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Abstract—Hyperledger Fabric is a distributed operating system
for permissioned blockchains hosted by the Linux Foundation.
It is the first truly extensible blockchain system for running
distributed applications at enterprise grade scale. To achieve
this, Hyperledger Fabric introduces a novel execute-order-
validate blockchain architecture, allowing parallelization of
transaction execution and validation. However, this raises the
need for transaction isolation. Today transaction isolation is
attained by locking the entire state database during simulation
of transactions and database updates. This lock is one of the
major performance bottlenecks as observed by previous work.

This work presents a new lock-free approach for providing
transaction isolation. It harnesses the already existing version-
ing of key-value pairs in the database, used primarily for
a read-write conflict detection during the validation phase,
to create a version-based snapshot isolation. We further im-
plement and evaluate our new approach. We show that our
solution outperforms the current implementation by 8.1x and
that it is comparable to the optimal solution where no isolation
mechanism is applied.

Index Terms—blockchain, concurrency-control

1. Introduction

A blockchain is an emerging technology receiving colos-
sal attention over the past decade mainly due to its inherent
capability of maintaining a tamper-proof shared distributed
ledger among mutually distrusting parties.

Blockchain, also referred to as distributed ledger tech-
nology (DLT), merits its popularity from being extremely
useful in a wide range of distributed applications due
to its unique properties, such as non-repudiation, trans-
parency, provenance, and fault-tolerance. More specifically,
blockchain is a distributed, immutable, append-only log of
ordered transactions, where order is obtained through a
distributed consensus algorithm. Each transaction is crypto-
graphically signed and transactions are grouped into blocks,
to optimize bandwidth utilization [1]. Blocks are then hash-
chained together and recorded as a ledger. Each party is
responsible of maintaining its own copy of the distributed
ledger, assuming that everyone else is not trustworthy.
Therefore, any attempt to forge or replace parts of those
transactions could be detected, which provides guarantees
of data finality and integrity.

Initially blockchain was devised for trusted exchange of
digital goods, where one of the first and most prominent
examples is Bitcoin [2] – the distributed crypto-currency
blockchain system. Such blockchain systems are known as
public or permissionless blockchains. In a permissonless
blockchain, anyone can join or leave the network, and no
one is required to specify its real identity. In such settings no
participant can be really trusted. This lack of identification
necessitates employing a computationally heavy consensus
mechanism which is based on cryptography – proof-of-work.
The proof-of-work consensus protocol has several salient
disadvantages: (1) a huge computational cost, resulting in
excessive power consumption, (2) probabilistic nature of
transaction confirmation, leading to a considerably long con-
firmation latency, and (3) low transaction throughput. These
factors make public blockchains unsuitable for enterprise
grade applications.

Blockchain further attracts significant attention from
enterprises in use cases such as supply chain manage-
ment, insurance, healthcare, and many others, where busi-
ness processes run among identifiable participants that are
otherwise mutually distrusting [3]. Therefore, permissioned
blockchains have naturally emerged as a sane alternative for
permissionless networks, being able to address the business
needs of enterprise use cases, both in terms of performance
and security. In the permissioned setting, a blockchain
could be viewed as a traditional replicated state machine
(RSM) [4], where the most natural way to implement RSM
is to have a consensus algorithm to decide on order of
transactions and then execute them sequentially on each
computational node [5]. This is known as the order-execute
architecture which leads to intolerance of non-determinism
in smart contracts and to sequential execution of transac-
tions which severely limits performance [6].

Hyperledger Fabric [6] is an open source project, re-
leased by the Linux Foundation1. It introduces a new
architecture for enterprise grade permissioned blockchain
platforms following the novel paradigm of execute-order-
validate for distributed execution of smart contracts (chain-
code in Hyperledger Fabric). In contrast to the order-
execute paradigm, in Hyperledger Fabric transactions are
first tentatively executed, or endorsed, by a subset of peers.
Transactions with tentative results are then grouped into

1. www.linuxfoundation.org
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blocks and ordered. Finally, a validation phase makes sure
that transactions were properly endorsed and are not in
conflict with other transactions. Valid transactions are then
committed to the blockchain state, while invalid transactions
are omitted from the state. Note that both valid and invalid
transactions are stored in the ledger, and a replay of the
validation phase on the ledger deterministically reconstructs
the state. This architecture allows multiple transactions to be
executed in parallel by disjoint subsets of peers, increasing
throughput, and tolerates non-deterministic chaincode.

The execute-order-validate architecture, as opposed to
order-execute, also implies parallelization of transaction ex-
ecution and validation (including commit). These phases
are performed concurrently by each peer on the blockchain
state, implemented by a local key-value store (state
database). However, with this parallelization, Hyperledger
Fabric also needs to guarantee proper transaction safety,
as defined by the ACID properties (atomicity, consistency,
isolation, durability) [7]. Currently in Hyperledger Fabric,
transaction isolation is attained by locking the entire state
database during simulation of transactions. During the en-
dorsement phase, the transaction simulator, which maintains
interaction with the state database on the peer, keeps a
read lock to allow consistent read of the state keys. During
state database update, i.e. during transaction validation and
commit phase, the peer keeps a write lock on its state
database. This is a shared lock, and contention on that lock
significantly impacts performance as indicated by previous
work [8]. The transaction flow and lock acquisition phases
are illustrated in Figure 1.

This work proposes an alternative approach for achiev-
ing transaction isolation while removing the need of the
shared lock, thus mitigating the contention during trans-
action simulation and database update phases. In fact we
suggest to utilize enhanced read-write conflict resolution
mechanisms to provide a version based snapshot transaction
isolation. To this end, we make use of the inherent version-
ing mechanism of keys in the peer’s local state database,
used today to perform a read-write conflict detection during
the validation phase, and employ it in a novel transaction
isolation algorithm. We show that our method outperforms
the shared lock mechanism by a factor of ∼ 8.1. Moreover,
we show that our method is comparable to the optimal case
where no isolation mechanism is applied, by comparing it to
the current implementation with the lock simply removed.

The rest of the paper is organized as follows: Section 2
provides a more detailed background on Hyperledger Fabric
and its inner working. The main contribution of our work
is presented in Section 3 where the proposed lock-free
isolation mechanism is described. Section 4 provides an
evaluation of our method. Section 5 discusses some related
work and Section 6 concludes the paper.

2. Background

Prior to Hyperledger Fabric, all blockchain platforms,
permissioned (e.g., Tendermint [9], Chain [10], and Quo-
rum [11]) or permissionless (e.g., Ethereum [12]), followed

the order-execute pattern. That is, network participants use
a consensus protocol to order transactions, and only once
the order is decided, all transactions are executed sequen-
tially, thus essentially implementing active state machine
replication [4], [13]. The order-execute approach poses a
set of limitations. The fact that transactions have to be
executed sequentially effectively leads to throughput degra-
dation, becoming a bottleneck. In addition, an important
issue to consider is the possible non-deterministic outcome
of transactions. The active state machine replication tech-
nique implies that transaction execution results have to
be deterministic in order to prevent state “forks” which
may lead to double spending [14]. Most of the current
blockchain platforms implement domain specific languages
(e.g., Ethereum Solidity [15]) to overcome the problem of
non-determinism.

Hyperledger Fabric provides a modular architecture and
introduces a novel execute-order-validate approach to ad-
dress the limitations of the order-execute approach men-
tioned above. In the execute-order-validate architecture
transaction flow is separated into three steps: (1) executing a
transaction and checking its correctness, thereby endorsing
it; (2) ordering through a consensus protocol; and finally (3)
transaction validation and commit. Next we explain different
aspects of the Hyperledger Fabric architecture.

2.1. Node types

The Hyperledger Fabric blockchain network is formed
by nodes which could be classified into three categories
based on their roles:

1) Clients are network nodes running the applica-
tion code, which coordinates transaction execution.
Client application code typically uses the Hyper-
ledger Fabric SDK in order to communicate with
the platform.

2) Peers are platform nodes which maintain a record
of transactions using an append-only ledger, and are
responsible for the execution of the chaincode and
its life-cycle. These nodes also maintain a “state” in
the form of a versioned key-value store. In order to
allow load balancing, not all peers are responsible
for execution of the chaincode, but only a subset
of peers, the endorsing peers.

3) Ordering nodes are platform nodes which form a
cluster that exposes an abstraction of atomic broad-
cast in order to establish total order between all
transactions. Ordering nodes are completely oblivi-
ous to the application state and don’t take any part
in transaction validation or execution.

2.2. Distributed application

A distributed application in Hyperledger Fabric is com-
prised of two main parts:

1) Chaincode is the business logic implemented in a
general purpose programming language (Java, Go,
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Figure 1. Transaction flow and lock acquisition phases: the client sends transactions to the peer to be endorsed (1), the peer simulates the transactions on
its state database while acquiring a read lock (2). Concurrently, the client sends transactions to be ordered into blocks (3) which are then delivered to the
peer (4). The peer validates and commits each transaction (5) by updating the state database under a write lock (6).

Javascript) and invoked during the execution phase.
The chaincode is a synonym for the well known
concept of smart contracts and is a core element of
Hyperledger Fabric.

2) Endorsement policies are rules which specify what
is the correct set of peers responsible for the ex-
ecution and approval of a given chaincode invo-
cation. Such peers, called endorsing peers, govern
the validity of the chaincode execution results by
providing a signature over these results.

2.3. Transaction execution flow

The following summarizes the execution flow of a trans-
action submitted by a client into Hyperledger Fabric (see
Figure 1):

1) The client uses an SDK to form a transaction
proposal, which includes the chaincode name, the
function to invoke, and the input parameters to the
chaincode function that are about to be executed.
Next, the client sends the transaction proposal to
the endorsing peers.

2) Endorsing peers simulate the transaction based on
the parameters received from the client. They in-
voke the chaincode, record state updates, and pro-
duce output in the form of a versioned read-write
set. The state does not change at this stage. Next,
each endorsing peer signs the read-write set and
returns the result back to the client.

3) The client collects responses from all endorsing
peers, validates that results are consistent, i.e. all
endorsing peers have signed the same payload. It
then concatenates all signatures and identities of
the endorsing peers along with the read-write sets,
and assembles them into a transaction which is
submitted to the ordering service.

4) The ordering service batches the transactions into
blocks, which induces total order among trans-
actions within and outside the same blocks. The
blocks are then delivered to the peers.

5) Upon receiving a new block, each peer iterates
over the transactions in it and validates: a) the en-
dorsement policy, i.e. whether the set of endorsing
peers signatures satisfies the endorsement policy of
the corresponding chaincode; b) performs multi-
version concurrency control (MVCC) [16] check
against the state.

6) Once the transaction validation has finished, the
peer appends the block to the ledger and updates
its state based on the valid transactions. After the
block is committed the peer emits events to notify
clients connected to it.

2.4. Locally stored state

Each peer uses a local key-value store, implemented
with either LevelDB (in Go) [17] or Apache CouchDB
(single, non-clustered, instance) [18], to maintain the latest
state, in addition to a locally stored ledger. For each unique
key the peer stores in the database a key-value pair of the
form

(
key, 〈val, ver〉), containing the key’s most recently

stored value val and its latest version ver. The version is
a monotonically increasing number which represents the
last transaction that updated the key. It consists of the
block sequence number and the sequence number of the
transaction within the block

(〈BlockNum, TXNum〉).

Additionally, Hyperledger Fabric peers store a key in
their state database termed as a savepoint. The key’s value
is of the form

(〈BlockNum, TXNum〉), same as the form
of versions of other keys in the state database. This value
is updated at the last part of each validation phase, after the
entire block is committed to the state database. The number
of the last transaction in the block and the block number
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itself are written as the new value of the savepoint. And so,
the savepoint’s value essentially represents the highest key’s
version in the state database at this time, the last modifying
transaction.

As mentioned in Section 2.3, during the execution phase
peers simulate the transaction and produce a writeset -
modified keys with their new values, and a readset - all keys
read during simulation with their versions. In the validation
phase peers perform a MVCC check on readsets of all
transactions in the block sequentially. For each transaction it
compares the versions of the keys in the readset to those in
the current state, and ensures they are still the same. If the
versions do not match, the transaction is marked as invalid
and its effects are disregarded. Finally, all state updates of
valid transactions are applied by writing all key-value pairs
in writesets to the database.

The transaction execution step and the block validation
and commit step are performed in parallel by a peer, as en-
abled by the execute-order-validate architecture. However, in
the current implementation of Hyperledger Fabric, to ensure
transaction isolation, in the validation phase, an exclusive
write lock is acquired on the whole database, and during
execution phase a shared read lock is acquired. The lock
acquisition phases are demonstrated in Figure 1.

3. Proposed solution

In our proposed solution we utilize the native versioning
of the keys in the state database, used primarily to perform
the MVCC check during the validation phase, together with
the already existing savepoint mechanism, to create a consis-
tent view of the state for the simulations. The main insight is
that key-value versions are not incremented independently,
but rather in a database-wide monotonically increasing man-
ner, representing transaction commit order. Moreover, the
savepoint represents a boundary between transactions. Our
solution uses the savepoint during simulation in order to
detect whether the simulated transaction is violating the
transaction boundary of a concurrently committing transac-
tion. If we detect there might be an isolation violation, we
abort the simulation. This enables us to remove the shared
lock, eliminating contention, and still assure the isolation of
the transactions.

Next we detail our proposed isolation solution. Sec-
tion 3.1 focuses on our basic algorithm, while in Sec-
tion 3.2 we discuss the relation between simulation aborts
and MVCC check failures. In Section 3.3 we specify how
we deal with deleted keys. Finally, Section 3.4 describes the
difficulty presented by rich queries.

3.1. The basic algorithm

The basic solution (Algorithm 1) records the current
savepoint at the beginning of a simulation (line 3). A key
is read during the chaincode execution by invoking the
GET procedure (line 4). After obtaining the state of the
key from the database (line 5), if the key appears in the
database, we check that its version is equal to or less than

Algorithm 1 Simulation

1: savepoint ← ⊥

2: procedure BEGIN

3: savepoint ← DB.GetSavePoint()

4: procedure GET(key)
5: 〈val,ver〉 ← DB.GetState(key)
6: if 〈val,ver〉 �= ⊥ then
7: if ver > savepoint then return ERROR � abort

8: return val

the recorded savepoint. If the version is greater than the
recorded savepoint, then we abort this transaction (line 7).
Otherwise, we return the key’s value (line 8). Any other
aspects of the transaction endorsement phase remain intact.

As an example, consider the following scenario: Let tx1
and tx2 be two transactions and assume that tx1 performs
a read of key A after which it performs a read of key B,
while tx2 performs a put to key A and a put to key B. If we
commit tx2 during the simulation of tx1, between the read
of key A and the read of key B, then without locking the
database, isolation is breached and correctness is impaired,
therefore, we need to abort the transaction execution. Since
the read of key A returned before the commit of tx2, with an
approved version, and the read of key B returned after, with
a version definitely greater than the recorded savepoint, in
our proposed solution tx1 is aborted. This transaction abort
example is illustrated in Example 1.

This algorithm guarantees that the simulation gets a
consistent view of the state, previously assured by locking.
In this view, every key read was updated before the savepoint
was recorded. If a simulation encounters a key that has a
greater version than the recorded savepoint, then we say
that it breaks the consistency of the view. Such a read may
puncture the isolation of the simulation, since the update
could have happened during the simulation, and so we
perform an abort.

Furthermore, the algorithm assures the atomicity of
transactions without the use of locking. Only after the
commit of the entire block, the savepoint is updated with
the latest committed transaction number and block number.
The version check in Algorithm 1 causes an abort in cases
where the key’s version is higher than the recorded savepoint
at the beginning of the execution, which implies that the key
may be from a not fully committed transaction (otherwise,
the recorded savepoint would’ve been at least as big as

Time Tx Op Key Val Ver
1 tx1 read savepoint 〈100, 275〉 〈100, 275〉
2 tx1 read A 20 〈100, 250〉
3 tx2 put A 21 〈101, 345〉
4 tx2 put B 47 〈101, 345〉
5 tx1 read B 47 〈101, 345〉
6 tx1 abort

Example 1. Simulation abort
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the key’s version, and the transaction is assured to be
fully committed). Therefore, the atomicity of transactions
is preserved.

3.2. Aborts and MVCC check failures

One point to notice is the relation between aborts and
MVCC check failures. Assume there is an execution of
a transaction that is later validated and committed. If the
execution aborts then this means there was a read preceded
by an update to a key by a concurrent commit. If the
commit process starts after the execution begins, and if a
simple reader/writer mutual exclusion lock is used, then this
commit is scheduled after the execution. In this case, there
is no abort (since lock is used), and after the transaction
executes it reaches the validate and commit phase. Then
the transaction goes through a MVCC check where it fails
since there was an update (by the earlier commit) to the key
that the execution read. Therefore, in this case, an abort is
essentially an early MVCC check failure detection. Instead
of having the transaction go through all of the phases just
to fail the MVCC check, it aborts at execution time, which
improves overall system throughput.

3.3. Deleted keys

A key deletion removes the key from the database
completely. Consider the case of a key removed from the
database after a simulation starts and before a read of the
same key. If we examine the basic algorithm (Algorithm 1),
in this case the version check is not performed (line 6), and
the simulation does not abort. However, the isolation of the
transaction might be broken and so this simulation should
be aborted.

Therefore, instead of removing keys entirely from the
database at a deletion, we keep deleted keys in the database.
Furthermore, we update the deleted key’s version to indicate
the transaction that performed the deletion (same as any
other key update). To differentiate between deleted keys
and non deleted keys, we add a flag to each key which
indicates whether this key is deleted or not. This flag can
be implemented using the MSB of the transaction number in
the version (since there is a limited number of transactions
inside a block), and so reading this flag does not require
more database requests.

We cannot leave the deleted keys in the database, since
actions like range queries might become slower. Therefore,
we create a garbage collector (GC) to remove deleted keys
from the database. We maintain a list of deleted keys, that
is updated at commit time and the GC (called every few
commits) examines the list to decide which keys to remove
entirely from the database.

We don’t remove deleted keys that can potentially be
read by an ongoing simulation, that started before the
deletion of the key, since this may break the isolation.
Therefore, we keep track of the recorded savepoints of all
ongoing simulations. The GC is allowed to remove a key
only if the key’s version is less than all ongoing simulations

savepoints, meaning the key was deleted prior to the start
of all ongoing simulations and therefore removing it cannot
harm the isolation.

3.4. Rich queries

CouchDB, unlike LevelDB, supports rich queries by en-
abling document search using a declarative JSON querying
syntax. Isolation of simulations with rich queries is not
possible when considering a solution that involves tracking
the queried keys, as done in our solution.

TX1 :
que ry ( c a r s wi th owner= A l i c e )
que ry ( c a r s wi th owner=Bob )

TX2 :
p u t ( car1 , owner=Bob )

TX3 :
p u t ( car1 , owner= A l i c e )

Example 2. Cars txs

Figure 2. Cars scheduling

Consider a car rental system, where each key repre-
sents a car and its value contains information such as the
model, year, color, owner, etc. Now we compose 3 different
transactions, one with rich queries, looking up cars with
a specific owner, and two others that update a car’s owner,
illustrated in Example 2. Next we examine a scenario where
queries are executed while the updating transactions are
committed. Figure 2 presents such a scenario, it shows how
a car (car1) can “disappear” and execution does not abort.
This transactions scheduling is not serializable [19], [20],
since there is no equivalent serial execution. For each query
the database returns with an empty set, and no keys are
entered into the read set. The version check passes, because
it is applied only on the returned keys from the query (an
empty set), and consequently the transaction isolation is not
attained. The fact that the database returned an empty set for
the query and not all the cars in the database is the reason
why our proposed solution does not work.

4. Evaluation

We implement the proposed solution on top of Hyper-
ledger Fabric v1.2. All experiments were run on a virtual
machine with an Intel(R) Xeon(R) CPU E5-2650, 16 GB
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of memory, and a SSD with measured write throughput of
∼ 320 MBps.

To run experiments we use a customly built tool, that
embeds a Hyperledger Fabric client implementation in
Golang [21]. This tool sends transactions to a peer to be
executed and endorsed, then stores the assembled transac-
tions in an in-memory pool. Concurrently, the tool sends
transactions stored in the in-memory pool to the orderer. The
time it takes for transactions to be executed and endorsed by
the peer is measured and reported by the tool. The number
of transactions and concurrency level is parameterized and
can be controlled. We write a chaincode to run experiments
using this tool. Each experiment consists of 10 iterations
and we report the average result.

4.1. Performance

We compare our solution to the current (lock-based)
implementation in Hyperledger Fabric and an optimal im-
plementation where the lock is simply commented out. The
optimal implementation can be used only with workloads
where transaction isolation is assured (such as read-only and
write-only workloads).

The first experiment is a read-only workload with Lev-
elDB, where simulations of read-only transactions are done
concurrently with commits of read-only transactions. Fig-
ure 3 shows the duration of an execution (in milliseconds)
in the read-only workload. When we increase the number
of read operations in the transactions we can see that the
time it takes to endorse grows for all implementations. In
this case the commit time is low since there is no updates
to commit (as this is a read-only workload), and so the lock
is not held for a long time. Therefore, the lock causes just
a minor overhead (0.1 ms), as presented by the difference
between the lock-based and the optimal execution duration.
Moreover, our solution execution duration is very close to
the optimal execution duration and slightly less than the
lock-based duration.

Figure 3. Read-only workload

The second experiment is a write-only workload with
CouchDB. In this case the commit takes a long time since
there are multiple updates to CouchDB, therefore, in the
current implementation, the lock is held for a long time

Figure 4. Write-only workload

Figure 5. Throughput scalability with the number of threads

which causes a big overhead. Figure 4 shows the difference
in execution time for the write-only workload. In the worst
case (50 writes), lock-based takes 8.3 ms while optimal takes
only 2.8 ms (speedup of 3x), and our solution takes just
3 ms (2.8x speedup from lock). With 10 writes, lock-based
takes 3.6 ms, optimal takes 1.7 ms (2.1x speedup), and our
solution takes 2.2 (1.6x speedup from lock-based). Here too
our solution execution duration is very close to the optimal
execution duration and far less than the lock-based duration.

In the next experiment we measure the throughput scal-
ability with the number of threads. We run a write-only
workload with CouchDB where a 1000 transactions (each
transaction consists of 10 write operations) are executed
while commit occurs concurrently. Figure 5 depicts the
throughput (in transactions per second) in the write-only
workload. Our solution outperforms the current lock-based
solution by 8.1x and optimal outperforms lock-based by 9.5x
(not far from our solution).

5. Related work

In blockchain networks all non-faulty (honest) nodes
must maintain a consistent view of the ledger and the world
state, therefore every node has to process transactions in
the exact same order. This is achieved through a consensus
algorithm, which imposes order between transactions and
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forms blocks that are hash chained together to eventually
construct the blockchain.

Each blockchain transaction operates on the world state,
and so it is required to be isolated. In fact there is a need
to prevent dirty, phantom, or non-repeatable reads [22].
Moreover, transactions should conform to all of the ACID
properties [7]. This could be achieved by means of opti-
mistic concurrency control [23], serializable snapshot isola-
tion [24], [25], or with two-phase locking [26].

Concurrent access to the database without a proper
control mechanism may put data integrity at risk. In many
cases, this is handled by locking mechanisms which provide
exclusive access to the data that is being mutated [27].
Alternatively, snapshot isolation or optimistic concurrency
control are known techniques that achieve serializability.

The locking approach comes with its own disadvantages,
the most prominent being that locking, in its essence, di-
minishes concurrency and therefore reduces throughput. In
addition, locking incurs maintenance overhead during the
system’s development, in order to ensure that the locking
does not lead to deadlocks and preserves integrity. Some-
times, complex deadlock detection is employed to ensure
recovery from unforeseen deadlocks.

To mitigate these problems, some systems adopt an
optimistic approach [23] to locking. The main idea behind
optimistic concurrency control, is to avoid needless locking
and by doing that - increase the throughput of the system at
a whole. It puts faith in data dependency conflicts between
parallel running transactions not to occur, and structuring
the transaction’s life-cycle into a 3-step process:

• Read step - Data objects that are accessed by the
transaction are tracked during the transaction’s ex-
ecution, as well as the type of access (read, write,
delete). A copy of the data object is made upon the
first update, and subsequent updates to the object are
applied to the copy.

• Validation step - The goal of this step, is to provide
”serial equivalence” to the transaction

• Write step (in case the transaction updates data) -
Atomically swaps the global data objects with the
copies updated during the read phase.

Our solution was inspired by the transactional locking II
(TL2) algorithm [28] which is an opportunistic speculative
execution algorithm in which there exists a shared global
version clock, and each data field has a lock and a version
attached to it as well. TL2 use the data field locks to assure
the write step is atomic and to allow multiple threads to
perform the write step concurrently. In our solution, there
is no need to lock because in our case, the concurrent
updates are replaced with a series of database updates, the
committing of blocks. In addition, the global version clock
is dictated by the savepoint.

Increasing concurrency in blockchains was recently con-
sidered also in the context of order-execute architecture [29],
where execution of smart contracts in parallel can be accom-
plished by using techniques adopted from software transac-
tional memory. To the best of our knowledge, this work is

the first to offer such increased concurrency in the execute-
order-validate blockchain architecture.

6. Conclusion

This work presented a new lock-free approach for pro-
viding transaction isolation in Hyperledger Fabric. The
method utilizes the native versioning of keys in the peer’s
state database, and makes use of the fact that the versions are
database-wide monotonically increasing, representing trans-
action commit order. The method then exploits the savepoint
as a boundary between transactions, and uses it to detect
whether the simulated transaction is violating the transaction
boundary of a concurrently committing transaction. When
an isolation violation is detected, the transaction simulation
is aborted. This technique allows us to remove the shared
lock, eliminating contention, while still ensuring transaction
isolation.

Our experiments have shown that the proposed solution
achieves better throughput and lower simulation latency
than the current lock-based implementation of Hyperledger
Fabric. The performance gain is especially high in write in-
tensive workloads. In addition, our results demonstrated that
the performance achieved by our technique is comparable
to the optimal, which is approximated by a simple disposal
of the lock.
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