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Abstract—Smart contract transactions demonstrate issues of
performance and correctness that application programmers must
work around. Although the blockchain consensus mechanism
approaches ACID compliance, use cases that rely on frequent
state changes are impractical due to the block publishing inter-
val of O(101) seconds. The effective isolation level is READ-
COMMITTED, only revealing state transitions at the end of
the block interval. Values read may be stale and not match
program order, causing many transactions to fail when a block is
committed. This paper perceives the blockchain as a transactional
data structure, using this analogy in the development of a
new algorithm, Hash-Mark-Set (HMS), that improves transaction
throughput by providing a READ-UNCOMMITTED view of state
variables. HMS creates a directed acyclic graph (DAG) from the
pending transaction pool. The transaction order derived from
the DAG is used to provide a READ-UNCOMMITTED view of
the data for new transactions, which enter the DAG as they are
received. An implementation of HMS is provided, interoperable
with Ethereum and ready for use in smart contracts. Over a wide
range of transaction mixes, HMS is demonstrated to improve
throughput. A side product of the implementation is a new
technique, Runtime Argument Augmentation (RAA), that allows
smart contracts to communicate with external data services
before submitting a transaction. RAA has use cases beyond HMS
and can serve as a lightweight replacement for blockchain oracles.

Index Terms—Blockchain, Smart contracts, Concurrent algo-
rithms, Transaction throughput

I. INTRODUCTION

Blockchains rely on a consensus mechanism to agree upon

the sequencing of client transactions in a block, commit-

ting transactions as a group to the distributed ledger. Smart
contracts are the interface to process client requests and

send transactions to the blockchain peer network. A block of

transactions must be validated to ensure that the sequence is

consistent. All peers on the network perform the validation

step by re-executing the transactions within the block and

checking that the initial and final states match, introducing

latency.

Latency resulting from the publishing and validation of a

block decreases the success rate for the transactions in the

block due to the possibility of stale reads of state variables,

also known as storage variables. Changes to storage variables
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are only visible after they are committed to a published block.

This isolation level of intra-block transactions is called READ-

COMMITTED. Transactional reads of storage variables can be-

come outdated while waiting on the validation step since other

published blocks may update the storage variables, leading

to transaction failure. Additionally, since read operations can

only access the published storage variable value, intra-block

changes can also cause a transaction to fail due to a stale read.

A smart contract transaction is a concurrent method, of-

ten with semantic dependencies. The way block publishing

commits multiple smart contract transactions simultaneously

is analogous to the way a transactional data structure [1], [2]

commits multiple concurrent methods in what appears to be

a single atomic step. Using this analogy, the blockchain is a

blind transactional data structure that selects and sequences

concurrent method calls without regard for their semantics,

causing many to fail due to the restrictive READ-COMMITTED

isolation level. An ideal algorithm for blockchain transactions

would consider transaction semantics and include all related

transactions as a series in a block commit.

In this paper, we present Hash-Mark-Set (HMS), an algo-

rithm that increases the throughput of smart contract trans-

actions by providing a READ-UNCOMMITTED view of the

storage variables. HMS organizes the pool of pending trans-

actions (TxPool) on specific storage variables in a directed

acyclic graph (DAG) that establishes an ordering among the

transactions and enables an uncommitted view of the storage

variables to be retrieved. HMS reduces transactional failures

because the READ-UNCOMMITTED view increases the like-

lihood that a transaction has consistent inputs. Latency is

also reduced because concurrent actors will no longer need

to wait until a block is committed to see a change in storage

variables that is likely to be committed in the next block or

two. We integrate HMS into smart contracts through Runtime
Argument Augmentation (RAA), our proposed technique that

allows smart contracts to communicate with external data

services prior to sending a transaction.

An interoperable implementation of the solution is provided

and demonstrated on the Ethereum blockchain. State through-

put, defined in Section III-A as throughput of successful
blockchain transactions, increases by a factor of five across

a range of transaction mixes. By adding the cooperation of
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blockchain miners, state throughput increases by an order of

magnitude.

We make the following contributions:

1) Present Hash-Mark-Set (HMS), an algorithm organizing

a pool of pending transactions that share state variables.

2) Introduce Runtime Argument Augmentation (RAA), a

novel technique for smart contracts to communicate with

external data services.

3) Demonstrate improvements to latency and state through-

put when HMS provides a READ-UNCOMMITTED view

to smart contract clients.

4) Provide an interoperable implementation for Ethereum:

II. BACKGROUND

A few issues specific to the blockchain are discussed in this

section.

A. Blockchain Transactions

A blockchain is a distributed ledger maintained by one or

more peers following a communication protocol and agreeing

on a consensus mechanism. The ledger is written in chunks

called blocks that are linked in a practically unforgeable

cryptographic chain, replicated among many peers to avoid

dependence upon a single entity. State variables that are

recorded on the blockchain are called storage variables in

Ethereum. Bitcoin was the first blockchain [3], providing

transactions on a store and exchange of value, i.e. a currency.

A transaction is a concurrent method call that if successful,

changes the state of the ledger. A block may contain from

zero up to a finite number of transactions, typically O(101)
to O(103). Well known database transaction models such

as ACID and BASE are applicable to the blockchain [4],

motivating our use of isolation levels READ-UNCOMMITTED

and READ-COMMITTED.

B. Concurrent Smart Contracts

Going beyond exchange of value, later blockchains added

the ability to program arbitrary instruction sequences in a

transaction. Their programming languages are Turing complete

[5] and their programs are called smart contracts [6]. Concur-

rency is framed in the words of Sergey and Hobor, “Accounts

using smart contracts in a blockchain are like threads using

concurrent objects in shared memory” [7]. Herlihy endorsed

this line of reasoning in a keynote address [8], exhorting

concurrency researchers to “civilize” the blockchain.

Invoking a smart contract function that may change ledger

state creates a transaction and sends it to the network. It should

be noted that some smart contract functions, designated pure
or view, cannot change ledger state and they do not create

transactions. The unprocessed transaction pool of pending

transactions is referred to as the TxPool. The network of

peers is a concurrent system and it follows that its incoming

transactions, found in the TxPool, is a concurrent history.

The real time ordering of a concurrent history is a total

ordering over the transactions in a concurrent history such

that transaction T1 is ordered before transaction T2 if T1 is

received by the TxPool before T2.

C. Miner Privilege

On Ethereum, Bitcoin and many other blockchains, the

inclusion and sequencing of transactions in a block does not

follow real time order, rather transactions are arranged in a

total order that is arbitrary and subject to the same economic

incentives that drive blockchain progress [9]. This is called the

block order. Special peers, called miners have the privilege

of deciding what goes into a block and in what order. Each

transaction is isolated and a miner generally has no way

of knowing if one may depend upon another, so the rules

for selecting transactions are flexible. Miners generally favor

transactions with higher fees, but they may favor some peers,

including themselves. They may use altruistic criteria such as

including only small transactions or those from peers with low

bandwidth.

The discretion given to miners in the protocol works as if the

scheduler of a CPU could favor particular threads. Ethereum

miners read the TxPool grouped by peer addresses (aka

threads) with transactions ordered by a counter called a nonce.

Miners may favor an address and include its transactions

before another peer without regard for the real time order

in which they were received. Miners may refuse to include

any transactions sent from particular addresses. But a miner

may not commit a transaction from a given address to a block

out of nonce order. This means that blockchain transactions

from the same address are executed in the order they are sent,

while the order of transactions from different addresses is

not defined. Since a blockchain transaction is a concurrent

method, we can describe this behavior as being equivalent to

sequential consistency, a correctness property such that history

of methods is equivalent to a legal sequential history, and all

methods take effect in program order [10].

The TxPool is shared by peers on the network, including

miners. Intuitively, if communication were instantaneous, all

peers would see the same TxPool, and the order in which

the transactions were received would match their real time

ordering, i.e. the order in which they were sent. Miner privilege

would still allow the transactions to be placed in a block in an

order different from the real time order. The outcome of our

READ-UNCOMMMITTED view of state is subject to network

synchronization and miner privilege. Information about the

TxPool is not available to the smart contract as it submits

transactions.

D. Block Publishing and Validation

Blocks of selected transactions are committed all at once

in a super transaction called block publishing. Transactions

are interpreted sequentially within a block according to the

block order, using the previous ledger state (block) as the

initial context. Changes to storage variables are not visible

until they are committed to a block and the block is pub-

lished. The changes to storage variables during the interval of

block publication are called intra-block changes. Transactions

https://github.com/area67/sereth
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within the block are affected by the intra-block changes, but

post-publication transactions read the block final value of a

storage variable from the previous block, none of the current

changes. Once published there is no opportunity to re-order the

concurrent methods. These values were read from the previous

block, published block interval seconds ago. The block interval

defines the latency.

Block publishing is effectively a read lock until the next

block is committed. Dirty reads are not allowed. In database

terms the isolation level of intra-block transactions is READ-

COMMITTED. To accept a published block every peer must

perform block validation, the task of checking that the block

is consistent with the state of the network. Transactions

committed to a block must be consistent in that they must

include the effects of all previous transactions. The process of

peers redundantly validating transactions in a block is called

transaction replay. Block publishing and validation takes a

significant amount of time O(101) to O(102) seconds, creating

latency.

Since only the final state of the block is published, interme-

diate states become invisible without a detailed replay of the

transactions in the block, something that a typical smart con-

tract cannot do. The loss of intermediate states during a block

update is a consequence of the READ-COMMITTED view of

state variables. This low isolation level avoids blocking but

may allow a great number of transactions to be rejected later

as inconsistent. Transactions that seem valid when submitted

are rejected because the values on which they are based were

stale. The number of transactions that are rejected impacts

state throughput. Where state changes are frequent and there

are many transactions in the pool to be interleaved in a block,

a large percentage of transactions fail. To say a transaction

failed means that it would have violated the consistency of

the sequential history of the block in which it is embedded.

To keep the sequential history of the block consistent, the

transaction is included in the block, but has no effect on the

system state. In database terms the transaction was rolled back.

A principle cause of failure is the high latency imposed on

reading changes to persistent storage variables.

E. Blockchain Oracles

A characteristic of the blockchain is that security concerns

related to the adversarial distributed environment impose re-

strictions on information transfer. Unassisted, smart contracts

operate in a bubble, allowed to view only public blockchain

state variables via getter functions and not allowed to call any

outside sources of information. The discussion in Section II-D

about peers replaying blocks can explain this. Since all peers

must replay and validate the block, they all must see the

same state changes. If a contract is using an outside source

of information, no matter how reliable, it may change with

time or due to corrections or it may become unavailable. This

would cause some peers to see a different state than others, and

the block could not be validated. The problem can be solved

with a smart contract that mediates a secure and verifiable

connection to external data feeds [11]. Such a service is also

called a blockchain oracle [12], [13].

F. Challenging Use Cases

Blockchain performance, measured in terms of transaction

throughput and latency, is a limiting factor for many use cases

[14]–[17]. Latency and throughput are considered together

in this paper because the READ-COMMITTED latency of

state variable limits the throughput of successful transactions.

This ubiquitous blockchain latency has been dubbed, ‘the

long system freeze” [18]. Our example use case is a de-

centralized market to buy and sell assets, a core use case

driving blockchain research and investment. This example also

represents the general case of concurrent actors reading a time

sensitive shared state variable.

Say that trading opens at a certain price, visible to all

buyers. Orders are received on the network to be processed.

To simplify, orders must be at the exact price, i.e. there

are no limit or market orders. The price changes frequently

and unpredictably due to market dynamics. If 100 orders are

received at the published price near the start of a block interval

and the price changes after the first order, then only one

will be accepted. Blockchain correctness (safety, consistency)

is preserved by the expedient of invalidating 99 of the 100

transactions in this example, clearly an inefficient mechanism.

Due to miner privilege, the first order submitted in time

may not be the first included in the block. Progress of the

system cannot be fair in any case because there is not enough

information in the TxPool on which to base a real time

order of the requests from different peers. Even with such

information, miners are not bound to prevent starvation, quite

the contrary they may cause it. Information is also hidden

from the buyers querying the smart contract for the price.

Block replay is not available within the smart contract. Unless

it is separately analyzed, 98 of the 99 price changes are

invisible to participants and valuable market information about

intermediate price changes is lost. The arbitrary transaction

priority combined with read latency also creates a vulnerability

known as blockchain frontrunning [19].

III. METHODOLOGY

This paper presents Hash-Mark-Set (HMS), an algorithm

that overcomes the limitations of the READ-COMMITTED

isolation level by providing a READ-UNCOMMITTED view of

storage variables. The READ-UNCOMMITTED view alleviates

the problems in the example of Section II-F. Clients can

observe partial changes within the block prior to publishing,

reducing the chance that a transaction will fail due to a stale

read. The Mark in HMS also establishes a partial intra-block

order that a cooperating miner can enforce. Such cooperation

is reasonable given financial incentives that might be offered

by decentralized asset exchanges.

HMS provides a READ-UNCOMMITTED view by maintain-

ing the transactions in a directed acyclic graph (DAG) that rep-

resents an ordering among the transactions in the unprocessed

transaction pool, TxPool, and applying a topological sort to
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the longest branch to retrieve the value of an unpublished

storage variable. To enable the READ-UNCOMMITTED view

to be accessible through smart contracts, we propose Runtime

Argument Augmentation (RAA), our proposed technique that

modifies the Ethereum Virtual Machine (EVM) interpreter

to apply the HMS algorithm and access the value of an

unpublished storage variable. The RAA technique is made

available to users through our proposed smart contract Sereth.

To evaluate the performance benefits of our proposed

methodology, we present a new metric, state throughput,
which measures the throughput of successful transactions.

State throughput disregards failed transactions in the through-

put measurement, which provides a better representation of

the rate at which state changes are made in comparison

to raw throughput. In the following subsections, we define

state throughput, provide the Sereth smart contract application

programming interface, and explain HMS and RAA, the two

innovations of this paper.

A. State Throughput

Blockchains are different from databases in the following

way: failed transactions are included in the persistent shared

ledger. Because a block may include a large percentage of

failed transactions, raw throughput of transactions per second

is not an adequate measure of performance. In the example

described in Section II-F, raw throughput was 100 per interval,

but 99 of 100 transactions fail. In a database these rolled

back transactions would not count in throughput, but in a

blockchain they are included in the block. A new metric, state
throughput, Tstate, is defined here as the product of the raw

throughput and the ratio of transactions included in a block

that successfully make state changes. State throughput divided

by raw throughput yields the transaction efficiency η.

Tstate

Traw
= η (1)

Transactions in the TxPool form a concurrent history, with

a non-deterministic outcome. We observed that transaction

failure can be reduced by obtaining a view of state that is

more likely to be consistent at the moment the transaction

is committed to a block. To maximize η, transactions are

organized to provide a predictive view of state, ordering

transactions such that the order closely matches the real time

order in which the transactions were received.

B. Sereth Smart Contract

Our implementation of HMS for Ethereum is called Sereth,

a variation of Geth, the name of the standard client. Sereth is

implemented as an interoperable Ethereum client that can be

substituted for one or more peers in any standard Ethereum

network, public or private. The Sereth smart contract shown

in Listing 1 manages the price and accepts the set and buy
transactions from addresses on the blockchain. The mark and

get functions are read only. They do not create transactions

but are used to return the intra-block state that will be used

in set and buy. This intra-block state view uses RAA to get

Listing 1. Sereth smart contract.

pragma solidity ^0.4.24;

contract Sereth {
...
// Mark, Set and Get are methods on state variables
// managed by the Hash-Mark-Set algorithm.

function mark(bytes32[3] raa)
private pure returns(bytes32) {

return raa[1];
}

function set(bytes32[3] fpv) public {
// If mark is valid, set new mark and value.
if (keccak256(fpv[1]) == keccak256(p[1])) {

nSet++;
p[0] = bytes32(msg.sender);
p[1] = keccak256(fpv[1], fpv[2]);
p[2] = fpv[2];

}
}

function get(bytes32[3] raa)
public pure returns(bytes32) {

return raa[2];
}

// Function buy() demonstrates a dynamic pricing use case
// for the Hash-Mark-Set transactional data structure.

function buy(bytes32[3] offer) public {
// If mark and price match then buy() succeeds.
if ((keccak256(offer[1]) == keccak256(p[1])) &&

(keccak256(offer[2]) == keccak256(p[2]))) {
nBuy++;
p[0] = bytes32(msg.sender);

}
}

}

the results of the HMS algorithm. The values are written into

the function arguments using RAA and then returned to the

calling address.

C. Hash-Mark-Set

Hash-Mark-Set takes advantage of an underutilized com-

munication channel among the peers on a blockchain, the

transaction pool (TxPool). We created a smart contract,

Sereth.sol, to manage the state variables. In Sereth,

function arguments are formatted so they contain three key

elements within the transaction, address, mark, and value.
The address field contains the address of the sender of the

transaction. The mark field contains a Keccak256 hash [20]

which solidifies a transactions place in a series of Sereth trans-

actions. The value field indicates how the sender would like to

modify the state variable. Together, these elements are referred

to as a transaction’s AMV . To create a transaction using

the Sereth contract, one must pass in three parameters: flag,

previous_mark, and value. These parameters are referred to

as the FPV . The FPV is easily visible as a string of bytes

within the transactions input field.

We define a transaction’s mark such that

given Txn1 which follows Txn0, Txn1.mark =
Keccak256(Txn0.mark, Txn1.val). This creates a

sequentially consistent ordering between any number of

transactions in what we call a series. To create a series, the

FPV of each transaction in the TxPool is extracted from their

respective Data fields. By matching the previous_mark
of a transaction with the mark of a different transaction,

1963



we can determine a strict order of all Sereth transactions in

the current TxPool. This provides the smart contract with a

Read-Uncommitted view of the intra-block state. In addition,

because every state change is linked by a unique hash that

includes the value, multiple state changes sequenced in the

atomic block update are preserved.
Algorithm 1 shows the HMS algorithm as implemented on

the Ethereum blockchain. Users interact with the algorithm

through an Ethereum contract. We refer to line x of algorithm

A as A:x.

Algorithm 1 Transaction Serialization Algorithm

1: procedure HASHMARKSET(INPUT) � Serialize a

blockchain transaction pool

2: RAA← input
3: txnList← PROCESS(TxPool) � Filter TxPool

4: if len(txnList) == 0 then
5: RAA← specialV alue
6: return
7: series← SERIES(txnList) � Create series

8: RAA← COPY(series.tail.FPV )

Algorithm 2 Process Transactions

1: procedure PROCESS(TXPOOL, INPUT) � Filter TxPool

for HMS transactions

2: filteredList[]
3: for txn ∈ TxPool do
4: if SIGNATURE(txn) == “set” & SUCCESS(txn)

then
5: txn.FPV ← txn.input
6: txn.mark ←

Keccak(txn.FPV [1], txn.FPV [2])
7: filteredList.push(new Node(txn))

8: return filteredList

9: procedure SUCCESS(TXN) � Determines if a transaction

succeeded or not

10: FPV ← txn.input
11: if FPV [0] == successF lag || FPV [0] ==

headF lag then
12: return true
13: return false

A call to HashMarkSet() is made from the EVM interpreter

when the transaction being processed has a function signature

that matches that of a Sereth transaction. The RAA variable

on line 1:8 represents the storage variable value obtained using

the RAA technique. We first extract the RAA from the given

input field of the transaction we are processing. This process

is simple, as each element is stored in a contiguous 32 bytes

within input. By writing the result of HashMarkSet() to RAA,

the result will be made visible within the contract’s execution.
Algorithm 2 details how the current transaction pool is

filtered and then returned to the main function for handling.
For each transaction in the pool, we check that the function

signature is equal to one of the write functions from our HMS

contract. Additionally, we check the first 32 bytes of the FPV

for a flag indicating one of several possible states for the

transaction. Due to this filtering only a small percentage of

the TxPool requires processing, so the overhead of HMS is

relatively small.

First, the transaction may be one of the first HMS trans-

actions that appeared during the current block. In this case,

we consider the transaction a head candidate, meaning that

it or another transaction with the same flag will serve as

the head of the serialized list of transactions for the current

block. This allows us to easily continue the list from the

previous block without being able to view the state variable.

The second possible state indicates that the transaction is

not a head candidate, and at the time of the transaction’s

submission, it was found to be the successor to the current

tail of the series. If a transaction contains neither of these

flags, it is considered rejected and is not included in the list of

relevant transactions. If a transaction is accepted, The FPV
is then extracted from the input field. The FPV contains

previous_mark and value, which are the two values needed

to calculate the mark of a transaction and determine its place

in the series. A node is created from the transaction for later

inclusion in a linked data structure.

Once txnList has been populated by transactions from the

TxPool on line 1:3, we check on line 1:4 if the list is empty. If

so, the submitted transaction is the first Sereth transaction sent

in the current block, and the way to know if it matches the

previous mark is to check the state variable within the contract.

In this case, a flag is written to the data field, which will be

visible to the contract. The contract value will be written in

the last 32 bytes of the transaction FPV by the sender.

If the list contains one or more transactions, then we know

that there already exists at least one series for the current

block. Algorithm 3 contains the functions which return the

most valid series from a list of Sereth transactions.

Line 3:1 refers to Series(), which iterates through each

transaction in the list of Sereth transactions and forms graph

relations between all transactions with corresponding mark/-

value hashes. Due to the uncertain nature of concurrency, it is

possible for a transaction to have multiple potential successors,

but only one predecessor.

At line 3:9 we locate from multiple potential head nodes

the one that produces the deepest graph. From that graph,

the deepest branch is our series. This logic mirrors that of

the blockchain, in which branches are resolved by taking the

longest branch.

D. Runtime Argument Augmentation

Blockchain oracles provide a secure and verifiable medium

for smart contracts to access external data feeds, but still suffer

from stale reads due to latency. In our implementation of

HMS it became clear that a traditional oracle would not satisfy

the requirement for intra-block data. To overcome the limita-

tions of oracles, we propose Runtime Argument Augmentation
(RAA), a technique that provides data to a smart contract by

using the argument list as a channel to pass information. RAA
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Algorithm 3 Create a Series

1: procedure SERIES(TXNLIST) � Create a serialized list

from a set of transactions

2: for txn ∈ txnList do
3: for txn2 ∈ txnList do
4: if txn.mark == txn2.FPV [1] then
5: txn2.prevTxn← txn
6: txn.nextTxns.push(txn2)

7: highestDepth← 0
8: longestSeries← nil
9: for txn ∈ txnList such that txn.FPV [0] ==

headF lag do
10: depth← 1
11: path← [txn]
12: maxDepth← 0
13: maxPath← []
14: DEEPESTBRANCH(txn, depth,&maxDepth,

path, maxPath)

15: if maxDepth > highestDepth then
16: highestDepth← maxDepth
17: longestSeries← maxPath

18: return longestSeries

19: procedure DEEPESTBRANCH(HEAD, DEPTH, PATH,

MAXDEPTH, MAXPATH) � Recursively find deepest

branch

20: if len(head.nextTxns) == 0 then
21: if depth > maxDepth then
22: maxDepth = depth
23: maxPath = path

24: return
25: for txn ∈ head.nextTxns do
26: path.push(txn)
27: DEEPESTBRANCH(txn, depth+ 1, path,

maxDepth, maxPath)

28: path.remove(txn)

is a modification to the Ethereum Virtual Machine (EVM)

interpreter, written in Golang. Figure 1 is an activity diagram

showing the modified processing. In activity E2 the EVM

interpreter checks to see if a function is requesting external

data items using RAA. If so, the interpreter calls the RAA

provider in activities R1 to R3, implemented as a Golang

service compiled into the EVM. Data is obtained from the

RAA provider and written into the function arguments. The

data types of the items being requested must match the data

types of the arguments. In E3 the function returns the result of

evaluation using the modified arguments to the smart contract

for use in activity S3. RAA is flexible: any computation can

be accomplished by the RAA provider, and the information

can flow in both directions. RAA is fast because it is written

as an extension of the EVM. A smart contract using RAA

is indistinguishable to unmodified clients running Geth, who

merely see that arguments are passed in and a result returned.

There are some limitations. RAA cannot be used to modify

Fig. 1. RAA activity diagram

the arguments of a smart contract function that may send a

transaction. This is because transactions along with their inputs

are cryptographically signed by the sending address, stored

in parameters msg.hash and msg.sender. Without this

protection a malicious Geth client could modify the inputs of

a transaction, for example doubling the price offered for an

item or changing the delivery address. In testing the limits of

RAA we found that the modified transactions would still be

mined, but would not be accepted by peers who must validate

the newly created block. In order to use RAA information in

a transaction, a smart contract or other blockchain actor calls

the RAA function first, then uses the information provided to

improve the subsequent transaction. This is the process used

to obtain the experimental results that follow.

IV. CORRECTNESS

Concurrent systems are expected to satisfy correctness

(safety) and progress (liveness) properties. Correctness is

determined according to a defined correctness condition pre-

sented in literature [10]. HMS is designed for the sequential

consistency correctness condition because miners are required

to preserve the nonce order when committing a transaction

from a given thread to a block. Since the nonce is a counter

that reflects the sequential ordering of transactions issued by

the same thread and a blockchain transaction is analogous to

a concurrent method, the blockchain is inherently sequentially

consistent. In the following lemma we show that HMS gen-

erates a series that provides a sequentially consistent ordering

of the transactions in the longest branch. The benefit of

generating a series of transactions in the longest branch is that

it offers the greatest potential for optimum state throughput.
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Lemma 1. The series generated from HMS preserves a
sequentially consistent ordering of transactions invoked in the
longest branch of the directed acyclic graph.

Proof. For each transaction T in the transaction pool, if the

signature is a set operation, and T is either a possible head

candidate or is a successor to the current tail in the series, then

T ’s mark is updated by hashing the predecessor transaction’s

mark and value, and the list of transactions to be considered for

the series is amended to include transaction T . If the length of

the list of transactions is larger than one, then HMS generates

a series of transactions by calling the SERIES function with

the transaction list as input. It now must be shown that the

generated series is both sequentially consistent and the longest

branch. The SERIES function creates an adjacency list of all

transactions in the transaction list such that a transaction T2

that is a member of T1’s list indicates that T2 is a successor

to T1. The SERIES function then iterates through the potential

head candidates and applies the DEEPESTBRANCH algorithm.

Each recursive call to DEEPESTBRANCH will iterate through

the list of successor transactions in the adjacency list and

apply DEEPESTBRANCH to each successor transaction until

a transaction with no successors is reached. At each recursive

call to DEEPESTBRANCH, transaction txn passed as an input

parameter is amended to the path. Since the exploration of

the adjacency list guarantees that all successor transactions are

visited after a predecessor transaction, any path generated from

DEEPESTBRANCH will be sequentially consistent because the

program order established in the adjacency list is preserved.

Since the depth at each recursive call of DEEPESTBRANCH

is incremented by one, and a path that exceeds the maximum

depth is recorded upon termination of the recursive calls, the

final recorded path by DEEPESTBRANCH will be the longest

branch within the adjacency list.

Progress of the underlying blockchain (the computer) is

assumed. We focus here on the progress of smart contract

methods using a view of state variables managed by HMS.

Lock freedom is defined as ensuring that some concurrent actor

makes progress, and this is true for the blockchain as a whole

but not for an individual smart contract. Miners may assign a

low priority to a particular contract so it makes no progress. At

peak times, many more transactions are sent to the network

than can be included in a block. Transactions sent may be

lost due to network failures, memory limitations or peers not

replaying them. Miners may refuse to include transactions for

arbitrary reasons. As a result, the progress guarantee provided

by Ethereum is smart contract termination [21], [22]. Since

the TxPool is a finite list of transactions, Algorithm 2 trivially

terminates. Algorithm 1 and Algorithm 3 terminate given

that the recursive function DEEPESTBRANCH terminates. We

now show in the following lemma that DEEPESTBRANCH

terminates.

Lemma 2. DEEPESTBRANCH presented in Algorithm 3 is
guaranteed to terminate.

Proof. The txnList in the SERIES function is a finite list of

transactions because it is a subset of the TxPool generated

by the PROCESS function. Therefore, each list within the

adjacency list of transactions constructed by the nested for-

loop on line 2 of Algorithm 3 will also contain a finite

number of transactions. Since the txn.mark computed by

PROCESS establishes an ordering among the transactions in

txnList, the adjacency list of transactions will not contain

any cycles due to the if-statement on line 4 of Algorithm 3.

DEEPESTBRANCH will be invoked by the SERIES function no

more than the number of transactions contained in txnList.
For each invocation of DEEPESTBRANCH, a recursive call to

DEEPESTBRANCH is made for each transaction in head’s list

of successor transactions. Since DEEPESTBRANCH is only

invoked on the successors of head, and each list in the

adjacency list of transactions is finite, it is guaranteed that

every invocation of DEEPESTBRANCH will eventually reach

a transaction with no successors. Upon reaching a transaction

with no successors, DEEPESTBRANCH terminates on line 24

of Algorithm 3.

V. RESULTS

This section shows experimental results of tests of the HMS

algorithm on a private Ethereum blockchain. The chain used

for testing is a fork of an open source multi-peer private net-

work configuration [23]. Experiments were hosted on Ubuntu

16.04 EC2 servers in the AWS cloud. The private network

was configured to be a model of the Ethereum mainnet or

the Ropsten testnet. Proof of work was used as the consensus

mechanism. The block difficulty, transaction fees, processing

power of the peers and peering topology were adjusted to

produce block size and interval in the range of production

Ethereum blockchains.

Interoperability was tested by running experiments with

a mix of peers running standard Geth and modified Sereth

clients. The first experiments were qualitative to demonstrate

practical use of the two innovations of this paper: HMS and

RAA. Smart contract functions that created transactions were

followed through the process of invocation, interpretation,

transactions sent to the TxPool, replay, mining and validation.

The Sereth client operated interchangeably with Geth clients

on the same network. This is not surprising because Ethereum

already supports a variety of clients with subtle differences,

all following the same protocol. Deployment of Sereth in the

wild would not require a fork or any special permission from

the network. The Solidity smart contract equipped with RAA

also functioned even when deployed to a Geth client, although

of course the substitution of arguments did not take place and

they were returned unchanged.

Next we demonstrated that a sequential history was properly

handled by sending a series of test transactions from the

address of a single peer so that there is only one possible

history, where real time order equals nonce order equals block

order. As expected, the transaction failure rate was zero and

the transaction efficiency η was 1.0.
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The quantitative experiments using concurrent peers demon-

strated the effectiveness of HMS and the importance of

transaction efficiency. Experiments considered the history of

program execution on a single shared variable P where P is

an object containing the AMV tuple described in the HMS

algorithm. The dynamic pricing exchange from Section II-F

is used to motivate the experiments, with the value of P

representing the price. Two transaction types are used in the

experiments: buy (buys one item at the current price) and set
(changes the price). A ratio of buys (READ-UNCOMMITTED)

to sets (WRITES) was used as a non-dimensional parameter

that would scale up to larger servers as the absolute number

of transactions increased. The number of set transactions was

varied from 100 to 5, yielding a buy to set ratio of from 1:1

to 20:1.

Figure 2 depicts a plot of state throughput measured at

different buy set ratios. Each data point represents the result

of 100 buy transactions, so state throughput is equivalent to

η expressed as a percentage. Transactions were submitted at

an interval of one second, resembling a moderate throughput

smart contract use case. This interval was sufficient to demon-

strate the problem of stale reads and can easily be reproduced

with ordinary servers using the provided source code. The sets

are evenly spaced over the processing of the buys. The lines

are smoothed averages of the points shown, with the shaded

areas representing the 90 percent confidence interval for the

lines.

A. Standard Geth client

The baseline scenario sends transactions to an unmod-

ified peer running the standard Geth client. The transac-

tion efficiency at different buy to set ratios is labeled as

“geth_unmodified” in Figure 2. In this scenario, buy transac-

tions that read the price P from block n−1 and are included in

block n before the price is modified will be successful, while

all other buys will fail. When there are many price sets, as in

the experiments with 1:1 and 2:1 ratios, only a few buys are

successful. In some runs no buy transactions succeeded at all.

The efficiency increases somewhat as the ratio of buys to sets

goes above 10:1 because there are more buys reading correct

values before an intra-block set occurs. However it remains

poor for two reasons.

First, with a low ratio of buys it is unlikely for a buy to

land in the very beginning of the block before any sets take

place. Thus many will fail. Second, even as the ratio increases,

because of the large transaction pool there are often no buys

going into block n + 1 that have a valid view of block n.

Instead, block n is assembled from buys that were submitted a

few blocks ago, so they may have a view of block n−2, n−3 or

older blocks. These buys fail because the blockchain state has

passed them by before they were included. This phenomenon

is frequently observed in public blockchains [24].

Although not shown in the plot, it was also observed

that with few state changes (high ratio of buys) transaction

efficiency becomes more sensitive to the transaction interval,

as miners may sequence a large number of buys together.

Fig. 2. Transaction efficiency η vs READ-UNCOMMITTED / WRITE ratio

Sets are not plotted. All of the sets succeed because they are

sent from the owner of the contract and they do not depend

on the previous price. If sets came from different addresses

some might have failed, but it is reasonable that the owner of

the contract is the only one allowed to set the price.

B. Hash-Mark-Set without miner assistance

The second experimental scenario, labeled as

“sereth_client” in Figure 2, used the modified Sereth

client on the network, implementing the HMS algorithm.

The set transactions were ordered with HMS while buy

transactions were sent exactly as in the baseline scenario.

Interleaved with the sets, any buy at the right mark and

price succeeded. The benefit of HMS in this scenario is that

the buy transactions have a READ-UNCOMMITTED view of

the likely state of the storage variable P when they will be

evaluated. This allows many more transactions to succeed.

A sequentially consistent ordering of the set operations was

established and their dependent buys have a view of the

state provided by HMS. Figure 2 shows an improvement

in throughput by approximately a factor of five over the

entire range of read /write ratios. These results were achieved

without miner assistance, so they could be accomplished

simply by running the modified client on the public Ethereum

blockchain, as long as access to the smart contract was via

these clients.

This experiment also demonstrates how HMS alleviates the

intra-block lost update problem. The FPV arguments in each

buy include the previous mark, a hash that relates it to an

interval between two sets. If a sequence occurs such as: set(5),

buy(5), set(7), set(5), buy(5), a particular buy(5) can prove that

it was sent during the first or the second interval the price was

set to 5. Linking each buy transactions to a particular set price

prevents the frontrunning attack mentioned in Section II-F.
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C. Hash-Mark-Set with semantic mining

In the third experimental scenario, the inputs of the sec-

ond scenario were repeated with the miner using the HMS

algorithm to determine the block order of transactions. In this

scenario HMS information about the TxPool is available to

both smart contract users and miners. Since the miner now

has awareness of the semantics of the transactions, we call this

semantic mining. Previously miners would not reorder transac-

tions to increase transaction efficiency, but the semantic miners

have this capability. The line labeled “semantic_mining” in

Figure 2 shows the results. About 80 percent of transactions

succeed due to semantic mining providing interleaving in

conformance to the READ-UNCOMMITTED view used by

the smart contract clients when they sent the transactions.

Relative improvement in throughput was greatest with a high

frequency of price changes, i.e. where there are 1 or 2 buys

per set. At these ratios the advantage of having the miner

interleave transactions increases transaction efficiency from a

few percent to almost 90 percent, resulting in a factor of six

over the unassisted case. Overall, 10-20 percent of transactions

were lost due to the fact that the TxPool no longer contains

marked transactions immediately after the block is published.

Transaction efficiency could approach 100 percent if HMS

were extended to include the final values from replaying each

block. Other factors that would impact efficiency is if only

a fraction of the miners were assisting, or if communication

of the TxPool were impeded among the Sereth enabled peers.

Performance would be degraded in these cases but there would

still be benefits proportional to the participation.

VI. RELATED WORK

There are five main approaches to improve blockchain

throughput and latency: Reparameterization, sidechains, shard-

ing, leader election and invalid state tagging.

Reparameterization involves tuning the block size and in-

terval to network bandwidth and peer computing power [25].

HMS does not use reparameterization, but could influence

tuning trade-offs by decreasing the significance of block

interval.

Sidechains [26] increase throughput by creating transac-

tion channel networks such as Lightning [27]. As the name

implies they exploit parallelism by running multiple chains,

merging them to the main chain as needed to ensure correct-

ness. Sidechains have been implemented at scale on existing

blockchains. Recently generalized formally as state channels
[28], they can provide throughput gains of several orders

of magnitude. However the authors note state channels do

not solve the latency, or as they call it, “time granularity”

problem. The READ-UNCOMMITTED view provided by HMS

does solve this for specific state variables.

Sharding [29] increases throughput by isolating segments

of the blockchain peer network. Sharding requires changes to

consensus protocol but has been accepted by Ethereum [30]

with significant progress [31] and a target implementation date

in 2020. Like state channels, sharding is inherently parallel

and offers performance gains of several orders of magnitude.

Sharding is a global solution but would need customization to

address state throughput of individual smart contracts as does

HMS.

Bitcoin-NG “Next Generation” [18] uses leader election

with continuous serialization to modify the consensus protocol

in proof of work blockchains such as Bitcoin. Performance

gains scaling to the limits of network latency and individual

peer processing power are reported. Recent work [32] notes

the history of improvement and elaboration on the original

proposal. Our solution shares with Bitcoin-NG the concept of

continuous serialization to reduce the “long freeze” of latency,

but HMS does not require protocol changes to interoperate

with current blockchains.

The scope of our review was public blockchains, however

a Byzantine Fault Tolerant (BFT) proposal for Hyperledger

is relevant because it focused on the bottleneck of transaction

signing and ordering in block creation [33]. BFT uses a leader

to coordinate block creation achieving transaction rates of over

2000 per second on private blockchains. Unlike Ethereum,

Hyperledger tags transactions known to be based on invalid

states before they are ordered in a block, so time is not wasted

replaying the failed transactions. However the authors do not

consider transaction efficiency and the BFT ordering service

does not use semantics to reduce failures as HMS does.

Software Transactional Memory (STM) algorithms have

also been applied to blockchain throughput. The original ideas

in [34] using STM to enable concurrent processing of smart

contract methods were continued by [35]. These researchers

note the EVM is not parallel and the difficulty of determin-

ing transaction dependencies in a block, so in both papers

smart contracts were translated into C++ which is supported

by the STM library. Simulated miners then interleave and

order smart contract methods in STM to create a concurrent

execution. Speedups of up to 2x were achieved. Concurrency

based throughput gains in which “any sequential execution

will do” are different from HMS, which sequences smart

contract methods for transaction efficiency and increased state

throughput.

A parallel to HMS is found in an earlier STM paper [36]

whose language about “publishing” is prescient as it was

written before the blockchain was invented. A correctness con-

dition called Selective Strict Serialization (SSS) is introduced,

in which some transactions are strictly serialized and others

are not, but are marked to the serialized history. In Section IV

above we applied sequential consistency as the correctness

condition for our HMS algorithm. In our experiments HMS

establishes a fixed ordering for the state changes (sets) while

allowing the dependent transactions (buys) to be arbitrarily

interleaved. Multiple buys can occur in a price interval and

are not dependent upon each other. Within the interval any

order of buys is valid so they do not require an established

ordering constraint. Further work might show that SSS is a

correctness condition suitable for HMS.

There is relevant work on improving throughput and latency

of concurrent systems by reducing abort rate, defined as how

many times a transaction is retried before success [37]–[40].
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This is different from our state throughout, which measures

efficiency of blockchain commits that are not repeated. High

abort rates due to delayed write visibility, where transaction

writes may only be read after commit, is addressed by Faleiro

et al. [41] in the proposal of piece-wise visibility (PWV), a

deterministic concurrency control protocol designed to enable

early write visibility. PWV divides a transaction into a set

of sub-transactions which are scheduled to be executed in a

serializable order. Each sub-transaction write is made visible

as soon as it commits, enabling the original transaction writes

to be visible prior to commit time. A DAG is used to order

database sub-transactions based on data dependencies. HMS

uses a DAG to order blockchain transactions in a sequentially

consistent fashion, and the final series of transactions is

derived from the deepest branch.

The fundamental difference between PWV and HMS is

that PWV enables writes to be visible inside the commit

protocol while HMS enables READ-UNCOMMITTED isolation

for smart contracts through our proposed RAA technique,

described in Section III-D. The PWV commit protocol only

provides write visibility after a transaction is submitted to the

database system, which limits the potential performance gains

in comparison to HMS that provides write visibility to smart

contract clients such that the requested data from RAA can be

utilized prior to transaction submission.

VII. CONCLUSIONS

State throughput, the throughput of successful transactions,

is proposed as the appropriate metric for smart contract

performance. An algorithm, Hash-Mark-Set, and a novel archi-

tectural technique, Runtime Argument Augmentation, are pre-

sented and demonstrated together on the Ethereum blockchain

to improve state throughput.

HMS provides smart contracts a READ-UNCOMMITTED

view of state. At the same time, HMS provides information

about transaction dependencies to the miners so they can adjust

the block order, called semantic mining. Miners cooperat-

ing with smart contracts using the HMS algorithm to order

dependent transactions were able to create blocks in which

most transactions were successful. This is demonstrated to

improve transaction efficiency from less than 5 percent to over

80 percent in cases where state changes are frequent, more

than an order of magnitude improvement in state throughput.

Even without semantic mining, the READ-UNCOMMITTED

view is helpful, increasing state throughput by a factor of

five across the full range of tested read to write ratios from

1:1 to 20:1. Latency (as a function of correct reads) was

also reduced in both scenarios, client modifications only and

semantic mining. In addition to the performance gains, HMS

solves the blockchain lost update and frontrunning attack

problems because transactions using READ-UNCOMMITTED

values keep a unique hash validated record of the particular

interval during which the value was read.

RAA is presented as a new technique to provide smart

contracts rapid communication with external data services. In

our experiments smart contracts used RAA to access READ-

UNCOMMITTED views of data necessary for transaction suc-

cess and thus increase transaction efficiency. RAA works at

the architectural level of the EVM, using the interpreter to

achieve high performance. Peers running the RAA modified

client were demonstrated to work interoperably with standard

peers.
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