
A Modified Smart Contract Execution Enviroment
for Safe Function Calls

Sooyeon Lee
Dept. of Computer Science and Engineering

Chungnam National University
Daejeon, Republic of Korea

djm02309@o.cnu.ac.kr

Eun-Sun Cho
Dept. of Computer Science and Engineering

Chungnam National University
Daejeon, Republic of Korea

eschough @cnu.ac.kr

Abstract— When a Solidity smart contract has a problem in
calling a function of another contract, the “fallback function” of
the contract is supposed to be executed automatically. However,
in many cases, a fallback function is arbitrarily created and
called, with their behaviors unknown to developers, so that its
execution is vulnerable to exploits by attackers. To reduce these
risks, this paper proposes a method that provides developers
with new keywords by modifying existing Solidity compiler and
Ethereum Virtual Machine (EVM). Developers mark their
intention using the newly introduced keywords, and the
modified existing Solidity compiler and EVM uses flags and
conditional statements to prevent calls of fallback functions to
reduce the risk of calls to fallback functions.

Keywords—Solidity, compiler, EVM (Ethereum VM), fallback
functions, smart contract

I. INTRODUCTION
Solidity [1] is the most widely used high-level language

for creating smart contracts for Ethereum [2], one of the
cryptographic currencies. Ethereum users can use Solidity to
create smart contracts and use them for transaction.

However, Solidity is known to have many vulnerabilities,
followed by financial damages from transactions through
smart contracts. In particular, many vulnerabilities have been
identified, especially when invoking functions of other smart
contracts. In a distributed smart contract environment, it is
difficult for the caller to understand and control the call action,
resulting in damage. For example, when a function of other
smart contract is called through the address, an unintended
function may be executed due to an incorrect address
reference. In this case, if the function does not exist at that
address, the fallback function, a special function without a
name, is implicitly called instead. Since the caller is not aware
of the behavior of the fallback function, attackers may take
advantage of this to allow the malicious behaviors to be
inserted into the fallback function and performed [3].

 Several suggestions have been made to reduce these
Solidity risks, such as tools to analyze smart contract codes in
advance [4][5], completely new languages to support strong
types [6], and a method to improve privacy by using
cryptographic techniques [7]. However, these methods have
difficulties in fully reflecting the nature of the distributed
smart contracts, and there are burdens such as introducing a
new language. In this paper, we introduce solc+ [8] and
EVM+ [9], which modified the existing Solidity compiler
(solc) [10] and Ethereum Virtual Machine (EVM) [11].
Solidity language developers can control invocations of the
fallback function using additional keywords, analysis and
monitoring provided by solc+/EVM+.

The sequence of this paper is as follows. Chapter 2
discusses the background of the research. Chapter 3 describes
how the new keywords appear on the solc+/ EVM+. Chapter

4 introduces how these techniques were implemented in the
solc+/EVM+, and Chapter 5 gives a conclusion.

II. BACKGROUND

A. Solidity Environment
Geth (go-ethereum)[12] is an Ethereum byte code

execution environment, that provides the command line
interface for running a full Ethereum node implemented in the
Go language. Ethereum traders can mine ethers (the
cryptographic money in Ethereum) using Geth directly or
conduct transactions through smart contracts running on
EVM. The Ethereum protocol is also implemented in other
languages such as C++ and Java, but currently Geth is the
dominant one.

Source files containing smart contract written in Solidity
will run through the EVM of Geth after they are compiled
through solc, the Solidity Compiler. Solc itself is written in
C++.

B. Fallback function vulnerability
A fallback function is the unique function of a contract

with no parameter, no name, and no return type, and up to one
for each contract. There are two main uses of this function.

 First, the fallback function is called in an exception
situation in a function invocation, when it matches no function
in the contract. More specifically, an exception occurs when
there is no signature (the 4-byte value of the SHA3 hash of the
function name) matching the invoked function, or when type
or parameters are not correct.

contract A {
 function() { x=1;}
 uint x;
}

Fig. 1. Example of the codes that might be call Fallback function

For instance, for contract address contract_A of contract
A type defined in Fig 1., an exception will occur in the
following function invocation even when contract_A is the
correct address of type A. In this case, the fallback function is
automatically called because the f1() does not exist in
contract A, so the value of x changes to 1.

contract_A.call(bytes4(sha3(“f1(uint256)”)),

 _value); (1)

A fallback function will also be called even if the compiler
confirms that the contract has the invocated function. Fig. 2
shows the case where the compiler has identified the presence
of a function ping in Amy in advance. However, the
compiler cannot confirm whether c is actually the address of
Amy and if the interface of Amy defined in Bill matches the

904

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00135

interface of Amy at the time it is actually performed. As a result,
when “c.ping (42);” is executed, there is still the possibility
of an exception situation due to the absence of a function
whose signatures do not match. The fallback function is then
executed automatically.

contract Amy {
function ping(uint) returns (uint)

}
contract Bill {

function pong(Amy c) {c.ping(42);}
}

Fig. 2. Example of smart contract [3]

Second, the fallback function is also executed if the
contract wishes to receive ethers from another contract. In
smart contracts, ethers move simply through transfer or by
sending to the account to be received, or by creating and
invoking special functions specified with the keyword
payable. The amount to be moved is specified by “value”, the
parameter passed on calls in the former case, or explicitly
received through a function parameter in the latter case.

Note that in the former case, the fallback function of the
incoming account is executed. In this case, an exception will
occur and the ethers will be returned to the callers, when the
contract does not implement a fallback function or the
fallback function is not set to payable. The problem arises
in that it is difficult for the caller to clearly understand whether
the fallback function was called and the behavior of the
fallback function. For example, if a malicious user creates
contract such a Fig.2 and intentionally puts a failure-causing
code inside the fallback function, the normal progress of the
contract can be stopped. And if the contract is executed after
the malicious code is inserted, the malicious code may be
executed instead of the function of the original fallback
function.

C. Exisiting Research
In a widely-used, interactive development environment

for Solidity developers, such as Remix [13], warnings are
generated about the vulnerable patterns of contract programs.
Oyente [4], DappGuard [5] and ZEUS [14] check the safety
of smart contracts with static or dynamic analyses. These tools
will analyze whether vulnerabilities exist for smart contracts
and then show the results to users. Oyente from the University
of Singapore is an open source security inspection tool that
performs inspections based on symbolic evaluation [15]. It
collects constraints on input values and demonstrates with the
Z3 Bit-Vector Solver [16] that the program can reach
erroneous states with control flow graphs (CFG) with the
collected constraints. DappGuard, another tool for safety
checks on smart contract codes, conducts static analysis
internally using Oyente, and checks more types of
vulnerabilities in addition. ZEUS changes its smart contract
code to LLVM bit code [17] and analyzes the vulnerabilities
of the contract based on user-specified policies. However,
smart contract codes cannot be analyzed accurately as the
characteristics of smart contracts are omitted in the process of
lifting smart contract codes to bit code. On the other hands,
decompilers will also help users who want to use smart
contract in EVM byte code, by presenting contracts in the high
level Solidity language to confirm their content [18].

However, all these approaches are performed after a
contract is made, which means that they do not provides

strong facilities to make the smart contract developers, one of
the most important stakeholders for the safety of smart
contracts, involved in the process. Although using a new safer
language might be an inherent solution, such a significant
change does not seem to be acceptable to the existing
Ethereum ecosystem. Using the require[19] statement in
Solidity also greatly contributes to enhancing the safety of the
code, but it is not possible to indicate whether the fallback
function is allowed to be called due to the constraints of the
expressive power of the phrase.

III. OVERVIEW OF THE PROPOSED METHOD
In our previous study [20], a keyword was provided to

developers to control the fallback function, along with a
method to rewrite the code using a pre-processing machine.
When rewriting the code in this study, a library was created to
reduce gas usage to control invoke of fallback. However, we
cannot get rid of gas consumption completely with the library
approach.

In this paper, we propose modified solc (solc+) and EVM
(EVM+) to support the ability to control the fallback function
by providing keywords to developers. solc+ provides
developers with two keywords: NONFALLBACKON and
NONFALLBACKOFF. Using these two keywords, developers can
specify a range to prevent the invocation of the fallback
function. At the beginning of the point where you do not want
the fallback function to be called, write down the keyword
NONFALLBACKON, and write down the keyword
NONFALLBACKOFF from the part where you want to allow the
fallback function to be called. Fig.3 is an example of the
conceptual code with keywords. When code is written as in
Fig. 3., solc+ recognizes NONFALLBACKON and
NONFALLBACKOFF.

contract Charlie {
function ping(uint) returns (uint)
function () payable { }

}
contract Dave {

function pong(Charlie c) {
NONFALLBACKON;
c.ping(42);
NONFALLBACKOFF;

}
}

Fig. 3. Example of conceptual codes with the keyword NONFALLBACKON
and NONFALLBACKOFF

Fig. 4. Flow for suggested method

905

Solc+ also analyzes the fallback function body of the
callee and insert the new pair of byte codes for
STARTNONFALLBACK and ENDNONFALLBACK in appropriate
positions of the generated byte code. And then when a smart
contract with keywords is executed in EVM+, the fallback
function located in the keyword’s area is not executed by the
conditional statement. This process shows as in Fig. 4.

IV. IMPLEMENTATION
This chapter introduces the actual implementation of the

proposed method. We modified the solc and EVM of Geth.

A. solc+
We modified the solidity compiler (solc) so that

developers could use keywords NONFALLBACKON and
NONFALLBACKOFF. First, we modified solc’s parser to
recognize the two new keywords. Next, with a simple
program analysis, solc+ determines if it is currently a fallback
function body. If this is true, that is, it is at the beginning and
the ending of the fallback function body, solc+ internally add
STARTNONFALLBACK and ENDNONFALLBACK encoded in new
EVM byte codes. The four new keywords were configured
with unique types of expression nodes in the parser and
inserted to the appropriate locations for the abstract syntax
tree (AST) [21]. And then, added visit methods that related to
new keyword nodes in every visitor existing in solc+. In
particular, solc+ manipulates new keyword nodes properly
encoded with the suitable code when generating bytecode
with Visitors [22].

B. EVM+
The sol file compiled with solc+ has to be executed, so we

modified the EVM of Geth (EVM+).

Fig. 5. Assign an opcode to added keywords

First, opcode was added for new keywords
(NONFALLBACKON, NONFALLBACKOFF, STARTNONFALLBACK,
ENDNONFALLBACK) as shown in Fig.5. 0x25, 0x26, 0x27, and
0x28 values were assigned to each keyword because this
range of EVM opcode set is not pre-allocated.

Fig. 6. Declares flags to be controlled by keywords

Fig. 7. Instruction for added opcode (0x25)

Then, as shown in Fig. 6, we created a structure with flags
to be controlled by keywords and added an instruction for
them, as shown in Fig. 7. Among the instructions, the
keywords NONFALLBACKON and NONFALLBACKOFF control the
IsNonFallBackEnforced flag, and the keywords
STARTNONFALLBACK and ENDNONFALLBACK control the
StartingNonFallback flag. New opcodes and their
instructions were added to the jumptable in Geth+ so that
computations could be executed in the interpreter.

Fig. 8. Added conditional statement in interpreter.go

Finally, as shown in Fig. 8, a conditional statement was
added to the filter to prevent the next operation if the flag that
related to the non-fallback is set.

Fig. 9. Result of executing opcode 0x25 on EVM+

After building EVM+, execute the NONFALLBACKON
keyword assigned as opcode 0x25, as it appears as Fig .9. As
a result of execution the keyword NONFALLBACKON shows that
the value of the UsersetFallback flag has changed, which
indicates that the user (caller) requests a safer execution
without fallback function invocation. It also shows the pc and
gas quantity for each opcode, and we can ensure that no gas is
consumed to set and manipulate the new keywords and flags.
It also works in the same way for Opcode 0x26, 0x27, and
0x28.

V. CONCLUSIONS
 The fallback function is often executed when an

exception occurs when invoking a function of another smart
contract from Solidity, or when there is a financial movement
between contracts. The content of this fallback function is a
function usually written with insufficient care, so it is easy to
leverage for attacks. In this paper, we have proposed a method
of controlling the invocation of the fallback function with new
keywords by modifying the existing solc and EVM of
Geth. This allows the developer to decide whether to execute
the fallback function using two keywords: NONFALLBACKON
and NONFALLBACKOFF. Using the keywords and help of the
new compiler and EVM, developers are able to write code that
reduces the risk of fallback functions.

ACKNOWLEDGMENT
This work was supported by Institute for Information

& communications Technology Promotion
(IITP) grant funded by the Korea government(MSIT) (2018-
0-00251, Privacy-Preserving and Vulnerability Analysis for
Smart Contract) .

REFERENCES
[1] Solidity, https://solidity.readthedocs.io/en/ develop/
[2] Ethereum. https://www.ethereum.org/
[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, “A survey of

attacks on Ethereum smart contracts”, Proceedings of the 6th
International Conference on Principles of Security and Trust, Page164-
186, April 22-29, 2017

[4] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena and Aquinas
Hobor, “Making Smart Contracts Smarter”, Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, Pages 254-269, October 24 - 28, 2016

[5] Thomas Cook, Alex Latham and Jae Hyung Lee, “DappGuard : Active
Monitoring and Defense for Solidity Smart Contracts”, mit, 2017

[6] Jack Pettersson and Robert Edström, “Safer smart contracts through
type-driven development Using dependent and polymorphic types for
safer development of smart contracts”, Master’s thesis in Computer
Science Department of Computer Science and Engineering Computing

906

Science Division Chalmers University of Technology and University
of Gothenburg Gothenburg, Sweden, 2016

[7] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and
Charalampos Papamanthou. Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts. In Proceedings
of the 2016 IEEE Symposium on Security and Privacy, SP '16. IEEE
Computer Society, 2016

[8] solc+ , https://github.com/PLASLaboratory/solc_plus
[9] EVM+, https://github.com/PLASLaboratory/EVM_plus
[10] solc, https://github.com/ethereum/solidity
[11] EVM, https://en.wikipedia.org/ wiki/Ethereum#Virtual_Machine
[12] Geth, https://github.com/ethereum/go-ethereum/wiki/Geth
[13] Remix, https://remix.ethereum.org/
[14] Sukrit Kalra, Seep Goel, Mohan Dhawan and Subodh Sharma, “ZEUS:

Analyzing Safety of Smart Contracts”, Network and Distributed
Systems Security (NDSS) Symposium 2018, IBM Research and IIT
Delhi, 2018

[15] Symbolic execution, https://en.wikipedia.org/wiki/Symbolic_executi
on

[16] The Z3 theorem prover, https://github.com/Z3Prover/z3.
[17] LLVM, https://llvm.org/
[18] Solidity Decompiler, https://ethervm.io/decompile
[19] Solidity require, https://solidity.readthedocs.io/en/v0.4.24/control-

structures.html
[20] Sooyeon Lee, Hyungkun Jung and Eun-Sun Cho, “Smart Contract

Code Rewritter for Improving Safety of Function Calls”, Journal of the
Korea Institute of Information Security and Cryptology, vol. 29(1),
pp.67-75. 2019

[21] Alfred V. Aho, Monica S. Lam, Jeffrey D. Ullman and Ravi Sethi,
Compilers:Principles,Techniques,and Tools, Pearsin Education. 2011

[22] Visitor, https://en.wikipedia.org/wiki/Visitor_pattern

907

