
Parallel Hash-Mark-Set on the Ethereum Blockchain
1st Zachary Painter

University of Central Florida
zacharypainter@knights.ucf.edu

2nd Pradeep Kumar Gayam
University of Central Florida

pradeep@knights.ucf.edu

3rd Victor Cook
University of Central Florida
victor.cook@knights.ucf.edu

4th Damian Dechev
University of Central Florida

dechev@cs.ucf.edu

Abstract—Popular blockchains such as Bitcoin or Ethereum
provide a transaction isolation level of READ-COMMITTED.
This provides difficulties when state changes many times per
block interval. Hash-Mark-Set (HMS) alleviates this problem by
enabling READ-UNCOMMITTED transactions for state variables.
However, the current HMS implementation relies on a sequen-
tial algorithm and is susceptible to redundant calculations. As
modern processors rely more heavily on parallel algorithms to
leverage multiple cores for speedup, sequential algorithms see
less benefit from hardware improvements. This paper proposes
a lock-free HMS to make use of thread-safe techniques and
other optimizations to improve the performance of the HMS
algorithm and reduce the latency of read-uncommitted state
variable accesses. In our experiments, the proposed algorithm
experiences an average 6.4x increase in performance up to 128
go-routines, and a maximum 11.1x increase.

I. INTRODUCTION

A blockchain is a decentralized distributed ledger capable
of storing state information. Blockchains like Bitcoin [10]
or Ethereum [13] append updates to the system as blocks
connected by a cryptographically secure chain. Each block
contains transactions which modify state variables. Participants
in a blockchain use a consensus mechanism to agree on the
next block to be added to the sequence. These participants are
rewarded for successfully appending their own proposed block
to the sequence. Since participants that are able to produce
blocks faster are more likely to successfully publish their
block to the network, it is beneficial for mining algorithms
to efficiently utilize hardware resources.

Lock-freedom [5] is a progress-guarantee for concurrent
algorithms that ensures that a system will make progress
in a finite number of steps. This property is desirable for
concurrent algorithms as it prevents some drawbacks of lock-
based counterparts, such as deadlock, while offering effective
use of multi-core processors. The design and implementa-
tion of lock-free algorithms is challenging, as many possible
thread-interleavings must be considered. Linearizability [6] is
a correctness condition for concurrent systems. A method is
linearizable if its effects occur instantaneously between its
invocation and return, and the history produced by calls to
the method are equivalent to a valid sequential history.

Peers viewing a blockchain network are only able to view
the system’s state at the most recent published block. This

This research was supported by the National Science Foundation under NSF
CCF 1717515, and NSF OAC 1740095.

transaction isolation level is called READ-COMMITTED [9].
Hash-Mark-Set (HMS) [3] enables a READ-UNCOMMITTED
view of storage variables by tagging transactions with an
order-defining hash value, and organizing all uncommitted
transactions based on this hash value into a directed-acyclic-
graph (DAG). The longest traversal of nodes in this DAG
constitutes the series, or the sequence of transactions that
maximizes transaction success rate.

The HMS algorithm must be executed for each new transac-
tion accessing a desired state variable. By creating transactions
based on the HMS series instead of the currently published
block, HMS improves the state throughput, or the ratio of
successful transactions, of each block. This increase is even
larger with semantic mining, when miners construct blocks that
strictly obey the ordering of the HMS series. State throughput
divided by raw throughput yields the transaction efficiency η
(1).

Tstate
Traw

= η (1)

The existing HMS implementation relies on a sequential
algorithm, but doing so can introduce a bottleneck when
processing a large volume of transactions. In this case, the
staleness of reads from HMS will increase, since a lengthy
calculation must occur before the state of the variable is
known. In this time, it is possible for the state of the variable
to change again. This can negatively affect state-throughput
as well as it inhibits the volume of HMS transactions that
can be processed in a given time frame. Additionally, in the
case of semantic mining, miners may be slowed by the run-
time of the algorithm. These drawbacks can be minimized
by storing a complete history of HMS transactions, and by
utilizing fast, highly scalable algorithms for use with modern
multiprocessors.

In this paper, we propose a lock-free implementation of
HMS that demonstrates an average case 6.4x increase in
operation throughput over the existing implementation. We
provide an implementation within Geth [4], as well as a test
harness to demonstrate performance and state throughput. As
demonstrated in section IV, the implementation is linearizable
and lock-free.

Our implementation evenly divides the pending transaction
pool among threads and locates HMS transactions that have
not yet been processed. A node structure is created from
each transaction and is placed in a shared array. We connect
nodes that share a parent-child relation using atomic COM-
PAREANDSWAP [8] on the parent’s next field. Each node’s978-1-7281-6680-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 16,2021 at 10:15:15 UTC from IEEE Xplore. Restrictions apply.

parent is located in either the shared array or the DAG, which
enabled new nodes to be appended in any order with minimal
contention. To eliminate the need for expensive searches to
find the deepest node in the DAG, we implement a tail pointer.
When a node is successfully inserted, we calculate its depth
based on the depth of its parent. If this new node has a larger
depth than the current tail, we use COMPAREANDSWAP to
redirect the tail pointer to the new node.

This paper makes the following contributions:
1) We improve the performance of HMS by up to 10x when

processing large transaction pools.
2) We provide an integrated solution for lock-free HMS

within Geth. 1

II. BACKGROUND

A. Miners and Transactions

Blocks are appended to the blockchain by miners after
resolving a consensus algorithm (PoW [10], PBFT [2], PoA
[1], PoS [7]). Each block consists of a sequence of transactions
which, when executed in order, modify the state of the
blockchain. The transactions which are included in a block,
as well as their order, is chosen by the miner. Smart Contracts
[12] allow the execution of arbitrary code as part of blockchain
transactions. Conflict between transactions modifying the same
state variables may result in transactions failure. Failed trans-
actions still occupy space in a block, but ultimately have no
effect on state variables.

B. Hash-Mark-Set

Hash Mark Set appends a mark field to each transaction
acting on a smart contract state variable. A transaction’s
mark is used to determine its execution order relative to
other transactions modifying the same state variable. Since
blockchain miners could mine transactions in almost any order,
the transaction history created by HMS is not necessarily the
same history that will be published in a block. However, the
algorithm is demonstrated to be effective at increasing the
likelihood of successful transactions even when miners are
unaware of the DAG created by HMS.

The HMS algorithm can be broken into 3 steps.
1) Read the pending TxPool, filter all irrelevant transactions
2) Create a Directed Acyclic Graph from all transactions

in (1)
3) Find the longest traversal of graph nodes starting from

the root of the DAG
The pending transaction pool contains all transactions that

may affect a state variable in future blocks. HMS first scans
this pool and returns only transactions related to the monitored
state variables.

A transaction’s parentage in the DAG is determined by its
mark field. A transaction’s mark is calculated in the following
way:
markcurrent ← h(markprevious, valcurrent)

1https://github.com/area67/sereth/tree/lock-free

The function h is the Keccack256 hash function [11]. When
a transaction t1 is submitted, markprevious is provided as a
parameter. If markprevious belongs to some transaction t0,
then t0 occurred before t1, and t0 will be the parent of t1
when inserted into the DAG.

Once a DAG is created from all pending transactions acting
on the monitored state variables, the longest path of nodes is
calculated starting from the root of the DAG. The transaction
at the tail of this path is considered the latest state of the
monitored variable. This heuristic is chosen to discourage
participants from submitting transactions that would create
branches in the DAG, as this reduces the overall number of
potentially successful transactions per block.

III. METHODOLOGY

We implement lock-free HMS in Golang. An implementa-
tion within Geth is also provided with a simple use-case for
measuring state-throughput.

The node struct is detailed by Algorithm 2. Each node
corresponds to a blockchain transaction, and is created after
parsing the transaction’s input fields from the transaction
pool. mark and value correspond to the parameters of the
transaction when generated by a smart contract using HMS.
next and prev store pointers to nodes that are the child or
parent of the given node. depth is an integer storing the
number of nodes between the root node of the graph and the
given node.

The graph struct is given by Algorithm 1. head is a refer-
ence to node at the root of the tree, while tail references the
node with the highest depth. pending is an array containing
all nodes from the transaction pool which have been parsed
and are currently being inserted into the list. When searching
for the parent of a node, we check both the pending array
and the DAG itself, which allows new nodes to be inserted in
any order as long as a valid parent exists somewhere in either
structure.

Algorithm 1 HMS Graph Structure
1: struct Graph
2: Node head
3: Node tail
4: Node[] pending

Algorithm 2 HMS Transaction Structure
1: struct Node
2: byte[] mark
3: byte[] value
4: Node[] next
5: Node prev
6: int depth

Before transactions can be inserted into the DAG, the
transaction pool must be scanned for transactions with an HMS
function signature. Transactions visible in the transaction pool

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 16,2021 at 10:15:15 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Method: Parse Transaction Pool
1: function PARSETRANSACTIONS(threadId, numThreads,

txns)
2: Node[] parsedList
3: interval← (txns.size()/numThreads)

4: startIndex← interval ∗ threadId
5: for i ∈ [startIndex, startIndex+interval) do
6: if HMS Signature ∈ txns[i].payload then
7: Node tx← PARSE(txns[i].payload)

8: parsedList.append(tx)

9: Graph.pending.append(parsedList)

typically compress input parameters and function signature
into a single byte string, or payload. This payload must be
parsed in order to retrieve the smart contract function and
input parameters.

Algorithm 3 details the PARSETRANSACTIONS method. We
assume that txns contains all transactions that entered the
system since the last call to PARSETRANSACTIONS. Unlike
the previous implementation, Lock-free HMS does not need
to parse the entire transaction pool on each call to PARSE-
TRANSACTIONS, as any previously parsed transactions will be
maintained in the DAG. The transaction pool is evenly divided
among available threads. If a transaction with the correct
function signature is found (Line 6), the input parameters for
that method are parsed by extracting one or more hexadecimal
substrings from the payload field (Line 7). On Line 9, we ap-
pend each thread’s results to a shared array. For this algorithm,
we assume the APPEND operation is atomic and thread-safe.
We require that PARSETRANSACTIONS execute completely
for all given threads before attempting any INSERTNODE
operations. This eliminates the possibility that a FINDPARENT
operation on txn0 fails to locate txn0 since it has not yet been
parsed.

Algorithm 4 Method: Find Parent
1: function FINDPARENT(Node txn)
2: for i ∈ pool.length do
3: curr ← Graph.pending[i]

4: if curr.mark == txn.prev mark then
5: return curr

return FINDINGRAPH(txn,Graph.head)

6: function FINDINGRAPH(Node txn, Node curr)
7: if curr.mark == txn.prev mark then
8: return current

9: for i ∈ curr.next do
10: item← LOAD(curr.next[i])

11: return FINDINGRAPH(txn, item)

12: return null

Algorithm 4 gives the FINDPARENT method. In this method,
we search the pool of nodes for the parent of the given
transaction. If the transaction is not found in pool, we perform

a recursive search of the DAG by calling FINDINGRAPH. In
this method, the next pointers of each node is atomically read,
and then traversed.

Algorithm 5 Method: Insert Node
1: function INSERTNODE(Node txn)
2: parent = FINDPARENT(TXN)
3: if parent == null then
4: return false
5: txn.prev = parent

6: for i ∈ parent.next do
7: item← LOAD(parent.next[i])

8: if item == null then
9: ret← COMPAREANDSWAP(

10: &parent.children[i], item, txn)

11: if ret then
12: d← LOAD(parent.depth)

13: if d != null then
14: FINISHINSERTING(txn, d+ 1)
15: return true

Algorithm 6 Method: Finish Insert
1: function FINISHINSERTING(Node txn, int d)
2: depth← LOAD(txn.depth)

3: if depth == null then
4: STORE(txn.depth, d)
5: for i ∈ txn.next do
6: item← LOAD(txn.next[i])

7: FINISHINSERTING(item, d+ 1)
8: if LENGTH(txn.next) == 0 then
9: while true do

10: Node tail← LOAD(Graph.tail)

11: if txn.depth > tail.depth then
12: ret← COMPAREANDSWAP(

13: &Graph.tail, tail, txn)

14: if ret == true then
15: break

Algorithm 5 gives the INSERTNODE method. First, the
parent of the current node is located using FINDPARENT on
Line 2. Afterwards, we iterate over the next array in an
attempt to insert the new node as a child of the discovered
parent node. If the COMPAREANDSWAP succeeds, the loop
will terminate on Line 11. If the COMPAREANDSWAP fails,
it means another thread has inserted a node at that index, so
the iteration is continued. For this algorithm, we consider the
next array to be unbounded.

On a successful insert, a node’s depth must be calculated
using algorithm 6. This algorithm checks the node’s parent to
see if it contains an initialized depth value and, if so, updates
the node’s own depth value. Afterwards we recursively call
FINISHINSERTING to calculate the depth of all children of the
node. If multiple threads attempt the STORE operation at Line

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 16,2021 at 10:15:15 UTC from IEEE Xplore. Restrictions apply.

4, they are likely to overwrite one another. However, since the
depth of a node is based on its parent, both thread will write
the same value, thus this double write does not produce any
anomalies. If FINISHINSERTING detects a leaf node whose
depth is greater than the current tail (Line 11), it attempts to
use COMPAREANDSWAP to update the tail of the graph. If a
node’s parent does not contain an initialized depth value, it is
possible that the current node is not yet reachable from the root
of the graph. In this case, the work done by FINISHINSERTING
will later be completed by a different operation which finds
the node via the recursive call on Line 7.

IV. CORRECTNESS

In this section, we sketch a proof of the linearizability of
our algorithm. An operation is linearizable if it appears to take
effect instantaneously at some time t between its invocation
and response [6]. This point in time t is often referred to as the
linearization point of the operation. The linearization points of
each method are as follows:

ParseTransactions. A call to PARSETRANSACTIONS with
a set of transactions txnsnew and a transaction pool txnpool
such that txnsnew ∈ txnpool linearizes the moment that the
transaction pool is read prior to calling the method.

FindParent. Upon success, FINDPARENT with an input of
txn0 linearizes when a node txn1 is loaded from either the
pending array, or the next array of a node in the graph such
that txn0 is the child of txn1. Since FINDPARENT traverses
each node in the pending array and each node reachable from
the head of the DAG, if the method returns null on Line
12, there is some moment of time between the invocation
and response of FINDPARENT at which txn1 was not in the
pending array or the DAG. An unsuccessful FINDPARENT
linearizes at this point.

InsertNode. We differentiate “Node Reading” and “Tail
Reading” operations. A Node Reading operation searches for a
node in the DAG and returns true if it is found. A Tail Reading
operation reads the current tail of the DAG. With respect to
Node Reading operations, a successful call to INSERTNODE
linearizes when the COMPAREANDSWAP operation on Line
9 succeeds. With respect to TAIL READING operations, a
successful call to INSERTNODE linearizes when the FIN-
ISHINSERTING operation succeeds its COMPAREANDSWAP
on the tail. Upon failure, INSERTNODE linearizes at the same
moment as the unsuccessful call to FINDPARENT on Line 2.

We demonstrate the lock-freedom property of our algorithm
by showing that for any number of threads n, at least one
will make progress in a finite time. In PARSETRANSACTIONS
and FINDPARENT, this is straightforward as each loop is
bounded. In INSERTNODE and FINISHINSERTING, a thread
may be suspended indefinitely by repeatedly failing the CO-
MAREANDSWAP operation. If this occurs, however, it means
that another thread has succeeded their COMPAREANDSWAP
operation, thus satisfying the condition that at least one thread
has made progress in the system.

Fig. 1. Performance of HMS Algorithms

V. EXPERIMENTAL RESULTS

We test Lock-Free HMS against the sequential HMS al-
gorithm on a 2GHZ AMD EPYC server with 32 cores and
64 threads. The test benchmark is executed on Ubuntu 18.04
LTS using go version 1.13. In each experiment we increase
the number of go-routines (lightweight threads) until we
no longer see a before increase. We measure the execution
time to completely process a transaction pool containing 215

transactions. We repeat each experiment 10 times and take the
average execution time.

In order to eliminate the overhead of running full blockchain
node, we create a test harness in Golang that simulates a
transaction pool. The test harness supplies the HMS algorithm
with a transaction pool struct identical to the one used in
Go Ethereum. Execution begins after the transaction pool
has been generated, and concludes after all transaction have
been inserted into the DAG, and the longest chain has been
calculated.

In Figure 1, we plot the performance of the sequential
algorithm on a single thread as a baseline for comparison.
Lock-free HMS gains performance steadily as the number
of go-routines increases. Up to 128 go-routines, we see an
average increase in throughput of 6.4x. Beyond 128 go-
routines we see very little performance gain on our system.
At roughly 200 go-routines, we see a maximum throughput
increase of 11.1x. Due to some overhead in the Lock-Free
algorithm, the sequential implementation outperforms Lock-
Free HMS at 1 and 2 go-routines.

VI. CONCLUSION

In this paper we presented an efficient lock-free imple-
mentation of the Hash-Mark-Set algorithm. Our algorithm
achieves significant speedup over the existing implementation
and improves the speed at which an HMS contract is able to
provide a response regarding the value of a state variable.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 16,2021 at 10:15:15 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof
of activity: Extending bitcoin’s proof of work via proof of stake. IACR
Cryptology ePrint Archive, 2014:452, 2014.

[2] Miguel Castro, Barbara Liskov, and Others. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[3] Victor Cook, Zachary Painter, Christina Peterson, and Damian Dechev.
Read-Uncommitted transactions for smart contract performance, 2019.

[4] Chris Dannen. Introducing Ethereum and Solidity: Foundations of
Cryptocurrency and Blockchain Programming for Beginners. Apress,
Berkeley, CA, 2017.

[5] Keir Fraser. Practical lock-freedom. Technical report, University of
Cambridge, Computer Laboratory, 2004.

[6] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, July 1990.

[7] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, August, 19, 2012.

[8] Douglas MacGregor, David S Mothersole, and John Zolnowsky. Method
and apparatus for a compare and swap instruction, April 1986.

[9] Jim Melton and Alan R Simon. Understanding the New SQL: A
Complete Guide. Morgan Kaufmann, 1993.

[10] Satoshi Nakamoto and Others. Bitcoin: A peer-to-peer electronic cash
system. 2008.

[11] M A Patil and P T Karule. Design and implementation of keccak
hash function for cryptography. In 2015 International Conference on
Communications and Signal Processing (ICCSP), pages 0875–0878,
April 2015.

[12] Nick Szabo. Formalizing and securing relationships on public networks.
First Monday, 2(9), September 1997.

[13] Gavin Wood and Others. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–32,
2014.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 16,2021 at 10:15:15 UTC from IEEE Xplore. Restrictions apply.

