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Abstract—Bitcoin, as well as many of its successors, require the
whole transaction record to be reliably acquired by all nodes to
prevent double-spending. Recently, many blockchains have been
proposed to achieve scale-out throughput by letting nodes only
acquire a fraction of the whole transaction set. However, these
schemes, e.g., sharding and off-chain techniques, suffer from a
degradation in decentralization or the capacity of fault tolerance.

In this paper, we show that the complete set of transactions
is not a necessity for the prevention of double-spending if
the properties of value transfers is fully explored. In other
words, we show that a value-transfer ledger like Bitcoin has the
potential to scale-out by its nature without sacrificing security
or decentralization. Firstly, we give a formal definition for the
value-transfer ledger and its distinct features from a generic
database. Then, we introduce the blockchain structure with
a shared main chain for consensus and an individual chain
for each node for recording transactions. A locally executable
validation scheme is proposed with uncompromising validity and
consistency. A beneficial consequence of our design is that nodes
will spontaneously try to reduce their transmission cost by only
providing the transactions needed to show that their transactions
are not double spend. As a result, the network is sharded as each
node only acquires part of the transaction record and a scale-
out throughput could be achieved, which we call “spontaneous
sharding”.

I. INTRODUCTION

Blockchain technology, made popular by Bitcoin [1], can

be described as an append-only database maintained by dis-

tributed nodes instead of central authorities. One of the most

well-known applications of blockchain technology is cryp-

tocurrency, in which the blockchain is in the form of a dis-

tributed ledger, i.e., the data is transactions which are records

of value transfers, called transactions, between nodes. The

most crucial part of a distributed ledger for value transfer is the

prevention of double-spending, which is achieved by consen-

sus algorithms that guarantee all honest nodes in the network

keep a consistent ledger of all valid transactions. The consen-

sus algorithm can be divided into two categories, Nakamoto

consensus algorithms such as Proof-of-Work (POW) [1] or

Proof-of-Stake (POS) [2], [3] and Byzantine fault tolerance

(BFT) consensus algorithms such as PBFT [4]. For distributed

ledger type of blockchain, most of the consensus algorithms

effectively achieve the following conditions.

• Agreement (Consistency): Two honest nodes should not

have disagreement on the validity of a transaction.

• Validity (Correctness): Invalid transactions cannot be

validated by honest nodes.

• Termination (Liveness): All transactions will be even-

tually known by all honest nodes.

Strictly speaking, the above conditions are not achievable

in asynchronous networks [5], [6]. However, by slightly com-

promising either asynchronous [4] or deterministic conditions

for termination [7], [8], the above-mentioned conditions can

be achieved in practical asynchronous network. Blockchains

with both Nakamoto consensus [9] and BFT consensus can

have scalable throughput, i.e., the communication cost per

transaction (CCPT) is restricted to O(N), where N is the

number of nodes in the network. Various consensus algorithms

could achieve consensus with O(N) complexity.

• Improved BFT algorithms: Traditional BFT algorithms

like [4], [7], [8] have O(N2) CCPT. However, many

recent BFT algorithms like [10], [11], [12] achieve O(N)
CCPT by either packing up transactions or opportunis-

tically running a much simpler scheme with traditional

schemes as the back-up for the worst scenario.

• Nakamoto consensus: The POW scheme in Bitcoin

introduced a game theoretical aspect to this problem.

Then, instead of restricting the number of faulty nodes,

an assumption is put on the rationality of nodes in

the network. However, some early POW or POS based

schemes have limitation in the transaction rate to meet the

synchronous requirements [13]. With this problem solved

in novel algorithms like [2], [14], [15], [3], O(N) CCPT

is feasible in Nakamoto-like consensus.

A. Scalability of Blockchain

The most crucial problem in a decentralized value-transfer

system is double-spending, which could be prevented when

all nodes have a consistent record of all transactions. Then,

O(N) CCPT is required for all transactions. Blockchains with

O(N) CCPT are commonly referred as “scalable” blockchains

since their throughput will not decrease (or increase) with

the number of nodes and the computation and communication

capacities in the network.
1) Scale-out Blockchain Solutions: Recently, several solu-

tions have been proposed to achieve o(N) CCPT, sometimes

referred as “scale-out” throughput as the throughput will
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increase as N grows, by reducing the number of validators

and recordkeepers for each transaction. In other words, the

termination property is compromised, i.e., a transaction is not

necessarily known to or validated by the whole network, but

a part of it. Here, we introduce three types of such schemes.

• Off-chain Solutions: This type of approach are mostly

associated with some existing blockchain systems as the

main chain. Each node holds their transactions locally,

sometimes referred as “off-chain”, and only sends a

description or the eventual outcome of these transactions

to the “main chain”, referred as “on-chain”. Since there

is no guarantee on the validity of the “off-chain” trans-

actions, either validation nodes are introduced to validate

and endorse these transactions [16], [17] or economical

deposit should be provided for the transactions [18], [19].

In both cases, the validity condition is compromised due

to centralization or the economical constraint.

• Directed Acyclic Graph (DAG) Solutions: In another

type of approach, we call DAG solutions, the transac-

tions are not structured in a chain, but in a DAG [20],

[21], [22]. The validity is dependent on the (directly

or indirectly) outgoing edges of the transaction, which

represents the nodes that have validated it. A scale-out

throughput can be achieved if the acquirement of the

complete graph is not obligated for all nodes 1. Then,

the validity of the transactions is compromised due to its

dependency on the validators.

• Sharding Solutions: Recently, sharding solutions, which

artificially divide the network, have been widely studied

and discussed [23], [24], [25], [26]. They include schemes

that fairly and randomly divide the network into small

shards with vanishing probability of any shard having an

overwhelming number of adversaries. Hence, the BFT

consensus algorithm is run only within the shards and the

CCPT is then O(g2) (O(g) if scalable BFT algorithms

are used) where g is the size of the shard. However,

the validity condition is also compromised in the sense

that the sharding is only feasible when the ratio of

adversaries in the network is small. Moreover, according

to our knowledge none of the existing sharding schemes

proved g = o(N), which is the condition for scale-out

throughput.

2) Problem Statement: It seems to be infeasible to achieve

scale-out performance with the same level of security or

decentralization as Bitcoin or blockchains using classical BFT

algorithms. This does not come as a surprise since, intuitively,

double-spending can only be prevented with global consensus.

This problem severely hampers the mainstream adoption of

blockchain system since the security and trustworthiness of the

blockchain system grows with the size of the network and the

decentralization level. As a result, a trilemma is formed among

throughput, security, and decentralization as also stated in [23],

1In fact, in [20], [21], [22], the complete graph is required to prevent
double-spending for their applications. Hence, they are not scale-out schemes,
although a DAG scheme designed similarly could scale-out for some other
applications.

[25]. However, at the meantime, traditional BFT algorithms

could reach consensus on any type of message, which is redun-

dant for many blockchain systems since messages in Bitcoin

and cryptocurrencies are “transactions” which represent value

transfers.

This leads to the research questions considered by this

paper:

• What is the key functionality/features of the value-

transfer blockchains?

• Can we use these features to design a scale-out

blockchain system to achieve the functionalities of value

transfer without sacrificing reliability or decentralization?

B. Overview of Our Solution

Our solution gives an answer to the above questions. By

exploring the features of value transfers which have not

yet been used by other blockchain systems, we propose a

blockchain system with a very simple structure to achieve

scale-out throughput.

1) Value-Transfer Ledgers: Most of the aforementioned

blockchain systems are decentralized solutions for value trans-

fers and focus on reaching BFT consensus on transactions to

prevent double-spending. However, traditional BFT consensus

algorithms are generic and achieve BFT consensus regardless

of the message type. In Bitcoin and other blockchain systems

using Nakamoto consensus [9], some realistic interpretation

of transactions is used and the notion of rational behavior

is introduced: rational issuers of transactions are interested

in proving the validity of their transactions and keeping

themselves synchronized with other nodes. As a result, they

either mine by themselves or hire other nodes by paying

transaction fees to submit their transactions to a blockchain

which reaches BFT consensus. In this paper, we take one step

further to formally define the features for value transfers in

the Value-Transfer Ledgers (VTL) model, i.e.,

• rational senders of the transactions should take effort to

prove the authenticity of the transaction to the receiver;

• rational receivers should check the authenticity of a

transaction while receiving it;

• a rational receiver will not care about the authenticity of

other transactions unless they have an impact on their

received transactions.

With these features, we propose a system that minimizes the

redundancy of reaching BFT consensus on the transactions as

if they are generic data and allows secure and reliable value

transfers in a full decentralized fashion.

2) Our System: Our system has an off-chain structure,

which contains individual chains for nodes to record their

own transactions and a main chain for the consensus of the

“abstract” (hash digests and metadata) of their chains, i.e.,

provides a shared global state. Further, a locally executable

validation function is proposed to have correct and consistent

validation results upon all transactions. Besides a validation

function, the crucial part of a valid validation scheme is that

all honest nodes should also have a consistent observation
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of the transactions. In our system, we employ the aforemen-

tioned features of value transfers to achieved an alternation:

instead of letting all nodes have consistent observation on all

transactions, we guarantee that all nodes that want to know
the validity of a transaction will have consistent observation

on all transactions that have impact on the validity of that
transaction. We also prove that this alternation is enough to

have a valid system for value transfers.
3) Spontaneous Sharding: Moreover, the most innovative

result in this paper is spontaneous sharding, which is a natural

and direct consequence of using our system for value transfers.

Generally speaking, in value-transfer systems, the values are

passed from one node to another. In our system, for each piece

of value, a proof is associated with it and the size of the proof

grows with the number of nodes that it has been passed to.

Then, since the sender could choose the source of his fund for

the transactions, e.g., in Bitcoin, a node could choose from

several of his unspent transaction outputs, rational nodes will

choose the pieces of value with the minimum size of proof for

the sake of the transmission cost. As a result, nodes will tend to

cycle the value in small shards rather than the whole network.

In other words, the network is sharded by the nature of the

system without sacrificing either security or decentralization.

C. Main Contributions

The main contributions of this paper are the following.

• We formally define the VTL and distinguish it from other

types of ledgers and databases.2

• We propose an off-chain based blockchain system that

prevents double-spending without sacrificing either secu-

rity or decentralization. In particular, our consensus al-

gorithm achieves uncompromised agreement and validity

conditions of the BFT consensus in VTL model.

• We prove that our system is a valid VTL system. In

other words, although our system do not guarantee BFT

for generic types of data, we guarantee that if all nodes

have interest in their values in the system and behave

rationally, the valid transactions in our system are double-

spending-proof.

• Finally, we show that the CCPT of our system is upper

bounded by O(N), which suggests scalable throughput.

Moreover, we show that our system could achieve scale-

out throughput via spontaneous sharding in several sce-

narios.

D. Content of This Paper

This paper is organized as follows. In Section II, we

formally introduce the VTL model and assumptions. In Sec-

tion III, we introduce our system and prove the correctness

of this system in VTL model. We analyze the performance

of our scheme and introduce the concept of spontaneous

sharding which results in scale-out throughput in Section IV.

In Section V, we conclude our paper with possible topics for

further exploration.

2A slightly similar idea have been raised in [27] without a formal defined
model or details for feasible schemes.

II. MODEL

In this paper, we emphasize on our novelties and contri-

butions by showing that our system provides the minimum

functionalities for value transfers. These functionalities can be

used as building blocks for more generic VTL systems. Hence,

some other elements are simplified to the most comprehensive

level, e.g.,

• We consider every node holding some initial value.

The mining of new coins is not considered as it is an

independent aspect and any design will suffice.

• Transactions are defined similarly to Bitcoin, namely the

Unspent Transaction Output as input (UTXO) structure.

We assume a transaction has only one sender and one

receiver.

• We consider a weak synchronous network with f ≤
�N−1

3 � Byzantine adversaries, just as the one used in [4],

so that PBFT can be straightforwardly applied. Note that

this assumption is solely made for easy comprehension of

our system. The same framework proposed in our system

can be plugged into any permissioned or permissionless

blockchain or consensus algorithm that achieves global

BFT consensus on all transactions.

• We assume that there exists a secure hash function

Y = H(X) and a digital signature scheme Y = Sigi(X)
based on the public-private key pairs where node i is the

signer.

A. Network Model

We consider a weak asynchronous network of N nodes

in which the message delay does not increase indefinitely

as described in [4]. Each node holds some initial value that

could be transacted with others. We assume that there are

f ≤ �N−1
3 � Byzantine adversaries and we have the following

definitions for honest nodes and adversaries.

Definition 1 (Honest nodes and Adversaries). Honest nodes
will follow the schemes of the system. Adversaries can behave

arbitrarily.

The network is assumed to be permissioned, i.e., the nodes

are known to each other by their identities n ∈ {1, 2, . . . ,N}.
We also assume that there exists a public key infrastructure

(PKI) and nodes can link between the identity and the public

key of each node. Moreover, we introduce the “chain” as a

data structure that consists of an ordered sequence of blocks.

Each block consists of multiple transactions and a hash digest

of the previous block, except for the first block, namely the

genesis block.

B. VTL Model

Inspired by Bitcoin, most of the blockchain systems mimic

value transfer systems, e.g., currency, in a decentralized fash-

ion. The problem could be described as the following: Each

node holds some positive value that they could transfer to

others via transactions. A transaction is only valid if it is

authorized by the owner of the value and the value cannot be
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double-spent. In other words, for any “value” in the network,

it has three properties:

1) Ownership: Value has an owner. Only the owner of the

value can authorize to transfer his value.

2) Fluidity: Any transfer can be completed in finite time.

3) Validity: The value cannot be created or duplicated.

A value transfer system can be in many forms, e.g., the

account-based ledgers, which is widely used in banking system

and many other accounting systems. Bitcoin, as well as many

other blockchain systems, use a ledger with UTXO structure,

which is very suitable for decentralized systems. Here, we

introduce the UTXO structure.

1) UTXO: Firstly, in UTXO a transaction is an authorized

piece of information that transfers the value from one node

to another. In this paper, we use the following definition for a

transaction, which is a slight variation of the traditional UTXO

structure used in Bitcoin.

Definition 2 (Transaction). A transaction txi is a five-tuple:

txi = 〈Sourcei, si, di, ai, ri〉 where Sourcei is the set of

transactions which are used as the source, si is the sender,

di is the receiver, ai is the transacted value, and ri is the

remaining value.

In Bitcoin, transactions are usually referred to the ones

on the longest chain, which also suggest that they are valid
transactions. However, in some other systems like [28], [29],

the concept of a valid transaction is ambiguous since invalid

transactions can also exist on the chain. As a result, a deter-

ministic and consistent rule should be applied for all nodes

to determine the valid transactions. Here, we define the valid

transaction in UTXO as the following.

Definition 3 (Validity of a Transaction). A transaction txi =
〈Sourcei, si, di, ai, ri〉 is valid if and only if the following

conditions hold.

• Confirmed and authorized: txi, as well as some witness

indicating that txi is authorized by si, e.g., a digital

signature of txi signed by si, are on a tamper-proof

ledger.

• Valid sources: All transactions in txj ∈ Sourcei are

valid.

• Value equality: The original value equals to the sum

of the transacted value and the remaining value, i.e.,∑
txj∈Sourcei rj = ai + ri.

• No double-spending: A transaction txi is not a double

spending transaction if for any txj ∈ Sourcei, there does

not exist a valid transaction that appears before txi in the

chain of si.

Then, we define the unspent transaction in UTXO.

Definition 4 (Unspent Transaction). A transaction txi is an

unspent transaction if there is no other transaction txj in the

ledger which is valid and txi ∈ Sourcej .

Clearly, in UTXO structure, the value exists in the form

of unspent transactions. The value is always transferred from

one unspent transaction to another unspent transaction, instead

of transferring from one account to another account as the

account-based ledger structure.

2) Properties of VTL Model: Traditional blockchain sys-

tems prevent double-spending by reaching consensus on all

transactions. The most straightforward approach is to treat

transactions as bit strings and use classical BFT algorithms

[4], [7], [8] or improved BFT algorithms [30], [10], [12] to

reach consensus. However, this approach misses the notion of

“value” behind the transactions and discards the differences

between a transaction and general data. These differences are

explore if we focus on the original notion of value. Here, we

pick up the idea behind the “rational nodes” and “transaction”

notions in Nakamoto consensus and add more real-world

interpretations to these two notions in value transfers.

Firstly, value has an owner and the receiver of an unspent

transaction is the owner of that value until it is spent again. The

owner would take full initiative and responsibility of proving

the existence and the authenticity of the value to any node

upon request. If he fails to do so, it will be considered as

against his own interest. Secondly, the concern of the nodes is

the authenticity of the value they own instead of the transaction

records. Hence, nodes will check the past transaction records

only if the records have impact on the authenticity of the value.

Otherwise, nodes have no interest and will not care about the

validity of a past transaction.

As a result, we make three assumptions in VTL model.

Throughout this paper, we use the term “node u is curious

about transaction txi” to represent that node would like to

check the validity of transaction txi.

Assumption 1 (History Disinterest). A node u is curious about

a spent transaction txi only when it is curious about an unspent

transaction txj and the validity of txi is required to check the

validity of txj .

Assumption 2 (Rational Receiving). A node u is curious

about transaction txi if it is the receiver of txi and does not

know the validity of it.

Assumption 3 (Rational Owner). If node u is the receiver of

a valid and unspent transaction txi, it will provide the validity

proof of txi to any node once it is requested.

In practice, it is not rational for a node to validate an

unspent transaction if it is not the receiver since validation

is resource consuming. Hence, we have an alternative version

for Assumption 2 to minimize the cost in a resource-limited

network.

Assumption 4 (Rational and Cost-saving Receiving). A node

u is curious about transaction txi if and only if it is the

receiver of txi and does not know the validity of it.

This assumption will not affect the correctness of our

scheme. It will be applied in the performance analysis for

simplicity.

3) Valid VTL System: Then, we define a valid VTL system

with a structure of UTXO.
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Definition 5 (Valid VTL System). A system with UTXO

structure is called a valid VTL system if it satisfies the

following conditions under Assumption 1-3:

1) Ownership: If an honest node receives a valid transac-

tion, then he can make one valid transaction using it as

a source. Meanwhile, no other node can make a valid

transaction using it as a source.

2) Fluidity: A valid transaction will be considered as valid

by the receiver in finite time if both the sender and the

receiver are honest.

3) Validity: Invalid transactions will not be considered as

valid by honest nodes.

Remark 1 (Relationship Between BFT Consensus and Valid

VTL System). Clearly, the Validity condition of valid VTL

systems is exactly the Validity condition in the BFT consensus.

Then, the Fluidity condition is guaranteed by all three BFT

consensus conditions and the Ownership condition is guar-

anteed by the Agreement condition and the way that UTXO

structure is designed. Hence, BFT consensus on the transac-

tions is a sufficient condition for a valid VTL system. However,

later we will show that it is not a necessary condition for

VTL since the BFT consensus with a weakened Termination

condition is also sufficient for a valid VTL system.

III. OUR SYSTEM

Our system consists of three parts: individual chains for

transactions, a main chain for a global shared state, and a

validation scheme for validation of the transactions. In this

section, we first introduce these three parts of our system and

give important theorems of the system. Then, we prove that

our system is a valid VTL system as well as prove that our

system actually only compromises the Termination condition

of the BFT consensus.

A. Individual Chains

Each node generates an individual chain to record their own

transactions in a first-in-first-out order. An individual chain of

node u is an ordered set of blocks {Bu,1,Bu,2, . . . , } and a

block is an ordered set Bu,k = {H(Bu,k−1), tu,k,1, tu,k,2, . . .},
where tu,k,l is a transaction sent by node u with valid

sources, value equality, and no double-spending as defined

in Definition 3. In our system, we assume that there is an

initial value assigned to each node in the same fashion as a

transaction with no source. The sender and receiver of this

transaction are both the node itself.

The size of a block can be arbitrary. Periodically, nodes

send Abstracts to the main chain (will be introduced in the

next paragraph). The abstract is defined as the following.

Definition 6 (Abstract). An abstract of block

Bu,k, denoted by Au,k, is a four-tuple: Au,k =
〈u, k,H(Bu,k),Sigu(u||k||H(Bu,k))〉.
B. Main Chain

The main chain uses PBFT as its consensus algorithm and

the blocks consist of Abstracts signed by the corresponding

Fig. 1. Main chain and individual chains.

nodes. We assume that the abstracts of all genesis blocks are

on the main chain. Since it has been proved that the PBFT can

reach BFT consensus on messages in our network model [4],

we simply see the main chain as a reliable and secure primitive

and all abstracts included on the main chain reaching the BFT

consensus. Honest nodes will send abstracts of their newest

blocks to the main chain when they observe that their previous

abstracts are on-chain. In Fig. 1, we sketch the structure of

our system that includes a main chain and multiple individual

chains.

C. Confirmation

The transactions on individual chains are arbitrary in the

sense that they are neither tamper-proof nor signed. The

transactions will be tamper-proof and signed if an abstract

of a block that comes after it is contained in the main chain,

which we call confirmed transactions. Here, we give the formal

definitions of a confirmed transaction and a confirmed block.

Definition 7 (Confirmation). A block Bu,k is confirmed if

• an abstract of the block or a block after it, i.e., Au,k′ , k′ ≥
k, is on the main chain;

• for all abstracts of node u, denoted by Au,l, that are on

the main chain and l ≤ k′, Au,l is compliant to their

corresponding blocks.

A transaction txi = 〈Sourcei, si, di, ai, ri〉 is a confirmed

transaction if txi ∈ Bu,k, si = u, and Bu,k is confirmed.

We call Bu,k and txi are confirmed by Au,k′ .

The confirmation of a transaction suggests that it is tamper-

proof as if it is on-chain, which is shown in the following

theorem.

Theorem 1 (Confirmed Transactions). If txi = tu,k,l
is a transaction confirmed by abstract Au,k′ , k′ ≥ k,
then there does not exist a chain of confirmed blocks
{B′u,1,B′u,2, . . . ,B′u,k′} such that t′u,k,l 	= txi and all hashes
are correct.

The formal proof of this theorem can be found in the

extended version in [31]. By Theorem 1, when a transac-

tion is confirmed, the position and content of it cannot be

changed. Furthermore, it is also signed since the sender of the

transaction is the same as the signer of the abstract and the

abstract contains an unforgeable signature of the sender. Note
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that a confirmed transaction here is not the same as confirmed

transaction in other blockchain systems like Bitcoin, as they

are not yet validated.

D. Validation Scheme

Our validation scheme consists of two parts: a proof col-

lection process that allows any node that is curious about a

transaction to reliably and efficiently collect the proof of it;

a validation function that deterministically decide whether a

transaction is valid or not depending on the collected proof.

1) Proof Collection: First we define the validity proof of a

transaction txi.

Definition 8 (Validity Proof). Assuming that the sender si = u
for transaction txi, txi ∈ Bu,k, and there exists an abstract

Au,k′ , k′ ≥ k in the main chain, a validity proof P(txi) is

the union of a set of all blocks before and including Bu,k′

and the proofs of all transactions in Sourcei, i.e., P(txi) =
{Bu,k′′ |k′′ ≤ k′} ∪ {Bv,l|Bv,l ∈ P(txj), txj ∈ Sourcei}.

By Definition 8, a validity proof of txi ∈ Bu,k includes the

chain of u from the genesis block to a block Bu,k′ , k′ ≥ k
which has an abstract in the main chain. Moreover, it also

includes the chains of the sources of this transaction, and

recursively the sources of the sources until the genesis block.

In the following lemma, we show that the proofs of valid

transactions can always be collected by nodes who are curious

about them in the VTL model.

Lemma 1 (Feasibility of the Proof Collection). If a node u
is curious about a valid transaction txi, then it can always
identify a node v such that it would provide the proof of txi.

Proof. If txi is an unspent transaction, this lemma directly

follows from Assumption 3 since the receiver of txi will

provide it. If txi is a spent transaction, then by Assumption 1,

u will only be curious about txi if u is curious about an

unspent transaction txj and the validity of txi is required for

the validity of txj . By Definition 8, we have P(txi) ⊂ P(txj).
Hence, by Assumption 3, u can collect the proof of txj from

the receiver of txj .

By Lemma 1, the proof of a transaction txi can always be

collected reliably and efficiently. By reliably, we mean that by

Lemma 1, the proof can always be collected in the VTL model

without any risk of disconnections. By efficiently, we mean

that the collection is a simple point-to-point communication

without the need of a reliable broadcast scheme like [8] to

tolerant malicious behaviors.

However, although by our model the receiver of an unspent

transaction is motivated to provide the correct proof, the

requester of the proof will not accept it as a proof without his

own verification. The algorithm is omitted here for simplicity

and can be found in [31]. If Ver(P(txi)) = pass, it suggests

that P(txi) is indeed a validity proof for transaction txi since

the algorithm is a direct translation from the definition of the

validity proof.

Algorithm 1 Validation Function V(txi,P(txi)), txi =
〈Sourcei, si, di, ai, ri〉 ∈ Bu,k

#Validity Proof Check

if Ver(P(txi)) 	= pass then return unknown

#Equality Check

if
∑

(all remaining values from Sourcei) 	= ai + ri then
return unknown
#Double-Spending Check

for Bu,m,m = [1 : k] do
for All transactions txj in Bu,m do

if Sourcej∩Sourcei 	= ∅ and txi 	= txj then return
unknown
#Source Check

for all transactions txj in Sourcei do
if V(txj ,P(txj)) 	= valid then return unknown

return valid

2) Validation Function: The deterministic Validation Func-

tion is given in Algorithm 1.

The correctness of the validation function is given in the

following theorem.

Theorem 2. V(txi,P(txi)) = valid if and only if txi is valid.

This theorem holds since the validation function is a

straightforward translation of the definition of the validity. The

detailed proof is given in [31].

E. BFT Satisfactory

Here, we show that our system satisfies the agreement and

validity condition of BFT with a compromised termination

condition for all valid transactions.

Theorem 3 (BFT Satisfactory). Our system satisfies the
following conditions in VTL model. Here, we use the term
“node u validates a transaction txi” to represent that node u
runs a validation function on txi with the result valid.
• Agreement (Consistency): If an honest node validated a

transaction, then, if another honest node is curious about
this transaction, it will also validate it.

• Validity (Correctness): If a transaction can be validated
by an honest node, then at least one honest node that is
curious about it can validate it.

• Termination (Liveness): If a transaction is proposed by
an honest node, then it can be validated in finite time.

Proof.
• Agreement: If a transaction txi is validated by an honest

node, i.e., V(txi,P(txi)) = valid, then, by Theorem 2,

txi is valid. By Lemma 1, if another node is curious about

txi, the proof can be collected. Then, since the validation

function is deterministic, another curious honest node will

also run the validation function and the result will be

valid.

• Validity: Firstly, by Theorem 2, a validated transaction

is equivalent to a valid transaction. Then, by Lemma 1
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its proof can be collected by an honest curious node and

by Theorem 2 it will be validated.

• Termination: If a transaction is proposed by an honest

node, by the definition of the honest node, it should have

valid sources, value equality, and no double-spending

as suggested in Subsection III-A. Then, by the BFT

satisfactory of the PBFT scheme we used for the main

chain, this transaction will eventually be confirmed and

meets all requirement of a valid transaction. Then, by

Theorem 2, it can be validated.

F. Validity of the System

Now we show that our system is a valid VTL system by

showing all three conditions in Definition 5 are guaranteed in

the VTL model.

Theorem 4 (Validity of Our System). A system described in
this section is a valid VTL system.

This theorem directly follows from Theorem 1 and Theo-

rem 3, thus the full proof is given in [31] and omitted here.

The insight of Theorem 4 showing our system as a valid VTL

system is that our system does not guarantee BFT for generic

data and cannot be used in applications where Assumption 1-

3 do not hold. For example, valid transactions cannot be

validated by any other nodes if the sender refuses to offer the

proof to any other nodes. However, this scenario is basically

denying the value of the sender himself and thus should not

happen in the VTL model with UTXO structure if the nodes

are rational. On the other hand, if the transactions are in the

form of debits instead credits and the receiver is the interested

party, our system could guarantee neither the BFT condition

nor the conditions for a valid VTL system.

IV. PERFORMANCE ANALYSIS AND SPONTANEOUS

SHARDING

In this section, we will give explanations for the scale-out

claim that we made for the throughput. First we show that the

throughput of our system is scalable even in the worst case

and will naturally scale out if the transaction pattern is already

sharded. Then, we explain why and how our system could

spontaneously shard. We give examples with theoretical and

simulative analysis to show that the feasibility of spontaneous

sharding as well as the scale-out throughput.

A. Communication Cost Per Transaction

In our system, the main chain is using PBFT with O(N2)
message complexity. However, the number of transactions

associated with one abstract in the main chain are arbitrary and

independent of the main chain. As a result, the communication

cost of the main chain can be made into a negligible term

in CCPT if we choose the number of transactions associated

with one abstract to be ω(N2). The duration of the consensus

process still plays an important role in the latency of our

system. However, note that the PBFT-based scheme is used

only for easy comprehension and can be easily replaced by

other scalable and low latency blockchain systems to improve

the latency.

Then, we make a few assumptions to simplify the CCPT

analysis. We assume that rational nodes will not care about

invalid transactions and thus will not try to re-collect the proof

of a transaction if it failed for a number of times. In other

words, malicious nodes cannot spam invalid proofs to jam

the network. For the simplicity in analysis, we only consider

the resource limited network with Property 4. Then, in our

system, the CCPT can be represented by p/T , where p is the

total communication cost of all proofs and T the total number

of transactions made by the whole network.

In general, the proof of a transaction txi includes the chains

of the sender, the senders of all sources of this transaction,

and the senders of, recursively, the sources of the sources. In

most blockchain systems, the storage is traded for validation

efficiency, i.e., the validated transactions and their proofs

are stored and the proofs of new transactions are collected

incrementally. Then, in the worst case when the proof of any

transaction includes the chains of all nodes, if the storage is

not limited, all nodes simply need to be updated with all trans-

actions in the network. Each transaction will be communicated

by O(1) message per node due to Property 3 and Lemma 1

since a point-to-point based collection is sufficient to guarantee

reliability and there is no need for BFT reliable broadcast

schemes. Then, for each node, the communication cost for all

its proofs is O(1)T . For the whole network, p = O(1)NT
and the CCPT is thus O(N).

A better case would be that the transaction pattern is

separated into shards and the nodes only make intra-shard

transactions. In that case, the proof of any transaction contains

the chains of only the nodes in their shards and the CCPT is

O(g), where g is the size of the shard. As a result, our system

achieves scale-out throughput.

B. Spontaneous Sharding

Here, we consider a more interesting case that the trans-

action pattern is not separated into small shards and show

that our system could still achieve scale-out throughput if all

nodes behave rationally. We call this spontaneous sharding.

The idea behind the spontaneous sharding is simple: rational

nodes will try to minimize their transmission and storage costs

by minimizing the proof size of each transaction as well as

the number of recorded transactions. Then, the minimum cost

of either transmitting or storing the transaction is actually the

cost of proving the authenticity of the value in the transaction,

which depends on the number of nodes that this value has been

passed through.

More precisely, let us focus on a piece of value originated

from a genesis block. For each time that it is transferred to a

node, a confirmed chain of that node is included in the proof

of the transaction of that value. Meanwhile, if the value is

used together with other sources to make transaction, then

these pieces of value are combined as well as their proofs.

Hence, rational node will always avoid combining values for

the sake of transmission and storage costs. Besides, the cost
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can be reduced by trying to make each piece of value only

cycling in a small shard of the network, which makes the

proof of the value only contain the chains of the nodes in that

shard. Let us denote Pi for the set of chains that are included

in the proofs of all values owned by node i. By the analysis

made in Subsection IV-A, there is minimum overhead for proof

collection in our system and the communication cost for each

transaction per node is O(1) messages. Hence, the CCPT in

our system can be calculated as O(g), where g = E[|Pi|]. This

is called spontaneous sharding since the throughput increased

as if the network has been naturally sharded.

Here, we give a more detailed analysis with graph theory.

Let us consider the transaction pattern as a weighted directed

graph G(V , �E), where the vertices v ∈ V represent the

nodes in the network. Then, instead of actually transactions,

the edges e = (u, v,w), e ∈ �E represent the transaction

channels and their capacities, i.e., the existence of transactions

between the sender u and receiver v, and the rate for the

transactions (amount per second) denoted by w. Then, we

assume a stable and sustainable value-transfer network, where

all nodes have equal amount of incoming and outgoing values

in a long term. Let us denote the sets for inbound edges and

outbound edges of node i as Ii and Oi, respectively, i.e.,

Ii = {e ∈ �E : e = (u, i,w)}, Oi = {e ∈ �E : e = (i,u,w)}.
When a piece of value sent by node i via edge e =

(i,u,w) ∈ Oi to node u, this amount of value w should

return to node i through a path. The nodes on the path

form a node set, denoted by Ne ⊆ V . In our system, the

value will then return with all the chains of nodes in Ne.

The same holds for the values received from the edges in

Ii as each piece of these values will eventually return to the

corresponding inbound neighbor of node i. As a result, we

have Pi = {v ∈ Ne : e ∈ Ii ∪Oi}.
There are two ways to optimize Pi and achieve spontaneous

sharding: local optimization and global optimization.

A local optimization can straightforwardly be done by the

following: according to the information about the chains that

the receiver already has, the sender will choose from all its

unspent transactions for the ones with the least amount of

required proofs. For example, node 1 has transacted with

a receiver node 2 who has already acquired the chains of

{3, 4, 5, 6} in this round. Then, if node 1 has this information,

it will prefer to use the unspent transactions with proofs that

consist of the chains from {3, 4, 5, 6} for transactions to node

2 so that it does not need to send proofs anymore. We give a

smart transacting algorithm in [31].

A global effort could be made by letting all nodes broadcast

their acquired chains in each consensus round. This effort

is spontaneous and beneficial to the nodes themselves, so a

reliable broadcasting scheme is not necessary. An additional

O(N2g) communication cost is required each round, which

adds at most O(g) to the CCPT. With the global information,

some optimization schemes could be run locally as references

for the source selection when nodes send transactions. The

purpose of the global optimization is to route all values with

the same sink through paths that include the minimum number

of nodes. A feasible global optimization scheme is a non-trivial

problem that we leave for future research.

However, the performance of the sharding and the eventu-

ally throughput depends heavily on the network model and

the transaction pattern. Here, we give theoretical analysis

showing the possibility of our system to scale-out in some

large random networks. Then, we use simulation to show

spontaneous sharding is feasible even in small networks.

Remark 2 (Tragedy of the Commons). It seems that the

spontaneous sharding would only happen if all nodes perform

rationally and cooperate, which will fall into the pitfall of

tragedy of the commons [32] if some nodes with high capacity

do not optimize their proof sizes. However, this system is not

identical to the tragedy of the common scenario since sponta-

neous sharding could also happen locally so that transmission

cost is a private resource rather than public resource. In other

words, a group of resource limited nodes can optimize their

transactions locally and reduces their transmission cost without

needing global cooperation.

C. Examples

Firstly, we show that our system with a global optimization

scheme will scale out in large random networks.

Example 1. We consider a random directed weighted graph

constructed as the Erdős-Rényi model with N nodes, M edges,

connectivity p = M
N(N−1) , and p is larger than lnN

N so that

the network is fully connected. We define f as the “weight

factor”, which is the average number of transaction channels

required for a piece of value, i.e., f = E[� w
E[w]�]w. This value

is 1 in unweighted graph and is O(1) if w follows Poisson

distribution.

For Example 1, let us consider the average size of Pi. Firstly,

if our system is globally optimized, we will have

E[|Pi|] = E[|{v ∈ Ne : e ∈ Ii ∪Oi}| (1)

≤ E[
∑

e∈Ii∪Oi

|Ne|]. (2)

Hence we focus on one path in which the value from an

outbound edge e from node i flows back to i. The average

path length is denoted by l. Then, due to the limited capacity

of the edges, this value requires ∼ fl edges to be delivered.

Hence, there are ∼ fl nodes in the set Ne. Combining this

with (2) we have

E[
∑

e∈Ii∪Oi

|Ne|] (3)

∼ 2cfl (4)

∼ 2f · c lnN

ln pN
(5)

∼ 2f · c lnN
ln c

, (6)

where c is the average inbound (outbound) connectivity, which

equals to M/N = p(N − 1). Here, we have (4) since the

average number of elements in Ii∪Oi is 2c. Then, (5) follows

from the average path length l ∼ lnN
ln pN from the random
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graph. Combining (6) with (2) and observing that 2f ·c lnN
ln c is

dominated by N when c = o( N
f lnN ), we have the following

condition: if conditions{
p > lnN

N
p = o( 1

f lnN )
(7)

hold, our system could scale out if a global optimization

scheme is used for spontaneous sharding, i.e., E[|Pi|] = o(N).
Here, f will be O(1) if the transaction rates between nodes

follow Poisson distribution. In that case, for instance, if

p = O( lnN
N ) which suggests c = O(lnN), each node will

only need to acquire on average O( lnN ·lnN
ln lnN ) chains.

Then, we give an example showing that even without global

optimizations, a naive local optimization scheme could already

result in the reduction of acquired chains in a small network. In

order to show that the spontaneous sharding could be achieved

in the worst case, we artificially construct an extreme network.

Example 2. We consider N nodes {1, 2, . . . ,N} placed in a

ring and each node transacts to the next c nodes on its right and

receives from the next c nodes on its left. Each node is given an

initial amount of value and will uniformly at randomly make

transactions to the c nodes. The frequency and the amount

of the transaction follow Poisson and uniform distributions,

respectively.

We run a simulation with our system for N = 10, 15, 20, 25
nodes with difference connectivity c. We simulate the commu-

nication between nodes with Netty3 and the main chain with

Tendermint [33]. We apply a naive smart transacting algorithm

in which the sender simply checks his own transaction records

for the information about the Pi of his receivers and choose

the sources accordingly. The implementation details and the

source code of our system and the simulation can be found in

Github 4. Fig. 2 shows the scenarios of sharding in stable

states. It can be observed that when c is small, we have

g < N , meaning spontaneous sharding is achieved. However,

when c is equal to or larger than 3, 4, 4, 6 for 10, 15, 20, 25
nodes, respectively, all nodes would acquire all chains. Then

the throughput of our system is no better than other scalable

blockchain systems. It is due to the naiveness of the algorithm

that we use for local optimization, e.g., the current algorithm

does not avoid combining sources with different proofs into

a single transactions and does not distinguish between chains

received only once and chains being continuously updated.

With better optimization algorithms, we believe that smaller g
can be achieved for larger c.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel blockchain system for

the most common type of distributed ledgers which we call

the VTL model. In the VTL model, we assume that nodes

are rational and will be motivated to prove their possession of

values. Our system has a very simple and fully decentralized

3http://netty.io/
4https://github.com/blockchain-lab/ScaleOutDistributedLedger
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Fig. 2. Average number of chains acquired by nodes for various connectivity
in stable states.

structure that does not introduce any node serving as “val-

idator”. Our system achieves uncompromised agreement and

validity conditions and could scale out by spontaneous shard-

ing without sacrificing security or decentralization. However,

as the focus of this paper is put on the formal theoretical

introduction of VTL and the off-chain and proof-based frame-

work, many refinements in practical perspective are left for

future research.

• Checkpoints to improve storage efficiency: As sharding

is a spontaneous and gradual process that might requires

a initial phase, it might happened that nodes are required

to record the whole transaction set until sharding starts.

Then, the storage cost per transaction will not scale-out

and cost new nodes quite heavily to join. This problem

could be mitigated by introducing checkpoints in the main

chain, which verifies the validity of certain values so that

later on the proofs of these values do not have to date

back to the genesis blocks. However, this do requires

the newcomers to trust the old nodes who verified these

values.

• Private channels for low latency payments: Private

off-chain channels like [18] is complicated in traditional

blockchains since the notion of value is hinged to the

on-chain ledger. However, as in our system the value

is off-chain by nature, private channels for low latency

micro-payments can be easily designed.

• Supportive to conditional payments/smart contracts:
We conjecture that conditional payments and smart con-

tracts can also be supported by this system with modified

data structure and validation scheme as long as each

transaction includes some value transferred to at least one

of the receivers. Such system will simultaneously achieve

sharding on both communication/storage resources and

computation resources.

• Real-world Implementation: We conjecture that our

system will also scale-out in more practical networks
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models [34], [35] or real-life transactions patterns [36],

[37]. Moreover, we believe that for most of the cryptocur-

rencies nowadays, our system will be very beneficial in

throughput since most of them are very “trader-centric”.

Then, for most users who only transact with traders, their

transmission and storage cost can be significantly saved

if the traders apply local optimization.

• Discrimination and hidden forks: As the proof size of

transaction can be very different, it might cause issues of

discrimination and hidden forks, e.g., values with huge

proof sizes are refused by some nodes in the network,

effectively causing a fork of the chain. This problem

can be partially solved if checkpoints are used. However,

we do not necessarily see this as a problem and argue

that this is no more dangerous than forks in traditional

blockchains.
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