
A Parallel Smart Contract Model
Wei YU

State Key Laboratory of Software
Development Environment, Beihang

University, Beijing 100191, China
(86)18811437365

964135354@qq.com

Kan LUO
State Key Laboratory of Software

Development Environment, Beihang
University, Beijing 100191, China

(86)18810285862

looken@buaa.edu.cn

Yi Ding
School of information, Beijing Wuzi
University, Beijing 101149, China

(86)010-89534291

dingyi@bwu.edu.cn

Guang YOU
BeiJing Business Support Center, China Mobile

Information Technology Co.,Ltd, Beijing 100031, China
(86) 13810354684

youguang@cmhi.chinamobile.com

Kai HU
State Key Laboratory of Software Development

Environment, Beihang University, Beijing 100191, China
(86)010-82339460

hukai@buaa.edu.cn

ABSTRACT

With the rapid development of blockchain technology, blockchain

becomes a good platform for execution of smart contracts.

However, since smart contracts still have a low performance of

transaction processing on blockchain. It can’t satisfy real-time

requirements in some situations. This paper proposes a parallel

smart contract model on blockchain which has a better

performance in transaction processing. The challenges with the

proposed approach are the implementation of the parallel mode

and the solution of synchronization problem of the proposed

model. This paper uses multi-thread technology to implement the

proposed model where transactions are executed in parallel. Then

we propose a transaction splitting algorithm to resolve the

synchronization problem. Finally, experimental analysis proves

that this parallel model exactly makes a remarkable development

of performance in transaction processing.

CCS Concepts

•Theory of computation➝Models of

computation➝Concurrency ➝Parallel computing models.

Keywords

Blockchain; smart contract; parallel model.

1. INTRODUCTION
The concept of smart contract was firstly proposed by Nick Szabo

in 1994 [1]. This concept implies that the smart contract is a

computable trading protocol which can automatically execute the

terms of the contract. Although smart contract theory is almost

simultaneously proposed with the Internet technology (World

Wide Web), the application practice of smart contract has been

seriously behind the theory due to the lack of a clear path to

realize the implementation of smart contract. Smart contracts

mainly face two problems. One is that smart contracts don’t have

effective means to control physical assets and ensure the

execution of contracts; the other is that it is difficult for a single

computer to guarantee the implementation of these terms in a

smart contract therefore the smart contract can’t obtain the trust of

contractors.

The emergence of blockchain [2] technology has resolved these

problems. On the one hand, the blockchain can store digital assets

(such as money or stocks) [3], thus smart contracts running on

blockchain can get the control of those digital assets. On the other

hand, because the blockchain has characteristics of full

traceability and non-tampering so it provides smart contracts

safety and trustful execution platform where smart contracts can

get the trust of contractors.

However, the existing blockchain-based smart contract

technology is still in a primary stage. There are still many

problems needing to be resolved. An important problem is the low

performance. Recent data shows that the execution time of a smart

contract on blockchain can reach over 20s and the number of

smart contract running on the blockchain has enormously been

increasing [4] day by day. Which means that low performance of

the smart contract will directly reduce the speed of transaction

processing of blockchain and limit the implementation area of

blockchain.

Always, smart contracts are invoked to process the transactions on

blockchain and the process of transaction processing will be

called as smart contract model.

This paper proposes a new model of the smart contract. It uses

multi-thread technology [5] to execute smart contracts in parallel.

Using this new model to process transactions can reduce the

average time cost and make smart contracts get a better

performance on blockchain.

1.1 Contributions
This paper makes the following contributions:

 We analyze a typical current smart contract model and

summarize disadvantages of it.

 We propose a parallel smart contract model which has a

better performance in transaction processing.

 We propose a transaction splitting algorithm to resolve the

synchronization problem in the parallel smart contract

model.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

MLMI2018, September 28–30, 2018, Ha Noi, Viet Nam.
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6556-7/18/09…$15.00

DOI: https://doi.org/10.1145/3278312.3278321

72

 We test the performance of the algorithm and the parallel

model that we proposed.

1.2 Organize
This paper is organized as follows:

Section 2 presents the related work; Section 3 describes the

parallel smart contract model that we proposed; Section 4

introduces a transaction splitting algorithm to resolve the

synchronization problem; Section 5 describes experimental

analysis and Section 6 gives the conclusion.

2. RELATED WORK
There are some popular blockchain open source projects which

support smart contracts. We will first analyze the smart contract

model of these projects, then find out which part of the models

should be modified to help us design our new smart contract

model.

2.1 Components
Before we show our analysis results, some necessary components

of smart contract model should be introduced first.

2.1.1 State database
State database stores all state variables, including contract code,

contract storage and so on. Usually, the contract code is saved as

bytecode in a low-level language. Users always make a contract

by using a high-level programming language such as java, go, or

Solidity [6], then compile the code by a specific compiler. For

example, Ethereum users use Solidity to write their own contract,

then use Ethereum Virtual Machine (EVM) to compile it into

contract code [7]. Contract storage contains some variables that

related to this contract. For example, a simple transfer contract

storage includes the account balance and transfer amount.

2.1.2 Transaction
Usually, smart contracts are invoked by transactions. A

transaction includes the name of invoking smart contract and

input data for the invocation.

2.1.3 Contract executing virtual machine
Contract executing virtual machine provides smart contracts with

the necessary runtime environment and compiles the contract into

contract code. Moreover, when a contract is invoked by a

transaction, contract executing virtual machine will execute the

contract code and give the execution result.

2.1.4 Blockchain
Blockchain records all the transactions and their execution results

given by smart contracts. It also records the certification of the

correctness of state database.

2.2 Current Smart Contract Model
In this paper, we mainly analyze a current popular open source

project: Ethereum [8], [9]. Ethereum is a public blockchain which

supports the smart contract.

2.2.1 Ethereum
The Figure 1 shows the smart contract model of Ethereum. A

simple process of smart contract execution can be described as

follows:

 A transaction that is going to be processed invokes its

corresponding contract.

 By analyzing the content of the transaction, EVM gets the

corresponding contract code and contract inputs from the

transaction and state database.

 Contract code is executed in EVM and the alterations of

state variables will be written back into the state database.

 When all transactions in a block have already been executed,

the current state of state database will be recorded in the

blockchain as a certification.

Figure 1. Ethereum smart contract model.

Ethereum uses some methods to improve the performance of its

smart contract mode. First, it uses LevelDB [10] which has a high

performance of random writing to reduce the I/O cost. Second, all

state variables are stored in MPT [11] (Merkle Patricia tree) to

reduce the cost of making the certification. Moreover, it proposes

a tree pruning method [12] to cut useless data in the state database.

2.2.2 Disadvantages and Modifications
However, according to our analysis, there are some disadvantages

in Ethereum. Its smart contract model is a serial mode, every

operation that is going to be executed should wait for the end of

previous work which will cause more time cost. Especially in the

step number 3, 4 and 5 of contract process in Figure 1, there are

many I/O operations executing in serial, which can sharply reduce

the performance.

As a result of the description above, the current smart contract

models have some disadvantages which will finally cause the

decline of performance. By analyzing these disadvantages, we

think that executing contract in serial is the main cause of the

decline of performance. Then we propose a new model which

executes contract in parallel and get a better performance in

transaction processing.

3. PARALLEL SMART CONTRACT

MODEL
According to the analysis of current smart contract model, we

propose a parallel smart contract model which has a better

performance of transaction processing.

3.1 Components
Compared to current smart contract model, there are two newly

added model components:

3.1.1 Transaction splitting component
Transaction splitting component will group the transactions and

make each transaction group have no shared variables.

3.1.2 Parallel processing component
Parallel processing component uses multi-thread technology to

process transactions in parallel. It creates an appropriate number

of threads and assigns contract executing tasks to each thread.

Other components such as state database and so on have little

difference between Ethereum.

73

3.2 Processing Steps

Figure 2. Parallel smart contract model.

The Figure 2 shows the parallel smart contract model that we

proposed. The main process of contract execution in this new

model can be described in seven steps:

Step1: When the blockchain system gets enough valid transactions

from transaction pool, it will start processing these transactions.

Step2: Transaction splitting component analyzes the transactions

to get the information of shared variables. Then, this component

groups the transactions into different set which have no same

shared variables with each other. Finally, these transaction sets

will be sent to multi-thread processing component.

Step3: multi-thread processing component assigns these

transaction processing work to each thread.

Step4: Threads start running and get necessary initial data such as

contract code from state database. Then, the contract invoked is

ready to be executed.

Step5: Contract code will be executed and then the code will

complete its corresponding smart contract’s business logic.

Step6: Smart contract executions will alter some related state

variables and these alterations will finally be written back to state

database.

Step7: When all smart contracts have been finished, the

blockchain system will make the certification of state database

(i.e., in Ethereum, the certification of state database is the root of

MPT), then record all the processed transactions and the

certification into the blockchain.

3.3 Performance Analysis
Although new components will generate an extra time cost in step

2 and step 3, processing transactions in parallel will save a huge

time cost in step 4, step 5, and step 6. Moreover, the extra time

cost is most generated by extra computation operations in the new

components. The saved time cost is generated by not only

computation operations but also the I/O operations. Since I/O

operations always cost more time than computation operations,

the parallel model will finally save much time in transaction

processing and get a better performance than the current model.

We will prove our analysis according to the experiment in section

5.

4. TRANSACTION SPLITTING

ALGORITHM
Using multi-thread technology to process transactions in parallel

will bring improvement on the performance, but it will also cause

the synchronization problem [13]. We propose a transaction

splitting algorithm to resolve this problem and it will be used in

the transaction splitting component.

4.1 Descriptions of Transaction Splitting
When we used multi-thread technology, the synchronization

problem should be taken into account. This problem implies that

if there is no protection for a variable that is shared with different

threads, the value of this variable may be different in different

threads and lead some errors.

As we described above, the synchronization problem is caused by

the same shared variables which exist in different transactions, we

define these transactions as related transactions. Then we can get

this conclusion that if the transactions in different threads are not

related, there will be no synchronization problem. So, the solution

to the synchronization problem is to split the transactions and let

different threads process unrelated transactions. To help achieve

the aim of transaction splitting, we give these definitions as

follows:

We define a transaction as a two-tuples:

Among them:

 is the information of this transaction;

 {𝑠1 𝑠2 ⋯ 𝑠𝑚}. is the set about all shared variables of

this transaction;

There are three states between two transactions as follows:

 Unrelated: 1 ∩ 2 ∅ 1 ∈ 1 2 ∈ 2

 Related: 1 ∩ 2 ≠ ∅ 1 ∈ 1 2 ∈ 2

 Potentially Related: 1 ∩ 2 ∅ 1 ∩ 3 ≠ ∅ 2 ∩ 3 ≠
∅ 1 ∈ 1 2 ∈ 2 3 ∈ 3

Unrelated means these two transactions have no the same shared

variables and related means they at least have a same shared

variable. Potentially related means these two transactions have at

least a same related transaction. Moreover, Related and potentially

related transactions should be split into the same set.

Figure 3. Process of transaction splitting.

The Figure 3 shows an example of the process of transaction

splitting. Transaction Tx1, Tx2 have the same variable s1 and Tx2,

Tx3 have the same variable s3. Tx1 has a potential relationship

with Tx3 due to Tx2, so Tx1, Tx2 and Tx3 are grouped into set 1.

Then Tx4, Tx5 also have the same variable, so they are grouped

into set 2. Due to Tx6 has no same shared variable with other

transactions, it is grouped into set 3 alone.

4.2 Algorithm Design
After we get the process of transaction splitting, now we will give

the algorithm design of it as follows.

74

4.2.1 Definitions
Before we introduce the proposed algorithm, the definitions in the

algorithm should be introduced first.

 The set we used in the pseudo-code does not contain

duplicate elements.

 The tx is short for a transaction, the txi and txj is short for

different transactions. The variable T means all transactions

means total transactions of one block.

 The related set of one transaction contains its related

transactions.

 The related degree means the degree of the relationship

among all transactions, it can be expressed as a formula

where variable n means the number of all transactions and

variable m means the number of relationships among all

transactions. The formula is shown as follows:

𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑑𝑒𝑔𝑟𝑒𝑒 𝑚/𝑛2 m ∈ N n ∈ N

4.2.2 Creating related sets
Before splitting transactions, first we should get the related set of

each transaction. With the help of the related sets, we can put the

related transactions into the same subset.

Table 1. Algorithm: Create related transaction sets

Input: T (a set of all transactions)

1 create a set R

2 forall the txi in T do

3 create a related set S for txi

4 forall the txj in T do

5 if isRelated(txi,txj)=true then

6 S ← txj

7 R ← S

8 return R

Table 1 shows the pseudo-code, where the function named

isRelated is used to judge whether two transactions were related.

By inputting the transaction set, we can finally get the related sets.

4.2.3 Transaction splitting
After we get the related sets of each transaction, we can easily

convert the relationships among all transactions to an undirected

graph. Then we design a splitting algorithm based BFS [14]

(breadth-first search algorithm) to split related transactions into

the same subset. Table 2 shows the pseudo-code. By inputting the

transaction set and related sets, we can finally get the unrelated

sets of transactions.

Table 2. Algorithm: Splitting transactions

Input: T (a set of all transactions), R (a set of related sets)

1 create set N

2 while T is not empty

3 get a transaction tx from T

4 create a set Q

5 Q ← tx

6 while Q is not empty

7 create a set M

8 get a transaction txi from Q

9 M ← txi

10 remove txi from T

11 remove txi from Q

12 forall txj in related set of txi do

13 Q ← txj

14 N ← M

15 return N

4.2.4 Time complexity of algorithm
The time complexity of these algorithms that we design will help

us make a better experiment to test these algorithms and modify

them in the future.

The time complexity formula of creating related sets is shown as

follows:

O(∑ 𝑋𝑖 + 𝑋𝑗

𝑖≤𝑛 𝑗≤𝑛

𝑖≥1 𝑗≥1

) 𝑂 2𝑛∑𝑋𝑖

𝑖≤𝑛

𝑖≥1

 n ∈ N Xi ∈ N

Variable n means the number of all transactions and Xi means the

number of shared variables belong to ith transaction. Using a set

merging method, the time complexity of isRelated function is

O Xi + X .

The time complexity of formula transaction splitting is shown as

follows:

O n + e 𝑂(𝑛 + 1
2⁄ ∑𝑌𝑖

𝑖≤𝑛

𝑖≥1

) n ∈ N Yi ∈ N

Variable n means the number of all transactions, Yi means the

number of related transactions belong to the ith transaction. The

transaction splitting algorithm is based on BFS algorithm. It also

has the same time complexity with BFS algorithm which is

O n + e .

Then, since the related degree of transactions is low, we can get

the time complexity formula of the whole algorithm as follows:

𝑂 2𝑛2 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 n ∈ N average ∈ N

Variable average means the average number of shared variables of

each transaction and variable n expresses the number of all

transactions.

Finally, according to the final formula, we get a conclusion

including two parts:

 The transaction splitting algorithm’s time cost has a positive

linear correlation with the number of shared variables which

belong to these transactions.

 The transaction splitting algorithm’s time cost has a positive

linear correlation with the number of transactions in each

block.

5. EXPERIMENTAL ANALYSIS
To verify the parallel model, we build our own blockchain system

which can support the execution of smart contracts. The Multi-

threads are implemented in Java. The testing smart contracts

mainly contain several simple read and write operations of shared

variables. The testing transactions mainly have two parts

including the name of invoked contract and the set of their shared

variables.

Our goals include twofold. First, we aim to get the proof that the

transaction splitting algorithm’s time cost has a positive linear

correlation with the number of transactions and shared variables.

Second, we will prove that our parallel smart contract model has a

better performance than the current smart contract model.

75

5.1 Default Variables in the Experiments
Table 3 shows the default values of each variable in the

experiments. In our experiments, the evaluation of performance is

mainly based on the total time cost. The less time the testing

object costs, the better performance it has.

Table 3. Defaults of each variable in the experiments

Number of transactions in each block 2000

Transaction related degree 10%

Number of average shared variables in

each transaction
5

Number of threads to be created in the

parallel mode
12

Number of computer cores 8

5.2 Transaction Splitting Algorithm
Since the process of transaction splitting has an important factor

affecting performance, finding out the variables which influence

this algorithm’s time complexity will help us modify the

algorithm in the future. As a result of that, we do these

experiments as follows.

We change the value of the number of shared variables in each

transaction to find out its relationship with time complexity, the

result is shown as Figure 4.

The trendline in Figure 4 shows that the cost time has a nearly

positive linear correlation with the number of shared variables in

each transaction which can prove the part one of our conclusion in

section 4.

Figure 4. Relationship one.

Like the pervious experiment, we do the similar experiment of the

number of shared variables. The result is shown as Figure 5.

According to the trendline in Figure 5, it shows that the cost time

has a nearly positive linear correlation with the number of

transactions in each block which can prove the part two of our

conclusion in section 4.

Figure 5. Relationship two.

Finally, these two experiments can prove the whole conclusion in

section 4, which will help us to effectively modify the algorithm

in the future.

5.3 Parallel Smart Contract Model
In this experiment, we design a serial smart contract model which

is similar as the current smart contract model to be compared with

the parallel model. We let the two models process the same

transactions and compare their processing time cost. The result is

shown as Figure 6.

Figure 6. The time cost comparison between parallel mode

and serial mode.

According to the comparison between these two modes. The result

shows that the parallel smart contract model we proposed has a

better performance than the serial smart contract model indeed.

Furthermore, it can at least save 23.8% in time cost where each

block contains 3500 transactions and can at most save 41.9% in

time cost where each block contains 1000 transactions. As a result

of that, we can finally prove that the proposed parallel model has

a remarkable performance improvement than the current serial

smart contract model.

6. CONCLUSION
This paper first introduces the current performance issues in the

smart contracts running on blockchain. It analyzes the current

smart contract models and summarize their disadvantages in

performance, then it proposes a parallel smart contract model

which avoids the disadvantages analyzed in current smart contract

model. Next, it proposes a transaction splitting algorithm to

resolve the synchronization problem in this proposed model.

Finally, experimental results show that the proposed parallel

model has a remarkable performance improvement indeed.

However, there many problems to be solved. For examples, the

methods of getting shared variables in each transaction need to be

given focus in terms of study.

7. ACKNOWLEDGMENTS
This work was partially supported by the National Natural

Science Foundation of China under Grant 61672074 and

91538202, Funding of Ministry of Education and China Mobile

MCM20160203.

8. REFERENCES
[1] Szabo N. Formalizing and Securing Relationships on Public

Networks[J]. 1997, 2(9).

[2] Swan M. Blockchain: Blueprint for a New Economy[M].

O'Reilly Media, Inc. 2015.

[3] Yu L, Tsai W T, Li G, et al. Smart-Contract Execution with

Concurrent Block Building[C]// Service-Oriented System

Engineering. IEEE, 2017:160-167.

453 544
649 768

922 1015
1364 1484

1611 1688

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

T
o
t
a
l
 c
o
s
t
 t
i
m
e
(m
s)

Number of shared variables of each transaction

64
252

555
916

1484

2090

-500

0

500

1000

1500

2000

2500

500 1000 1500 2000 2500 3000

C
o
s
t
 o
f
 t
i
m
e
(m
s)

Number of transactions in each block

1642
2768

4474
5809

7566
9308

1040 1606
2643

3625
5109

7091

0

2000

4000

6000

8000

10000

500 1000 1500 2000 2500 3000C
o
s
t
 o
f
 t
i
m
e
(m
s)

Number of transactions per block

serial

parallel

76

[4] Luu L, Chu D H, Olickel H, et al. Making Smart Contracts

Smarter[C]// ACM Sigsac Conference on Computer and

Communications Security. ACM, 2016:254-269.

[5] Arora, Nimar S, Blumofe, et al. Thread scheduling for

multiprogrammed multiprocessors[J]. Theory of Computing

Systems, 2001, 34(2):115-144.

[6] Ethereum Foundation. The solidity contract-oriented

programming language.

https://github:com/ethereum/solidity.

[7] Delmolino K, Arnett M, Kosba A, et al. Step by Step

Towards Creating a Safe Smart Contract: Lessons and

Insights from a Cryptocurrency Lab[M]// Financial

Cryptography and Data Security. Springer Berlin Heidelberg,

2016.

[8] Ethereum: A Next-Generation Generalized Smart Contract

and Decentralized Application Platform.

https://github.com/ethereum/wiki/wiki/White-Paper.

[9] Gavin Wood. Ethereum: A secure decentralized transaction

ledger. http://gavwood.com/paper.pdf,2014.

[10]J. Dean and S. Ghemawat, LevelDB.

http://code.google.com/p/leveldb,2011.

[11] Merkle Patricia Trie Specification (also Merkle Patricia

Tree). https://github.com/ethereum/wiki/wiki/Patricia-

Tree.

[12] State Tree Pruning.

https://blog.ethereum.org/2015/06/26/state-tree-

pruning/.

[13] Shuang-Quan L I, Chen H Y, Sun Y X. Synchronized

Mechanism for Multithread in Java[J]. Modern Computer,

2003.

[14] Kurant M, Markopoulou A, Thiran P. On the bias of BFS

(Breadth First Search)[C]// Teletraffic Congress. 2010:1-8.

77

