
Scalable Blockchain Based Smart Contract
Execution

Zhimin Gao, Lei Xu, Lin Chen, Nolan Shah, Yang Lu, Weidong Shi
Computer Science Department

University of Houston
Houston, Texas, United States

mtion@msn.com, xuleimath@gmail.com, chenlin198662@gmail.com, nolanshah212@gmail.com, ylu17@uh.edu, wshi3@uh.edu

Abstract—Blockchain, or distributed ledger, provides a way to
build various decentralized systems without relying on any single
trusted party. This is especially attractive for smart contracts,
that different parties do not need to trust each other to have
a contract, and the distributed ledger can guarantee correct
execution of the contract. Most existing distributed ledger based
smart contract systems process smart contracts in a serial
manner, i.e., all users have to run a contract before its result
can be accepted by the system. Although this approach is easy
to implement and manage, it is not scalable and greatly limits
the system’s capability of handling a large number of smart
contracts. In order to address this problem, we propose a scalable
smart contract execution scheme that can run multiple smart
contract in parallel to improve throughput of the system. Our
scheme relies on two key techniques: a fair contract partition
algorithm leveraging integer linear programming to partition
a set of smart contracts into multiple subsets, and a random
assignment protocol assigning subsets randomly to a subgroup
of users. We prove that, our scheme is secure as long as more
than 50% of the computational power is possessed by honest
nodes. We then conduct experiments with data from existing
smart contract system to evaluate the efficiency of our scheme.
The results demonstrate that our approach is scalable and much
more efficient than the existing smart contract platform.

Index Terms—smart contract, blockchain, scalability

I. INTRODUCTION

The blockchain is a decentralized ledger maintained by a
group of independent users. Users can add new blocks to the
blockchain through proof-of-work, i.e., solving a computation-
ally intensive problem and attaching the proof to the newly
generated block. Everyone who receives the new block can
easily verify the proof to determine whether the new block
is valid or not. When there are more than one branches,
users choose the longest one as the legitimate blockchain.
As long as the majority of the users are honest, an attacker
cannot fake a longer branch as he/she needs to control more
than 50% of the total computational resources to achieve
this [39]. The decentralized feature of the blockchain makes
it a perfect platform to implement business logic or process
such as smart contracts without requiring trust among parties
who are involved in the contracts [34], [7]. Briefly speaking, a
smart contract is a computer program that executes the terms
of a contract, which is submitted to the blockchain system
by its creators and embedded into a block. After the block
is accepted by the system, all users try to execute the smart
contract and create a new block to hold the execution result.
Everyone in the system checks the result before accepting
the new block and correctness is guaranteed if majority of
the users are honest. To encourage users to participate in
mining and execution of smart contracts, rewards/incentives

are provided to those who successfully produce a valid block
or a smart contract execution result.

The original design of proof-of-work based blockchain
system is not efficient, and many recent studies have been
done to improve the performance of crypto-currency based
systems [12], [14], [22]. However, these approaches are not
directly applicable to smart contracts mainly due to the extra
requirements of contract execution and additional complexity
for supporting smart contracts over blockchain. Currently,
most existing blockchain systems that support smart con-
tracts/chain codes execute contracts one by one in a strictly
sequential manner. The situation becomes even worse when
considering that smart contracts themselves could be more
computationally sophisticated than the mining process. For
example, a computationally extensive smart contract could
occupy all users’ computational resources and prevent other
smart contracts from being executed at all. There is a lack of
scalable technologies that allow efficient and high throughput
execution model of smart contracts, which greatly limits the
potential of smart contract based systems built on top of
blockchain.

To address these challenges, we develop a scalable
blockchain based smart contract system that enables multiple
smart contracts to be executed simultaneously. The new sys-
tem applies divide-and-conquer principle. It provides a novel
method to partition a set of smart contracts into subsets satis-
fying fairness constraints, and randomly assign each subset to
a subgroup of users without reducing the strength of proof-of-
work based systems. In this system, a smart contract is only
executed and verified by a subset of the users. However, we
prove that it captures almost the same level of security as
those systems that process smart contracts sequentially, i.e.,
correctness of the smart contract execution is guaranteed in
our scheme as long as majority of the users are honest.

In summary, our main contributions include:
• We provide a scalable smart contract execution scheme,

which provides a novel approach to partition smart con-
tracts satisfying fairness constraint; and then assign them
to users via a random assignment protocol;

• We present theoretical analyses of the proposed scheme
that show its correctness and security strength;

• We also conduct simulations to demonstrate practicality
of the scalable smart contract execution scheme.

The remainder of the paper is organized as follows. In
Section II we describe backgrounds and a formal definition
of our problem. In Section III we provide an overview of the
scalable smart contract execution scheme. Detailed design of

352

2017 IEEE 23rd International Conference on Parallel and Distributed Systems

978-1-5386-2129-5/17/31.00 ©2017 IEEE
DOI 10.1109/ICPADS.2017.00054

ly
Highlight

ly
Highlight

ly
Highlight

ly
Highlight

key components is given in Section IV. Security and fairness
analysis of the proposed scheme are given in Section V
and Section VI. In Section VII we evaluate performance of
our approach with data collected from Ethereum. We review
related works in Section VIII and conclude the paper in
Section IX.

II. PRELIMINARIES

In this section, we provide a brief introduction of blockchain
and smart contract, and mathematical tools used in this paper.

A. Blockchain and Smart Contracts
A blockchain, or a distributed ledger, is a system involving

multiple users who work together to maintain a set of blocks
that are linked together[38]. Blockchain based systems are de-
veloped under different trust models with different consensus
protocols. In this paper, we are only concerned with proof-of-
work based public blockchain [25], which is the most widely
used blockchain scheme. Specifically, a proof-of-work based
public blockchain is a blockchain open to everyone, in which
all users compete with each other to solve computationally
intensive problems to build new blocks. When there are more
than one branches in the blockchain, users follow the principle
of longest-chain, i.e., the branch with the most number of
blocks is the legitimate one.

We remark that there are also other kinds of blockchain
systems, e.g., permissioned blockchain [37]. Although the
proposed approach is also applicable to smart contracts based
on permissioned blockchain, it is not the focus of this paper
because most permissioned blockchains do not depend on
proof-of-work.

Smart contracts have recently become one of the most
promising applications of blockchain technology. The concept
of a smart contract was first proposed by Szabo in 1997 [34]:
A smart contract is a set of promises, specified in a digital
form, including protocols within which the parties perform on
these promises. Roughly speaking, a smart contract is a piece
of program that consists of a set of rules and corresponding
operations of related accounts [40], [11]. Current blockchain
systems that support smart contracts work in a serial manner,
i.e., all smart contracts submitted to the system are executed
one by one sequentially, and each smart contract has to be run
by all users. As a result, existing smart contract systems do not
scale with the number of users and performance of contract
execution is limited due to the sequential execution model.

B. Terms and Notations
We summarize terms and notations that are used in this

paper as follows.

Users. Users refer to the real identities who participate in the
system.

Pseudonyms. Users are identified with pseudonyms, which are
their public keys and are chosen by themselves with the same
public parameters. If the length of a public key is β, we assume
that all the public keys are distributed uniformly in {0, 1}β .
If the original public keys are not uniformly distributed, we
can apply some transformations to guarantee this feature [4],
[35], [10].

Workload. The workload of a smart contract is the amount of
computation required to obtain result of this smart contract. In
general, a smart contract with heavier workload is associated
with a higher profit (e.g., concept of gas in Ethereum).

Rate. The rate is the ratio between the profit of a smart
contract and its workload.

C. Useful Probability Bounds
Our analysis used following probability bounds.

Lemma 1 (Chernoff Bounds [24]). Suppose X1, X2, · · · , X�

are independent random variables taking values in {0, 1}. Let
X =

∑�
i=1 Xi and μ = E[X]. Then for any δ ∈ (0, 1), we

have
Pr(X ≥ (1 + δ)μ) ≤ e−

δ2μ
3 .

Lemma 2 (Balls into Bins [30]). Suppose that there are n
identical balls and m identical boxes (or “bins”). Each time,
one of the bins is selected uniformly at random and a single
ball is placed into it. After all balls are in the bins, consider
the bin that contains the largest number of balls and let this
z be such a number, then for any ε > 0 there exists some
constant c such that

Pr[z ≥ (1 + ε)
n

m
] ≤ ε, if n > m logm.

Pr[z ≥ clogm] ≤ ε, if n ≤ m logm

Briefly speaking, with 1−o(1) probability every bin contains
no more than (1+ o(1)) n

m balls if n > m logm, and no more
than O(logm) balls if n ≤ m logm.

III. OVERVIEW OF THE SCALABLE SMART CONTRACT

EXECUTION SCHEME

In this section, we first analyze the essential requirements of
scalable smart contract execution and then provide an overview
of our proposed approach.

A. Essential Requirements
The basic concept for improving scalability of a blockchain

based smart contract system is natural: we divide smart
contracts into subsets and users within the system into groups
(which we call sub-committees), and let users in each sub-
committee only work on a subset of smart contracts. By doing
so, different smart contracts are executed simultaneously; and
scalability is thereafter achieved. However, a straightforward
implementation based on this natural idea may cause serious
problems regarding security and fairness, as we elaborate
below.

Security: Our scheme should ensure that any attacker or
malicious user who control a small percentage of compu-
tational resources cannot compromise or hijack the whole
system. There are two important issues. One issue is related
to the (absolute) percentage of computational power owned by
users. Note that a user may generate as many pseudonyms as
he/she wants. Hence we cannot simply partition pseudonyms
into sub-committees. Indeed, sub-committees should consist
of pseudonyms that have proved their computational power so
that the attacker cannot participate in all sub-committees and
strategically works on the smart contract that he/she prefers
by generating a lot of pseudonyms. To achieve this, when we
partition pseudonyms into sub-committees, we only consider
the set of pseudonyms that have generated blocks recently.
More precisely, we consider the most recent � blocks for some
constant � and only the pseudonyms that have generated one of
these blocks will be selected into one of the sub-committees.
Consequently, if an attacker generates a lot of pseudonyms,

353

these pseudonyms will be ignored if no blocks are generated
by them. The second issue is related to the relative percentage
of computational power owned by users. Note that an attacker
only controls a small percentage of computational power with
respect to the whole set of users. However, once in a small
sub-committee, he/she may turn out to control more than 50%
of the total computational power within that sub-committee.
Therefore, the scheme needs to ensure that even if a user
controls majority of the computational power within a sub-
committee, he/she cannot manipulate the execution result of
the smart contract. To handle this, all the pseudonyms in
a sub-committee are treated as the same regardless of their
computational power. The execution result of a smart contract
is verified by pseudonyms within a sub-committee and will be
accepted if it is approved by a majority of them. Hence, to
manipulate the execution result, the attacker needs to control
more than half different pseudonyms in a sub-committee. We
prove that, if each pseudonym that has generated one of
the most recent � blocks is randomly assigned to one sub-
committee, then for any user who controls λ fraction of the
computational power, the probability that he/she can control
more than (1+ε)λ fraction of the pseudonyms within any sub-
committee is sufficiently low for arbitrarily small constant ε.
Therefore, an attacker cannot compromise the system without
being able to control more than (50 − ε)% of the total
computational power.

Fairness: To ensure that users in each sub-committee are
working on distinct smart contracts, it is required that users in
one sub-committee cannot work on smart contracts that belong
to another sub-committee. Such a requirement may cause some
problem regarding fairness. Indeed, if some sub-committee is
assigned with very profitable smart contracts while another
sub-committee is assigned with much less profitable ones, it
may harm the incentive of users to participate in the execution
of smart contracts. To handle this, we propose a two-level
load balancing scheme. First, we require that all the smart
contracts to be assigned to sub-committees are partitioned in
a balanced way in terms of their total workload and profits.
The partition program will be formulated as a special smart
contract and will be executed in advance. We show that,
in general, computing a balanced partition is NP-hard, and
we propose an efficient algorithm based on ILP (Integer
Linear Programming) techniques. Therefore, every user will
run the ILP-solver to produce a balanced partition, which is
the first level of our load balancing scheme ensuring that
workload and profits of smart contracts do not differ too
much among different sub-committees. The second level of
our load balancing scheme is to ensure that every pseudonym
is randomly assigned to one of the sub-committees. Therefore,
even if a user is assigned to a sub-committee working on less
profitable smart contracts at some rounds, he/she should be
assigned to a sub-committee working on more profitable smart
contracts at other rounds. In expectation, we prove that the
total workload finished by a user and the total profit he/she
can get is proportional to his/her computational power.

B. Overview of the Scalable Blockchain based Smart Contract
Execution Scheme

From a high level, our scheme works as follows: it first
collects n smart contracts, then creates a special smart contract
asking for a balanced partition of the n contracts into m
subsets. All users execute this special smart contract and

compute the partition. The scheme then checks the most recent
� blocks prior to this special smart contract and collects the
� pseudonyms that generate these blocks (if multiple blocks
are generated by one pseudonym, we create the same number
of copies of this pseudonym and treat each copy as distinct).
The scheme then creates m sub-committees, each containing
one subset of the smart contracts. It randomly assigns each
pseudonym to one sub-committee. Pseudonyms in each sub-
committee only work on the smart contracts of this sub-
committee (consequently if a user owns several pseudonyms
that are in different sub-committees, he/she is able to work
on smart contracts in these sub-committees). Within each sub-
committee, pseudonyms use the Byzantine protocol to reach
consensus on the execution results1. The execution result of
each smart contract is then broadcasted by the sub-committee
to the whole system. Users whoever mines the next block will
put the execution result in the block. The profit of a smart
contract will be evenly distributed among all the pseudonyms
in the sub-committee that executes it. Algorithm 1 gives an
overview of the scalable blockchain based smart contract
execution scheme. Details of sub-routings are discussed in the
following sections.

Algorithm 1 Scalable blockchain based smart contract execu-
tion scheme.

Input: L, the blockchain of the smart contract platform; n, the
number of smart contracts to be collected before execution;
m, the number of sub-committees; U , the set of pseudonyms
that have generated the most recent � blocks.

Output: Updated blockchain L with smart contracts and
execution results
% the system runs continually
while true do

% collection of smart contracts
for i = 1 to n do

User submits smart contract ci to L
end for
% the whole runs the special contract to partition a set
of smart contracts to subsets si, which are then submitted
to the blockchain
{s1, . . . , sm} ← Partition(c1, . . . , cn)
AddPartition(L, {s1, . . . , sm})
% every user achieves consensus on how to randomly
assign contract subsets, sub-committee Ai is responsible
for si
{A1, . . . , Am} ← RandomAssign(L,U, {s1, . . . , sm})
in parallel

ri ← Execute(U,Ai, si)
AddResult(L, ri)

end parallel
end while

Algorithm 1 only describes one-round smart contracts ex-
ecution. After the system receives enough number of smart
contracts, it can schedule another round of partition and
random assignment without waiting for termination of the
previous round. Therefore, the system can keep m smart
contracts running in parallel.

1Briefly speaking, the Byzantine protocol is a protocol that allows users in
a network to reach consensus on the correct result, given that more than 50%
of them are honest [21].

354

Although there are some works on verifiable computa-
tion [17], [29], they usually involve expensive cryptography
operations and key management. For general smart contracts,
repeating the computation is still the most feasible way to
verify correctness of results. This prevents a smart contract
system from being scalable. In our scheme, this is not a
problem for the Partition operation as it uses a special
algorithm that is much easier to verify a result than to compute
one. We also limit verification of each smart contract result
within the sub-committee that it is assigned to. Once the result
is broadcast to the whole system, pseudonyms in other sub-
committees and miners who attempt to generate a block to
hold this result are not required to verify the result again.
Considering all these features, the proposed smart contract
execution scheme can achieve a speedup rate that is linear
to the number of sub-committees.

IV. EFFICIENT SMART CONTRACT EXECUTION

In the following two subsections, we discuss the two key
components of our scheme, the partitioning of smart contracts
and the assignment of pseudonyms to sub-committees.

A. Partition: Partitioning of Smart Contracts
The partitioning of smart contracts could be formulated as

the following fair load balancing problem.
Fair Load Balancing: Given a set J of n tasks. Each task j
is specified by

• a workload Wj which is random variable with its mean
wj = E(Wj),

• a rate rj for the processing of each unit of its workload,
i.e., the profit of processing task j is rjwj .

The goal is to partition J into m disjoint subsets
J1, J2, · · · , Jm in a fair way, that is, for some parameter
γ1, γ2 ≥ 1, the followings are true:

maxmk=1

∑
j∈Jk

wj

minmk=1

∑
j∈Jk

wj
≤ γ1, (1a)

maxmk=1

∑
j∈Jk

rjwj

minmk=1

∑
j∈Jk

rjwj
≤ γ2 (1b)

For simplicity, we define the workload and the profit of
each subset Ji as the total workload and total profit of tasks it
contains, respectively. Without loss of generality, we assume
wj , rj are integers (if not, we simply scale up the instance).

In this model, each task corresponds to a smart contract.
Note that all the smart contracts will be partitioned and
assigned to m sub-committees, therefore, it is required that
such a partition is fair in the sense that the total workload
assigned to different sub-committees, as well as the total
profit of the tasks assigned to different sub-committees, are
more or less the same. To measure the fairness, we introduce
two parameters γ1 and γ2, which are defined as the maximal
workload over the minimal workload, and the maximal profit
over minimal profit, respectively. Obviously the best partition
in terms of fairness satisfies that γ1 = γ2 = 1. The following
theorem, however, implies that the fair load balancing problem
is a challenging problem. Indeed, even determining whether
there exists a feasible solution satisfying that γ1 = γ2 = 1 is
NP-hard.

Theorem 1. The fair load balancing problem is NP-hard.

We have shown our proof of theorem in the full version of
this paper [15]. In the following part we show how to solve
the fair load balancing problem efficiently by utilizing integer
linear programming.

1) A Bi-objective Optimization Formulation: We can for-
mulate the fair load balancing problem as the following bi-
objective optimization programming.

min(γ1, γ2) (2a)
m∑

i=1

xij = 1, 1 ≤ j ≤ n (2b)

n∑

j=1

wjxij ≤ γ1

n∑

j=1

wjxi′j , 1 ≤ i, i′ ≤ m (2c)

n∑

j=1

rjwjxij ≤ γ2

n∑

j=1

rjwjxi′j , 1 ≤ i, i′ ≤ m (2d)

xij ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n (2e)

We explain the variables. Here xij denotes whether task j
is in subset Ji, i.e., xij = 1 if task j is in Ji and xij = 0
otherwise.

We explain the constraints. Constraint (2b) implies that
every task must be assigned to one subset, whereas the solution
of the ILP produces a feasible partition. Constraint (2c) implies
that the total workload of tasks in one subset is no more
than γ1 times the total workload of tasks in another subset,
therefore, the maximal workload is no more than γ1 times the
minimal workload. Similarly, constraint (2d) implies that the
total profit of tasks in one subset is no more than γ2 times the
total profit of tasks in another set, whereas the maximal profit
is no more than γ2 times the minimal profit. Given γ1 and γ2,
we can test whether ILP(γ1, γ2) admit a feasible solution or
not.

Note that the two parameters γ1 and γ2 may contradict each
other, i.e., a solution that partitions tasks fairly in terms of
workload may result in an unfair distribution of the profits. A
common approach for bi-objective optimization is to compute
its pareto front [18], which is composed of all the points
(γ∗1 , γ

∗
2) such that by fixing γ1 = γ∗1 , the minimal value of

γ2 is γ∗2 .
To compute the pareto front, we can set γ1 to be different

values and change the objective into min γ2. We remark
that, by minimizing γ2, we establish a non-linear integer
programming.

We observe that, if we fix the values of γ1 and γ2, then the
bi-objective optimization program reduces to an integer linear
programming (ILP). We denote such an integer programming
as ILP(γ1, γ2). In general, integer linear programming can be
solved significantly faster than a non-linear integer program-
ming. Therefore, we can compute the pareto front by applying
binary search on γ2. Refer to the full version of this paper [15]
for an overview of the proposed algorithm.

2) Solving the ILP Faster.: We observe that, ILP(γ1, γ2)
has mn different 0-1 integral variables, and 2m2 + n con-
straints (including constraints (2b), (2c) and (2d)). Discussion
about how to solve the integer programming faster by reducing
the number of contraints to 0(m+n) can be found here [15].
This modified ILP can be solved efficiently using ILP-solvers
like Lingo or Fico Xpress. Detailed discussion about the
experimental results are presented in Section VII.

355

B. RandomAssign: Random Assignment of Pseudonyms

According to the design given in Algorithm 1, each subset
of smart contracts generated by Partition is handled by
a sub-committee. Here we discuss the process to randomly
assign each pseudonym to one of the sub-committees. More
precisely, our scheme should ensure that for each pseudonym,
the probability that it is assigned to a sub-committee is
exactly 1/m. We show how to achieve this random assignment
problem in a decentralized system.

First, we prove that the random assignment problem is
equivalent with generating a random permutation of all users
(Theorem 2) [15].

Theorem 2. Let � be the number of pseudonyms, m
be the number of sub-committees, m|� and m < �.
Let U = {u1, · · · , u�} be the set of pseudonyms and
T = {T1, · · · , Tm} be the set of sub-committees. Assign-
ing each user randomly to a sub-committee is equivalent
with applying a random permutation p to U and assigning
(u

(p)
i n
m+1, · · ·u(p)

(i+1) n
m
) to Ti+1, where i = 0, · · · ,m − 1 and

u
(p)
j is the j-th user after the permutation.

In practice, it is not easy to select a real random permutation
efficiently, and we use pseudo-random permutation in our
scheme. The effect of this replacement is analyzed in the
following section. In a nutshell, the assignment process works
in three steps: first the system selects a random number; then
the random number is used to construct a pseudo-random
permutation; and finally smart contract subsets are assigned
accordingly to the constructed sub-committees.

Random number generation. A randomness source is the
precondition for pseudo random permutation construction. Be-
cause our scheme works in a fully decentralized environment
and there is no trusted party, we cannot rely on any single
party for random number generation.

Instead of running a dedicated protocol between all users to
generate a random number [2], [6], we use the blockchain itself
as the randomness source [5]. As we consider the scenario
where the blockchain is constructed using proof-of-work [25],
the nonce calculated by the miner can provides some random-
ness. The time stamp is also a source of randomness. We then
apply a random bits extractor [13] to the source to build the
random number.

Random permutation construction. A block cipher is in-
tended to be computationally indistinguishable from random
permeation [3]. Roughly speaking, given a block cipher
scheme with random keys and a random permutation, an
attacker with limited computation resources cannot distinguish
them by observing input/output pairs. For our scheme, we
use AES as the underlying block cipher, which has received
intensive study and is believed to be a secure pseudo ran-
dom permutation [26]. The AES encryption/decryption key
is derived by applying HMAC [13] to the random number
generated in the previous step. After the random number is
generated, all users in the smart contract system can learn the
value of the key. This is not a problem for our scheme as we
utilize AES for permutation, not confidentiality protection.

Without loss of generality, let each pseudonym u be identi-
fied by a public key pku, where |pku| = β. If 128 � β, we pad
pku with zeros to make sure the padded result is a multiple
of 128. The padded public key is denoted as pk′u and the new

length is β′. The padded public key is then encrypted using
AES CBC mode, denoted as E(pk′u).
Smart contract subsets assignment. The encrypted public
key can be treated as an integer, and we divide the cipher-

text space to m parts: [0, 2β
′

m], [2
β′

m +1, 2 · 2β
′

m], · · · , [(m−1) ·
2β

′

m , 2β
′
]. The cipher-text of a public key falls into one of the

m parts with probability 1/m. The i-th smart contract subset
is assigned to pseudonyms with encrypted public keys that
fall into the i-th slot. Because public keys, the AES key, and
the dividing information are public, it is easy for one to check
which subset of contracts is assigned to a specific pseudonym.

C. Execute: Smart Contracts Execution and Results Collec-
tion

After each subset of smart contracts is assigned to a sub-
committee, pseudonyms in each sub-committee run the as-
signed contracts one by one and submit corresponding results
to the system. We discuss execution of a single smart contract
c.

A pseudonym u who is assigned to c executes it locally and
obtains the result r. u also generates a digital signature sig on
r. Other pseudonyms in the same sub-committee do the same
thing and they can run a BFT protocol to determine the final
result; and broadcast it to the whole system. A straightforward
approach to build the final result is to attach all digital
signatures together with the execution result. However, the
size of the broadcast message increases as more pseudonyms
are included in the sub-committee. To mitigate this problem,
we leverage multi-signature scheme [27] to compress multiple
signatures for the same message (i.e., the execution result) into
a single signature.

One who receives the broadcast result first checks whether
the result is generated by legitimate pseudonyms (by checking
the random assignment of pseudonyms) and supported by
enough number of pseudonyms in the sub-committee (by
checking the aggregated digital signature). If the result passes
these tests, one can start the mining process and try to embed
the result in a new block.

V. SECURITY ANALYSIS

In this section, we analyze the security of the proposed
scalable smart contract execution scheme. As a user can
create multiple pseudonyms, Theorem 3 shows that he/she
cannot generate enough number of pseudonyms to dominate
a sub-committee unless he/she controls more than half of the
computation resources.

Theorem 3. Let ε > 0 be an arbitrarily small positive number
and λ ∈ (0, 1) be any constant. Let � ∈ Z+ be such that
λ� ≥ max{ 1

ε2 ln
1
ε , cm logm} where c is some constant, then

with sufficiently high probability (at least 1−2ε), for any user
that controls λ fraction of the total computation power, the
number of his/her pseudonyms in each of the m sub-committee
does not exceed (1+ ε)2 λ�

m , i.e., he/she cannot own more than
(1 + ε)λ fraction of the pseudonyms in every sub-committee.

Here c is some universal constant that follows from the
constant appears in the fundamental problem of “Balls into
Bins”as we described in Section II-C. Note that c is indepen-
dent of λ, �,m and only depends on ε.

Briefly speaking, the theorem states that with high prob-
ability our scheme ensures that the fraction of pseudonyms

356

belonging to one user in each sub-committee does not exceed
the fraction of computational power owned by him/her, con-
sequently, taking λ = 1/2−2ε, no user can control more than
50% pseudonyms in each sub-committee as long as he/she
does not control more than (50−ε)% of the total computational
power, and the security of our scheme is ensured. Note that it
is required by the theorem that � = Ω(m logm), that is, the
number of sub-committees needs to be bounded by roughly
O(�/ log �). A complete proof can be found in the full version
of this paper [15].

VI. FAIRNESS ANALYSIS

Fairness is critical for the new scalable smart contract
execution scheme. If smart contract partition is not fair, users
may not have the incentives to run certain smart contracts,
which will affect the overall scalability. In this section, we
show that the proposed scheme ensures both the long term
and short term fairness for all users.

Long term fairness. We prove the following theorem, which
shows that in expectation, workload and profit of smart con-
tracts are distributed among users in fair way, that is, it is
proportional to the computational power of a user. This is
reasonable as users with more computational power are able to
process more tasks, and consequently get more reward. Note
that this is also the case with the current public blockchain
system such as Bitcoin or Ethereum.

Theorem 4. In expectation, any user who controls λ ∈ (0, 1)
fraction of the total computational power will complete λ
fraction of the total workload and get λ fraction of the total
profit.

We remark that the total profit is
∑n

j=1 rjwj , but the total

workload is not
∑n

j=1 wj but rather �/m · ∑n
j=1 wj since

in each sub-committee, execution of every smart contract is
repeated by every pseudonym, hence the workload is increased
by �/m times.

Towards the proof, we need the following lemma which
follows readily as a consequence of the random assignment of
pseudonyms to sub-committees.

Lemma 3. If every pseudonym is randomly assigned to one
of the m sub-committees, then the expected workload finished
by him/her is

∑n
j=1 wj

m , and the expected profit got by him/her

is
∑n

j=1 rjwj

� .

Proof of theorems and lemmas in this section can be found
here [15].

Short term fairness. Note that the total workload finished by
a user and the reward received converges to the expectation in
the long run. However, if a user joins the system and leaves
after a short time, then his/her workload and profit may vary.
Though the expectation is fixed, it makes much difference if
he/she is lucky and assigned to more profitable smart contracts
vs. if he/she is unlucky and assigned to less profitable smart
contracts. Indeed, users who are unlucky may also have less
incentives to continue participating in the system. Therefore
it is also important to ensure short term fairness among users,
that is, the total workload and profit of smart contracts in
each sub-committee should be similar. Our scheme handles
this by its ILP-based load balancing algorithm that returns
a solution such that the difference of workload and profit

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10 20 30 40 50 60 70 80 90 100

w
or

klo
ad

 X
 ra

te

workload

inputdata (20)
inputdata (100)

Fig. 1: The input data is collected and normalized from the first
100 transactions of Ethereum on May 31, 2016. The subset of
20 inputs are marked by square symbols.

among sub-committees are bounded by γ1 and γ2, respectively.
We provide experiment results in Section VII, which shows
the values of these two parameters by taking as input the
real data collected from Ethereuam. The experimental results
suggest that, γ1 and γ2 can both be close to 1 for, e.g., 5 sub-
committees and 100 smart contracts. Therefore, even if a user
joins the system and leave shortly afterwards, he/she can be
treated in an approximately fair way no matter he/she is lucky
or unlucky.

VII. EXPERIMENTS AND EVALUATION

We have proved in the previous sections that our scheme
ensures the security and long term fairness among users (Note
that correctness of Theorem 3 and Theorem 4 do not rely on
partition of smart contracts). The short term fairness, however,
relies on how evenly smart contracts can be divided among
sub-committees, which is guided by the two parameters γ1 and
γ2. Ideally, if γ1 = γ2 = 1, then perfect short term fairness is
achieved. However, if the data is not distributed nicely, then
it may be impossible to partition smart contracts in a good
fashion. For example, consider two smart contracts, one of
profit 1 and the other of profit 100. Partitioning them into two
subsets yields a solution with γ2 = 100, which may be too
large to be acceptable. In reality, however, the data is neither
too good nor too bad. The goal of this section is to calculate
the values of γ1 and γ2 by taking as an input the real data
collected from Ethereum, thereby illustrating that our scheme
can achieve approximate short term fairness if it is applied to
a smart contract system such as one similar Ethereum.

Throughout this section, we use the data taken from
Ethereum on May 31, 2016 (see Fig. 1). As the ILP-solver
for the sub-routine Partition(c1, . . . , cn), we run LINGO
11 on Windows 10 64bit with 16 GB total memory and an
Intel R©CoreTMi7-4790S CPU. LINGO is a comprehensive tool
to solve integer linear optimization problem.

Let m = 5. We fix the value of γ1 and compute the minimal
value of γ2. Each pair of the values (γ1, γ2) is a pareto optimal
solution. We compute all the pareto optimal solutions and
derive a pareto front, as is illustrated by Fig. 2a. From the
figure, we see that γ1 drops to almost 1 when γ2 is around 1.4,
hence 5 sub-committees works well for 100 smart contracts.

We further discuss the possibility of increasing m with
respect to the 100 smart contracts. In Fig. 3a, we ignore the
fairness of workload in the partition by setting γ1 to be some
large value (here we use γ1 = 100), and focus on the value
of γ2 with respect to m. We observe that, γ2 remains around
2 until m = 15, and increases quickly to nearly 20 when

357

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 1 1.5 2 2.5 3 3.5 4

γ1

γ2

minimizing γ1

(a)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.5 2 2.5 3 3.5 4

γ1

γ2

minimizing γ1, n=100
minimizing γ1, n=20

(b)

Fig. 2: (a) m = 5, n = 100, the pareto front for (γ1, γ2); (b)
n=100 and 20, m=5, the two pareto fronts.

 0

 5

 10

 15

 20

2 5 8 10 12 15 20 22 25 30

γ2

m - number of groups

(a)

 0

 5

 10

 15

 20

 25

2 5 8 10 12 15 20 22 25 30

γ1

m - number of groups

(b)

Fig. 3: (a) n = 100, γ1=100, the minimal γ2 with respect to
m; (b) n = 100, γ2=100, the minimal γ1 with respect to m.

m = 30. In Fig. 3b, we ignore the fairness of profit in the
partition by setting γ2 = 100, and focus on the value of
γ1 with respect to m. We observe that, γ1 remains slightly
larger than 1 until m = 8, and increases fast to nearly 25
when m = 30. The trend of increasing on both parameters is
not difficult to understand. Generally, dividing a fixed number
of smart contracts into more sub-committees resulting less
number of smart contracts within each sub-committee, causing
the workloads and profits among sub-committees to differ
more. This phenomenon is further illustrated in Fig. 2b, where
we compute the pareto front of (γ1, γ2) for m = 5 by taking as
an input a subset of the 100 smart contracts (see the squared
data in Fig. 1). We can see that the whole pareto front for
n = 100 is completely below the pareto front for n = 20.

Note that m measures the scalability of our scheme. While
ensuring the short term fairness, the scalability of our scheme
increases with more smart contracts. If there are sufficiently
many smart contracts, we may expect that most of them have
very similar workloads and profits (as we can already see
from Fig. 1), allowing for a good partition into much more
sub-committees.

VIII. RELATED WORKS

Related work on blockchain based transaction systems. The
study of e-cash systems is not new. There are various well-
known online payment systems, including Visa, Mastercard,
Paypal, and Moneygram. Theoretical studies on anonymous
e-cash systems date back to 1983 by Chaum [8], which is
followed by a series of subsequent researches, e.g. [31]. One
property that is shared by all of such systems is that they
are centrally or quasi-centrally administrated in the sense that
there exists a central controlling authority (e.g., bank) who has
access to the information of all transactions carried out within
the system. A well-known exception, Bitcoin, was introduced
by Nakamoto [25] in 2008. Instead of appointing a central
authority, Bitcoin uses a public ledger, which is also known as

a blockchain, to record transactions carried out between users.
Following this line of research, various alternative blockchain
based transaction systems are proposed [23], [32], further
improving the performance of Bitcoin. All of these transaction
systems focus on mining and transactions between users.
Ethereum [36] goes further by introducing smart contracts in
a blockchain based system. We remark that, the concept of
smart contract is actually not new. In 1997, Szabo [34] first
introduced smart contract. It could be viewed as a counterpart
of a contract in an online system. However, implementing
smart contracts in a decentralized blockchain based transaction
system is a major challenge. Ethereum proves to be a success-
ful attempt that brings smart contracts into a blockchain based
system, yet it fails to achieve scalability, that is, smart contracts
have to be executed serially in the system, yielding a major
problem once there are a large number of smart contracts. In
this paper, we focused on the scalability problem.

Related work on partitioning and load balancing. We give
a brief overview on algorithms for the load balancing problem.
In the load balancing problem, we are given a set of n integers
{a1, a2, · · · , an}, and the goal is to partition them into m
disjoint subsets S1, S2, · · · , Sm such that the ratio between
the largest load and the smallest load of subsets is minimized,
where the load of a subset is defined as the summation of the
integers in this subset. More precisely, the goal is to find a

partition such that
maxm

i=1

∑
j:aj∈Si

aj

minm
i=1

∑
j:aj∈Si

aj
is minimized.

The load balancing problem is a fundamental problem in
computer science and has received much study under different
context, e.g., scheduling, resource allocation, bin packing. It
is a classical NP-hard problem [16]. Exact and approximation
algorithms are presented and analyzed in [19], [9]. Various
heuristics are analyzed in [41], [20], [33].

We remark that, in our model, we need to solve a problem
more general and harder than the classical load balancing
problem. In addition to the integers, we also associate a profit
for every integer and require that the total profit of subsets
are also balanced. Thus, the sub-problem of partitioning smart
contracts in our model falls into the category of bi-objective
optimization problems that builds upon the load balancing
problem. We adopt the common approach [18] for bi-objective
optimization by computing all pareto optimal solutions for the
sub-problem.

IX. CONCLUSION

We design a scalable smart contract scheme that allows
smart contracts to be executed much more efficiently in a
blockchain based transaction system. Our scheme collects a
set of smart contracts to be executed, and then creates a special
smart contract to partition them and assign them to users. Our
approach relies on two important techniques – A fair partition
of smart contracts based on integer linear programming (ILP),
and a random assignment protocol that allows each subset of
the produced partition to be assigned randomly among users.
Then we evaluate our approach by applying it to the data
collected from Ethereum.

A potential limitation of our approach is that it relies on
the efficiency of the ILP solver. The current solver, e.g.,
GUROBI [28] or SCIP [1], is able to solve an ILP with up to
1,000 binary variables in a short time. This means, in certain
scenario, our scheme may create a special smart contract
whenever it collects 1000 or less smart contracts, otherwise

358

ILP optimization could take too much time and reduce the time
saved by introducing divide-and-conquer. While this may be
acceptable in practice, it is desirable that the scheme can work
for an even larger set of smart contracts. It is an interesting
open problem for future research whether we can achieve the
more efficient and scalable partition without resorting to ILP
solvers.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Homeland Security under Grant Award Number
2015-ST-061-BSH001. This grant is awarded to the Borders,
Trade, and Immigration (BTI) Institute: A DHS Center of
Excellence led by the University of Houston, and includes
support for the project Secure and Transparent Cargo Sup-
ply Chain: Enabling Chain-of-custody with Economical and
Privacy Respecting Biometrics, and Blockchain Technology
awarded to University of Houston. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as necessarily representing the official
policies, either expressed or implied, of the U.S. Department
of Homeland Security.

REFERENCES

[1] T. Achterberg, “Scip: solving constraint integer programs,” Mathemati-
cal Programming Computation, vol. 1, no. 1, pp. 1–41, 2009.

[2] B. Awerbuch and C. Scheideler, “Robust random number generation
for peer-to-peer systems,” in International Conference On Principles Of
Distributed Systems. Springer, 2006, pp. 275–289.

[3] G. V. Bard, S. V. Ault, and N. T. Courtois, “Statistics of random per-
mutations and the cryptanalysis of periodic block ciphers,” Cryptologia,
vol. 36, no. 3, pp. 240–262, 2012.

[4] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator:
Elliptic-curve points indistinguishable from uniform random strings,” in
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security - CCS 2013. ACM, 2013, pp. 967–980.

[5] J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin as a public
randomness source.” IACR Cryptology ePrint Archive, vol. 2015, p.
1015, 2015.

[6] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms:
Byzantine resilient random membership sampling,” Computer Networks,
vol. 53, no. 13, pp. 2340–2359, 2009.

[7] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

[8] D. Chaum, “Blind signatures for untraceable payments,” in Advances in
cryptology. Springer, 1983, pp. 199–203.

[9] L. Chen, K. Jansen, and G. Zhang, “On the optimality of approximation
schemes for the classical scheduling problem,” in Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, 2014, pp. 657–
668.

[10] L. Chen, L. Xu, N. Shah, N. Diallo, Z. Gao, Y. Lu, and W. Shi,
“Unraveling blockchain based crypto-currency system supporting obliv-
ious transactions: a formalized approach,” in Proceedings of the ACM
Workshop on Blockchain, Cryptocurrencies and Contracts. ACM, 2017,
pp. 23–28.

[11] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “Decentralized
execution of smart contracts: Agent model perspective and its implica-
tions.”

[12] N. T. Courtois, P. Emirdag, and D. A. Nagy, “Could bitcoin transactions
be 100x faster?” in Security and Cryptography (SECRYPT), 2014 11th
International Conference on. IEEE, 2014, pp. 1–6.

[13] Y. Dodis, R. Gennaro, J. Håstad, H. Krawczyk, and T. Rabin, “Ran-
domness extraction and key derivation using the cbc, cascade and hmac
modes,” in Annual International Cryptology Conference. Springer,
2004, pp. 494–510.

[14] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-
ng: A scalable blockchain protocol,” in 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), 2016, pp.
45–59.

[15] Z. Gao, L. Xu, L. Chen, N. Shah, Y. Lu, and W. Shi, “Scalable
blockchain based smart contract execution (full version),” 2017.
[Online]. Available: http://i2c.cs.uh.edu/tiki-download wiki attachment.
php?attId=72&download=y

[16] M. R. Garey and D. S. Johnson, Computers and intractability. wh
freeman New York, 2002, vol. 29.

[17] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” Advances in
Cryptology–CRYPTO 2010, pp. 465–482, 2010.

[18] S. Greco, J. Figueira, and M. Ehrgott, “Multiple criteria decision
analysis,” Springer’s International series, 2005.

[19] K. Jansen, K. Klein, and J. Verschae, “Closing the gap for makespan
scheduling via sparsification techniques,” in 43rd International Collo-
quium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy, 2016, pp. 72:1–72:13.

[20] R. E. Korf and E. L. Schreiber, “Optimally scheduling small numbers
of identical parallel machines.” in ICAPS, 2013.

[21] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[22] L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, and P. Saxena,
“Scp: A computationally-scalable byzantine consensus protocol for
blockchains.” IACR Cryptology ePrint Archive, vol. 2015, p. 1168, 2015.

[23] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” in Security and Privacy (SP), 2013
IEEE Symposium on. IEEE, 2013, pp. 397–411.

[24] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized
algorithms and probabilistic analysis. Cambridge university press,
2005.

[25] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[26] FIPS PUB 197: Advanced Encryption Standard, NIST Std., November

2001.
[27] T. Okamoto, “A digital multisignature scheme using bijective public-

key cryptosystems,” ACM Transactions on Computer Systems (TOCS),
vol. 6, no. 4, pp. 432–441, 1988.

[28] G. Optimization et al., “Gurobi optimizer reference manual,” Gurobi,
vol. 2, pp. 1–3, 2012.

[29] B. Parno, M. Raykova, and V. Vaikuntanathan, “How to delegate and
verify in public: Verifiable computation from attribute-based encryption.”
in TCC, vol. 7194. Springer, 2012, pp. 422–439.

[30] M. Raab and A. Steger, “balls into bins - a simple and tight analy-
sis,” in International Workshop on Randomization and Approximation
Techniques in Computer Science. Springer, 1998, pp. 159–170.

[31] T. Sander and A. Ta-Shma, “Auditable, anonymous electronic cash,”
in Annual International Cryptology Conference. Springer, 1999, pp.
555–572.

[32] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014, pp.
459–474.

[33] E. L. Schreiber and R. E. Korf, “Improved bin completion for optimal
bin packing and number partitioning.” in IJCAI, 2013.

[34] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[35] M. Tibouchi, “Elligator squared: Uniform points on elliptic curves of
prime order as uniform random strings,” in International Conference
on Financial Cryptography and Data Security. Springer, 2014, pp.
139–156.

[36] N. P. Triantafyllidis and T. Oskar van Deventer, “Developing an
ethereum blockchain application,” 2016.

[37] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in International Workshop on Open Problems in
Network Security. Springer, 2015, pp. 112–125.

[38] L. Xu, L. Chen, Z. Gao, Y. Lu, and W. Shi, “Coc: Secure supply chain
management system based on public ledger,” in Computer Communi-
cation and Networks (ICCCN), 2017 26th International Conference on.
IEEE, 2017, pp. 1–6.

[39] L. Xu, L. Chen, N. Shah, Z. Gao, Y. Lu, and W. Shi, “Dl-bac: Distributed
ledger based access control for web applications,” in Proceedings of
the 26th International Conference on World Wide Web Companion.
International World Wide Web Conferences Steering Committee, 2017,
pp. 1445–1450.

[40] L. Xu, N. Shah, L. Chen, N. Diallo, Z. Gao, Y. Lu, and W. Shi,
“Enabling the sharing economy: Privacy respecting contract based on
public blockchain,” in Proceedings of the ACM Workshop on Blockchain,
Cryptocurrencies and Contracts. ACM, 2017, pp. 15–21.

[41] J. Zhang, K. Mouratidis, and H. H. Pang, “Heuristic algorithms for
balanced multi-way number partitioning,” 2011.

359

