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Abstract— When a Solidity smart contract has a problem in 
calling a function of another contract, the “fallback function” of 
the contract is supposed to be executed automatically. However, 
in many cases, a fallback function is arbitrarily created and 
called, with their behaviors unknown to developers, so that its 
execution is vulnerable to exploits by attackers. To reduce these 
risks, this paper proposes a method that provides developers 
with new keywords by modifying existing Solidity compiler and 
Ethereum Virtual Machine (EVM).  Developers mark their 
intention using the newly introduced keywords, and the 
modified existing Solidity compiler and EVM uses flags and 
conditional statements to prevent calls of fallback functions to 
reduce the risk of calls to fallback functions. 

Keywords—Solidity, compiler, EVM (Ethereum VM), fallback 
functions, smart contract 

I. INTRODUCTION 
Solidity [1] is the most widely used high-level language 

for creating smart contracts for Ethereum [2], one of the 
cryptographic currencies. Ethereum users can use Solidity to 
create smart contracts and use them for transaction.  

However, Solidity is known to have many vulnerabilities, 
followed by financial damages from transactions through 
smart contracts. In particular, many vulnerabilities have been 
identified, especially when invoking functions of other smart 
contracts. In a distributed smart contract environment, it is 
difficult for the caller to understand and control the call action, 
resulting in damage. For example, when a function of other 
smart contract is called through the address, an unintended 
function may be executed due to an incorrect address 
reference. In this case, if the function does not exist at that 
address, the fallback function, a special function without a 
name, is implicitly called instead. Since the caller is not aware 
of the behavior of the fallback function, attackers may take 
advantage of this to allow the malicious behaviors to be 
inserted into the fallback function and performed [3].  

 Several suggestions have been made to reduce these 
Solidity risks, such as tools to analyze smart contract codes in 
advance [4][5], completely new languages to support strong 
types [6], and a method to improve privacy by using 
cryptographic techniques [7]. However, these methods have 
difficulties in fully reflecting the nature of the distributed 
smart contracts, and there are burdens such as introducing a 
new language. In this paper, we introduce solc+ [8] and 
EVM+ [9], which modified the existing Solidity compiler 
(solc) [10] and Ethereum Virtual Machine (EVM) [11]. 
Solidity language developers can control invocations of the 
fallback function using additional keywords, analysis and 
monitoring provided by solc+/EVM+.  

The sequence of this paper is as follows. Chapter 2 
discusses the background of the research. Chapter 3 describes 
how the new keywords appear on the solc+/ EVM+.  Chapter 

4 introduces how these techniques were implemented in the 
solc+/EVM+, and Chapter 5 gives a conclusion. 

II. BACKGROUND 

A. Solidity Environment 
Geth (go-ethereum)[12] is an Ethereum byte code 

execution environment, that provides the command line 
interface for running a full Ethereum node implemented in the 
Go language. Ethereum traders can mine ethers (the 
cryptographic money in Ethereum) using Geth directly or 
conduct transactions through smart contracts running on 
EVM. The Ethereum protocol is also implemented in other 
languages such as C++ and Java, but currently Geth is the 
dominant one. 

Source files containing smart contract written in Solidity 
will run through the EVM of Geth after they are compiled 
through solc, the Solidity Compiler. Solc itself is written in 
C++. 

B. Fallback function vulnerability 
A fallback function is the unique function of a contract 

with no parameter, no name, and no return type, and up to one 
for each contract. There are two main uses of this function. 

 First, the fallback function is called in an exception 
situation in a function invocation, when it matches no function 
in the contract. More specifically, an exception occurs when 
there is no signature (the 4-byte value of the SHA3 hash of the 
function name) matching the invoked function, or when type 
or parameters are not correct. 

contract A { 
 function() { x=1;} 
 uint x; 
} 

Fig. 1. Example of the codes that might be call Fallback function 

For instance, for contract address contract_A of contract 
A type defined in Fig 1.,  an exception will occur in the 
following function invocation even when contract_A is the 
correct address of type A. In this case, the fallback function is 
automatically called because the f1() does not exist in 
contract A, so the value of x changes to 1. 

contract_A.call(bytes4(sha3(“f1(uint256)”)), 

    _value);                       (1) 

A fallback function will also be called even if the compiler 
confirms that the contract has the invocated function. Fig. 2 
shows the case where the compiler has identified the presence 
of a function ping in Amy in advance.  However, the 
compiler cannot confirm whether c is actually the address of 
Amy and if the interface of Amy defined in Bill matches the 
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interface of Amy at the time it is actually performed. As a result, 
when “c.ping (42);” is executed, there is still the possibility 
of an exception situation due to the absence of a function 
whose signatures do not match. The fallback function is then 
executed automatically. 

contract Amy { 
function ping(uint) returns (uint) 

}
contract Bill { 

function pong(Amy c) {c.ping(42);} 
}

Fig. 2. Example of smart contract [3] 

Second, the fallback function is also executed if the 
contract wishes to receive ethers from another contract. In 
smart contracts, ethers move simply through transfer or by 
sending to the account to be received, or by creating and 
invoking special functions specified with the keyword 
payable. The amount to be moved is specified by “value”, the 
parameter passed on calls in the former case, or explicitly  
received through a function parameter in the latter case.  

Note that in the former case, the fallback function of the 
incoming account is executed. In this case, an exception will 
occur and the ethers will be returned to the callers, when the 
contract does not implement a fallback function or the 
fallback function is not set to payable. The problem arises 
in that it is difficult for the caller to clearly understand whether 
the fallback function was called and the behavior of the 
fallback function. For example, if a malicious user creates 
contract such a Fig.2 and intentionally puts a failure-causing 
code inside the fallback function, the normal progress of the 
contract can be stopped. And if the contract is executed after 
the malicious code is inserted, the malicious code may be 
executed instead of the function of the original fallback 
function. 

C. Exisiting Research 
In a widely-used, interactive development environment 

for Solidity developers, such as Remix [13], warnings are 
generated about the vulnerable patterns of contract programs. 
Oyente [4], DappGuard [5] and ZEUS [14] check the safety 
of smart contracts with static or dynamic analyses. These tools 
will analyze whether vulnerabilities exist for smart contracts 
and then show the results to users. Oyente from the University 
of Singapore is an open source security inspection tool that 
performs inspections based on symbolic evaluation [15].  It 
collects constraints on input values and demonstrates with the 
Z3 Bit-Vector Solver [16] that the program can reach 
erroneous states with control flow graphs (CFG) with the 
collected constraints. DappGuard, another tool for safety 
checks on smart contract codes, conducts static analysis 
internally using Oyente, and checks more types of 
vulnerabilities in addition. ZEUS changes its smart contract 
code to LLVM bit code [17] and analyzes the vulnerabilities 
of the contract based on user-specified policies. However, 
smart contract codes cannot be analyzed accurately as the 
characteristics of smart contracts are omitted in the process of 
lifting smart contract codes to bit code. On the other hands, 
decompilers will also help users who want to use smart 
contract in EVM byte code, by presenting contracts in the high 
level Solidity language to confirm their content [18].  

However, all these approaches are performed after a 
contract is made, which means that they do not provides 

strong facilities to make the smart contract developers, one of 
the most important stakeholders for the safety of smart 
contracts, involved in the process. Although using a new safer 
language might be an inherent solution, such a significant 
change does not seem to be acceptable to the existing 
Ethereum ecosystem. Using the require[19] statement in 
Solidity also greatly contributes to enhancing the safety of the 
code, but it is not possible to indicate whether the fallback 
function is allowed to be called due to the constraints of the 
expressive power of the phrase. 

III. OVERVIEW OF THE PROPOSED METHOD 
In our previous study [20], a keyword was provided to 

developers to control the fallback function, along with a 
method to rewrite the code using a pre-processing machine. 
When rewriting the code in this study, a library was created to 
reduce gas usage to control invoke of fallback. However, we 
cannot get rid of gas consumption completely with the library 
approach.  

In this paper, we propose modified solc (solc+) and EVM 
(EVM+) to support the ability to control the fallback function 
by providing keywords to developers. solc+ provides 
developers with two keywords: NONFALLBACKON and 
NONFALLBACKOFF. Using these two keywords, developers can 
specify a range to prevent the invocation of the fallback 
function. At the beginning of the point where you do not want 
the fallback function to be called, write down the keyword 
NONFALLBACKON, and write down the keyword 
NONFALLBACKOFF from the part where you want to allow the 
fallback function to be called. Fig.3  is an example of the 
conceptual code with keywords.  When code is written as in 
Fig. 3., solc+ recognizes NONFALLBACKON and 
NONFALLBACKOFF. 

contract Charlie {  
function ping(uint) returns (uint)  
function () payable { } 

} 
contract Dave {  

function pong(Charlie c) { 
NONFALLBACKON; 
c.ping(42); 
NONFALLBACKOFF; 

}   
}

Fig. 3. Example of conceptual codes with the keyword NONFALLBACKON 
and NONFALLBACKOFF 

 
Fig. 4. Flow for suggested method 
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Solc+ also analyzes the fallback function body of the 
callee and insert the new pair of byte codes for 
STARTNONFALLBACK and ENDNONFALLBACK in appropriate 
positions of the generated byte code. And then when a smart 
contract with keywords is executed in EVM+, the fallback 
function located in the keyword’s area is not executed by the 
conditional statement. This process shows as in Fig. 4. 

IV. IMPLEMENTATION 
This chapter introduces the actual implementation of the 

proposed method. We modified the solc and EVM of Geth. 

A. solc+ 
We modified the solidity compiler (solc) so that 

developers could use keywords NONFALLBACKON and 
NONFALLBACKOFF.  First, we modified solc’s parser to 
recognize the two new keywords. Next, with a simple 
program analysis, solc+ determines if it is currently a fallback 
function body. If this is true, that is, it is at the beginning and 
the ending of the fallback function body, solc+ internally add 
STARTNONFALLBACK and ENDNONFALLBACK encoded in new 
EVM byte codes. The four new keywords were configured 
with unique types of expression nodes in the parser and 
inserted to the appropriate locations for the abstract syntax 
tree (AST) [21]. And then, added visit methods that related to 
new keyword nodes in every visitor existing in solc+. In 
particular, solc+ manipulates new keyword nodes properly 
encoded with the suitable code when generating bytecode 
with Visitors [22]. 

B. EVM+ 
The sol file compiled with solc+ has to be executed, so we 

modified the EVM of Geth (EVM+).  

 
Fig. 5. Assign an opcode to added keywords 

First, opcode was added for new keywords 
(NONFALLBACKON, NONFALLBACKOFF, STARTNONFALLBACK, 
ENDNONFALLBACK) as shown in Fig.5. 0x25, 0x26, 0x27, and 
0x28 values were assigned to each keyword because this 
range of EVM opcode set is not pre-allocated.  

 
Fig. 6. Declares flags to be controlled by keywords 

 
Fig. 7. Instruction for added opcode ( 0x25) 

Then, as shown in Fig. 6, we created a structure with flags 
to be controlled by keywords and added an instruction for 
them, as shown in Fig. 7. Among the instructions, the 
keywords NONFALLBACKON and NONFALLBACKOFF control the 
IsNonFallBackEnforced flag, and the keywords 
STARTNONFALLBACK and ENDNONFALLBACK control the 
StartingNonFallback flag. New opcodes and their 
instructions were added to the jumptable in Geth+ so that 
computations could be executed in the interpreter. 

 
Fig. 8. Added conditional statement in interpreter.go 

Finally, as shown in Fig. 8, a conditional statement was 
added to the filter to prevent the next operation if the flag that 
related to the non-fallback is set.  

 
Fig. 9. Result of executing opcode 0x25 on EVM+ 

After building EVM+, execute the NONFALLBACKON 
keyword assigned as opcode 0x25, as it appears as Fig .9.  As 
a result of execution the keyword NONFALLBACKON shows that 
the value of the UsersetFallback flag has changed, which 
indicates that the user (caller) requests a safer execution 
without fallback function invocation. It also shows the pc and 
gas quantity for each opcode, and we can ensure that no gas is 
consumed to set and manipulate the new keywords and flags. 
It also works in the same way for Opcode 0x26, 0x27, and 
0x28. 

V. CONCLUSIONS 
 The fallback function is often executed when an 

exception occurs when invoking a function of another smart 
contract from Solidity, or when there is a financial movement 
between contracts.  The content of this fallback function is a 
function usually written with insufficient care, so it is easy to  
leverage for attacks. In this paper, we have proposed a method 
of controlling the invocation of the fallback function with new 
keywords by modifying the existing solc and EVM of 
Geth.  This allows the developer to decide whether to execute 
the fallback function using two keywords: NONFALLBACKON 
and NONFALLBACKOFF. Using the keywords and help of the 
new compiler and EVM, developers are able to write code that 
reduces the risk of fallback functions. 
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