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Abstract—Blockchain has attracted a broad range of interests
from start-ups, enterprises and governments to build next gen-
eration applications in a decentralized manner. Similar to cloud
platforms, a single blockchain-based system may need to serve
multiple tenants simultaneously. However, design of multi-tenant
blockchain-based systems is challenging to architects in terms
of data and performance isolation, as well as scalability. First,
tenants must not be able to read other tenants’ data and tenants
with potentially higher workload should not affect read/write
performance of other tenants. Second, multi-tenant blockchain-
based systems usually require both scalability for each individual
tenant and scalability with number of tenants. Therefore, in this
paper, we propose a scalable platform architecture for multi-
tenant blockchain-based systems to ensure data integrity while
maintaining data privacy and performance isolation. In the pro-
posed architecture, each tenant has an individual permissioned
blockchain to maintain their own data and smart contracts. All
tenant chains are anchored into a main chain, in a way that
minimizes cost and load overheads. The proposed architecture
has been implemented in a proof-of-concept prototype with
our industry partner, Laava ID Pty Ltd (Laava). We evaluate
our proposal in a three-fold way: fulfilment of the identified
requirements, qualitative comparison with design alternatives,
and quantitative analysis. The evaluation results show that the
proposed architecture can achieve data integrity, performance
isolation, data privacy, configuration flexibility, availability, cost
efficiency and scalability.

Index Terms—software architecture, blockchain, smart con-
tract, multi-tenant, Merkle tree

I. INTRODUCTION

Blockchain is an emerging distributed ledger technology

which has attracted a broad range of interests from start-ups,

enterprises and governments [14] [19] to address lack-of-trust

issues in a decentralized manner. A large number of projects

have been conducted to explore how to use blockchain to re-

architect systems and to build new applications and business

models. Blockchain application areas are diverse, including

supply chain, IoT, physical or digital asset registries, digital

currency, payment, trade finance, and identity management.

Similar to cloud platforms, a single blockchain-based sys-

tem is often required to serve multiple tenants who reside

in the same system to maintain their data. For example, a

traceability system usually provides quality tracking services

to different product manufacturers and each manufacturer can

manage the tracking of their products individually.

However, design of multi-tenant blockchain-based systems

is challenging to architects in terms of data and performance

isolation, as well as scalability. First, tenants must not be

able to read other tenants’ data and tenants with potentially

higher workload should not affect read/write performance of

other tenants. Second, multi-tenant blockchain-based systems

usually require both scalability for each tenant and scalability

with number of tenants.

Therefore, in this paper, we design a scalable platform archi-

tecture for multi-tenant blockchain-based systems to achieve

integrity of each tenant’s data while ensuring data privacy

and performance isolation. In the proposed architecture, each

tenant has an individual permissioned blockchain to maintain

their data. We design a custom Merkle tree in which each leaf

node represents the root of each tenant’s individual blockchain

Merkle tree. We store the created custom Merkle tree on each

individual blockchain and place the root of the custom Merkle

tree at a pre-configured interval on a public blockchain through

an anchoring component. This architecture design allows

publicly verifiable integrity of permissioned blockchains at

any time via anchoring consensus state of each permissioned

blockchain at periodic intervals to a public blockchain. The

anchoring overhead and cost remains mostly static, regardless

of the number of tenants. The architecture can also be applied

to store information with different characteristics to improve

flexibility and reduce cost (e.g. a long-lived blockchain and a

short-lived blockchain).

We implement the proposed architecture in a proof-of-

concept prototype, as part of a collaborative project with

our industry partner Laava1. We adopt Ethereum [1] in our

implementation since it currently offers the most mature smart

contract support. In our three-pronged evaluation, we first

examine the architecture by checking the fulfilment of the

identified requirements for multi-tenant blockchain-based sys-

tems. Second, we provide a qualitative analysis by comparing

the proposed architecture with two architecture design altern-

atives. Third, we conduct a quantitative analysis by measuring

the throughput under a number of conditions. The results

show that the proposed architecture can achieve data integrity,

performance isolation, data privacy, configuration flexibility,

availability, cost efficiency and scalability.

The remainder of this paper is organized as follows.

The next section discusses background and related work.

Section III introduces the requirements for multi-tenant

1https://www.laava.id (accessed on 27 Nov 2018)
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Ethereum block header
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ommersHash

beneficiary

logsBloom

timestamp extraData

difficulty

number

gasLimit

gasUsed

mixHashnonce

balance storageRoot nonce codeHash
Ethereum account state

Figure 1. Ethereum block header and state merkle tree.

blockchain-based systems. Section IV presents the proposed

architecture. Section V discusses the prototypical implementa-

tion of the architecture in the context of Laava’s use case. Sec-

tion VI evaluates the proposed architecture before Section VII

concludes the paper and outlines the future work.

II. BACKGROUND AND RELATED WORK

A. Background: Blockchain

A blockchain is a distributed append-only store of trans-

actions distributed across computational nodes and structured

as a linked list of blocks, each containing a set of trans-

actions [23]. Blockchain was introduced as the technology

behind Bitcoin [10]. Its concepts have been generalized to dis-
tributed ledger systems that verify and store any transactions

without coins or tokens [18], without relying on any central

trusted authority like traditional banking or payment systems.

Instead, all participants in the network can reach agreements

on the states of transactional data to achieve trust.

Merkle trees are an important part of blockchain, supporting

fundamental blockchain functionality and enabling efficient

and secure verification of large data structures. Merkle trees

have a hash-based structure that can ensure data integrity in

a trivial way: each node (except leaves) in the tree contains

the hash of its child node values; if nothing changed, the root

will be the same; otherwise only the hashes on the path from

the root to the changed leaves are changed. The Merkle tree

used in the Ethereum blockchain platform is called Merkle

Patricia tree [1]. There are three different Merkle Patricia

tree structures in Ethereum, as illustrated in Fig. 1: state tree,

transaction tree and receipt tree. Every block header contains

the roots of those three trees. The global state tree contains

a key-value pair for every account in the Ethereum network

and is updated by every transaction. The key is the account

address while the value is an encoding of details including

nonce, balance, storageRoot and codeHash. The root of state

tree is cryptographically dependent on all state tree data and

can be used as a unique and secure identifier for the state tree.

A smart contract is a user-defined program that is deployed

and executed on a blockchain system [12], [23], which can

express triggers, conditions and business logic [21] to enable

complex programmable transactions. Smart contracts can be

deployed and invoked through transactions, and are executed

across the blockchain network by all connected nodes. The

signature of the transaction sender authorizes the data payload

of a transaction to create or execute a smart contract. Trust

in the correct execution of smart contracts extends directly

from regular transactions, since (i) they are deployed as data

in a transaction and thus immutable; (ii) all their inputs are

through transactions and the current state; (iii) their code is

deterministic; and (iv) the results of transactions are captured

in the state and receipt trees, which are part of the consensus.

When using a blockchain, there are different types of

deployments, including public blockchain, consortium block-

chain or private blockchain. Public blockchains, which can

be accessed by anyone on the Internet (“permission-less”),

have high information transparency and auditability, but sac-

rifice performance and a cost/incentive model. A consortium

blockchain is typically used across multiple organisations and

the rights to read/write on the blockchain may be restricted

to specific participants. In a private blockchain network, write

permissions are often kept within one organisation, although

this may include multiple divisions of a single organisation.

Private blockchains are the most flexible for configuration

because the network is governed and hosted by a single

organisation. A blockchain may be permissioned in requiring

that one or more authorities act as a gate for participation.

This may include permission to join the network and read

information from the blockchain, to initiate transactions, or

to create blocks. Permissions can be stored either on-chain or

off-chain. There are often tradeoffs between permissioned and

permission-less blockchains including transaction processing

rate, cost, censorship-resistance, reversibility, finality and flex-

ibility in changing and optimising the network rules.

B. Related Work

There are a number of projects which have been conducted

to address blockchain limitations including scalability, privacy

and cost. Quorum2 addresses specific challenges to blockchain

technology adoption in the financial industry, which supports

both public and private smart contracts to enable data privacy.

Plasma [13] is designed to be scalable to a large amount of

state updates by providing incentivised and enforced execution

of smart contracts via transaction fees. The Dfinity block-

chain [4] provides a scalable consensus mechanism which

can scale through continuous quorum selections driven by

a random beacon. In Dfinity, the interblock time (interval

between two blocks) takes a few seconds and a transaction

is committed after only two confirmation blocks. Komodo3

includes a delayed Proof of Work consensus mechanism to

ensure security while avoiding direct competition. Stellar4

provides a distributed payment infrastructure, which takes 2-

5 seconds to reach consensus. EOS5 is designed to enable

2https://www.jpmorgan.com/global/Quorum
3https://komodoplatform.com/
4https://www.stellar.org/
5https://eos.io/
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vertical and horizontal scaling of decentralized applications

by providing an operating system-like construct, which can

handle to thousands of transactions per second without fees.

Many efforts have considered the area of multiple block-

chains and sides chains. Kan et al. [5] propose an archi-

tecture for reliably exchanging information across multiple

blockchains. A connection model is designed for routing man-

agement in multiple blockchains, which can provide atomicity

and consistency for transactions across blockchains and allows

increasing throughput. Cash and Bassiouni [2] propose a two-

tier blockchain architecture that utilizes a permission-less tier

for decentralization and security, and a centralized tier that

focuses on data control and restrictions. In the architecture,

tier one allows any node to read from and write to the

blockchain, while tier two only allows restricted users to

process read and write operations. The Loom Network6 is

a scaling solution for Ethereum, which provides a network

of Delegated Proof of Stake (DPoS) sidechains allowing for

highly-scalable decentralized applications while still being

backed by the security of Ethereum.

Supply chain and registries are two promising areas for

applications of blockchain. Most of the existing work on

supply chain [6], [8], [9], [15], [22] focuses on designing

blockchain-based systems to achieve item traceability by lever-

aging the fundamental properties of blockchain. Lu and Xu [9]

shared the experience of building originChain, an adaptable

blockchain-based system which provides transparent tamper-

proof traceability data and automates regulatory-compliance

checking. Tian [15] combines Radio-Frequency Identification

(RFID) and blockchain technology to build a food supply

chain traceability system, which covers the whole traceability

management process for quality and safety of food. Kim and

Laskowski [6] analyse a traceability ontology and translate

some of its representations to smart contracts that execute a

provenance trace and enforce traceability constraints.

Building registries on a blockchain can guarantee data

integrity, availability, transparency and immutability, which are

key requirements for registries [3]. There are registries being

built on blockchain in ad-hoc ways, for example, Namecoin7,

which is a domain name registry that shares the same network

with Bitcoin8, and Abscribe9, which is an artwork registry that

allows artists to register and manage the ownership of their

digital artwork. However, building a registry on blockchain is

non-trivial due to the steep learning curve of the technology.

Regis10 is a contract generator on Ethereum11 blockchain, but

only provides very basic operations. A registry generator for

blockchain was introduced in a demo paper [17].

However, we are not aware of any work addressing the

challenges of commercial multi-tenant systems on blockchain,

such as performance isolation and data privacy.

6https://loomx.io/
7https://namecoin.org/
8https://bitcoin.org/
9https://www.ascribe.io/
10https://regis.nu/
11https://www.ethereum.org/

III. REQUIREMENTS

We gathered application-agnostic functional and non-

functional requirements of multi-tenant blockchain-based sys-

tems, which are described below. We followed standard re-

quirements elicitation methodologies [7] in our work with

Laava for their specific requirements. Subsequently we ab-

stracted and filtered these system-specific requirements to

derive a list for the more general class of multi-tenant systems.

Some of the requirements here might differ from the needs

of other systems, while others might need to be refined.

Therefore, the list can be viewed as assumptions and drivers

for the architecture we discuss in the rest of the paper. If

applied to another system, the changes to the requirements

may need to be reflected in an adaptation of the architecture.

A. Functional Requirements

FR1 – Writing data on blockchain restricted to selected
clients: The platform shall have the ability to write data on

blockchain, restricted, e.g., to the platform owner.

FR2 – Writing batches of data on blockchain: The platform

shall have the ability to write batches of data with low cost

and overhead.

FR3 – Viewing the entire history: The platform shall have

ability to read the entire data history, i.e., all historical events

and data values over time.

FR4 – Tracking authenticity of data: end users need to be able

to see and validate the identity of clients that wrote data to

the system.

FR5 – Providing external auditing/verification for independent
agencies: independent agencies need to be able to access data

for auditing for each individual tenant.

FR6 – Providing a multi-tenant platform: the platform sup-

ports multiple tenants to serve their end users, where different

tenants can have different business needs.

B. Non-Functional Requirements

NFR1 – Data integrity of on-chain data must be ensured.

NFR2 – Scalability:
• Scalability within each tenant. For example, a tenant

might store large amounts of data within a period of time.

• Scalability in the number of tenants.

NFR3 – Data Privacy: in general, tenants must not be able

to read other tenants’ data (e.g., how many unique item IDs

were created, scan event counts, timing, or locations).

NFR4 – Performance Isolation: tenants with potentially higher

workload (e.g., commodity goods with millions of events

daily) should not affect read/write performance for other

tenants.

NFR5 – Availability: the blockchain infrastructure must be

available, in terms of responsiveness to read/write operations.

IV. ARCHITECTURE

In this section, we propose a platform architecture which

can meet the above requirements of multi-tenant blockchain-

based systems.
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Figure 2. Platform Architecture for multi-tenant blockchain-based systems.

A. Overall Architecture

Fig. 2 illustrates the platform architecture we propose for

multi-tenant blockchain-based systems. Each tenant has an

individual permissioned blockchain to maintain their informa-

tion. The platform owner hosts all admin nodes for producing

blocks while the tenants/auditors host read-only nodes, which

can be enforced through the blockchain configuration. The

platform owner has access to all the tenants’ on-chain data,

and provides APIs for writing to tenants’ chains.

An end user, e.g., a client of a tenant, sends write requests

through the routing component, which forwards them to re-

spective tenant’s blockchain to process. The load balancer

distributes the workload to the trigger components for different

admin nodes of the same tenant. The functionality provided

by the trigger includes writing data to the blockchain and

communicating with the anchoring component. The user sends

read requests to the read-only node through a public API.

The proposed architecture allows publicly verifiable integ-

rity of private blockchains at particular times via anchoring

the consensus state of each private chain at periodic intervals

to the public blockchain. The anchoring component connects

to a node in the public blockchain network, and one node for

each tenant’s blockchain to be anchored. We design a Merkle

tree T , as shown in the top right corner of Fig. 2, in which

each leaf node represents the root of each tenant blockchain

Merkle tree RTenantX . We store the newly created Merkle tree

T on each individual blockchain and place its root RootT on

a public blockchain through the anchoring component. The

architecture can also be applied to store information with

different characteristics to improve flexibility and reduce cost

(e.g. a long-lived blockchain and a short lived blockchain).

There are two smart contracts in this architecture: a smart

contract in each tenant’s permissioned blockchain and a smart

contract in the public blockchain. The smart contract in each

tenant’s blockchain is pre-deployed and included as part of

genesis block. The Merkle tree data structure for T is stored

in this smart contact, while its root RootT is placed in the

smart contract in the public blockchain. The Merkle tree

implementation uses Ethereum’s Merkle-Patricia tree library.

This design assumes that the platform owner can be relied

on by tenants in handling the anchoring process, which leads

to the design decision that only the platform owner is hosting

the anchoring component. Tenants can continuously monitor

that the platform owner is performing the anchoring process

in a correct manner, as described below. In other words, the

trust in the platform owner only extends to it performing the

anchoring, no trust in its correctness is required.

B. Anchoring protocol

The anchoring scheduler is configured as agreed between

the platform owner and tenants (e.g. every 10 minutes). The
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Figure 3. The anchoring protocol. (Notation: BPMN)

identity of each blockchain is established using the hash of

genesis block. Fig. 3 describes the way the anchoring protocol

works at anchoring time, in the BPMN notation [11].

The protocol starts with querying the latest anchored Merkle

root stored on the public blockchain and verifying the Merkle

root against the tree maintained in the anchoring component

to make sure the anchoring component is up to date. For each

tenant’s permissioned blockchain registered with the anchoring

component, there is a subprocess in Fig. 3; all subprocesses

are executed in parallel (see marker “III” at the bottom). In

such a subprocess, say for tenant X , the protocol queries the

blockchain Merkle roots on the latest block. If the chain is in

the Merkle tree of roots, the value for RTenantX is updated.

If not, e.g. X is a new tenant, the RTenantX is added as a

new node of the Merkle tree of roots. The tenant blockchain

node might not be available, and the request times out. In that

case, this tenant chain’s root is not updated.

After all tenant blockchain roots are processed, the protocol

writes the Merkle root RootT of the updated Merkle tree of

roots to public blockchain along with the previous root, and

stores the content of the updated tree to the smart contract

pre-deployed on each tenant’s blockchain.

The transaction that anchors the Merkle root to public

blockchain might take time to be included and committed,

which may be longer than the anchor interval. Thus, the

anchoring scheduler is using a simple lock-based mechanism.

Whenever a new anchoring round starts, it claims the lock.

New anchoring rounds are always scheduled according to the

interval. When the next round is scheduled, it will first check

whether the lock is available. If the lock is not available, then

that round will be skipped.

C. Auditing process

The integrity auditing process is as follows.

• The auditor needs to run a node of a tenant’s blockchain

(say, Tenant X) as the auditor node.

• The auditor needs to read the latest anchoring point on

public blockchain and obtain the Merkle root Root
′
T and

the Merkle root of the corresponding block of this tenant’s

blockchain (i.e. R
′
TenantX ).

• The auditor compares R
′
TenantX with the root stored in

the Merkle tree of roots for Tenant X’s blockchain at

anchoring time (i.e. RTenantX ).

• The auditor compares Root
′
T with the value of the Merkle

tree stored in the tenant’s blockchain (i.e. RootT ).

By performing the auditing process, the auditor can con-

tinuously monitor the data written to each tenant chain and the

correctness of anchoring performed by the platform owner.

V. USE CASE AND IMPLEMENTATION

A. Use Case

Product counterfeiting and fraud are costly for the industry

and potentially dangerous for customers, especially if medicine

and food products are affected. These problems are wide-

spread across many industries and supply chain processes.

Laava is a third-party item tracking service provider which

provides a novel type of unique ID for individual item tracking

with various interesting features. The unique IDs are designed

in a way that makes counterfeiting harder, and has numerous

advantages over barcode and QR codes. Regarding system

requirements, hundreds of product manufacturers may become

tenants and use the system to manage their products’ traceab-

ility information, and millions of product consumers may use

it to access the information. Laava clients will create unique

IDs on a blockchain at the point of packaging or production.

The products with individual unique IDs on them will flow

through the supply chain and pass through multiple points of

scanning until they reach consumers.

The authors from Data61, CSIRO, developed a prototype

for the Laava use case in a collaborative project with product

managers, architects, and developers from Laava. In particular,
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Blockchain ID Oracle Interface

Serialized Trie Store

Public Anchor

+ anchorPoints(anchorTimestamp: uint): bytes32
+ createAnchorPoint(anchorTimestamp: uint, trieRoot: bytes32)
+ getLatestAnchorPoint(): (anchorTimestamp: uint, trieRoot: bytes32)
+ getAllAnchorTimestamps(): uint[]
- getLatestAnchorTimestamp(): uint

anchorPoints: mapping (uint => bytes32)

+ trieAtAnchorTimestamp(timestamp: uint): bytes
+ storeTrie(anchorTimestamp: uint, serialisedTrieContent: bytes)

trieAtAnchorTimestamp: mapping (uint => bytes)

+ getBlockchainId(): bytes32

Figure 4. On-chain data structure for anchoring

the project seeks to allow any individual physical or digital

thing to be authenticated easily and securely, using blockchain.

B. Implementation

We used a model-driven engineering tool called Lorikeet

[16], which can automatically produce smart contracts from

business process models and registry data schema, to imple-

ment the proposed architecture design. The smart contracts are

written in Solidity, compiled with Solidity compiler version

0.4.24. We used Truffle framework12 to compile and test

smart contracts. The trigger and anchoring components are

written in TypeScript with Node.js version 10, implementing

the REST API using express.js server. Blockchain miners order

pending transactions first by account nonce, then gas price for

inclusion to new blocks. Thus, in each tenant’s permissioned

blockchain trigger, we used a different Ethereum account and

provided higher gas price for anchor-specific transactions.

This is to make sure the anchor transactions are not delayed

(having separate nonce) and have highest priority to be in-

cluded in each tenant’s chain. Fig. 4 shows the on-chain data

structure designed for anchoring in multi-tenant blockchain-

based systems, which includes BlockchainIDOracleInterface,

SerializedTrieStore, and PublicAnchor.

VI. EVALUATION

In this section, we evaluate the proposed architecture design

in terms of requirements fulfilment, qualitative analysis and

quantitative analysis. For requirements fulfilment, we ex-

amined the implemented proof-of-concept using the proposed

architecture against the functional and non-functional require-

ments identified in Section III.

12https://truffleframework.com

A. Functional Requirements Fulfilment

FR1 - Writing data on blockchain restricted to selected
clients The tenants are able to register unique ID, meta data,

and scan events on-chain via the API provided by Laava.

FR2 - Write batches of data on blockchain We implemented

a function in the unique ID registry contract for creating an

array of unique IDs, so that a batch of multiple unique IDs

can be registered via one function call, i.e. one blockchain

transaction.

FR3 - View the entire history The tenants are able to read

all historical events and data values over time via the API

provided by Laava.

FR4 - Track authenticity of data Once a consumer scans

a unique ID, they are able to validate the identity of the

manufacturer who registered the unique ID.

FR5 - Independent agencies to provide external audit-
ing/verification The independent agencies are able to access

data for auditing for each individual tenant via the read-only

nodes hosted by the independent agencies.

FR6 – Multi-tenant platform The platform supports multiple

tenants to have individual permissioned blockchain to serve

their end users, where different tenants can have different

business needs.

B. Non-Functional Requirements Fulfilment

NFR1 - Data integrity Data integrity is achieved via anchor-

ing to public blockchain.

NFR2 - Scalability The operations of registering unique

ID and scan event etc. are on permissioned blockchain so

there is no transactional cost involved (compared to public

blockchain). The cost mainly involves maintaining the infra-

structure for permissioned blockchains to ensure availability,

which shows good scalability within one tenant.

The cost for anchoring to public blockchain is fixed since

only the combined Merkle root of all tenant chains’ Merkle

roots are written to public blockchain at predetermined inter-

vals. Thus, the proposed design is scalable in respect to the

number of tenant chains.

NFR3 - Data Privacy Data privacy is enabled since each

tenant has an individual tenant chain which has restrict per-

missions to join and runs on separate networks (i.e. VPCs).

NFR4 - Performance Isolation Tenants have own permis-

sioned public blockchains. Thus, transactions on one chain

would not affect others.

NFR5 - Availability Each tenant chain maintains sufficient

replication to ensure availability for each tenant’s chain.

C. Qualitative Analysis

In this section, we evaluate three design alternatives against

the identified non-functional requirements listed in Section III.

1) Design Alternatives: We evaluate the architecture design

by comparing three design alternatives: architecture using

public blockchain (Design Alternative 1 illustrated in Fig. 5),

architecture using global chain anchoring to public blockchain

(Design Alternative 2 shown in Fig. 6), architecture using

multiple blockchains anchoring to public blockchain (Design
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Alternative 3 – the proposed architecture design discussed in

Section IV).

As shown in Fig. 5, in Design Alternative 1, all the

information is stored on public blockchain. The public block-

chain provides a neutral data store to maintain unique ID

information. Anyone on the Internet can access the unique

ID information stored on the public blockchain using the de-

ployed smart contracts. The platform owner’s existing backend

communicates with the unique ID registry smart contracts

deployed on blockchain via the blockchain trigger. The unique

ID registry smart contracts are deployed on the public block-

chain network. The blockchain trigger and local blockchain

node are hosted on one virtual machine (VM). The platform

owner’s existing backend interacts with the blockchain trigger

via REST API. In the blockchain trigger, there are two

layers: blockchain communication layer and business logic

layer. Blockchain communication layer consists of three com-

ponents, including sending blockchain transactions, querying

smart contract states, and listening to transaction progress

and smart contract events. Sending blockchain transactions

processes write operations while querying smart contract states

focuses on read operations. Blockchain trigger obtains status of

transactions and receives smart contract events via the listening

to transaction progress and smart contract events component.

The business logic layer comprises different business logic for

each REST API, which is processed through the blockchain

communication layer.

The Design Alternative 2 is illustrated in Fig. 6. Similar

to Design Alternative 3, the anchoring schedule is time-based

(e.g. every 10 mins), which is configured and agreed between

the platform owner and tenants. The anchoring component

stores the Merkle root of global blockchain (RootGlobalChain)

to the public blockchain we are anchoring to, together with the

block number and block hash of global blockchain at anchor-

ing time. To audit the data integrity of global blockchain, the

auditor runs a node of the global blockchain and read latest

anchor point on public blockchain. Then the auditor compares

RootGlobalChain at anchoring time with the information stored

on public blockchain.

2) Data Integrity: Data integrity is achievable by using all

the three design alternatives. In all the three design altern-

atives, creating a unique ID registry entry is done by Laava

in the current implementation. In Design Alternative 1, all

the tenants as blockchain network participants hold a local

copy of the blockchain, through which they can access the

unique ID registry on blockchain. In Design Alternative 2 and

Design Alternative 3, data integrity is guaranteed via anchoring

to public blockchain. Design Alternative 2 stores the Merkle

root of the global blockchain to the public blockchain while

Design Alternative 3 keeps the root of the Merkle roots of

each tenant’s blockchain on the public blockchain.

3) Cost: Both Design Alternative 2 and Design Alternative

3 are designed in a way that anchors to public blockchain.

The cost for anchoring to public blockchain is fixed as only

Merkle root of global blockchain (Design Alternative 2) or the

combined Merkle root of all tenant blockchain’s Merkle roots

(Design Alternative 3) are written to public blockchain at pre-

determined interval. Regarding infrastructure cost, platform

owners only needs to host one node for global blockchain

in Design Alternative 2, while the platform owner must host

at least one node for each individual tenant’s blockchain

in Design Alternative 3. To maintain availability, potentially

higher cost is needed with the increased number of tenants.

4) Data Privacy: Tenants are required to read their own

product data but not for competitors data. Data is encrypted

before storing to public blockchain in Design Alternative 1

and to global blockchain in Design Alternative 2. Design

Alternative 3 restricts the ability to join individual tenants’

blockchain as each has different genesis block and chain

ID. Also, in Design Alternative 3, nodes from each tenant’s

blockchain run on separate virtual private clouds (VPCs).

5) Performance Isolation: In Design Alternative 1 and

Design Alternative 2, tenants with higher transactional volume

and throughput might affect performance for lower-throughput

tenants since all the data are written through one blockchain

trigger. In Design Alternative 3, transactions on one chain

would not affect others since tenants have own permissioned

blockchains and each blockchain has its own trigger for

writing data to the corresponding blockchain.

6) Availability: Design Alternative 1 can achieve availabil-

ity since it uses public blockchain. Both Design Alternative 2

and Design Alternative 3 can increase availability by adding

more full nodes and block producers. Infrastructure cost and

maintenance overhead may increase with number of tenants.

Design Alternative 1 needs overall less number of replication

nodes as all tenants use one global blockchain.

7) Configuration Flexibility: Both Design Alternative 2 and

Design Alternative 3 can be independent of particular block-

chain forms. Different blockchains with different consensus

algorithms can be used for permissioned blockchain. Also,

both design can anchor to different public blockchains which

do not necessarily need to support smart contracts.

In Design Alternative 2, all tenants need to agree on

using the same blockchain platform, consensus algorithm and

configuration while Design Alternative 3 has flexibility to

choose different blockchain platforms (e.g. can use Hyper-

ledger Fabric for a particular tenant and use Ethereum for

others), consensus algorithms and blockchain configurations

(e.g. inter-block time) for each tenant. Only anchoring protocol

need to be agreed by all tenants.

D. Quantitative Analysis – Performance and Scalability

There are two objectives for the quantitative analysis. The

first objective is to measure the unique ID creation throughput

since the unique ID creation is one of the most important

functional requirements of the use case. The second objective

is to evaluate the anchoring process, since anchoring perform-

ance is critical for the feasibility of the overall architecture

design. In particular, the anchoring protocol needs to operate

regardless of the application load on the tenant chains.
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1) Experiment design: Fig. 7 shows the experiment deploy-

ment architecture for measuring the performance and scalab-

ility of the prototype implementing the proposed architecture.

Components in the experiment design were deployed as

Docker containers on AWS13 EC2 virtual machines. We de-

ployed the anchoring component on a dedicated m5.xlarge

EC2 instance (4 vCPUs, 16 GB RAM, 20GB EBS disk), which

communicates with all tenant chain testbeds. Each tenant chain

testbed used (i) 4 m5.xlarge EC2 instances for blockchain

nodes, triggers, and other components; (ii) an Application

Load Balancer (AWS ALB); and (iii) one m5.2xlarge instance

(8 vCPUs and 32 GB RAM) for the JMeter load generator.

The permissioned tenant chain uses the Ethereum client Par-
ity and its Proof-of-Authority (PoA) implementation14, and has

3 authorities (i.e. block producing nodes) which are connected

to a trigger each. There is also one read-only node connected

to both the permissioned chain and the transaction profiler.

The block-producing nodes use different authority accounts.

Blocks are only produced when there are pending transactions.

The anchoring component is connected to a simulated public

blockchain node with an inter-block time of 15 seconds, which

is approximately the median for public Ethereum15.

13https://aws.amazon.com/
14https://wiki.parity.io/Proof-of-Authority-Chains
15https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/

The load generation throughput is produced via JMeter,

which requests the creation of a high amount of new unique

IDs by calling the respective API. It is configured to 20

creations per batch (API call & blockchain transaction). The

test duration is 1 hour. The block gas limit in the tenant chain

is set to 80M gas and the inter-block time is configured to 5

second (the minimum recommended for Parity PoA16). Each

batch transaction consumes 1.05 million gas. Therefore, at

most 76 transactions fit into a block, limiting the theoretical

maximum throughput to 15.2 transactions per second (tps) –

corresponding to 304 unique ID creations per second. We run

four different tests to measure the transaction sending and

inclusion throughput over time with different loads:

Test 1: normal load scenario (<15tps), one tenant chain.

Test 2: boundary load scenario (starting at ≈18tps), one

tenant chain.

Test 3: overload scenario (≈18-25tps), one tenant chain,

i.e., the incoming throughput is higher than the theoretical

throughput limit of the blockchain.

Test 4: an overload scenario with three tenant chains (≈18-

25tps on each chain), i.e., Test 3 on three tenant chains in

parallel. With this test we investigate the performance isolation

between tenant chains as well as the anchoring protocol.

16https://github.com/paritytech/parity-ethereum/issues/9586
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Figure 8. Throughput for Test 1, normal load scenario (<15tps).

Figure 9. Throughput for Test 2, boundary load scenario (starting at ≈18tps).

The actual blockchain transaction inclusion throughput is

collected in the “Unique ID throughput profiler”. API call

latency and success/failure rates are measured by JMeter and

the API callback server. VM and container resource utilization

data are monitored via AWS CloudWatch. The anchoring per-

formance is measured based on the latency of the transactions

writing the Trie of roots content to the tenant chain.

Figure 10. Throughput for Test 3, overload scenario (≈18-25tps).

Figure 11. Throughput for Test 4, overload scenario (≈18-25tps).

2) Results: Figures 8-11 show the throughput measurement

results for Tests 1-4 respectively. The x-axis represents the

time elapsed since the start of the experiment (in minutes),

where load is generated from minute 0 to 59. The y-axis

represents the average throughput (tps).

Almost all the transactions are successfully sent and in-

cluded into the blockchain without errors. In Tests 1, 2
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and 4, no errors occurred. In Test 3, 65,506 transactions

were sent and 3 errors occurred, which is reasonable under

overload conditions. Also, in Test 3 and 4, the transactions

above the maximum capacity of the blockchain network were

properly queued and eventually included after the generated

load finished at the 59-minute mark. Thus, we find that the im-

plemented prototype can register unique IDs successfully and

efficiently, which meets the first objective of the experiment.

We observed a degradation in performance over the duration

of the first 2 tests, and in the beginning of Test 3 and 4. This

may be caused by an interplay of the load generator, callback

server, and overhead in the trigger implementation, which

continuously monitors the transaction status after submitting

it to Parity. What can clearly be seen from Test 3 and 4 is

that it does not stem from the blockchain, since the inclusion

throughput reaches the maximum in minute 1 and (except

for a few block-minute-shifts, e.g. around minute 40 in Test

3) stays there until the backlog has been cleared. We also

observed from Test 4 that the performance is not impacted by

the increased number of tenant chains.

The second objective concerns the performance of anchor-

ing protocol. Here we measure the total time from start to end

of each round (cf. Fig. 3). For all four tests, we measured

total times between 9 and 22 seconds per round. Recall

from Section V, that we prioritize anchoring transactions by

specifying a higher gas price (fee). This strategy worked: the

anchoring times are not affected by the load of the tenant

chain, even in Test 3 where it is under heavy load.

Depending on the public blockchain used for anchoring, the

total anchoring time can be expected to be dominated by the

commit time for the transaction to the public chain. Typical

commit times are approx. 2-5 minutes for Ethereum, and about

50-100 minutes for Bitcoin [20].

VII. CONCLUSION AND FUTURE WORK

This paper presents a platform architecture for multi-tenant

blockchain systems. In the design, each tenant is given an

individual blockchain, and all tenant chains are anchored to a

public blockchain periodically. The anchoring uses a combined

root of all tenant chains, thus achieving data integrity, low cost,

and performance and data isolation. The proposed architecture

has been implemented in a prototype with our industry partner,

Laava. We evaluate the solution in a three-pronged fashion: by

examining requirement fulfilment, by quantitative comparison

with two design alternatives, and by quantitative analysis using

the prototype. The system achieves all objectives.

Although we focused on multi-tenant blockchain-based

systems, the proposed architecture can be applied to many

situations requiring multiple blockchains. Examples include a

long-lived and a short-lived blockchain for long and short-

running business needs, or a separate blockchain per year.

In future work, we plan to explore the above-mentioned

flexible use of anchored chains, as well as the use of other

technology platforms – both for tenant chains and public

chains – with a single anchoring component.
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