
Finding Concurrency Exploits on Smart Contracts
Yue Li

Peking University
liyue_cs@pku.edu.cn

Abstract—Smart contracts have been widely used on Ethereum
to enable business services across various application domains.
However, they are prone to different forms of security attacks
due to the dynamic and non-deterministic blockchain runtime
environment. In this work, we highlighted a general miner-
side type of exploit, called concurrency exploit, which attacks
smart contracts via generating malicious transaction sequences.
Moreover, we designed a systematic algorithm to automatically
detect such exploits. In our preliminary evaluation, our approach
managed to identify real vulnerabilities that cannot be detected
by other tools in the literature.

I. PROBLEM AND MOTIVATION

Ethereum smart contracts are programs running on the
blockchain to operate on Ethereum cryptocurrencies (i.e.,
ether) and a set of persistent data (i.e., storage) [1]. Figure 1
shows a simple smart contract EtherStore with four storage
variables and public functions except the constructor. External
accounts can use EtherStore by sending transactions to
it. For example, a possible transaction data may look like
a9059cbb7adee867ea91533879d083dd4ea81f0eee3a37e.
Specifically, the first four bytes a9059cbb point to the
hash of the foo function and the remaining bytes indicate
the parameter used by foo, i.e., a 20-byte address. In the
execution of foo, the storage Owner will be updated to the
value passed from the transaction (line 11) and permanently
stored on blockchain. Commonly, transactions submitted to
the Ethereum network are ordered and packaged by a miner
node to optimize its own benefit, e.g., efficiently get the most
transaction fee. From this perspective, smart contracts can be
seen as a form of concurrent software since their executions
are non-deterministic to transaction senders.
We further explain such concurrency via Figure 2 based on

the contract in Figure 1. Particularly, we describe four cases
in this context to explain the transaction ordering and storage
state transitions accordingly. In 2a, Alice first submitted a
transaction to call the foo function, which sets the storage
Owner to Alice. The following two transactions are from
Alice (call bar) and Bob (call foo). If Bob’s transaction
is ordered before Alice’s as in 2a, the call to bar will
lead to a money transfer to Bob (line 17) because Owner
has been updated to Bob. Otherwise, the money goes to
Alice. Similarly in 2c, when Alice acquired the Owner,
the order of calls to foo and upgrade from Bob will cause
the sanity check at line 20 to fail or not. If the check is
passed, Bob would be able to further invoke a delegated
call (line 22), i.e., use a delegate contract (currentVersion
in this case) to process the transaction input instead of the
current contract. In Ethereum, the delegate contract is allowed

1 contract EtherStore {
2 address Owner ;
3 address Creator ;
4 mapping (address => uint256) balances ;
5 uint price ;
6 constructor (){
7 Owner = msg. sender ;
8 Creator = msg. sender ;
9 }
10 function foo(address newOwner){
11 Owner = newOwner ;
12 }
13 function bar (){
14 price = msg. value ;
15 balances [msg. sender]+= price ;
16 // tranfer ether to owner
17 Owner . call . value (price)();
18 }
19 function upgrade (address currentVersion) {
20 require (msg. sender == Owner);
21 // contrat currentversion code injection
22 if (! currentVersion . delegatecall (msg. data

)) revert ();
23 }
24 function destruct (){
25 require (msg. sender == Creator)
26 // contract termination
27 selfdestruct (Creator);
28 } }

Fig. 1: A motivating example of smart contract

to directly manipulate storage of the current contract, e.g.,
Creator variable. In such cases, transactions of upgrade
and destruct will produce uncertain scenarios of contract
destruction as in 2b, since Creator is used as a receiver
of the remaining balance after the contract is cleared by the
selfdestruct API at line 27. The last case of 2d describes
two transactions of bar from both Alice and Bob, where
different transaction orders will generate the same final storage
values of balances no matter which one is executed first.
While such concurrency enables normal miners to flexibly

make profits, it introduces great security threats to Ethereum.
In the aforementioned cases, only the last one is considered
secure since the concurrent execution of transactions can com-
mute, e.g., different transaction orders will yield the same state
transition. The other three cases are all viewed as potentially
malicious, because attackers can employ specific sequence of
transactions to make undesired benefits, e.g., transfer money
to themselves, pollute the contract storage etc. In this work,
we refer such attacks as concurrency exploits and highlight an
informal definition below. Given two accesses p and q from
two transactions tp and tq on storage sp and sq respectively,
tp and tq can be exploited by a concurrency attack if

• p and q include exact one write and one read operation.
• sp and sq point to the same storage index.
• p and q are not mutually exclusive.
• At least one security-critical operation is dependent on
sp or sq (explained later).

Our work aims to detect concurrency exploits in smart

�����

���	
��

��

���	
��

�����

��	�

�������

��
�������

�������

��
�������

(a)

�����

��
��������	�

��

�������	���

�����

��������	�

�������

��
�������

�������

��
�������

(b)

�����

���	
��

��

���	
��

��

�������	���

�������

��
�������

�������

��
�������

(c)

�����

��	�

��

��	�

�������

���
������ ���!��"�����

���
������ ����

�������

���
������ ���!��"�����

���
������ ���!��"�����

(d)

Fig. 2: Possible transaction sequences and state transitions

contract [2]. Oyente identified transaction ordering bugs(TOD)
by checking if two different traces have different Ether flows,
which is the sub-class of concurrency exploits [3] [4]. Securify
share the same oracle of TOD with oyente [5]. At technical
level, many techniques are used for analyzing security of smart
contract: formal verification [6], symbolic execution [7] [3] [5]
[8] and fuzzing [9].

II. APPROACH

Smart contract is compiled to bytecode that is executable
on the Ethereum virtual machine (EVM) [1]. We proposed
a systematic technique to automatically detect concurrency
exploits from EVM bytecode. Before we describe the details,
we first introduce security-critical operations as mentioned in
§I. Specifically, we focus on four EVM instructions, as below.

• CALL that allows a contract to directly transfer ether to a
given address [10].

• CALLCODE / DELEGATECALL that enables another contract
to process the current transaction [10].

• SELFDESTRUCT that terminates a contract, and transfers
all remaining ether to the specified account [10].

Furthermore, as defined above, a security-critical operation
is dependent on a storage, if any of the following two
conditions is satisfied.

• The storage as part of the parameters of security-critical
operations. Such as the concurrency exploits in Figure 2a,
Owner is the receiver of CALL instruction.

• The storage as part of security-critical operations execu-
tion path condition constraint. Such as the concurrency
exploits in Figure 2b, the value of Owner is a condition
for DELEGATECALL ’s execution.

Our technique using symbolic execution explores branches
and leverages program paths to identify concurrency exploits
from EVM bytecode (smart contract). The detection flow
mainly contains three steps:

Step 1: Marking Storage Operation. Accessing storage
variable is a major source of concurrency exploits. Our work
using symbolic execution traces two EVM instruction to
operate storage: SLOAD loads word from storage and SSTORE
saves a word to storage. Step 1 marks operation of storage to
construct access flow graph(AFG).

Step 2: Merging Access Flow. Since an AFG contains se-
quential relations of storage operation. Step 2 aims to classify
in-sensitive operation in AFG. Consider foo function(branch)
in Figure 1, it firstly writes(SSTORE) price(line 14) then
loads(SLOAD) price to use(line 15,17). Since the value of

TABLE I: Comparison of Concurrency Exploits Detection

Contract Address Type CESC Oyente Securify

0x352dbBA201aF66f98a47F2b280bFf45f9050DBf8 � 2 2 1
0x4ceae42d5fb3bd6956b2463fdd4a2209382d722c � 1 0 1
0x33b44a1D150F3feAA40503aD20a75634Adc39B18 � 1 1 0
0xaf71b19e6292c6e1491ff3a54b3e63dbd41ef023 � 1 0 0
0xfa82f0a05b732deaf9ae17a945c65921c28b16dd �� 1 0 0
0x5aef06ec39e98c05201ee1e54b653c372ecb9cf3 � 2 0 2
0x43efc486d1c7c5cb0193e409a73aa33786f5197c � 2 0 2
0xd43cbd8a74535327a8a196ea36cd44fc799ca289 � 1 0 0
0x7b47e1473F97040689812204113FF549b2E2C31B None 0 2 4

price is determined while loading and it is not affected by
concurrency, Step 3 removes SLOAD marking in line 15,17.
Furthermore, if there are multiple writing to a storage index
in a branch, only the marking of last writing is retained.

Step 3: Verifying Concurrency Exploits. Step 3 obtains
pairs of concurrent operations on storage from Step 2 to check
concurrency exploits based on our definition in §I. Consider
concurrency exploits in Figure 2a, the CALL instruction is
dependent on Owner. Step 3 checks the pair of operations
on Owner(line 11, line 17 in Figure 1) that are not mutually
exclusive by solving the path condition constraints of them.

III. PRELIMINARY EVALUATION
To evaluate our algorithm, we apply it to verify real-world

smart contracts from etherscan [11]. And we compare our
technique(marked as CESC) with Oyente [3] and Securify [5].
While Oyente and Securify allow checking on a set of bug
patterns, we focused on transaction-ordering dependency bug
(TOD) in this setting. The results are shown in Table I. The
first column is contract address in Ethereum [11]. The con-
currency exploits on CALL instructions marked as �. The con-
currency exploits on DELEGATECALL/CALLCODE instructions
marked as ��. The concurrency exploits on SELFDESTRUCT
instructions marked as �. We marked false positives as gray .
By comparing with our approach in detecting concurrency

exploits, our approach highly improve the scope of detection
for potentially concurrent attacks and reduce false positives.

IV. CONTRIBUTION

We summarize our main contributions below.
• We highlighted concurrency exploit as a new and general
form of security attacks on Ethereum smart contracts.

• We proposed a systematic detection technique to identify
concurrency exploits based on symbolic execution.

• We conducted a preliminary evaluation on real contracts
deployed on Ethereum.

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[2] I. Sergey and A. Hobor, “A concurrent perspective on smart contracts,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2017, pp. 478–493.

[3] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[4] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step
by step towards creating a safe smart contract: Lessons and insights
from a cryptocurrency lab,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 79–94.

[5] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,
“Securify: Practical security analysis of smart contracts,” arXiv preprint
arXiv:1806.01143, 2018.

[6] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, A. Rastogi, T. Sibut-Pinote, N. Swamy,
and S. Zanella-Beguelin, “Formal verification of smart contracts,” in
Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security-PLAS’16, 2016, pp. 91–96.

[7] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.” NDSS, 2018.

[8] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” arXiv preprint
arXiv:1802.06038, 2018.

[9] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[10] Ethereum, “Solidity — solidity 0.4.19 documentation,” 2017. [Online].
Available: https://solidity.readthedocs.io/en/develop/

[11] E. Team, “Etherscan: The ethereum block explorer,” 2017.

