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a b s t r a c t 

Blockchain is well known as a decentralized and distributed public digital ledger, and is 

currently used by most cryptocurrencies to record transactions. One of the fundamental 

differences between blockchain and traditional distributed systems is that blockchain’s de- 

centralization relies on consensus protocols, such as proof of work (PoW). However, com- 

putation systems, such as application specific integrated circuit (ASIC) machines, have re- 

cently emerged that are specifically designed for PoW computation and may compromise 

a decentralized system within a short amount of time. These computationally resource- 

ful miners challenge the very nature of blockchain, with potentially serious consequences. 

Therefore, in this paper, we propose a general and flexible PoW method that enforces 

memory usage. Specifically, the proposed method blocks computationally resourceful min- 

ers and retains the previous design logic without requiring one to replace the original hash 

function. We also propose the notion of a memory intensive function (MIF) with a mem- 

ory usage parameter k ( k MIF ). Our scheme comprises three algorithms that construct a 

k MIF Hash by invoking any available hash function which is not k MIF to protect against 

ASICs, and then thwarts the pre-computation of hash results over a nonce. We then de- 

sign experiments to evaluate memory changes in these three algorithms, and the find- 

ings demonstrate that enforcing memory usage in a blockchain can be an effective defense 

against computationally resourceful miners. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

Cryptocurrencies, particularly Bitcoin, are a disruptive innovation for e-payments and value exchanges in banking and

finance-related fields [30,34] . In Bitcoin and Bitcoin-like public blockchain systems, one of the most critical components is

the consensus mechanism. The latter regulates the miners who try to link blocks onto the chain in exchange for a reward

(e.g., a Bitcoin). Currently, proof of work (PoW) is one of the most widely used consensus mechanisms. PoW conducts
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hashing computing to find a nonce that satisfies a given requirement. The first individual to find the nonce is the successful

miner and can link the block onto the blockchain for their reward (i.e., a coin-based transaction). 

As such, it has become widespread practice to use dedicated Bitcoin mining hardware [1] , such as an application-specific

integrated circuit (ASIC) machine, to accelerate finding the nonce; thus, increasing mining success. ASIC machines are specif-

ically designed and hardware-optimized to perform target hashing functions (e.g., SHA256) at significantly increased speed

and with very low operating costs. This also increases the risks of “double spending attack” and “51% attack”. 

It is, therefore, unsurprising that ASIC machine-facilitated attacks, and how to prevent such attacks, have become a sub-

ject of intense study (e.g., [20,25,36] ). One remedy is to replace the hash function with multiple hashing computations

[20] on the premise that an ASIC machine can only be optimized for a few target hash functions, not many or all of them.

Percival and Josefsson [25] took a different approach with a new hash function that consumes a large amount of mem-

ory, since the memory in ASIC machines is typically very limited. While promising, these solutions present an interesting

dilemma. Approaches based on non-target hash functions, such as those described in [20,25,36] require the replacing of

current hash functions with either a new hash function or several hash functions, and the hard-fork this creates is onerous.

Furthermore, these newer alternative hash functions have yet to stand the test of time and may not be as secure as existing

hash functions, such as SHA256. Conversely, proposing viable solutions to new attacks is already challenging, and restricting

developers to only the minimum design changes is perhaps too constraining. Hence, instead of replacing the hash function

to defend against ASICs, we propose a flexible method that stores intermediate hash values in the memory and enforces

memory consumption for computing the result (or in searching of the final nonce). The proposed solution preserves legacy

hash functions, like SHA256, as well as previous design logics, such as flexibility for tuning mining difficulties. The only

change is a slight modification to the computation method for hash values. 

In summary, our proposal includes: 

1. A general PoW method designed to defend against ASICs without the need to replace the underlying concrete hash

function. 

2. A flexible PoW method that guarantees the least amendments to the design logics in enhanced blockchain systems. 

From empirical recordings of the data length changes in the three algorithms before and after k MIFH (·) in the two

schemes, we find that k MIFH (·) consumes concrete memory in size of configurable parameter k . 

The rest of the paper is organized as follows. Sections 2 and 3 present relevant background and problem formulation,

respectively. In Sections 4 and 5 , we present our proposed scheme and the evaluation findings. Related literature is discussed

in Section 6 . Finally, Section 7 concludes this paper. 

2. Background 

2.1. ASIC 

ASICs are chips designed and customized for a specific use. In cryptocurrency mining, this “specific use” is calculating

a particular hash algorithm, so an ASIC miner is a professional mining device built from these chips. Since each cryptocur-

rency has its own cryptographic hash algorithm, an ASIC miner is usually dedicated to mining the particular hash algorithm

of a particular cryptocurrency. For instance, Bitcoin ASIC miners are specifically designed to calculate the SHA256 hash al-

gorithm. Given the same equipment cost in a CPU or GPUs, ASICs are far more efficient in terms of performance and energy

consumption [31] . 

2.2. PoW in bitcoin 

Bitcoin is, arguably, the poster boy of blockchains. As previously discussed, PoW is the main consensus mechanism

in Bitcoin applications and generally in current cryptocurrencies. PoW requires all miners to find solutions by computing

hard puzzles based on cryptographic hashes. Finding the right answer means the next block is appended to the blockchain

[22,24] . 

The puzzle can be described as follows: Given data D , find a number N such that the hash result of N appended to D is

a number less than T . For example, hash () is a hypothetical hash function. Its outputs are listed as below: 

D = 

′ test ′ , T = 16 

hash (D || 1) = hash ( ′ test1 ′ ) = 0 xb8 = 184 > 16 

hash (D || 2) = hash ( ′ test2 ′ ) = 0 x 5 a = 90 > 16 

hash (D || 3) = hash ( ′ test3 ′ ) = 0 x 0 c = 12 < 16 

N = 3 

Solved successfully. 

To verify the validity of the block, other nodes check whether the hash result of a new block is less than a preset target.

The POW procedure is illustrated in Fig. 1 . 

Given the attributes of a hash function, the only way to solve a hash puzzle is a brute force search, i.e., trying all possible

values of n. That means the first miner to solve the puzzle is usually the one with the most computing power. It is a

reinforcing cycle, the miner obtains cryptocurrency as a reward and is encouraged to continue mining. 
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Fig. 1. PoW in blockchain systems. 

Table 1 

List of notations. 

Notation Comments 

| x | the length of x 

Hash ( ·) one way hash function 

t the length of hash function output, that is, t = | Hash (·) | 
s the segmentation length of the hash output. Note that, s divides t , i.e., s | t 

S [ i ] the value of the segmentation 

Nonce the value to be found in mining 

C the first value in the current block available for computing the Nonce 

R the hash value required in the mining competition 

f p ( ·) a function determined by a system parameter 

 

 

 

 

 

 

 

 

 

 

3. Problem formulation 

Given the current block information C , a PoW miner will attempt to find a Nonce such that Hash ( C || Nonce ) < R through

random trials, where R is the required hash value in the mining competition, and Hash ( ·) is a one-way function. Hash ( ·) has

the following properties: given x , it is easy to compute Hash ( x ); but given Hash ( x ) it is hard to compute x . The notations

used in this paper are listed in Table 1 . 

Definition. (the k MIF (·) memory intensive function and memory usage parameter k ) k MIF (·) is a function that must con-

sume at least k memory in its computing operation, where the memory scale can be bits, bytes, KB, etc. 

The desired solution should be independent of the hash function. That is, Hash ( ·) should be unchanged. Our construction

of k MIF treats Hash ( ·)) as a building block (see k MIFH (·) ). That is, the function is required to use at least k memory. 

The above original inequality remains unchanged. However, k MIF is built using the original components. The design goals

are as follows: 1) defend against ASICs; 2) only rely on currently available design components, namely, Hash ( ·), X, Nonce , and

R ; and 3) retain former design logics with the least amendments. 

4. Proposed schemes 

4.1. Basic scheme 

Proposition 4.1. To build k MIFH by invoking a hash function that is not k MIF , the intermediate results of the hash function

computation must be memorized, at least until k memory is used. 

Proof. If an individual hash function is not k MIF , it consumes less than k memory. To build a k MIF by invoking a hash

function that is not k MIF , memory must be aggregated to at least k memory by accumulating the consumed memory of the
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underlying hash functions. If the hash function results are persistent, this consumed memory will both reliably contain the

hash function results and allow the accumulation of k memory, which can be achieved by letting the final result of k MIF

depend on the persistent results. Once the calculation is complete, the accumulated memory can be released. �

Proposition 4.2. Suppose the underlying hash function is ‖ Hash (·) ‖ = t. In building a k MIFH through Hash ( ·), the results of k / t

hash functions must be persisted to consume k memory. 

Proof. Each hash function result consumes t memory. If the memory is persist rather than being released, the hash function

results of k / t hash functions are able to accumulate to k memory. �

For example, suppose we build k MIFH using SHA256, and the length of SHA256 is 256 bits. Then, the results of the four

hash functions will consume 1024 bits. 

Thus, our focus is on how to construct a k MIFH using a hash function with ‖ Hash (·) ‖ = t, in which all intermediate hash

function results are persistent, not released. 

Proposition 4.3. A, B are both required for the final result of k MIFH . If A is used before B in the computation, and B can be

computed by A, then B can be not persistent as it can be computed on the fly upon request. 

Proof. Straightforward. �

For example, Hash ( A ) and A are both used for computing the final result of k MIFH , and Hash ( A ) must be used before A .

Thus, the memory of A is required for computing the final result. For a concrete example, MIFH (·) = H ash (H ash (A ) ‖ A ) . 

This observation can be generalized as follows in Proposition 4.4 . 

Proposition 4.4. A k MIFH can be constructed using Hash ( ·) as follows: 

k MIFH (X ) = Hash (X ) , 

X ⇐ H ash 

n (A ) ‖ H ash 

n −1 (A ) ‖ . . . ‖ H ash (A ) , 

where n = k/t,t = | Hash (·) | , A ∈ {0, 1} ∗. 

Proof. If n hash values are not stored (namely, Hash i (A ) , i = 1 , 2 , . . . , n ), the computation for k MIFH is 1 + n + (n − 1) + . . . +
1 = 1 + n (n + 1) / 2 times the hash computation. If n hash values are stored, then the computation of k MIFH is n + 1 times

the hash computation, in which the cost of Hash i (A ) , i = 1 , 2 , . . . , n is n times of - (suppose Hash 1 (A ) = Hash (A ) ) and the

cost for the final outer hash function is one. �

Therefore, the tradeoff for miners becomes O ( n 2 ) computation plus 1 memory or O ( n ) computation plus n memory. As

miners are competing for rewards, they need to compute faster with the same budget, and the price of computing goes up

as the memory required increases. Obviously, n 2 mining machines plus 1 memory will be more expensive than n mining

machines plus n memory. 

This only leaves parallel computation as an avenue of attack, which we defend against with the following computation

structure: 

MIFH (X ) = OW F (X ) , 

X ⇐ OW F (Rightside ) ‖ RightSide = OW F (A ) . 

Remark 

(1) OWF is a one-way function. Hash ( ·) in Proposition 4.4 can also be generalized to OWF . 

(2) The construction of intermediate X defines the structure of inputting argument for MIFH (namely, X ), noting that the

structure is iterative . 

(3) Hash ( ·) is an instantiation of OWF . Thus, for simplicity, we simply refer to Hash ( ·). 
(4) For example, consider MIFH (X ) = Hash (X ) , X ⇐ H ash (H ash (A )) ‖ H ash (A )) ;

Or, X ⇐ Hash ( Hash ( Hash ( A )) ‖ Hash ( A )) ‖ Hash ( Hash ( A )) ‖ Hash ( A ). 

This computation of X is created by 

X ⇐ Hash ( A ); 

F or(i = 1 ; i < n ; i + +) { Y ⇐ Hash ( X ); X ⇐ Y ‖ X ; } 

where n is a system parameter. 

That is, X = H ash (H ash (A )) ‖ H ash (A ) when n = 2 , and 

X = H ash (H ash (H ash (A )) ‖ H ash (A )) ‖ H ash (H ash (A )) ‖ H ash (A ) when n = 3 . 

Proposition 4.5. MIFH (X ) = Hash (X ) , 

X ⇐ Hash (Rightside ) ‖ Rightside = Hash (A ) iteratively can defend against parallel computation. 
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Proof. Hash ( ·) is one-way. Thus, the Rightside must be computed first (namely, it is available) Once computed, the com-

putation for Hash ( Rightside ) can begin. That is, the computation of the final result can only be computed in serial, not in

parallel. �

Further, we observe that in computing of Hash ( Hash ( A )), if the first segment in the head of Hash ( A ) is available, then

the computation of first segment in the head of Hash ( Hash ( A )) can begin. This is called a “pipeline” computation. Generally

speaking, defending against parallel and pipeline computing means, f ( f ( ·)) should be changed to f ( f (·) ) , where f (·) is the

inverse bit sequence of f ( ·). 
Proposition 4.6. (Defending against parallel and pipeline computing.) A k MIFH can be constructed using Hash ( ·) as follows: 

k MIFH (X ) = Hash (X ) , X is created by 

X ⇐ A ; 

F or(i = 1 ; i < n ; i + +) 

{ Y ⇐ Hash (X ) ; X ⇐ Y ‖ X ; }, 

where n = k/t, t = | Hash (·) | , A ∈ {0, 1} ∗, and Hash (X ) is the inverse bit sequence of Hash ( X ) . 

Proof. If n hash values are not stored, then the computation for k MIFH is 1 + n + (n − 1) + . . . + 1 = 1 + n (n + 1) / 2 times

the hash computation. If n hash values are stored, then the computation the k MIFH is n + 1 times of hash computation, in

which n is the number of inner hash computations and 1 is the final outer hash function. 

Using Hash (X ) instead of Hash ( X ) guarantees that the computation for Y ‖ X can only start after Hash (X ) has been fully

computed, i.e., when the last segment of Hash (X ) is available. �

Thus, our proposal for a basic scheme is as follows: 

Given C and the mining target of a Nonce that guarantees a requirement in terms of R , the process for the PoW is: 

1. Randomly select a Nonce ∈ {0, 1} | Nonce | . 

2. Prepare X . 

X ⇐ Nonce ; 

F or(i = 1 ; i < n ; i + +) 

{ Y ⇐ Hash (X ) ; X ⇐ Y ‖ X ; }, 

where n = k/t, t = | Hash (·) | , A ∈ {0, 1} ∗, Hash (X ) is the inverse bit sequence of Hash ( X ). 

3. Compute final result. k MIFH (X ) = Hash (C‖ X ) . 

4. If k MIFH (X ) < R, then the Nonce is found. Otherwise, try another Nonce (i.e., go to Step (1)). 

This basic PoW procedure is outlined in Algorithms 1 and 2 , the difference between the two being the method used to

compute the hash function. 

Algorithm 1: Basic Scheme(1). 

Data : 

C ← the available value in the current block 

k ← memory needs to be consumed 

t ← the length of the hash function 

R ← the requirement of the hash value 

Result : Nonce ; hash when success 

1 for Nonce ← 1 to max − nonce do 

2 X = str(Nonce ) 

3 n = k/t 

4 output begin length 

5 for i ← 1 to n do 

6 for j ← 1 to n do 

7 h = Hash (x ) 

8 end 

9 X = X|| h 
10 end 

11 output end length 

12 Z = Hash (C|| X ) 

13 if Z > R then 

14 output 

15 else 

16 continue 

17 end 

18 end 



166 W. Ren, J. Hu and T. Zhu et al. / Information Sciences 507 (2020) 161–171 

Algorithm 2: Basic Scheme(2). 

Data : 

C ← the available value in the current block 

k ← memory needs to be consumed 

t ← the length of the hash function 

R ← the requirement of the hash value 

Result : Nonce ; hash when success 

1 for Nonce ← 1 to max − nonce do 

2 X = str(Nonce ) 

3 n = k/t 

4 output begin length 

5 for i ← 1 to n do 

6 h = Hash (x ) 

7 Y = re v erse (h ) 

8 X = Y || X 
9 end 

10 output end length 

11 Z = Hash (C|| X ) 

12 if Z > R then 

13 output 

14 else 

15 continue 

16 end 

17 end 

 

 

 

 

 

 

The difference between two algorithms in Basic Scheme is different methods for hash function computation. 

4.2. Advanced scheme 

To thwart pre-computing of the hash results over a Nonce , we have also prepared an advanced scheme in which a random

segment is selected and included with Nonce . The procedure is as follows: 

Consider C and a mining target of a Nonce that guarantees a requirement in terms of R . 

1. Randomly select a Nonce ∈ {0, 1} | Nonce | . 

2. Select a random segment in Hash ( Nonce ) and include it with the Nonce . 

2.1. Compute Z ⇐ Hash ( Nonce ). t ⇐ | Z |. 

2.2. Cut Z into segments with length s. s | t . Each segment is denoted as S [ i ]. Obviously, S[ i ] ∈ [0 , 2 s − 1] , i = 0 , 1 , . . . , t/s −
1 . 

2.3. i ⇐ [ t 
2 ∗s ] .Return the largest integer not larger than x . 

2.4. i ⇐ S[ i ] + S[ t/s − 1] mod t/s. 

3. Prepare X . 

3.1. X ⇐ C ‖ Nonce ‖ S [ i ]; 
3.2. F or(i = 1 ; i < n ; i + +) 

{ Y ⇐ Hash (X ) ; X ⇐ Y ‖ X ; }, 

where n = k/t, t = | Hash (·) | , A ∈ {0, 1} ∗, Hash (X ) is the inverse bit sequence of Hash ( X ). 

4. Compute the final result. k MIFH (X ) = Hash (X ) . 

5. If k MIFH (X ) < R, then the Nonce is found. Otherwise, try another Nonce (i.e., go to Step 1). 

Remark 

(1) In step (2.4), we assume 2 s − 1 ≤ t/s − 1 . That is, 2 s ≤ t / s ⇒ 2 s ∗s ≤ t . For instance, suppose t = 256 = 2 8 , and we

have 2 5 ∗5 ≤ 256, but 5 � 256, 2 6 ∗6 > 256. Thus, for t = 256 , we have s = 4 . When t = 512 = 2 9 , we have 2 7 ∗7 > 512,

2 6 ∗6 < 512 and 6 � 512. Thus, we also have s = 4 for t = 512 . Usually, we have t = 2 u . 2 s ∗s ≤ 2 u ⇒ s ∗log 2 s ≤ u . 

(2) S[ i ] + S[ t/s − 1] mod t/s is the summation of two segments: one is the segment in the middle location of S[ i ] , i =
0 , 1 , . . . , t/s − 1 , and the other is the last segment in S [ i ]. These two segments are both in the range of [0 , 2 s − 1] ,

and the index (i.e., i ) is obtained by summing the final selected S [ i ] after the modulo operator t / s . 

In addition, we propose two methods of further thwarting pre-computation. The basic idea is to let the computation

depend on some additional and unpredictable information but that still relates to the Nonce . 
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(1) S [ i ] in Step 3.1 can be replaced with f p ( S [ i ]), where f p ( ·) is a function determined by instantly generated informa-

tion from the Nonce , e.g., f 0 (x ) = x 2 for p = 0 , f 1 (x ) = 2 x for p = 1 . p is determined by the last p bits of Hash ( Nonce ) and

‖ f p (·) ‖ = 2 p , which means f p ( ·) is of the kind 2 p . 

For example, suppose there exist 2 p = 2 3 = 8 sorts of functions. Denote them as f 0 (·) , f 1 (·) , . . . , f 7 (·) . Suppose f 0 (x ) = x 2 ,

f 1 (x ) = 2 x , and so on. If the last p = 3 bits of Hash ( Nonce ) is 001, then f 1 (x ) = 2 x will be selected. That is, f 1 (S[ i ]) = 2 S[ i ]

will be used in Step 3.1. 

(2) In Step 3.1, i.e., X ⇐ C ‖ Nonce ‖ S [ i ], S [ i ] could also be selected from a segment in Hash ( Nonce ) on the fly as follows: 

Search for the first occurrence of E in a hex representation of Hash ( Nonce ) from the rear, and let all bits in the front of E

in Hash ( Nonce ) be S [ i ]. Note this enhancement means, Step 2 in the advanced scheme can be avoided. 

For example, suppose Hash (Nonce ) = . . . .EA 3 D. The first occurrence of E from the rear is fourth from the right, then let

S [ i ] equal all the bits in Hash ( Nonce ) in front of this E . 

This advanced scheme is detailed in Algorithm 3 . 

Algorithm 3: Advanced scheme. 

Data : 

C ← the available value in current block 

k ← memory needs to be consumed 

t ← the length of hash function 

R ← the requirement of hash value 

Result : Nonce ; hash when success 

1 for Nonce ← 1 to max − nonce do 

2 X = str(Nonce ) 

3 n = k/t 

4 Z = Hash (Nonce ) 

5 t = | Z| 
6 s = 4 

7 cut Z into segments with length s 

8 each segment is denoted as S[ i ] 

9 i = [ t 
2 ∗s ] 

10 i = S[ i ] + S[ t/s − 1] mod t/s 

11 X = C|| Nonce || S[ i ] 

12 output begin length 

13 for i ← 1 to n do 

14 h = Hash (x ) 

15 Y = re v erse (h ) 

16 X = Y || X 
17 end 

18 output end length 

19 Z = Hash (C|| X ) 

20 if Z > R then 

21 output 

22 else 

23 continue 

24 end 

25 end 

5. Evaluation 

5.1. Time and space complexity 

The time and space complexities of the three algorithms are listed in Table 2 . 

For Algorithm 1 , assume that the number of executions of the basic statement is f ( n ), and we have f (n ) = 

∑ n 
i =1 

∑ n 
j=1 1 +∑ n 

i =1 1 = 

∑ n 
i =1 n + n = n 2 + n . Thus, the time complexity of the algorithm is, T (n ) = O ( f (n ) = O (n 2 ) . For Algorithm 2 , assume

that the number of executions of the basic statement is f ( n ), and we have f (n ) = 

∑ n 
i =1 3 = 3 n . Thus, the time complexity of

the algorithm is, T (n ) = O ( f (n ) = O (n ) . For Algorithm 3 , the basic statement associated with n is the same as Algorithm 2 .

Therefore, its time complexity is also O ( n ). 

With all three algorithms, the hash value is stored in each loop, and the length of the hash value is fixed. So the space

complexity is O ( n ). 



168 W. Ren, J. Hu and T. Zhu et al. / Information Sciences 507 (2020) 161–171 

Table 2 

Time complexity and space complexity of the three algorithms. 

Basic scheme Advanced scheme 

Algorithm 1 Algorithm 2 Algorithm 3 

Time complexity O ( n 2 ) O ( n ) O ( n ) 

Space complexity O ( n ) O ( n ) O ( n ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Experiment 

In keeping with the basic scheme, we processed the Nonce and then determined whether the final result guaranteed

the requirement. In processing the Nonce , the inverse number after the hash calculation was concatenated to the original

number, which was used to generate a new number and the same action continued iteratively. We finally compute the hash

value of combining all intermediate results to obtain the final result. 

Proposition 5.1. We can generalize the above observation as follows: 

M = m + i ∗ t, 

where t = | Hash (·) | , M represents current memory, m is initial memory, and i is the frequency of hash computation. 

Proof. Because each hash function consumes t units of memory and the memory is persistent, the hash function accumu-

lates k memory after i = k/t hash functions upon choosing a random number, i.e., nonce. The maximum memory consump-

tion for searching this nonce is m + k . If this nonce does not guarantee the requirement (of block mining for blockchain),

the memory will be released and a new number is randomly selected for the hash function and the memory accumulation

process. �

For example, suppose the underlying hash function is SHA256 and the initial memory is 4 bits. The real-time memory

consumed would accumulate to 1028 bits after four rounds of hashing. However, the actual memory used would differ very

greatly in different operating environments, which is why we focussed on studying changes in the data lengths before and

after n hashes (output in bytes) in our experiments. 

Taking the memory changes during the complete process of finding the first legal nonce as an example, we can see

that the change in data length under each random number is identical before finding a random number that guarantees

the requirement. Therefore, the memory used with different numbers can be considered identical when k, t , and m are the

same. Also, the maximum memory occupied in the complete process of finding a legal number is approximately equal to

the memory under a certain random number. However, in the actual experiments, we found that m changed dynamically,

and k needed to be large enough to ensure the change in m was negligible. 

The settings for the experiments were as follows: the hash function was SHA256, t = | f (·) | = 256 bit, and k was changed

to observe the differences in memory use when the Nonce is generated first.The same set of data was used as input for all

three algorithms to analyze their similarities and differences. The results with a changing k are shown in Table 3 , and Fig. 2

depicts the impact of k on the data length. From these results, we derived the following findings. 

1. The beginning length for Algorithms 1 and 2 was 4 B because the length of the preset nonce was 4 B . The beginning

length of Algorithm 3 was larger than the other two algorithms because of the extra unpredictable information (recall

s [ i ]) consumes 33 B . 

2. The differences in data length for each of the three algorithms was the same with the same input k , which indicates that

their capacity to consume memory is comparable. 

3. There is a linear relationship between the input k and the difference of the begin and end length. Thus, we can restate

the formulas as follows: 

M = m + k, 

where M is the present memory, m is the initial memory, and k is the memory that needs to be consumed. 

In summary, the results illustrate that the memory consumed has a direct relationship to k , and k can be set on demand.

Therefore, enforcing memory usage is feasible. 
Table 3 

n = k/t, begin length and end length are the data lengths before and after n hashes. difference is the gap between the two. 

Algorithm 1 Algorithm 2 Algorithm 3 

k(B) 1024 2048 3072 4096 1024 2048 3072 4096 1024 2048 3072 4096 

n 32 64 96 128 32 64 96 128 32 64 96 128 

begin length(B) 4 4 4 4 4 4 4 4 37 37 37 37 

end length(B) 1028 2052 3076 4100 1028 2052 3076 4100 1061 2085 3109 4133 

difference(B) 1024 2048 3072 4096 1024 2048 3072 4096 1024 2048 3072 4096 



W. Ren, J. Hu and T. Zhu et al. / Information Sciences 507 (2020) 161–171 169 

Fig. 2. Data length changes in the three algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Comprehensive analysis 

Our method can be employed in realistic scenarios. The blockchain constructed with these schemes demand serialized

calculations that must be computed with a set amount of memory. Miners cannot calculate hash values in parallel or in a

pipeline. They can only conduct their calculations in a one-device-to-one-nonce manner, and they are obliged to consume

an amount of memory in doing so. Yet, the normal operations of the blockchain remain unaffected by the number of miners

participating in the PoW. 

Currently, the principal applications of blockchains are financial transactions, smart contracts, and cryptocurrencies. How-

ever, as IoT develops, its security will need to be improved. Many studies have shown that blockchain could play an impor-

tant role in IoT environments and become part of the IoT security solution [23] . The proposed method changes the computa-

tions of hash values in PoW to enforce memory usage. That is, there is no need to replace hash functions or previous design

logics - there is no hard-fork. Consequently, our approach can not only be applied to familiar scenarios like cryptocurrencies,

but also to IoT applications like smart grids and intelligent transportation systems. 

6. Related work 

More and more miners are employing ASICs instead of CPUs and GPUs to improve mining. M. B. Taylor [32] proposed

that Bitcoin ASIC miners provide much higher performance compared to CPUs, GPUs, and FPGA (Field Programmable Gate

Array)s. ASICs have raised the entry barrier to Bitcoin mining for the general public to the extent that it is almost impossible

to make a profit without making an enormous investment into equipment. In this case, mining may become only possible

for miners that hold the main computing power. The centralization of computing power will affect the decentralized nature

of blockchain networks; giving rise to concerns and threats to Bitcoin’s future [14] . 

There are currently two main approaches to defend against ASICs. The first is memory-hard functions, and considered to

be the standard approach. C. Percival [26] first proposed this tactic and the scrypt construction to protect against attacks us-

ing ASICs. Many constructions with similar tactics have been proposed in subsequent research [8–13,21] . Notably, Zeusminer

developed an ASIC miner specifically for scrypt in 2014 [5] . Another construction is to use multiple hash functions to defend

against ASICs. Here, several hash functions are usually concatenated and the data is forced through different calculations se-

quentially. Schemes with several hash functions play on the vulnerability that ASICs can only be optimized for a few hash

functions, not all required in a multi-function scheme. However, H. CHO’s evaluation revealed that systems with multiple

hash functions do not sufficiently defend against ASICs [19] . 

A detailed comparison of the two existing methods is given in Table 4 . 

Notably, if the hash function in the construction (e.g., SHA256) is changed to a memory-hard function, the resulting

hard-fork may destabilize the cryptocurrency and undermine its value [33] . This also means that raising mining costs by
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Table 4 

Comparison of the two existing methods. 

ASIC-resistant methods Algorithms Principles Deficiencies 

Memory-hard functions Ethereum’s Ethash [35] , 

Scrypt [26] , Lyra2 [7] , Balloon 

password-hashing algorithm 

[18] , Argon2 [15] , Equihash 

[16] and Crypt-Night [28] . 

Memory-hard functions require a 

large amount of data to be stored 

during the calculation, and the 

memory limitations of ASICs will 

affect its performance. 

Emerging technologies, such as 3D stacking 

[29] have exerted an influence. If the 

memory requirement is fixed, miners can 

invest in expanding their ASICs memory 

for more profit. 

Multiple hash functions X11 [20] , X14, X17 [6] , 

X11EVO [2] , X16S [27] , X16R 

[17] , Quark [3] , and Time 

Travel [4] . 

Multiple hash functions employ a 

variety of functions to compute the 

valid value in parallel or serially to 

defend against ASIC miners designed 

for specific hash function. 

It would not take too much time to 

develop an ASIC miner for a fixed hash 

family. The design cost and effort to 

exploit an ASIC miner for various hash 

functions is not extremely high. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fixing a certain property (such as memory or fixed hash series) is not a way to eliminate the ASIC miners completely. Thus,

we can try to defend against ASICs by flexibly controlling the memory requirements without changing the underlying hash

function. 

7. Conclusion 

In this paper, we proposed a PoW method that can mitigate ASIC attacks, without the need to replace the underlying

hash function while minimizing change to the design logics. In other words, the proposed scheme allows us to build a

k MIFH by invoking a hash function, which is not k MIF as a defense against attacks by ASICs. We also proposed an ad-

vanced scheme to thwart the pre-computing of hash results over a nonce. We recorded the resulting data length changes in

the three algorithms of two schemes - one general, one flexible - both before and after k MIFH . The results show that the

memory consumption increases to k as requested, where k is a configurable parameter on demand. In other words, compu-

tationally intensive miners in a blockchain can be thwarted by simply controlling the argument of k to change the memory

consumption in the hash computation. 

In future research, we plan to evaluate our scheme in a real-world blockchain in collaboration with a company or a

cryptocurrency startup. 
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