing, we
analyzed one of them named overflow_simple_add.sol. The
source code of the contract is:

1 pragma solidity 0.4.24;

2 contract Overflow_Add {

3 uint public balance = 1;

4 function add(uint256 deposit) public {

5 balance += deposit;

6 }

7 }

This contract has only one function named add, and this
function receives an input named deposit whose type is
uint256. In the function add, a variable named balance is
added with the input variable and the result will be stored in
the variable balance. However, because the variable balance’s
value is 1, only if deposit’s value is the maximum number
that a uint256 could represent, the overflow would occur.
Fuzzing tools are hard to generate an input which happen
to be the maximum number of uint256. So the overflow
situation could hardly occur. But when we input the maximum
value to make a dangerous transaction, the reinforced EVM*
successfully stopped the transaction from executing. It is a
common problem among fuzzing tools and symbolic execution
tools that testing could not find some bugs that will occur in
some extreme cases. However, reinforced EVM* is able to
detect the bug in real time and stop the transaction timely.

C. Time Overhead of the Reinforced EVM*

We count the total transactions made during the experiment
of each contract. The results are shown in Figure 2.

The unit of the number in the table is counted by transac-
tions per second, which is abbreviated as tx/s. We calculate the
transactions made with four types of EVM: the original EVM,
the EVM* with overflow strategy, the EVM* with timestamp
strategy and the EVM* with both strategies. For each version,
we calculate the minimum, maximum and the average amount
of transactions made on each contract. As the data shows, the
amount of transactions are greatly affected by the size of the
contract because the larger the contract is, the more functions
a transaction needs to call. Besides, the reinforced EVM* with
overflow strategy is slower than the original one by 22.16%.
The reinforced EVM with timestamp strategy is slower by
28.98%. The reinforced EVM with both strategies is slower by
32.95%. The time overhead mainly comes from the structure’s
maintenance and the traverse of each monitoring strategy when
an interesting opcode encountered. As a conclusion, the time
overhead of reinforced EVM* is concerned with the number
of the monitoring strategies we added into the EVM and the
contract size. Compared with the fuzzing time, the overhead
is tolerable for financial critical applications.

D. Discussion

One potential threat to reinforced EVM* is the design of the
strategy that used to monitor the vulnerabilities. The methodol-
ogy we proposed just tells how to reinforce the original EVM,
but the detailed strategy should be considered and designed
seriously. Section III introduces the monitoring strategy used
to test overflow and timestamp bugs. An inappropriate strategy
may lead to some false alerts as well as some miss alerts.
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Fig. 2. Time overhead of the transactions execution on the reinforced EVM*

Besides, the monitoring strategy has a great affect on the
time overhead of the reinforced EVM. We also implement
the reinforcement for three more types of bugs, the overhead
will not increase too much with five strategies, because the
main overhead is caused by the instrumentation and optcode
collection, not by the constraint check.

V. LESSONS LEARNED

During the design and implementation of the reinforced
EVM*, we found out many lessons worthy to be discussed.

(1) EVM reinforcement could make up for the testing
tools aimed at smart contract level. During the evaluation
and industry practice, engineers found that the testing tools
do have the disadvantages in missing certain vulnerabilities in
the given program. They need different methods to ensure the
security in more dimensions. In contrast, the reinforcement
methodology does not focus on testing, but protecting the
EVM from any potential dangerous operations in real time.

(2) EVM reinforcement could interrupt dangerous op-
erations, not only those of smart contracts. Besides smart
contracts, a portion of problems are due to EVM itself.
Testing tools could only detect bugs in smart contracts to
ensure the robustness of the program. However, if something
went wrong in EVM which is irrelevant to smart contracts,
reinforced EVM* could detect these problems while running
and immediately interrupt the program.

(3) EVM reinforcement should be scalable and straight-
forward to be implemented on different EVMs. There are
losts of different EVM platforms in industry, and the proposed
approach should support different platforms. Luckily, based
on the rules customized by Ethereum, each version of EVM
platform is functionally and structurally the same. So that, the
methodology we proposed could be easily implemented on
other EVM platforms, following the common workflow.

VI. CONCLUSION

We proposed the framework EVM* to reinforce the EVM
platform and protect the transactions from being attacked.
Compared with the original EVM, the reinforced EVM* could
stop the execution of dangerous transactions in real time.
Besides, our work could make up for the testing tools. The
testing tools may miss certain bugs while the reinforced EVM*
could interrupt the transaction whenever finding a suspicious
operation. For the time overhead, reinforced EVM* is slower

than the original one by 20-30% in average. Our future work
will focus on the exploration of the detecting strategies, and
try to cover more types of bugs such as dangerous delegate call
and reentrancy bugs. Furthermore, we will try to implement
our methodology on more EVM versions.
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