
Smart-Contract Execution with Concurrent Block
Building

Lian Yu
School of Software & Microelectronics

Peking University
Beijing, 102600, P.R. China

lianyu@ss.pku.edu.cn

Guannan Li, Yafe Yao, Chenjian Hu
School of Software & Microelectronics

Peking University
Beijing, 102600, P.R. China

guannan.li@ pku.edu.cn

Wei-Tek Tsai
School of Computer Science & Engineering

Beihang University, Beijing, China
Comp., Info., and Dec. Systems Engineering

Arizona State University
Tempe, AZ 85287, USA

Enyan Deng

Beijing Tiande Tech
Beijing, 100089, P.R. China

deng@tiandetech.com

Abstract— Business processes are often related to operational
processes, contracts, and regulations. Modeling such processes
needs to address regulation monitoring and enforcement, and
maintain a reliable history of data for evidence. This paper
proposes modeling business processes as smart contracts (SCs) on
permissioned blockchains (BCs). The challenges with the proposed
approach are state synchronizations among distributed nodes
(called authnodes), and real-time requirements. This paper
separates the executions of SCs from the state managements on
multi-BCs, and proposes a pipeline model to verify and create
blocks in parallel.

Keywords— blockchains, smart contracts; permissioned
blockchain; concurrent block building.

I. INTRODUCTION
Blockchains (BCs) and smart contracts (SCs) have received

significant attention recently where an SC is an executable code
running on top of a BC. SCs are a collection of computer
protocols that facilitate, verify, or enforce the negotiation or
performance of a contract by automatically executing the terms
of a contract, reducing transaction costs associated with
contracting, and hopefully providing assurance better than
conventional paper-based contract management.

The SC was proposed by Nick Szabo on digital contracts and
digital currency [1][2]. This concept implies that executable
code will become a legal contract that can be executed, and the
results produced can be legally binding. These SC concepts
were not realized then because no financial systems can support
programmable transactions.

Later, this concept came back when Bitcoins and other
digital currencies became popular. But the SC concept has
changed slightly, and this time an SC runs on top of a BC that
supports a digital currency. For example, Ethereum [3], an
open-source project, supports SCs. In Ethereum, there are two
types of entities that can generate and receive transactions:
people and contracts. A contract is essentially an automated

agent that lives on the Ethereum BC, has an address and a
balance, and can send and receive transactions. The legal aspect
is not emphasized, but programmability and execution are
priority items.

Financial institutions often have complex business processes
with many participants, these systems need to address these
issues not necessarily needed for cryptocurrency:

(1) They need to control access permissions, such as read
from or write into BCs while maintaining BCs
properties. This needs to be true regardless if it is a
public or private BC.

(2) They have complex business processes with multiple
parties participating. Before an asset (money, stocks,
bonds or others) can be placed into a SC for execution,
its ownership needs to be cleared. Then the SC should
process the transaction legally, and store the results into
BCs.

This paper proposes to implement business processes as SCs
on permissioned BCs, i.e., only those nodes that have
permissions can verify and vote in the block-creation process in
this kind of BCs. Permissionless BCs are those BCs where any
node can vote/participate in the block creation process. This
approach has the following features:

(1) There is a set of distributed authentication nodes called
authnodes that communicate through a high-speed
network instead of a P2P (peer-to-peer) network, and
they synchronize with each other;

(2) It has a voting mechanism to keep every node consistent;

(3) It separates account BCs to store process states in-
progress and the results;

(4) It has a recovery mechanism to roll back in case of
failures.

2017 IEEE Symposium on Service-Oriented System Engineering

978-1-5090-6320-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SOSE.2017.33

160

This paper is organized as follows: Section II presents the
related work; Section III describes the proposed architecture;
Section IV introduces a pipeline model of block creation and
presents synchronizations among authnodes; Section V designs
a permissioned BC to work with SCs, and Section VI concludes
this paper.

II. RELATED WORK
This section briefly presents BCs, SCs and business related

work.

A. BCs and SCs
Numerous BCs have been designed including those included

in cryptocurrencies such as Bitcoin and other applications. A BC
can be a permissionless BC where everyone can be involved in
block creation, or a permissioned BC where only selected nodes
can be involved in block creation. In [13, 14], three new BCs
have been proposed:

� TBC (Trading BC): A TBC will involve in trading
among nodes, but it does not keep track account values
unless those account values are needed for trading. After
it performs trading, it will send the updated value to
relevant ABCs.

� ABC (Account BC): An ABC will involve in
bookkeeping accounts, but it will not be involved in
trading. An ABC will supply account values to a TBC
for trading.

� MBC (Message BC): An MBC will store messages
communicated in the system. It is used to ensure that the
system operations can be reconstructed if necessary as
all the communications among parties are recorded.
This feature is important for financial systems as well as
military systems.

 These new BC designs allow scalability and address privacy
issues commonly encountered in existing BC designs.

Originally, SCs are defined as computer protocols that
execute the process specified in a legal contract [10]. As most of
legal contracts are paper based, SCs are superior to paper-based
contracts they are executable and thus can complete the process
specified in a contract in an automatic manner. The code, also
like traditional contracts, defines things should be done by
different parties that signed the contract, such as duties, interests
and penalties specified in the contract.

Recently, the meaning of SCs has changed. Instead of being
an executable legal contract, SCs are the code segments that can
be executed on a BC, as the BC may store digital assets (such as
money or stocks), these SCs control those digital assets. The
inputs to the SC must be stored in the BC before execution, and
the execution results will be stored in the BC.

For example, SCs in Ethereum, a public BC, are a collection
of code (its functions) and data (its states) that reside at specific
addresses on the BC. Contracts stay on the BC in a binary format
called Ethereum Virtual Machine (EVM) and it will execute
bytecode. SCs are written in high-level languages such as
Solidity, Serpent, and LLL, and then compiled into bytecode to
be uploaded on the BC [10].

The EVM bytecode consists of a series of bytes, and each
byte represents an operation. An index pointer is maintained, the
index will increase by one after every operation, and
continuously processing the operation found at the current index
pointer until the code execution is finished or a failure occurs.
Each operation requires a fee and the balance on the account (the
sender of the transaction) will be reduced [12].

An Ethereum SC is "activated" every time someone sends a
transaction to it, at which point it runs its code, perhaps
modifying its internal state or activating other SCs, and then
shuts down. The states are organized as Merkle Patricia tree, and
the root of the tree is stored in the blockhead along with the
transactions list tree (i.e., Merkle tree) root. Each "state tree"
represents the current state of the entire system, including
address account balances and contract states [3].

Each node of Ethereum processes every transaction on its list
and changes its state until a block is built successfully. Then the
state tree root will be written in the block header and the block
is ready to be sent out (if a transaction is SC related, it should
wait for the contract to complete so that the state can be
confirmed). When a node receives a block, it processes every
transaction in the block onto the parent block’s state and
calculates new state, then checks if the new state root matches
state root in block header [3]. If matching, the block will be
accepted.

This SC processing approach may not be suitable for those
contracts that have a long running time because of the following
reasons:

� High execution cost. Contracts are written in high-level
language and then compiled into bytecode to be executed,
and each operation requires a fee, thus those contracts
with many operations will incur a high fee.

� Slow down the block-building processing. When a
node processes transactions that will activate SCs, it will
activate and execute these SCs one after another. This
will slow down the transaction processing and the block-
building processing.

� Slow down the transaction confirmation processing.
Once a transaction is included in a block, it means that
the transaction has been processed by a majority of
nodes. But like building a new block, every node verifies
a block it receives, and needs to process transactions in
the block one after another. This costs significant time
for those contracts.

To enhance the capabilities, SCs need to have business
process modeling support and run on efficient BCs.

B. Business Process and Modeling
Business Process Model and Notation (BPMN) is a graphical

representation for specifying business processes in a business
process model [11], as a standard proposed and maintained by
Object Management Group (OMG) that formally released
BPMN 2.0 version in January 2011, and the execution semantics
were also introduced alongside the notational and diagramming
elements. BPMN defines a set of steps described in the business
process of the graphic symbol, and describes end-to-end
business processes.

161

The graphic symbols are specifically designed to coordinate
the process in a group of related collection of activities, and
delivering messages between different participants in the
process. BPMN 2.0 model can perform in any engine
compatible with the standard, and can also exchange between
graphics editor. BPMN makes enterprises have the ability to
understand their internal business processes through graphic
symbols, and discuss their business process on a unified
standard. In addition, the graphic symbol can improve the
efficiency of the mutual cooperation between enterprises, and
help enterprises understand businesses between themselves and
their partners, so that enterprises can quickly adapt to the new
internal and B2B business scenarios.

As a case study, this paper re-engineers a BPMN 2 process
engine, Activiti (http://activiti.org/), such that business
processes can be implemented as SCs that can have powerful
process-modeling capabilities, and at the same time, maintaining
those BC properties.

III. PROPOSED ARCHITECTURE
Figure 1 shows the system architecture with five layers from

the bottom to the top: Caching, BC Services, APIs, SCs, and
Applications Layers.

Fig. 1. System Architecture

� Caching Layer: This is to cache temporary information
in the memory, including new transactions received
from users and SCs; those blocks not yet transferred to
disk; and temporary data that support the system
running.

� Blockchain-Services Layer: Transaction service puts
transactions in the cache into barrels; Block service
creates a bitmap for the transactions in each barrel;
RoundManager chooses a leader with a round-robin
way, creates and sends a block to all other authnodes,
further performs reputation computing; Synchronizer
broadcasts the length of local BC, receives the missed
blocks, and stores the received blocks; for SC

transactions, TBC (Trading BC) executes the SC code
first, and then puts the results into barrels, puts into
barrels directly for non-SC transactions, and is ready for
creating blocks; SBC (State BC) synchronizes BCs to
ensure consistent state of different authnodes, creates
account index to accelerate query, and provides account
public-private key services.

� APIs Layer: This provides interfaces external and
internal APIs. The internal APIs are used for internal
communication between authnodes, such as voting,
broadcasting blocks. External APIs are used for external
users, such as accepting the new transactions and the
query operations.

� SC Layer: This provides contract-related services. SCs
are written according to the domain-specific
requirements, lawfully and rightly verified by all
stakeholders, and then deployed in BC system to
execute. This layer has three functions: interaction
(editor) with the users, process execution engine and
contract services that support account management,
state storage, and sending transactions.

� Application Layer: This layer runs applications, such
as bank systems, computational law systems, credit
certification systems, and supply chain systems.

IV. CREATING SCS FOR BUSINESS PROCESSES
This section discusses issues related to creating SCs, and the

methodology to handle these issues. Organizations need to share
information among different units, integrate functions, and
exchange a variety of goods and information. Many business
processes are automated such as sending documents,
exchanging data, executing tasks among participants based on
pre-defined rules. Compared with contracts, business processes
are often more complicated, and require a long life cycle, e.g., a
trade-finance process may take months to complete.

A. Business Processes as SCs
When implementing business processes as SCs on BCs, one

will face new issues as follows:

(1) Many processes will need real-time response, thus
timing constraints, scheduling, fault-tolerance, and
scalability are important;

(2) Different participants will need different BCs with
different functionality and performance;

(3) Participants need to synchronize with each other;

(4) SCs need to be lawfully and formally verified; and

(5) SCs need to recover in case of system failure during
execution.

Among them, state synchronizations among participants (i.e.,
authnodes) are critical. This paper defines the system states into
three types: account states, local states and federal states, and
they form a hierarchical structure as shown in Figure 2.

� Account states: This stores any application or domain
information such as bank accounts and product inventory.
An account may have several fields, and any changes of

Cache Transactions Cache Blocks Cache System Data DataBaseCache Transactions Cache Blocks Cache System Data DataBase
Cache

Barrelling

Transaction Service

Bitmapping

Block Service

Broadcast length of local blockchain
Synchronizer

Receive Missed blocks Store Received blocks

Voting on Block (Byzantine)Create & Send BlocksChoose lead (Round Robin)

RoundManager

Identifying TraitorsScoring based on Votes

Reputaion

Barrelling

Transaction Service

Bitmapping

Block Service

Broadcast length of local blockchain
SynchronizerS h i er

Receive Missed blocks Store Received blocks

Voting on Block (Byzantine)Create & Send BlocksChoose lead (Round Robin)

RoundManagerd

Identifying TraitorsScoring based on Votes

ReputaionR i

SenderExecutor

tBC Index ServicesState SynchsBC

FetcherStateManager
Key ManagementAccountServer

Receiving
Transactions Query Sync Keys

Receiving
Transactions Query Sync Keys

Storage

Vote Send Blocks Broadcast

Account Registration

Modelling Business
Proccessesas Smart Contracts

Account Registration

Modelling Business
Proccessesas Smart Contracts Deploying Smart Contracts Executing Smart Contracts

Authority Verification

Account Cancellation

Sending Transactions

Storing States

Checking States

Contract Services

Supply Chain Systems

Blockchain
Services

APIs

Smart
Contracts

Apps Computational Law SystemsBanking Systems Credit Authentication

162

these fields will lead to the change of the account state at
that authnode. An account state is the smallest state unit in
the system, and may be changed due to an execution of a
SC.

Fig. 2. Three Types of States at Different Levels

� Local states: A SC system consists of multiple distributed
authnodes. Each authnode may have several types of
accounts, and aggregating the states of account states will
form a local state. Any changes of the account states in the
node lead to changes of the local state.

� Federal states: The states of all authnodes constitute the
federal states, and any changes of local states in the system
will result in the change of the federal states. Federal state
allows that local states of authnodes are different in a short
period of time, i.e., executions of authnodes may execute
SCs successively, called the intermediate states, but after
the state synchronizations, these authnodes should come
up with an agreement and reach a consistent state in the
end.

Figure 3 shows that the federal state of the system switches
between the consistent state and the intermediate state. A
consistent state is a stable state in which each authnode has the
same state, and if the system does not receive any new
transaction, the system maintains the state unchanged. An
intermediate state is a temporary state of the system. At runtime,
local authnodes may receive new transactions at different times
and take different computation times to complete a SC, and thus
not all the nodes will have the same states during the transition
period. Thus, a system may move from a consistent state to an
intermediate state, and to move from an intermediate state to a
consistent state, synchronization will be needed.

Fig. 3. Consistent State and Intermediate State

B. Sequential Execution of SCs
This model adopts the approach of SC execution in

Ethereum, i.e., state synchronization in a sequential order, where
a local state of a node changes first, then the local states of the

other authnodes change in the same way by synchronization as
shown in Figure 4.

Fig. 4. Sequential Executions of SCs

Assume that the SC system is in a consistent state as shown
in Figure 3, and authnode(i) is selected as the leader using an
election algorithm to build blocks. As shown in Figure 4, the
system first receives a transaction in step 1; the leader checks
each transaction in the transaction set to determine whether it
needs to trigger a SC in step 2, if yes, it executes the SC, and this
causes the changes of local states of the leader, while the rest of
local states remain unchanged; the leader broadcasts the created
block to the rest of nodes in step 3, and at this moment, the
system is in an intermediate federal state; finally, in step 4, each
of the rest of nodes receives and verifies the block, and executes
the SC triggered by transactions in the block, eventually all the
nodes have the same local states.

The Ethereum contracts tend to be simple, and the execution
time is short, so this model is suitable when the execution time
of the contract is much shorter than the time used for building a
block.

The algorithm of this process is shown in Table I, where M
is the transaction set to be processed, SMC is the SC type, B is
the block that has been built, C is the SC object, Stx is the state
after the contract executes, S is the state set, verifyTx(tx) is a
function to verify the validity of transaction tx, Type(tx) is to
check the type of tx, loadSmartContract(tx) is to load the SC that
tx specifies, execute(C) is to execute the contract C, broadcast(B)
is to broadcast block B, and buildBlock(M, S) is to build block
using transaction set M and state set S.

TABLE I. CREATING BLOCKS BY LEADER NODE

Algorithm: Building a block, running in leader node
Input: transactions tx
1 M � transactions
2 forall the tx in M do
3 if verifyTx(tx) = false then
4 return false
5 else
6 if Type(tx) = SMC then
7 C � loadSmartContract(tx)
8 Stx � execute(C)
9 S � Stx
10 B � buildBlock(M, S)
11 broadcast(B)

Federal State

Local State

Account State

account

Node(1)
Node(2)

Node(3)

Node(4)

Node(n)

Creation time Activation stateAvailable limit:922

Transaction

Smart Contract
Execution

State
Synchronization

Consistent State Intermediate State

Node(1)
Node(2)

Node(3)

Node(4)

Node(n)

Node(1)
Node(2)

Node(3)

Node(4)

Node(n)

……

…… ……

Transactions

Leader node executes the
contract and build block

Leader node Broadcasts Block

Receive transactionsStep 1:
Step 2:

Step 3:Step 4:

Leader

LeaderLeader

Non-leader Nodes validate the
block and execute the contract

Node 1

Node i

Node 3

Node n Node 2

……

Leader

Node 1

Node i

Node 3

Node n Node 2

Node 1

Node i

Node 2

Node 3

Node n

Node 1

Node 2

Node i

Node 3

Node n

163

At this point, the leader node’s work has been completed and
the rest of nodes will continue the follow-up task. Table II shows
the pseudo-code, where S’ is the state set in the received block,
and getState(B) is to get the state from the block B.

TABLE II. VALIDATE A BLOCK IN SEQUENTIAL EXECUTION MODEL

Algorithm: Validating a block, running in other nodes
Input: a block B
1 if verifyBlock(B) = false then
2 return false
3 else
4 forall the tx in B
5 M � getTx(B)
6 forall the tx in M
7 if verifyTx(tx) = false then
8 return false
9 else
10 if Type(tx) = SMC then
11 C � loadSmartContract(tx)
12 Stx � execute(C)
13 S � Stx
14 S’ � getState(B)
15 if S’ = S then
16 return true
17 else
18 return false

C. Parallel Execution of SCs
All the authnodes in the SC system receive a transaction at

the same time, and can check the transaction type in each node
when receiving it in step 1 as shown in Figure 5. If it is a contract,
each authnode begins to load and execute the contract, and local
states on every authnode change at the same time in step 2. By
the time when non-leader nodes receive the block from the
leader, they have already finished executing the contract and
changed their local states in step 3. To verify and synchronize
the local states, authnodes compare their local states with the
state received in the block, the verification passes if the states
are the same in step 4. In this model, the leader authnode and
non-leader authnodes execute SCs concurrently, the building
block process by the leader node is the same as the previous one,
and the working process of non-leader node is shown in Table
III.

Fig. 5. Parallel Executions of SCs

TABLE III. VALIDATE A BLOCK IN SEQUENTIAL EXECUTION MODEL

Algorithm: Validating a block, running in other nodes
Input: a block B and local state S
1 if verifyBlock(B) = false then
2 return false
3 S’ � getState(B)
4 if S’ = S then
5 return true
6 Else
7 return false

D. Non-blocking Execution of SCs
In the sequential execution model and concurrent execution

model, the system obstructs the operations of building a block
till the completion of SC executions. But in this model,
authnodes decouple the process of building blocks with contract
execution: when scanning a transaction and executing a SC, an
authnode no longer needs to wait for the contract execution to
complete as the previous two models do, it will continue to scan
and execute the next transaction immediately instead.

Table IV shows the pseudo-code, where Trigger(C) invokes
the SC to execute asynchronously, i.e., when the contract
execution has been triggered, the transaction continues its way
for building blocks, buildBlock(M) is to create blocks using
transaction set M, and the state will not be contained in the block,
because when the block has been built successfully, the SCs that
were triggered by transactions contained in the block are still
running, so the state is also changing simultaneously.

TABLE IV. BUILDING A BLOCK IN LEADER NODE IN NON-BLOCKING
EXECUTION MODEL

Algorithm: Building a block, running in leader node
Input: transactions tx
1 M � transactions
2 forall the tx in M do
3 if verifyTx(tx) = false then
4 return false
5 else
6 if Type(tx) = SMC then
7 C � loadSmartContract(tx)
8 Trigger(C)
9 B � buildBlock(M)
10 broadcast(B)

E. Anlaysis on Three SC Execution Models
In the above three models, blocks are built by the leader node.

In the sequential execution model, the leader node executes SCs
first, then the rest of the authnodes execute the SCs. In the
parallel execution model, all the authnodes execute SCs at the
same time, but like the sequential execution model, authnodes
scan transactions one by one to check the transaction types, such
that the executions of SCs are in the same order. The second
model significantly shortens the time of verifying a block as
shown in Figure 6.

In the non-blocking execution model, the contract execution
process does not deter the system from building blocks, and this
makes the block-building process faster than those of other two
models. In this model, the account state may have been modified
by different contracts at the same time, i.e., it is a critical
resource, and thus the account state needs to be locked when a

……

…… ……

All nodes execute the
contract and build blockReceive transactionsStep 1:

Step 2:

Step 3:Step 4:

Leader

LeaderLeader

Non-leader Nodes validate the
block and execute the contract

Node 1

Node i

Node 3

Node n Node 2

……

Leader

Node 1

Node i

Node 3

Node n Node 2

Node 1

Node i

Node 2

Node 3

Node n

Node 1

Node 2

Node i

Node 3

Node n

Leader node Broadcasts Block

164

contract performs write operations. The sequential model has the
longest execution time.

Fig. 6. Time of Block Building and Contract Executions in Three Models

F. Long-Lasting Contracts
For those long-lasting contracts, they can be divided into

multiple stages, e.g., a SC can be divided into three stages a, b,
c, respectively. Each stage may involve one or more state
changes. The separation of the contract execution and the block
building process makes the process complicated. As all the
authnodes are running autonomously, and this increases the
difficulty in synchronization. In the real situation, the
environments of different authnodes may be different as well,
thus the speeds of SC executions may differ.

Assume when the stage b of authnode(i) has been completed,
authnode(i+1) has just finished stage a, obviously authnode(i+1)
has fallen behind, and the local state cannot be directly
synchronized between these two authnodes at this point, it needs
to wait for authnode(i+1) to finish stage b, then the local state of
authnode(i) and authnode(i+1) need to be compared and
synchronized, thus the local state should be recorded every time
when it changes during SC execution.

V. DESIGNING BLOCKCHAINS WITH SCS

A. Building Blocks Concurrently
The existing block-building process needs to go through four

steps to decide the content of next block:

(1) Each authnode maps every transaction received by
onto a bitmap; chooses a leader node in the system; and
sends its own bitmap (representing those transactions
that may be included in the next block) to every other
authnode;

(2) Each authnode receives the bitmaps from other
authnodes and determines those transactions to be
included in the next block by performing intersection
on the bitmaps received. The leader node creates a
candidate block and sends to all other authnodes;

(3) All non-leader authnodes verify the candidate block
received from the leader and send the verification
results to every other authnode;

(4) All authnodes forward their voting results. After
obtaining all the votes, the next block is finalized. BC
system begins the next round of block building.

When the second step is completed, the system has already
identified all the transactions to be included in the next block.
Those transactions that did not make into the next block as well
as any new transactions will be considered in the block after the
next.

This system can create blocks in a pipelining manner as
shown in Figure 7:

� At the beginning of building a block, assign the block a serial
number height. Buffer all the transactions in a barrel, and
label the barrel and all the information to be transferred
such as bitmap and block with the height in step 1.1 within
step 1 in Figure 7.

� In the conventional approach, the next round of block-
building will begin only after the current round is
completed, i.e., after the fourth step. In the pipeline model,
once all the transactions are transferred from the buffer to
the barrel, the system begins the next round of block
building. In this way, block building will be done in a
concurrent manner.

� After the end of each block building, the transactions in the
buffer will include those transactions arrived after the
transfer from the buffer to the previous barrel and those
transactions that were not included in the previous block
due to lack of votes. These transactions will be included in
the new barrel.

� Except for the first block, after the completion of each block,
it needs to store the hash of the previous block in the
current block. So after the completion of a block, its
previous block may have not completed yet, the current
block will stay in the memory until the previous block has
completed its process.

(1) Node Sequential Execution Model

(2) Node Concurrent Execution Model

(3) Non-blocking Execution Model

MMo

MM

Block
validation

Contract 1
Contract 2

Contract 3

Leader
Node

Node 1

Node 2

Time

Classes

Block
validation

Contract 1 Contract 2 Contract 3

Leader
Node

Node 1

Node 2

Time

Classes

Contract 1
Contract 2

Contract 3

Contract 1
Contract 2

Contract 3

Block
validation

Contract 1 Contract 2 Contract 3

Contract 1 Contract 2 Contract 3

Block
validation

Block
validation

Contract 1 Contract 2 Contract 3

Leader
Node

Node 1

Node 2

Time

Classes

Contract 1 Contract 2 Contract 3

Contract 1 Contract 2 Contract 3

Block
validation

165

Fig. 7. Pipeline Model to Build Blocks Concurrently

B. SCs-based on Account Blockchain
The three SC execution models were presented without

discussing the interaction with block building, especially with
the concurrent block-building process. Furthermore, SC
execution also involves with state (e.g., account, local, and
federal) maintenance. SC execution, block-building and state
maintenance interact with each other, designing a BC that can
handle all three features at the same time will be challenging.

One possible way is to separate block-building from state
maintenance, and make these two processes asynchronous. A
new BC is proposed called SBC (for state BC) to manage state
maintenance including state synchronization and storage. Thus,
in addition to TBC, ABC, and MBC, SBC is available. SBC uses
the same consensus algorithm to ensure that all authnodes
contain consistent data.

Furthermore, if an account has associated active SCs, it will
be placed in a TBC. A TBC is a BC that handles transactions, as
a SC can trigger transactions, thus the account will be moved to
a TBC ready to engage in transactions.

During SC execution, if any operation incurs any state
change in an authnode, it sends a transaction (sTx for short) to
the SBC to report the state change, and the SBC will be
responsible to synchronize the state change among authnodes.

The interaction between TBC and SBC includes three sub-
processes as shown in Figure 8: create-account, execute-
contract and state-synchronization. It works as follows:

(1) Receive transactions from authnodes;

(2) Identify the type of transactions received;

(3) If the type is “create”, then start a create account sub-
process;

(4) If the type is not related to SCs, then transactions are
stored into the TBC directly. Transactions triggering
create-account or execute-contracts are also stored
into TBC;

(5) If the type is “execute”, then start an execute-contracts
process; and

(6) All the state changes are synchronized by state-
synchronization process.

Fig. 8. Interaction Process between TBC and SBC

1) create-account sub-process
If it is to create a contract account, there are two steps: (1)

upload the contract code and generate a “create” transaction; (2)
generate an account address. If it is to create a non-contract
account, i.e., those accounts without SCs, the first step is not
necessary.

2) execute-contracts sub-process
This has three steps: (1) load the contract code based on the

contract account address from the SBC; (2) fetch the initial state
from the SBC, including the state of contract account and the
states of execution-dependent accounts; and (3) execute the
contract. Thus, by the time it starts, an authnode has already
known the contract code that it needs to execute.

3) state-synchronization sub-process
This process has the following steps as shown in Figure 9:

(1) Check the state transactions and determine which
account’s state the transactions will update. These
transactions are sent from the TBC;

(2) Generate stage barrels using information in state
transactions, such as the contract account address and
the number of times this contract has been triggered

Get all tx from
buffer to barrel H

make a
bitmap of H

trigger next
round

Building
Block of H

Verify block
of H,vote

Forward vote,
and count results

1 2 3 4

HEIGHT
H

1.1 1.2 1.3

Get all tx from
buffer to barrel H+1

make a
bitmap of H+1

trigger next
round

Building Block
of H+1

Verify block
of H+1, vote

Forward vote,
and count results

1 2 3 4

HEIGHT
H+1

1.1 1.2 1.3

1 4

1.1 1.3

Legend Four steps to build a block

Decompose the first step to trigger
next round of building a block

Receive
transactions

Analyze

Transaction
type

Create

Non-smart contract

execute

Start

Transaction Transaction

End

Execute
contracts

Store into TBC

Create
Account

State
synchroniza
tion in SBC

166

since last synchronization. And then start a new timer
for each barrel;

(3) Calculate state results in the barrel received from
authnodes, divide into different groups such that each
group has the same results, and label the groups with
the numbers of the results inside;

(4) Check the results of step (3) to see if any group in a
barrel has reached a consensus (more than 2/3
authnodes in the TBC have the same state). If yes, go
to step (5), if not, step (7);

(5) Store the state into the SBC;

(6) Record the barrel as state consistent, then delete the
barrel;

(7) Check the barrel timer to see if it has timed out, if it has,
go to step (3), otherwise go to step (8);

(8) Record the barrel as timed out, then delete the barrel.

Fig. 9. State-Synchronization Sub-Process

One still needs to address the case with long-lasting SCs with
multiple stages as discussed in Section IV (F). For the same
problem where stage b on authnode(i) has completed, but
authnode(i+1) has just finished stage a, earlier solutions will
require involved processes to wait.

But with SBC, an authnode will send the sTx to the SBC if
it involves any state change at any execution stage. In this case,
authnode(i) has sent the sTx(a), sTx(b), and the SBC caches the
sTxs, and waits for the rest of authnodes. At that moment,
authnode(i+1) has sent the sTx(a), so the SBC needs to vote to
confirm if the state of authnode(i) and authnode(i+1) has
changed in the same way, and this is done by comparing the two
sTx(a) received from the two authnodes. After reaching an
agreement, sTx(a) is written into the SBC. The SBC will
continue to wait for sTx(b) of authnode(i+1) when it has waited
for more than a certain period of time and still no sign of
receiving sTx(b) of authnode(i+1), it will not wait any longer,

thus sTx(b) will not be written into the SBC, namely sTx(b) has
not reached an agreement.

In addition, the SBC dynamically maintains a recent state
index for each account so that the latest status can be rapidly
retrieved.

VI. CONCLUSION
This paper analyzes existing SC techniques, and proposes a

process-oriented SC technique. The paper explores SC
execution models including sequential, parallel and non-
blocking execution models. Furthermore, this paper proposes a
pipeline model to build blocks and a new BC design SBC to
facilitate state synchronization. These problems stated are new
and the solutions proposed are original.

REFERENCES
[1] Nick Szabo. "Formalizing and Securing Relationships on Public

Networks, First Monday
[2] Nick Szabo. “A Formal Language for Analyzing Contracts”,

http://szabo.best.vwh.net/contractlanguage.html
[3] “Ethereum: A Next-Generation Generalized Smart Contract and

Decentralized Application Platform" http://ethereum.org/ethereum.html
[4] J. H. Fowler, T. R. Johnson, J. F. Spriggs, S. Jeon, and P. J. Wahlbeck.

"Network Analysis and the Law: Measuring the Legal Importance of
Precedents at the U.S. Supreme Court." Political Analysis 15.3 (2006):
324-46.

[5] Ben Shneiderman and Aleks Aris. "Network Visualization by Semantic
Substrates." IEEE Transactions on Visualization and Computer Graphics
12.5 (2006): 733-40.

[6] Michael J. Bommarito and Daniel M. Katz. "A Mathematical Approach
to the Study of the United States Code." Physica A: Statistical Mechanics
and Its Applications 389.19 (2010): 4195-200.

[7] Michael J. Bommarito, Daniel Martin Katz, Jonathan L. Zelner, and
James H. Fowler. "Distance Measures for Dynamic Citation Networks."
Physica A: Statistical Mechanics and Its Applications 389.19 (2010):
4201-208.

[8] James H. Fowler and Sangick Jeon. "The Authority of Supreme Court
Precedent." Social Networks 30.1 (2008): 16-30.

[9] Michael J. Bommarito, "Empirical Survey of the Population of US Tax
Court Written Decisions, An." Va. Tax Rev. 30 (2010): 523.

[10] What Are Smart Contracts? Cryptocurrency's Killer App
http://www.fastcompany.com/3035723/app-economy/smart-contracts-
could-be-cryptocurrencys-killer-app

[11] Business Process Model and Notation
https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation

[12] Ethereum Homestead--Create and deploy a contract
http://ethdocs.org/en/latest/contracts-and-
transactions/contracts.html#create-and-deploy-a-contract

[13] W. T. Tsai, R. Blower, Y. Zhu, and L. Yu, “A System View of Financial
Blockchains,” Proc. of IEEE Service-Oriented System Engineering, 2016.

[14] W. T. Tsai, L. Feng, H. Zhang, Y. You, L. Wang, and Y. Zhong,
“Intellectual-Property Blockchain-based Protection Model for Microfilm,”
Proc. of IEEE Workshop on Blockchains and Smart Contracts, 2016.

167

