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Abstract—Blockchain platforms such as Ethereum and several
others execute complex transactions in blocks through user-
defined scripts known as smart contracts. Normally, a block of
the chain consists of multiple transactions of smart contracts
which are added by a miner. To append a correct block into the
blockchain, miners execute these transactions of smart contracts
sequentially. Later the validators serially re-execute the smart
contract transactions of the block. If the validators agree with
the final state of the block as recorded by the miner, then the
block is said to be validated. It is then added to the blockchain
using a consensus protocol. In Ethereum and other blockchains
that support cryptocurrencies, a miner gets an incentive every
time such a valid block successfully added to the blockchain.

In most of the current day blockchains the miners and
validators execute the smart contract transactions serially. In
the current era of multi-core processors, by employing the serial
execution of the transactions, the miners and validators fail to
utilize the cores properly and as a result, have poor throughput.
By adding concurrency to smart contracts execution, we can
achieve better efficiency and higher throughput. In this paper,
we develop an efficient framework to execute the smart contract
transactions concurrently using optimistic Software Transactional
Memory systems (STMs).

Miners execute smart contract transactions concurrently us-
ing multi-threading to generate the final state of blockchain.
STM is used to take care of synchronization issues among the
transactions and ensure atomicity. Now when the validators also
execute the transactions (as a part of validation) concurrently
using multi-threading, then the validators may get a different
final state depending on the order of execution of conflicting
transactions. To avoid this, the miners also generate a block
graph of the transactions during the concurrent execution and
store it in the block. This graph captures the conflict relations
among the transactions and is generated concurrently as the
transactions are executed by different threads.

The miner proposes a block which consists of set of transac-
tions, block graph, hash of the previous block, and final state
of each shared data-objects. Later, the validators re-execute the
same smart contract transactions concurrently and deterministi-
cally with the help of block graph given by the miner to verify
the final state. If the validation is successful then proposed block
appended into the blockchain and miner gets incentive otherwise
discard the proposed block.

We execute the smart contract transactions concurrently using
Basic Time stamp Ordering (BTO) and Multi-Version Time
stamp Ordering (MVTO) protocols as optimistic STMs. BTO
and MVTO miner achieves 3.6x and 3.7x average speedups over
serial miner respectively. Along with, BTO and MVTO validator
outperform average 40.8x and 47.1x than serial validator respec-
tively.

*Author sequence follows lexical order of last names.
†The proposal of this paper has been accepted in Doctoral Symposium, ICDCN’19.

Index Terms—Blockchain, Smart Contracts, Software Trans-
actional Memory System, Multi-version Concurrency Control,
Opacity

I. INTRODUCTION

It is commonly believed that blockchain is a revolutionary

technology for doing business over the Internet. Blockchain

is a decentralized, distributed database or ledger of records.

Cryptocurrencies such as Bitcoin [15] and Ethereum [5] were

the first to popularize the blockchain technology. Blockchains

ensure that the records are tamper-proof but publicly readable.

Basically, the blockchain network consists of multiple peers

(or nodes) where the peers do not necessarily trust each other.

Each node maintains a copy of the distributed ledger. Clients,

users of the blockchain, send requests or transactions to the

nodes of the blockchain called as miners. The miners collect

multiple transactions from the clients and form a block. Miners

then propose these blocks to be added to the blockchain. They

follow a global consensus protocol to agree on which blocks

are chosen to be added and in what order. While adding a

block to the blockchain, the miner incorporates the hash of the

previous block into the current block. This makes it difficult

to tamper with the distributed ledger. The resulting structure

is in the form of a linked list or a chain of blocks and hence

the name blockchain.

The transactions sent by clients to miners are part of a larger

code called as smart contracts that provide several complex

services such as managing the system state, ensuring rules, or

credentials checking of the parties involved [3]. Smart contracts

are like a ‘class’ in programming languages that encapsulate

data and methods which operate on the data. The data represents

the state of the smart contract (as well as the blockchain) and

the methods (or functions) are the transactions that possibly

can change contract state. A transaction invoked by a client

is typically such a method or a collection of methods of the

smart contracts. Ethereum uses Solidity [4] while Hyperledger

supports language such as Java, Golang, Node.js etc.

Motivation for Concurrent Execution of Smart Contracts:
As observed by Dickerson et al. [3], smart contract transactions

are executed in two different contexts specifically in Ethereum.

First, they are executed by miners while forming a block. A

miner selects a sequence of client request transactions, executes

the smart contract code of these transactions in sequence,

transforming the state of the associated contract in this process.

The miner then stores the sequence of transactions, the resulting



final state of the contracts in the block along with the hash of

the previous block. After creating the block, the miner proposes

it to be added to the blockchain through the consensus protocol.

Once a block is added, the other peers in the system, referred

to as validators in this context, validate the contents of the

block. They re-execute the smart contract transactions in the

block to verify the block’s final states match or not. If final

states match, then the block is accepted as valid and the miner

who appended this block is rewarded. Otherwise, the block is

discarded. Thus the transactions are executed by every peer in

the system. In this setting, it turns out that the validation code

runs several times more than miner code [3].

This design of smart contract execution is not very efficient

as it does not allow any concurrency. Both the miner and the

validator execute transactions serially one after another. In

today’s world of multi-core systems, the serial execution does

not utilize all the cores and hence results in lower throughput.

This limitation is not specific only to Ethereum but almost

all the popular blockchains. Higher throughput means more

number of transactions executed per unit time by miners and

validators which clearly will be desired by both of them.

But the concurrent execution of smart contract transactions

is not an easy task. The various transactions requested by the

clients could consist of conflicting access to the shared data-

objects. Arbitrary execution of these transactions by the miners

might result in the data-races leading to the inconsistent final

state of the blockchain. Unfortunately, it is not possible to

statically identify if two contract transactions are conflicting

or not since they are developed in Turing-complete languages.

The common solution for correct execution of concurrent

transactions is to ensure that the execution is serializable
[16]. A usual correctness-criterion in databases, serializability

ensure that the concurrent execution is equivalent to some

serial execution of the same transactions. Thus the miners

must ensure that their execution is serializable [3] or one of

its variants as described later.

The concurrent execution of the smart contract transactions

of a block by the validators although highly desirable can

further complicate the situation. Suppose a miner ensures that

the concurrent execution of the transactions in a block are

serializable. Later a validator executes the same transactions

concurrently. But during the concurrent execution, the validator

may execute two conflicting transactions in an order different

from what was executed by the miner. Thus the serialization

order of the miner is different from the validator. Then this

can result in the validator obtaining a final state different from

what was obtained by the miner. Consequently, the validator

may incorrectly reject the block although it is valid. Figure 1

illustrates this in the following example. Figure 1 (a) consists

of two concurrent conflicting transactions T1 and T2 working

on same shared data-objects x which are part of a block.

Figure 1 (b) represents the concurrent execution by miner with

an equivalent serial schedule as T1, T2 and final state (or FS) as

20 from the initial state (or IS) 0. Whereas Figure 1 (c), shows

the concurrent execution by a validator with an equivalent

serial schedule as T2, T1, and final state as 10 from IS 0 which

(a) Concurrent transactions (c) Equivalent execution by validator(b) Equivalent execution by miner
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Fig. 1. Execution of concurrent transactions by miner and validator

is different from the final state proposed by the miner. Such a

situation leads to rejection of the valid block by the validator

which is undesirable. These important issues were identified

by Dickerson et al. [3] who proposed a solution of concurrent

execution for both the miners and validators. In their solution,

the miners concurrently execute the transactions of a block

using abstract locks and inverse logs to generate a serializable

execution. Then, to enable correct concurrent execution by

the validators, the miners also provide a happens-before graph

in the block. The happens-before graph is a direct acyclic

graph over all the transaction of the block. If there is a path

from a transaction Ti to Tj then the validator has to execute

Ti before Tj . Transactions with no path between them can

execute concurrently. The validator using the happens-before

graph in the block executes all the transactions concurrently

using the fork-join approach. This methodology ensures that

the final state of the blockchain generated by the miners and the

validators are the same for a valid block and hence not rejected

by the validators. The presence of tools such as a happens-

before graph in the block provides greater enhancement to

validators to consider such blocks as it helps them execute

quickly by means of parallelization as opposed to a block

which does not have any tools for parallelization. This, in

turn, entices the miners to provide such tools in the block for

concurrent execution by the validators.

Our Solution Approach - Optimistic Concurrent Execution
and Lock-Free Graph: Dickerson et al. [3] developed a

solution to the problem of concurrent miner and validators

using locks and inverse logs. It is well known that locks are

pessimistic in nature. So, in this paper, we explore a novel

and efficient framework for concurrent miners using optimistic

Software Transactional Memory Systems (STMs).

The requirement of the miner, as explained above, is to

concurrently execute the smart contract transactions correctly

and output a graph capturing dependencies among the transac-

tions of the block such as happens-before graph. We denote

this graph as block graph (or BG). In the proposed solution,

the miner uses the services of an optimistic STM system to

concurrently execute the smart contract transactions. Since

STMs also work with transactions, we differentiate between

smart contract transactions and STM transactions. The STM

transactions invoked by an STM system is a piece of code

that it tries to execute atomically even in presence of other

concurrent STM transactions. If the STM system is not able

to execute it atomically, then the STM transaction is aborted.

The expectation of a smart contract transaction is that it will

be executed serially. Thus, when it is executed in a concurrent

setting, it is expected to be executed atomically (or serialized).

But unlike STM transaction, a smart contract transaction cannot



be committed or aborted. Thus to differentiate between smart

contract transaction from STM transaction, we denote smart

contract transaction as Atomic Unit or atomic-unit and STM

transaction as transaction in the rest of the document. Thus the

miner uses the STM system to invoke a transaction for each

atomic-unit. In case the transaction gets aborted, then the STM

repeatedly invokes new transactions for the same atomic-unit

until a transaction invocation eventually commits.

A popular correctness guarantee provided by STM systems

is opacity [6] which is stronger than serializability. Opacity like

serializability requires that the concurrent execution including

the aborted transactions be equivalent to some serial execution.

This ensures that even aborted transaction reads consistent value

until the point of abort. As a result, that the application such

as a miner using an STM does not encounter any undesirable

side-effects such as crash failures, infinite loops, divide by zero,

etc. STMs provide this guarantee by executing optimistically

and support atomic (opaque) reads, writes on transactional
objects (or t-objects).

Among the various STMs available, we have chosen two

timestamp based STMs in our design: (1) Basic Timestamp
Ordering or BTO STM [20, Chap 4], maintains only one version

for each t-object. (2) Multi-Version Timestamp Ordering or

MVTO STM [11], maintains multiple versions corresponding

to each t-object which further reduces the number of aborts

and improves the throughput.

The advantage of using timestamp based STM is that in

these systems the equivalent serial history is ordered based on

the timestamps of the transactions. Thus using the timestamps,

the miner can generate the BG of the atomic-units. Dickerson

et al. [3], developed the BG in a serial manner. In our approach,

the graph is developed by the miner in concurrent and lock-free

[9] manner.

The validator process creates multiple threads. Each of

these threads parses the BG and re-execute the atomic-units

for validation. The BG provided by concurrent miner shows

dependency among the atomic-units. Each validator thread,

claims a node which does not have any dependency, i.e. a

node without any incoming edges by marking it. After that,

it executes the corresponding atomic-units deterministically.

Since the threads execute only those nodes that do not have

any incoming edges, the concurrently executing atomic-units

will not have any conflicts. Hence the validator threads need

not have to worry about synchronization issues. We denote this

approach adopted by the validator as a decentralized approach

(or Decentralized Validator) as the multiple threads are working

on BG concurrently in the absence of master thread.

The approach adopted by Dickerson et al. [3], works on

fork-join in which a master thread allocates different tasks to

slave threads. The master thread will identify those atomic-

units which do not have any dependencies from the BG and

allocates them to different slave threads to work on. In this

paper, we compare the performance of both these approaches

with the serial validator.

Contributions of the paper as follows:

• Introduce a novel way to execute the smart contract

transactions by concurrent miner using optimistic STMs.

• We implement the concurrent miner with the help of BTO

and MVTO STM but its generic to any STM protocol.

• We propose a lock-free graph library to generate the BG.

• We propose concurrent validator that re-executes the smart

contract transactions deterministically and efficiently with

the help of BG given by concurrent miner.

• Concurrent miner satisfies correctness criterion as opacity.

• We achieve 3.6x and 3.7x average speedups for concurrent

miner using BTO and MVTO STM protocol respectively.

Along with, BTO and MVTO validator outperform average

40.8x and 47.1x than serial validator respectively.

Related Work: The first blockchain concept has been given

by Satoshi Nakamoto in 2009 [15]. He proposed a system as

bitcoin [15] which performs electronic transactions without the

involvement of the third party. The term smart contract [19] has

been introduced by Nick Szabo. Smart contract is an interface

to reduce the computational transaction cost and provides secure

relationships on public networks. There exist few paper in

the literature that works on safety and security concern of

smart contracts. Luu et al. [14] addresses the waste part of the

computational effort by miner that can be utilized and lead to

award the incentives. Delmolino et al. [2] document presents the

common pitfall made while designing a secure smart contract.

Nowadays, ethereum [5] is one of the most popular smart

contract platform which supports a built-in Turing-complete

programming language. Ethereum virtual machine (EVM) uses

Solidity [4] programming language. Luu et al. [13] addresses

several security problems and proposed an enhanced mechanism

to make the ethereum smart contracts less vulnerable.
Sergey et al. [17] elaborates a new perspective between

smart contracts and concurrent objects. Zang et al. [21] uses

any concurrency control mechanism for concurrent miner which

delays the read until the corresponding writes to commit and

ensures conflict-serializable schedule. Basically, they proposed

concurrent validators using MVTO protocol with the help of

write sets provided by the concurrent miner. Dickerson et al. [3]

introduces a speculative way to execute smart contracts by using

concurrent miner and concurrent validators. They have used

pessimistic software transactional memory systems (STMs)

to execute concurrent smart contracts which use rollback if

any inconsistency occurs and prove that schedule generated

by concurrent miner is serializable. We proposed an efficient

framework for concurrent execution of the smart contracts

using optimistic software transactional memory systems. So,

the updates made by a transaction will be visible to shared

memory only on commit hence, rollback is not required. Our

approach ensures correctness criteria as opacity [6] which

considers aborted transactions as well because it read correct

values.
Weikum et al. [20] proposed concurrency control techniques

that maintain single-version and multiple versions correspond-

ing to each data-object. STMs [8], [18] are alternative to locks

for addressing synchronization and concurrency issues in multi-

core systems. STMs are suitable for the concurrent executions



of smart contracts without worrying about consistency issues.

Single-version STMs protocol store single version correspond-

ing to each data-object as BTO STM. It identifies the conflicts

between two transactions at run-time and abort one of them

and retry again for the aborted transaction. Kumar et al. [11]

observe that storing multiple versions corresponding to each

data-object reduces the number of aborts and provides greater

concurrency that leads to improving the throughput.

II. SYSTEM MODEL AND BACKGROUND

This section includes the commencement of notions related

to this paper such as blockchain, smart contracts, STMs and its

execution model. Here, we limit our discussion to a well-known

smart contracts platform, Ethereum. We improve the throughput

by ensuring the concurrent execution of smart contracts using

an efficient framework, optimistic STMs.

A. Blockchain and Smart Contracts

Blockchain is a distributed and highly secure technology

which stores the records into the block. It consists of mul-

tiple peers (or nodes), and each peer maintains decentralize

distributed ledger that makes it publicly readable but tamper-

proof. Peer executes some functions in the form of transactions.

A transaction is a set of instructions executing in the memory.

Bitcoin is a blockchain system which only maintains the

balances while transferring the money from one account

to another account in the distributed manner. Whereas, the

popular blockchain system such as Ethereum maintains the

state information as well. Here, transactions execute the atomic

code known as a function of smart contract. Smart contract

consists of one or more atomic-units or functions. In this paper,

the atomic-unit contains multiple steps that have been executed

by an efficient framework which is optimistic STMs.

Smart Contracts: The transactions sent by clients to miners

are part of a larger code called as smart contracts that provide

several complex services such as managing the system state,

ensures rules, or credentials checking of the parties involved,

etc. [3]. For better understanding of smart contract, we describe

a simple auction contract from Solidity documentation [4].

Simple Auction Contract: The functionality of simple auction

contract is shown in Algorithm 1. Where Line 1 declares the

contract, followed by public state variables as “highestBidder,

highestBid, and pendingReturn” which records the state of the

contract. A single owner of the contract initiates the auction by

executing constructor “SimpleAuction()” method (omitted due

to lack of space) in which function initialize bidding time as

auctionEnd (Line 3). There can be any number of participants

to bid. The bidders may get their money back whenever the

highest bid is raised. For this, a public state variable declared

at Line 7 (pendingReturns) uses solidity built-in complex data

type mapping to maps bidder addresses with unsigned integers

(withdraw amount respective to bidder). Mapping can be seen

as a hash table with key-value pair. This mapping uniquely

identifies account addresses of the clients in the Ethereum

blockchain. A bidder withdraws the amount of their earlier bid

by calling withdraw() method [4].

At Line 8, a contract function “bid()” is declared, which

is called by bidders to bid in the auction. Next, “auctionEnd”

variable is checked to identify whether the auction already

called off or not. Further, bidders “msg.value” check to identify

the highest bid value at Line 12. Smart contract methods can be

aborted at any time via throw when the auction is called off, or

bid value is smaller than current “highestBid”. When execution

reaches to Line 16, the “bid()” method recovers the current

highest bidder data from mapping through the “highestBidder”

address and updates the current bidder pending return amount.

Finally, at Line 18 and Line 19, it updates the new highest

bidder and highest bid amount.

Algorithm 1 SimpleAuction: It allows every bidder to send

their bids throughout the bidding period.
1: procedure CONTRACT SIMPLEAUCTION

2: address public beneficiary;
3: uint public auctionEnd;
4: /*current state of the auction*/
5: address public highestBidder;
6: uint public highestBid;
7: mapping(address => uint) pendingReturns;
8: function bid() public payable
9: if (now ≥ auctionEnd) then

10: throw;
11: end if
12: if (msg.value < highestBid) then
13: thorw;
14: end if
15: if (highestBid != 0) then
16: pendingReturns[highestBidder] += highestBid;
17: end if
18: highestBidder = msg.sender;
19: highestBid = msg.value;
20: end function
21: // more operation definitions
22: end procedure

Software Transactional Memory Systems: Following [7],

[12], we assume a system of n processes/threads, p1, . . . , pn
that access a collection of transactional objects or t-objects via

atomic transactions. Each transaction has a unique identifier.

Within a transaction, processes can perform transactional
operations or methods: STM.begin() that begins a transaction,

STM.write(x, v) (or w(x, v)) that updates a t-object x with

value v in its local memory, STM.read(x, v) (or r(x, v)) that

tries to read x and returns value as v, STM.tryC() that tries

to commit the transaction and returns commit (or C) if it

succeeds, and STM.tryA() that aborts the transaction and returns

A. Operations STM.read() and STM.tryC() may return A.

Transaction Ti starts with the first operation and completes

when any of its operations return A or C. For a transaction Tk,

we denote all the t-objects accessed by its read operations and

write operations as rsetk and wsetk respectively. We denote

all the operations of a transaction Tk as evts(Tk) or evtsk.

History: A history is a sequence of events, i.e., a sequence

of invocations and responses of transactional operations. The

collection of events is denoted as evts(H). For simplicity, we

only consider sequential histories here: the invocation of each

transactional operation is immediately followed by a matching

response. Therefore, we treat each transactional operation as

one atomic event and let <H denote the total order on the

transactional operations incurred by H . We identify a history



H as tuple 〈evts(H), <H〉.
We only consider well-formed histories here, i.e., no trans-

action of a process begins before the previous transaction

invocation has completed (either commits or aborts). We also

assume that every history has an initial committed transaction

T0 that initializes all the t-objects with value 0. The set of

transactions that appear in H is denoted by txns(H). The set

of committed (resp., aborted) transactions in H is denoted by

committed(H) (resp., aborted(H)). The set of incomplete or

live transactions in H is denoted by H.incomp = H.live =
(txns(H)− committed(H) − aborted(H)).

We construct a complete history of H , denoted as H , by

inserting STM.tryAk(A) immediately after the last event

of every transaction Tk ∈ H.live. But for STM.tryCi

of transaction Ti, if it released the lock on first t-object
successfully that means updates made by Ti is consistent so,

Ti will immediately return commit.

Transaction Real-Time and Conflict order: For two trans-

actions Tk, Tm ∈ txns(H), we say that Tk precedes Tm in

the real-time order of H , denoted as Tk ≺RT
H Tm, if Tk is

complete in H and the last event of Tk precedes the first event

of Tm in H . If neither Tk ≺RT
H Tm nor Tm ≺RT

H Tk, then

Tk and Tm overlap in H . We say that a history is serial (or

t-sequential) if all the transactions are ordered by real-time

order.

We say that Tk, Tm are in conflict, denoted as Tk ≺Conf
H Tm,

if (1) STM.tryCk() <H STM.tryCm() and wset(Tk) ∩
wset(Tm) �= ∅; (2) STM.tryCk() <H rm(x, v), x ∈
wset(Tk) and v �= A; (3) rk(x, v) <H STM.tryCm(),
x ∈ wset(Tm) and v �= A. Thus, it can be seen that

the conflict order is defined only on operations that have

successfully executed. We denote the corresponding operations

as conflicting.

Valid and Legal histories: A successful read rk(x, v) (i.e.,

v �= A) in a history H is said to be valid if there exist a

transaction Tj that wrote v to x and committed before rk(x, v).
History H is valid if all its successful read operations are valid.

We define rk(x, v)’s lastWrite as the latest commit event

Ci preceding rk(x, v) in H such that x ∈ wseti (Ti can also

be T0). A successful read operation rk(x, v) (i.e., v �= A), is

said to be legal if the transaction containing rk’s lastWrite also

writes v onto x. The history H is legal if all its successful

read operations are legal. From the definitions we get that if

H is legal then it is also valid.

Notions of Equivalence: Two histories H and H ′ are equiva-
lent if they have the same set of events. We say two histories

H,H ′ are multi-version view equivalent [20, Chap. 5] or MVVE
if (1) H,H ′ are valid histories and (2) H is equivalent to H ′.

Two histories H,H ′ are view equivalent [20, Chap. 3] or

VE if (1) H,H ′ are legal histories and (2) H is equivalent to

H ′. By restricting to legal histories, view equivalence does not

use multi-versions.

Two histories H,H ′ are conflict equivalent [20, Chap. 3] or

CE if (1) H,H ′ are legal histories and (2) conflict in H,H ′

are the same, i.e., conf(H) = conf(H ′). Conflict equivalence

like view equivalence does not use multi-versions and restricts

itself to legal histories.

VSR, MVSR, and CSR: A history H is said to VSR (or View

Serializable) [20, Chap. 3], if there exist a serial history S
such that S is view equivalent to H . But this notion considers

only single version corresponding to each t-object.
MVSR (or Multi-Version View Serializable) maintains

multiple version corresponding to each t-object. A history

H is said to MVSR [20, Chap. 5], if there exist a serial history

S such that S is multi-version view equivalent to H . It can

be proved that verifying the membership of VSR as well as

MVSR in databases is NP-Complete [16]. To circumvent this

issue, researchers in databases have identified an efficient sub-

class of VSR, called CSR based on the notion of conflicts. The

membership of CSR can be verified in polynomial time using

conflict graph characterization.

A history H is said to CSR (or Conflict Serializable) [20,

Chap. 3], if there exist a serial history S such that S is conflict

equivalent to H .

Serializability and Opacity: Serializability [16] is a com-

monly used criterion in databases. But it is not suitable for

STMs as it does not consider the correctness of aborted
transactions as shown by Guerraoui and Kapalka [6]. Opacity,

on the other hand, considers the correctness of aborted
transactions as well.

A history H is said to be opaque [6], [7] if it is valid and

there exists a t-sequential legal history S such that (1) S is

equivalent to complete history H and (2) S respects ≺RT
H , i.e.,

≺RT
H ⊂≺RT

S . By requiring S being equivalent to H , opacity

treats all the incomplete transactions as aborted.

Linearizability: A history H is linearizable [10] if (1) The

invocation and response events can be reordered to get a valid

sequential history. (2) The generated sequential history satisfies

the objects sequential specification. (3) If a response event

precedes an invocation event in the original history, then this

should be preserved in the sequential reordering.

Lock Freedom: An algorithm is said to be lock-free [9] if the

program threads are run for a sufficiently long time, at least

one of the threads makes progress. It allows individual threads

to starve but guarantees system-wide throughput.

III. REQUIREMENTS OF CONCURRENT MINER, VALIDATOR

AND BLOCK GRAPH

This section describes the requirements of concurrent miner,

validator and block graph to ensure correct concurrent execution

of the smart contract transactions.

A. Requirements of the Concurrent Miner

The miner process invokes several threads to concurrently

execute the smart contract transactions or atomic-units. With

the proposed optimistic execution approach, each miner thread

invokes an atomic-unit as a transaction.

The miner should ensure the correct concurrent execution

of the smart contract transactions. The incorrect concurrent

execution (or consistency issues) may occur when concurrency

involved. Any inconsistent read may leads system to divide



by zero, infinite loops, crash failure etc. All smart contract

transactions take place within a virtual machine [3]. When

miner executes the smart contract transactions concurrently on

the virtual machine then infinite loop and inconsistent read

may occur. So, to ensure the correct concurrent execution, the

miner should satisfy the correctness-criterion as opacity [6].

To achieve better efficiency, sometimes we need to adapt the

non-virtual machine environment which necessitates with the

safeguard of transactions. As well miner needs to satisfies the

correctness-criterion as opacity to ensure the correct concurrent

execution of smart contract transactions.

Requirement 1: Any history Hm generated by concurrent

miner should satisfy opacity.

Concurrent miner maintains a BG and provides it to

concurrent validators which ensures the dependency order

among the conflicting transactions. As we discussed in Section I,

if concurrent miner will not maintain the BG then a valid block

may get rejected by the concurrent validator.

B. Requirements of the Concurrent Validator

The correct concurrent execution by validator should be

equivalent to some serial execution. The serial order can be

obtained by applying the topological sort on the BG provided

by the concurrent miner. BG gives partial order among the

transactions while restricting the dependency order same as

the concurrent miner. So validator executes those transactions

concurrently which are not having any dependency among them

with the help of BG. Validator need not have to worry about

any concurrency control issues because BG ensures conflicting

transactions never execute concurrently.

C. Requirements of the Block Graph

As explained above, the miner generates a BG to capture the

dependencies between the smart contract transactions which is

used by the validator to concurrently execute the transactions

again later. The validator executes those transactions concur-

rently which do not have any path (implying dependency)

between them. Thus the execution by the validator is given by

a topological sort on the BG.

Now it is imperative that the execution history generated by

the validator, Hv is ‘equivalent’ to the history generated by

the miner, Hm. The precise equivalence depends on the STM

protocol followed by the miners and validators. If the miner

uses Multi-version STM such as MVTO then the equivalence

between Hv and Hm is MVVE. In this case, the graph

generated by the miner would be multi-version serialization

graph [20, Chap. 5].

On the other hand, if the miner uses single version STM

such as BTO then the equivalence between Hv and Hm is

view-equivalence (VE) which can be approximated by conflict-

equivalence (CE). Hence, in this case, the graph generated by

the miner would be conflict graph [20, Chap. 3].

IV. PROPOSED MECHANISM

This section presents the methods of lock-free concurrent

block graph library followed by concurrent execution of smart

contract transactions by miner and validator.

(a) Underlying representation of Block Graph (b) Block Graph
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A. Lock-free Concurrent Block Graph

Data Structure of Lock-free Concurrent Block Graph: We

use adjacency list to maintain the block graph BG(V, E) as

shown in Figure 2 (a). Where V is set of vertices (or vNodes)

which are stored in the vertex list (or vList) in increasing

order of timestamp between two sentinel node vHead (-∞)

and vTail (+∞). Each vertex node (or vNode) contains 〈ts =
i, AUid = id, inCnt = 0, vNext = nil, eNext = nil〉. Where i
is a unique timestamp (or ts) of committed transactions Ti.

AUid is the id of atomic-unit which is executed by transaction

Ti. To maintain the indegree count of each vNode we initialize

inCnt as 0. vNext and eNext initializes as nil.

Here, E is a set of edges which maintains all the conflicts

of vNode in the edge list (or eList) as shown in Figure 2 (a).

eList stores eNodes (or conflicting transaction nodes say Tj)

in increasing order of timestamp (or ts) between two sentinel

nodes eHead (-∞) and eTail (+∞).

Edge node (or eNode) contains 〈ts = j, vref, eNext = nil 〉.
Here, j is a unique timestamp (or ts) of committed transaction

Tj which is having conflict with Ti and ts(Ti) is less than

ts(Tj). To maintain the acyclicity of the BG, we add a conflict

edge from lower timestamp transaction to higher timestamp

transaction i.e. conflict edge is from Ti to Tj in the BG. Figure 2

(b) illustrates this using three transactions with timestamp 0,

5, and 10, which maintain the acyclicity while adding an edge

from lower to higher timestamp. Vertex node reference (or vref)
keeps the reference of its own vertex which is present in the

vList. eNext initializes as nil.

Block graph generated by the concurrent miner which helps

to execute the validator concurrently and deterministically

through lock-free graph library methods. Lock-free graph li-

brary consists of five methods as follows: addVert(), addEdge(),
searchLocal(), searchGlobal() and decInCount().
Lock-free Graph Library Methods Accessed by Concur-
rent Miner: Concurrent miner uses addVert() and addEdge()

methods of lock-free graph library to build a BG. When

concurrent miner wants to add a node in the BG then first it

calls addVert() method. addVert() method identifies the correct

location of that node (or vNode) in the vList. If vNode is not



part of vList then it creates the node and adds it into vList in

lock-free manner with the help of atomic compare and swap

operation.

After successful addition of vNode in the BG concurrent

miner calls addEdge() method to add the conflicting node (or

eNode) corresponding to vNode in the eList. First, addEdge()

method identifies the correct location of eNode in the eList
of corresponding vNode. If eNode is not part of eList then it

creates the node and adds it into eList of vNode in lock-free

manner with the help of atomic compare and swap operation.

After successful addition of eNode in the eList of vNode, it

increment the inCnt of eNode.vref (to maintain the indegree

count) node which is present in the vList.
Lock-free Graph Library Methods Accessed by Con-
current Validator: Concurrent validator uses searchLocal(),

searchGlobal() and decInCount() methods of lock-free graph

library. First, concurrent validator thread calls searchLocal()

method to identify the source node (having indegree (or inCnt)
0) in its local cacheList (or thread local memory). If any source

node exist in the local cacheList with inCnt 0 then it sets inCnt
field to be -1 atomically to claim the ownership of the node.

If the source node does not exists in the local cacheList
then concurrent validator thread calls searchGlobal() method

to identify the source node in the BG. If any source node

exists in the BG then it will do the same process as done by

searchLocal(). After that validator thread calls the decInCount()

to decreases the inCnt of all the conflicting nodes atomically

which are present in the eList of corresponding source node.

While decrementing the inCnt of each conflicting nodes in the

BG, it again checks if any conflicting node became a source

node then it adds that node into its local cacheList to optimize

the search time of identifying the next source node. Due to

lack of space, please refer accompanying technical report [1] to

get the complete details with the algorithm of lock-free graph

library methods.

B. Concurrent Miner

Smart contracts in blockchain are executed in two different

context. First, by miner to propose a new block and after

that by multiple validators to verify the block proposed by

miner. In this subsection, we describe how miner executes

the smart contracts concurrently. 1 Concurrent miner gets

the set of transactions from the distributed shared memory
as shown in Figure 3. Each transaction associated with the

functions (or atomic-units) of smart contracts. To run the

smart contracts concurrently we have faced the challenge to

identify the conflicting transactions at run-time because smart

contract language are Turing-complete. Two transactions are

in conflict if they are accessing common shared data-objects

and at least one of them perform write operation on it. 2 In

concurrent miner, conflicts are identified at run-time with the

help of efficient framework provided by optimistic software

transactional memory system (STMs). STMs access the shared

data-objects called as t-objects. Each shared t-object having

initial state (or IS) which modified by the atomic-units and

change IS to some other valid state. Eventually, it reaches to
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final state (or FS) at the end of block creation. As shown in

Algorithm 2, first, each transaction Ti gets the unique timestamp

i from STM.begin() at Line 6. Then transaction Ti executes

the atomic-unit of smart contracts. Atomic-unit consists of

multiple steps such as read and write on shared t-objects
as x. Internally, these read and write steps are handled by

the STM.read() and STM.write(), respectively. At Line 10, if

current atomic-unit step (or curStep) is read(x) then it calls

the STM.read(x). Internally, STM.read() identify the shared

t-object x from transactional memory (or TM) and validate it.

If validation is successful then it gets the value as v at Line 11

and execute the next step of atomic-unit otherwise re-execute

the atomic-unit if v is abort at Line 12.

If curStep is write(x) at Line 15 then it calls the

STM.write(x). Internally, STM.write() stores the information

corresponding to the shared t-object x into transaction local

log (or txlog) in write-set (or wseti) for transaction Ti. We

use an optimistic approach in which effect of the transaction

will reflect onto the TM after the successful STM.tryC(). If

validation is successful for all the wseti of transaction Ti in

STM.tryC() i.e. all the changes made by the Ti is consistent

then it updates the TM otherwise re-execute the atomic-unit if v
is abort at Line 24. After successful validation of STM.tryC(),

it also maintains the conflicting transaction of Ti into conflict

list in TM.
3 Once the transaction commits, it stores the conflicts in the

block graph (or BG). To maintain the BG it calls addVert() and

addEdge() methods of the lock-free graph library. The internal

details of addVert() and addEdge() methods are explained

in SubSection IV-A. 4 Once the transactions successfully

executed the atomic-units and completed with the construction

of BG then concurrent miner compute the hash of the previous

block. Eventually, 5 concurrent miner propose a block which

consists of set of transactions, BG, final state of each shared

t-objects, hash of the previous block of the blockchain and
6 send it to all other existing node in the distributed shared

memory to validate it as shown in Figure 3.

C. Concurrent Validator

Concurrent validator validates the block proposed by the

concurrent miner. It executes the set of transactions concurrently

and deterministically with the help of block graph given by

the concurrent miner. BG consists of dependency among the



Algorithm 2 Concurrent Miner(auList[], STM): Concurrently

m threads are executing atomic-units of smart contract from

auList[](or list of atomic-units) with the help of STM.
1: procedure CONCURRENT MINER(auList[], STM)
2: curAU ← curInd.get&Inc(auList[]);
3: /*curAU is the current atomic-unit taken from the auList[] */
4: /*Execute until all the atomic-units successfully completed*/
5: while (curAU < size of(auList[])) do
6: Ti ← STM.begin();/*Create a new transaction Ti with timestamp i*/
7: while (curAU.steps.hasNext()) do /*Assume that curAU is a list of steps*/
8: curStep = currAU.steps.next(); /*Get the next step to execute*/
9: switch (curStep) do

10: case read(x):
11: v ← STM.readi(x); /*Read t-object x from a shared memory*/
12: if (v == abort) then
13: goto Line 6;
14: end if
15: case write(x, v):
16: /*Write t-object x into Ti local memory with value v*/
17: STM.writei(x, v);

18: case default:
19: /*Neither read from or write to a shared memory t-object*/
20: execute curStep;

21: end while
22: /*Try to commit the current transaction Ti and update the confList[i]*/
23: v ← STM.tryCi();
24: if (v == abort) then
25: goto Line 6;
26: end if
27: Create vNode with 〈i, AUid, 0, nil, nil〉 as a vertex of Block Graph;
28: BG(vNode, STM);
29: curAU ← curInd.get&Inc(auList[]);
30: end while
31: end procedure

conflicting transactions that restrict them to execute serially

whereas non-conflicting transactions can run concurrently. In

concurrent validator multiple threads are executing the atomic-

units of smart contracts concurrently by executeCode() method

at Line 38 and Line 45 with the help of searchLocal(), and

searchGlobal() and decInCount() methods of lock-free graph

library at Line 37, Line 44 and (Line 40, Line 47) respectively.

The functionality of these lock-free graph library methods are

explained in SubSection IV-A.

After the successful execution of all the atomic-units,

concurrent validator compares its computed final state of each

shared data-objects with the final states given by the concurrent
miner. If the final state matches for all the shared data-objects

then the block proposed by the concurrent miner is valid.

Finally, the block is appended to the blockchain and respective

concurrent miner is rewarded.

Theorem 2: All the dependencies between the conflicting

nodes are captured in the BG.

V. EXPERIMENTAL EVALUATION

For the experiment, we consider a set of benchmarks

generated for Ballot, Simple Auction, and Coin contracts from

Solidity documentation [4]. Experiments are performed by

varying the number of atomic-units, and threads. The analysis

focuses on two main objectives: (1) Evaluate and analyzes the

speedup achieved by concurrent miner over the serial miner.

(2) Appraise the speedup achieved by concurrent validator over

serial validator on various experiments.

Experimental system: The Experimental system is a large-

scale 2-socket Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz

Algorithm 3 Concurrent Validator(auList[], BG): Concurrently

V threads are executing atomic-units of smart contract with

the help of BG given by the miner.
32: procedure CONCURRENT VALIDATOR(auList[], BG)
33: /*Execute until all the atomic-units successfully completed*/
34: while (nCount < size of(auList[])) do
35: while (cacheList.hasNext()) do /*First search into thread local cacheList */
36: cacheVer ← cacheList.next();
37: cacheVertex ← searchLocal(cacheVer, AUid);
38: executeCode(AUid); /*Execute the atomic-unit of cacheVertex*/
39: while (cacheVertex) do
40: cacheVertex ← decInCount(cacheVertex);
41: end while
42: Remove the current node (or cacheVertex) from local cacheList;
43: end while
44: vexNode ← searchGlobal(BG, AUid); /*Search into the BG*/
45: executeCode(AUid); /*Execute the atomic-unit of vexNode*/
46: while (verNode) do
47: verNode ← decInCount(verNode);
48: end while
49: end while
50: end procedure

with 14 cores per socket and two hyper-threads (HTs) per core,

for a total of 56 threads. The machine has 32GB of RAM and

runs Ubuntu 16.04.2 LTS.

Methodology: We have considered two types of workload,

(W1) The number of atomic-units varies from 50 to 400,

while threads and shared data-objects are fixed to 50 and 40

respectively. (W2) The number of threads varies from 10 to 60

while atomic-units are fixed to 400 and shared data-objects to

40. In all the experiments time taken by miners and validators

is collected as an average of ten executions for the final result.

A. Benchmarks

In reality, miner forms a block which consists of a set of

transactions from different contracts. So, we consider four

benchmarks Ballot, Simple Auction, Coin including Mixed

contract which is the combination of above three. In Ethereum

blockchain, smart contracts are written in Solidity and runs on

the Ethereum Virtual Machine (EVM). The issue with EVM

is that it does not support multi-threading and hence give

poor throughput. Therefore, to exploit the efficient utilization

of multi-core resources and to improve the performance,

we convert smart contract from Solidity language into C++

and execute them using multi-threading. The details of the

benchmarks are as follows:

1) Simple Auction: It is an auction contract in which bidders,
highestBidder, and highestBid are the shared data-objects.

A single owner initiates the auction after that bidders

can bid in the auction. The termination condition for

auction is the bidding period (or end time) initialized

at the beginning of the auction. During bidding period

multiple bidders initiate their bids with biding amount

using bid() method. At the end of the auction, a bidder with

the highest amount will be successful, and respective bid

amount is transferred to the beneficiary account. Conflict

can occur if at least two bidders are going to request for

bidPlusOne() simultaneously.

2) Coin: It is the simplest form of a cryptocurrency in

which accounts are the shared data-objects. All accounts



are uniquely identified by Etherum addresses. Only the

contract deployer known as minter will be able to generate

the coins and initialize the accounts at the beginning.

Anyone having an account can send coins to another

account with the condition that they have sufficient coins

in their account or can check their balance. In the initial

state, minter initializes all the accounts with some coins.

Conflict can occur if at least two senders are transferring

the amount into the same receiver account simultaneously

or when one send() and getbalance() have an account in

common.

3) Ballot: It implements an electronic voting contract in

which voters and proposals are the shared data-objects.

All the voters and proposals are already registered and

have unique Ethereum address. At first, all the voters are

given rights by the chairperson (or contract deployer) to

participate in the ballot. Voters either cast their vote to the

proposal of their choice or delegate vote to another voter

whom they can trust using delegate(). A voter is allowed

to delegate or vote once throughout the ballot. Conflict

can occur if at least two voters are going to delegate their

vote to the same voter or cast a vote to the same proposal

simultaneously. Once the ballot period is over, the winner

of the ballot is decided based on the maximum vote count.

4) Mixed: In this benchmark, we have combined all the

above benchmarks in equal proportions. Data conflicts

occur when atomic-units of the same contract executed

simultaneously, and operate on common shared data-

objects.

In all the above contracts, conflicts can very much transpire

when miner executes them concurrently. So, we use Optimistic

STMs to ensure consistency and handle the conflicts.

B. Results

We have shown the speedup of concurrent execution by miner

and validator over serial in Table I. The results from the serial

execution of the miner and validator are served as the baseline.

Figure 4 and Figure 5 represent the speedup of concurrent

miner and validator relative to the serial miner and validator

for all the smart contracts on workload W1 and W2. It shows

average speedup of 3.6x and 3.7x by the BTO and MVTO

concurrent miner over serial miner respectively. Along with,

BTO and MVTO validator outperforms average 40.8x and 47.1x

than serial validator respectively a. The maximum speedup

by concurrent miner on workload W1 is achieved at the

smaller number of atomic-units. On workload W2 speedup

of concurrent miner increases while increasing the number of

threads up to fix number depending on system configuration.

The time taken by the concurrent validator is negligible

as compared to serial validator because concurrent validator

executes contracts concurrently and deterministically using BG

given by concurrent miner. BG simplifies the parallelization task

for the validator as validator need not to determine the conflicts,

and directly executes non-conflicting transactions concurrently.

It is clear from Figure 4 and Figure 5 that BTO and MVTO

a Code is available here: https://github.com/pdcrl/Blockchain

10 20 30 40 50 60

1

2

4

8

16

32

64

128

50 100 150 200 250 300 350 400
1

2

4

8

16

32

64

128

50 100 150 200 250 300 350 400

1

2

4

8

16

32

64

10 20 30 40 50 60

1

2

4

8

16

32

(b) Simple Auction Contract

(d) Coin Contract(c) Coin Contract
Sp

ee
du

p 
O

ve
r S

er
ia

l

(a) Simple Auction Contract

         Serial  BTO Miner  MVTO Miner  BTO Decentralized Validator
 MVTO Decentralized Validator  BTO Fork-join Validator  MVTO Fork-join Validator

# of atomic-units

Sp
ee

du
p 

O
ve

r S
er

ia
l

# of atomic-units

# of threads

# of threads

Fig. 4. Simple Auction and Coin Contracts

TABLE I
SPEEDUP ACHIEVED BY CONCURRENT MINER AND VALIDATOR

Simple Auction Coin Ballot Mixed
W1 W2 W1 W2 W1 W2 W1 W2

BTO Miner 4.6 2.4 6.6 2.1 3.8 3.1 4.8 1.6

MVTO Miner 5.2 2.7 7.5 2.4 2.3 1.5 5.7 1.8

BTO Decentralized Validator 85.7 53.1 36.9 21.7 126.7 152.1 90.7 68.6

MVTO Decentralized Validator 108.5 64.6 43.5 24.4 135.8 180.8 109.5 67.4

BTO Fork-join Validator 1.7 2.5 1.7 2.1 2.1 3.8 1.5 1.9

MVTO Fork-join Validator 1.5 2.3 1.9 2.3 1.8 3.8 1.5 2.7

Decentralized Validator is giving far better performance than

BTO and MVTO Fork-join Validator. A possible reason can be

master thread of BTO and MVTO Fork-join Validator becomes

slow to assign the task to slave threads.

Figure 4 shows the speedup achieved by concurrent MVTO

Miner is greater than BTO Miner for Simple Auction and Coin

contract on workload W1 and W2 respectively. A plausible

reason can be that MVTO gives good performance for read-

intensive workloads [11]. Here, Simple Auction and Coin

contracts are read-intensive [4]. Figure 4 (c) represents the

speedup achieved by BTO and MVTO Fork-join Validators

are even less than serial for 50 AUs due to the overhead of

allocating the task by master thread.

Figure 5 (a) and (b) capture better speedup achieved by BTO

Miner as compare to MVTO Miner for workload W1 and W2

because Ballot contract is write-intensive [4]. Figure 5 (c) and

(d) represent the speedup achieved by concurrent miner and

validator over serial miner and validator for the Mixed contract

on workload W1 and W2 respectively. Due to equal proportions

of all the above three contracts, the Mixed contract becomes

read-intensive. So, the properties of the Mixed contract are same

as Simple Auction and Coin contract with similar reasoning.

Due to space constraints, we present essential results in the

main paper and the remaining results on different workloads
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are available in the accompanying technical report [1].

VI. CONCLUSION

To exploit the multi-core processors, we have proposed the

concurrent execution of smart contract by miners and validators

which improves the throughput. Initially, miner executes the

smart contracts concurrently using optimistic STM protocol

as BTO. To reduce the number of aborts and improves the

efficiency further, the concurrent miner uses MVTO protocol

which maintains multiple versions corresponding to each data-

object. Concurrent miner proposes a block which consists of

a set of transactions, BG, hash of the previous block and

final state of each shared data-objects. Later, the validators

re-execute the same smart contract transactions concurrently

and deterministically with the help of BG given by miner

which capture the conflicting relations among the transactions

to verify final state. If the validation is successful then proposed

block appended into the blockchain and miner gets incentive

otherwise discard the proposed block. Overall, BTO and MVTO

miner performs 3.6x and 3.7x speedups over serial miner

respectively. Along with, BTO and MVTO validator outperform

average 40.8x and 47.1x than serial validator respectively.
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